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Abstract
In conducting a search for a person in an online social
network, most contemporary social networking sites return
source-target paths based purely on degrees of separation.
Not only does this fail to reflect social tie strength (how
well two people know one another), but it also does not
model asymmetry in social relationships (i.e. person A may
pay attention to person B does not mean that person B
will reciprocate). We show that search in social networks
can be made more effective by incorporating weighted and
directed influence edges in the social graph, thus captur-
ing both tie strength and asymmetry. We study two large
real-world networks, DBLP (a computer science bibliog-
raphy) and the network formed by one month of Twitter
retweet data. We model directed influence between individ-
uals based on their interactions. Our experiments show that
for these social networks, the best paths according to our
metric are not necessarily the shortest paths: a longer path
is better in 68% of searches in Twitter and 45% of searches
in DBLP. Further, even when the path length is the same,
we show that the best path is often significantly better than
a random shortest path of that length.

Our results suggest that social network sites should con-
sider incorporating weights into their search functionality
to improve the quality of results.

1. Introduction
Online social networking sites, such as Facebook, LinkedIn
and Flickr commonly model social relationships as binary;
two people are either “friends” or they are not. This is a
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coarse approximation to real life, in which people maintain
a large number of relationships with varying tie strength:
close friends, casual acquaintances, family, colleagues, and
so on.

Intuitively, several socially-oriented tasks (such as so-
cial search, community discovery etc.) could benefit from
embedding tie strength into their algorithmic frameworks.
In this paper, we explore this hypothesis in the context of
global social search: the problem of finding the “best” path
from one person to another in a social network given global
network information.

One can imagine several real-life examples of global so-
cial search: Jack, who wants to work at Google, might con-
sult his LinkedIn network to see if he knows anyone well-
placed to recommend him. Or John, who has a crush on
Mary, might consult Facebook to see whether they have any
friends in common who could either arrange an introduction
or put in a good word for John.

The problem of using binary relationships for global so-
cial search should be apparent to anyone who has con-
ducted a search on the LinkedIn network to find a path
to a target person. Since LinkedIn treats all relationships
evenly, the search returns the shortest path to the target.
This path tends to go through weak ties to highly con-
nected people: typically those whose jobs involve some
sort of professional networking (e.g. recruiters). However,
a longer path through stronger ties may yield a superior re-
sult. For example, consider the following 2 paths from A
to B: P1 =< A, C, D, B > and P2 =< A, E,B >. If A
and B are virtually strangers to E, but C and D are close
friends, and family members of A and B respectively, then
P1 is more likely to yield an introduction of A to B than
P2. Without edge weights, the problem of selecting the right
path is even worse when conducting a search not for a spe-
cific person, but for a generic attribute like “what’s the best
route in my social network to anyone employed at Ama-
zon ?” This problem is easily extrapolated to our examples
given above, as well as other scenarios, such as a site like
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thread.com that attempts matchmaking based on an under-
lying social graph.

1.1 Influence in Social Networks
We generalize the notion of tie strength in the social net-
working literature to a formal, quantitative measure of
asymmetric “influence” in online social networks. If a so-
cial graph has information on directional interactions, we
model the influence A has over B as the fraction of B’s
interactions that are with A. The influence of a path in the
social graph is defined as the product of the influences of
its edges. If A has high influence over B, then B is most
likely to honor the request to forward the message towards
its eventual destination. It would be most effective if the
request were routed through the path that has the greatest
influence.

That weak ties are extremely important in real-life so-
cial networks (e.g. in finding jobs) has been well accepted
by sociologists since the 1970s [4, 5]. Therefore, a network
like LinkedIn loses information when it asks users to accept
links only with people they know well and disregard invi-
tations from others. In spite of this recommendation, it is
common social practice for LinkedIn users to connect with
people they know only slightly. We argue that the value of
online social networks is precisely that they have the capac-
ity to capture ties of varying types and strengths, and that
this capacity should be used effectively.

1.2 Contributions
In this paper, we make the following contributions: we
define influence as an edge weight metric that is calcu-
lated based on relative fractions of interaction between two
nodes. We define the “best” path between 2 people A and B
as the most influential: that which optimizes the chance of
A’s message is delivered to B. Positing that the most influ-
ential paths between two nodes are not always the shortest
paths, we conduct an experiment on two social networks
(DBLP and Twitter retweets) in order to compare the re-
lationship between path length and influence. We find that
the most influential paths are often not the shortest, suggest-
ing that the incorporation of edge weights may improve the
performance of global social search. Furthermore, this ap-
proach is also useful in finding the best path among paths
of the same length.

The rest of this paper is structured as follows. We first
define our influence metric in Section 2, followed by a
model for global social search in Section 3. We present our
algorithm for finding the most influential path in a network
in Section 4. Next, we describe our experiments and results
in Section 5, and provide a broad discussion in Section 6.
We compare with prior work on social search and inducing
edge weights in Section 7 and conclude in Section 8.

2. Modeling Influence
The problem of global social search can be viewed as a
problem of routing requests in a social network. Therefore,
a natural optimization is to find the path to the target along
which one has the most influence. As discussed above, the
success of a search lies in finding a path such that each node
has influence over the succeeding node.

2.1 Social Interactions
To model influence, we start with an estimation of tie
strength. One simple way of estimating tie strength between
two nodes is to count their mutual friends. This method is
appealing as it relies solely on graph structure, and does not
require further meta-information about each edge.

We chose to use a more sophisticated metric based on ac-
tual interactions between the individuals involved. In many
graphs, such data about actual communication or collabo-
ration between individuals is available (such as the number
of Facebook Wall posts, or e-mail messages exchanged be-
tween two people.) As interaction involves some degree of
time and effort on the part of the participants, the number of
interactions is an informative measure of tie strength. One
could also imagine combining mutual friends and commu-
nication frequency to get a better estimate of tie strength. In
this paper, however, our model only uses interaction counts.

There are many different kinds of interactions. People
working on a paper together must spend a nontrivial amount
of time together, whereas a person can follow another on
twitter and the followed has no knowledge of the follower.
Interactions may be non-directional as in the case of writing
a paper, and directed as in the case of twitter.

2.2 Asymmetry of Influence
Influence is asymmetric: A has high influence on B does
not mean the vice versa is true. A simple scenario us-
ing Twitter illustrates the asymmetry. Consider two nodes:
“Obama” and “Joe the Plumber”. Joe likes to retweet
Obama. In fact, he has retweeted Obama 1,456 times!
Obama, on the other hand, has never referred to Joe in
his tweets. Now, if Joe wanted an introduction to an ac-
quaintance of Obama’s, it might be a mistake to go through
Obama: he has no influence over him. It would be easy for
Obama, on the other hand, to get Joe to introduce him to
one of his friends as Obama has high influence over Joe. In
other words, if A retweets B, B has influence over A.

A second example using a co-authorship network illus-
trates that asymmetry is not limited to directed interactions.
Consider a Ph.D. student and his thesis advisor. Because
advisors are frequently co-authors on publications, the pro-
portion of the student’s publications that are shared with
the advisor are high; the advisor has high influence on the
student. For the same reasons, the proportion of the profes-
sor’s publications that are shared with the student are low;
the student has comparatively lower influence on his advi-
sor. Thus, even though the interaction in this case is bidi-
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rectional, there is still a difference in influence between two
collaborators. This difference can be attributed to the pro-
portion of the collaboration to the total amount of work each
collaborator performs.

A perhaps more intuitive way of conceptualizing influ-
ence is as the complement of personal investment. A person
distributes personal investment amongst her acquaintances.
For example, if person B invests a lot of his time in person
A, then A has high influence over B.

We model the influence from A to B, Influence(A, B),
as the proportion of B’s investments on A. Let
Invests(B, A) be the investment B makes on A.

Influence(A, B) =
Invests(B, A)∑
X Invests(B, X)

A non-directional interaction can simply be modeled as
having two investments, one in each direction.

The analogy between influence and investment carries
over well to real life. We have control over how we dis-
tribute our investments. We have less control, however, over
who invest in us. In real life, influence is a quality that must
be given by others.

The influence of an edge in a social graph is always
between 0 and 1. This enables two edges in the graph be
compared easily in the global search algorithm. Figure 1(a)
depicts an undirected graph showing the investments as
weights, and Figure 1(b) shows the same graph with edges
weighted by influence.

(a) Before inferring influence (b) After inferring influence

Figure 1. This figure illustrates the results of allocating in-
fluence to the edges in an undirected network. An intuitive
interpretation of this graph runs as follows: imagine that
node A is an adviser, and nodes B, C, and D are her stu-
dents. The edge weights in Figure 1(a) depict the number of
co-authorships between node pairs. In Figure 1(b) we see
that the adviser holds more influence over her students than
her students hold over her. Moreover, student D, who has
authored fewer papers than student C, is more influenced
by student C because a larger proportion of his total publi-
cations involve student C.

2.3 Influential Individuals
A person is influential if he has high influences on many
people. We define the influence of a node as the sum of the

influences the node has on others. That is, the influence of
a node A,

Influence(A) =
∑

X

Influence(A, X)

3. Model for Social Search
We model the social search problem as one of finding the
“strongest” path in a weighted and directed graph in which
nodes represent people, and edge weights, ranging from
[0, 1] represent directed influence between nodes. A high
influence from A to B corresponds with a high probabil-
ity that B will forward A’s message to the desired target,
whether that be the end goal or another intermediary along
the path. However, we also note that there is some decay
factor associated with path length: similarly to the game
of “broken telephone”, the longer the path, the more likely
a message will be dropped. The probability, then, that the
message will make it from source to destination is simply
the product of the weights of each edge in the path, multi-
plied by a discount factor that models decay according to
path length. We set the discount factor to 0.95. We refer to
this probability as the strength of the path and calculate it
as follows: for a path P of length |P | that contains edges
edges e1, e2, . . . , en, the strength is:

S(P ) = (0.95)|P |
∏

Influence(ei), ei ∈ P.

Our goal is to find the path that maximizes this probabil-
ity.

We note that there are several other intuitive definitions
of path strength. One idea might be to impose an incremen-
tal decay on edge weight proportional to its distance from
the source (that is, the decay factor decreases with each
hop). Going beyond tie strength, we could also label edges
type of relationship and then filter queries along specified
labels. We do not deal with incremental decay or edge labels
in this work, but note that they are both natural extensions
of our above definition of path strength, which we chose for
its simplicity and intuitive appeal.

4. Algorithm: Computing the Strongest Path
We compute the shortest path from A to B using Djik-
stra’s algorithm. To compute the strongest path, we make
a natural adaptation to the Djikstra algorithm. Given spe-
cific source and target nodes, we would like to find a path
P from the source to the target that maximizes:

∏
Influence(ei), ei ∈ P

.
Therefore we would like to maximize

∑
log(Influence(ei)), ei ∈ P
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and therefore to minimize
∑

−log(Influence(ei)), ei ∈ P

which leads us to minimize
∑

log(1/Influence(ei)), ei ∈ P

Therefore given edge weights ei between A and B,
we can compute the strongest path by simply providing
log(1/Influence(ei)) as the starting edge weights to the
shortest path algorithm to.

5. Experiments
We evaluate the benefit of using weights during global
social search on two large networks, DBLP and Twitter
retweets. In both networks, influence may be inferred from
interactions between individuals. We chose these datasets
because they were large, realistic and provided a global
view of the network needed for our quantitative evalua-
tion of weighted paths. We specifically studied these two
networks for their representative diversity: the DBLP data
forms a dense network in which ties are precipitated from
intense, real-life social interaction. The Twitter dataset, on
the other hand, is directed and more sparse; furthermore,
ties do not necessarily represent real life social interaction.
Our expectation was that the use of such different networks
in our experiments leads to richer feedback on our model
assumptions and more representative experimental results.

5.1 DBLP Computer Science Bibliography
The DBLP dataset1 includes approximately 2.06 million
papers with 775,143 unique author names. We take the
social graph G = (V,E) where V is the set of all authors
and E = {(vi, vj) : i #= j, vi, vj ∈ V and vi, vj are co-
authors on a paper}. Considering only the giant component
reduces this graph to approximately 1.78 million papers and
603,237 unique authors.

We use the number of papers on which both vi and
vj are co-authors as a measure of investment. To induce
a directed, influence-weighted graph, we create directed
edges between each connected pair of authors by computing
the proportion of shared papers between each pair relative
to the total interactions of each author with all others (as
discussed in Section 2). That is, if Papers(vi, vj) is the
number of papers co-authored by vi and vj , then

Influence(vi, vj) =
Papers(vj , vi)∑
vk

Papers(vj , vk)

Our resulting graph contains approximately 4.06 million
edges. Figure 2 depicts a histogram of the natural log node
influence distribution.

In using the DBLP dataset, we make the underlying
assumption that a large number of co-authorships between

1 Available at http://dblp.uni-trier.de/xml/

Figure 2. More nodes in the DBLP dataset have an influ-
ence < 1, which is congruent with the observation that in-
fluence in real life is asymmetric. A small number of nodes
are highly influential - but not nearly as influential as those
in the tails of the Twitter influence distribution, shown in
Figure 3.

two actors indicates that they have a strong tie. We note that
“weak” ties on DBLP are probably not all that weak: since
writing a paper is a significant time investment, after all!
Of course, low influence edges may be more indicative of
non-overlapping research interests rather than weak social
influence between two actors. However, for experimental
purposes we restrict ourselves to the “DBLP universe” and
simply influence computation using co-authorship count.

5.1.1 DBLP Results
To compute the effect of weights on shortest path between
two nodes, we compute the probability of success along 2
different paths:
a) PSHORT the shortest path based on the number of hops.
Since there may be many paths with the same shortest
length, we pick a random path from amongst all such paths.
b) PSTRONG the strongest path. Strongest path is computed
using the weights model described in Section 4.

Once we pick a path PSHORT, we compute the strength
S(PSHORT) along that path, and compare it with the strength
of the strongest path in the weighted graph, S(PSTRONG).

We conducted trials on a set of 500 randomly selected
source/destination pairs. Table 1 summarizes the results.

5.2 Twitter
Our Twitter dataset consists of 1 month’s worth of tweets
from Twitter. Considering only retweets (RTs) yields a di-
rected graph, weighted by number of tweets from one user
to another, comprising approximately 2.4 million unique
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All Pairs |PSTRONG| > |PSHORT| |PSHORT| = |PSTRONG|
Papers 500 215 (43.0%) 285 (57.0%)
Avg. |PSHORT| 6.5 6.6 6.5
Avg. |PSTRONG| 7.0 7.8 6.5
Avg. improve-
ment in influence
(S(PSTRONG)

S(PSHORT)
)

548 605 506

Table 1. Summary statistics for experiment results conducted on the DBLP dataset. S(PSTRONG) and S(PSHORT) denote
the strength of the strongest or shortest path, respectively. |PSTRONG| and |PSHORT| denotes the length of the strongest or
shortest path, respectively.

users and 8.85 million directed edges. Retaining only
the giant connected component reduces this to 2.25 mil-
lion unique users and 8.75 million directed edges. We
induce influence weights over the edges as follows: if
Retweets(B, A) is the number of times B retweeted A,
then:

Influence(A, B) =
Retweets(B, A)∑
X Retweets(B, X)

That is, influence is the proportion of interactions that a
node directs to another to all of her outgoing interactions,
which is congruent with the definition described in Section
2. Because the Twitter dataset is directed to begin with,
there exist some nodes that never retweet: that is, they have
no outgoing edges in the original graph. This means that not
all nodes contribute to the total amount of influence in the
graph. The resulting average influence per node is 0.6, with
a high variance of 138.3. The maximum node influence is
8414.9. A histogram of the log node influence distribution
is shown in Figure 3.

Note that the directed property of this graph is important:
we cannot make the analogous assumption that we did for
DBLP, namely that a large number of tweets between two
users correlates with a strong tie strength. Interaction in
Twitter is often asymmetric. However, we do note that it
seems reasonable to assume that a large number of directed
tweets from A to B indicates that B has high influence over
A.

5.2.1 Twitter Results
We conduct our experiment on the Twitter data identically
to that on the DBLP data. That is, we compute the probabil-
ity of success along 2 different paths:
a) PSHORT the shortest path based on the number of hops.
b) PSTRONG the strongest path.

Again, we conducted our experiment on 500 randomly
selected node pairs in the dataset. We summarize our results
in Table 2.

6. Discussion
The hypothesis that utilizing edge weights may well im-
prove global social search is reflected nicely in our results.

Figure 3. As with the DBLP dataset, most nodes in the
Twitter dataset have a total influence < 1. However, note
that a very small number of nodes have an extremely high
influence (10, on a natural log scale). The two nodes with
highest influence are “revrunwisdom”, a religious leader
who tweets religious and spiritual quotations, and “tweet-
meme”, which aggregates popular links on twitter.

We discuss this here and – noting that these results are still
extremely preliminary – also discuss some limitations of
our approach, suggesting improvements for future work.

67.8% of the best paths in the Twitter graph, and 43%
of the best paths in the DBLP graph, are longer than the
corresponding shortest paths. In the Twitter dataset these
best, but longer, paths contain just over 2 hops more than
the corresponding shortest paths, on average. In the DBLP
dataset these best, but longer, paths contain, on average, just
over 1 hop more than the shortest possible path.

For the remaining 32.2% and 57.0% of the paths in
the Twitter and DBLP networks respectively, the strongest
and shortest paths have the same length. As we choose
the shortest path randomly from the set of all possible
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All Pairs |PSTRONG| > |PSHORT| |PSHORT| = |PSTRONG|
Retweets 500 339 (67.8%) 161 (32.2%)
Avg. |PSHORT| 7.7 7.9 7.3
Avg. |PSTRONG| 9.2 10.1 7.3
Avg. improve-
ment in influence
(S(PSTRONG)

S(PSHORT)
)

35,081 30,360 45,021

Table 2. Summary statistics for experiment results conducted on the Twitter dataset. S(PSTRONG) and S(PSHORT) denote
the strength of the strongest or shortest path, respectively. |PSTRONG| and |PSHORT| denotes the length of the strongest or
shortest path, respectively.

shortest paths, this does not mean that they are the same
path. Indeed, in the DBLP network, the strongest path is, on
average, 506 times more influential than the shortest path.
The corresponding statistic in the Twitter dataset is 45,201
times as influential.

Our results suggest that utilizing weights in global social
search may improve search results. In the case in which
the strongest and shortest paths are of equal length, there
can be only gain in picking the more influential path. In
the case in which the strongest path is longer than the
shortest path, 1-2 extra hops seems a small price to pay
for a significant improvement in path influence. Further,
neither improvement can be made without considering edge
weights. However, measuring the scale of the improvement
proves tricky, as we discuss in the next paragraph.

We posit that the large discrepancy between the Twitter
and the DBLP datasets is due to their fundamentally differ-
ent structure. The property of influence seems intrinsic to
a network such as Twitter, where interactions are driven by
hype and popularity. In a co-authorship network, however,
influence is a consequence of contribution, and so is more
evenly distributed amongst nodes. This is well illustrated by
the two histograms in Figures 2 and 3.

Our results also provide fodder for future model and ex-
perimental design improvements. We have run our exper-
iments on two graphs, albeit very different ones. Running
our experiments on a wider range of datasets would give us
a broader understanding of the problem and solution spaces
of influence weights.

A final caveat, often noted in social network analysis,
is that tie strength in any one dataset is not representative
of tie strength in real life, which can be interpreted in a
variety of subjective ways. For example, one may direct
tweets to colleagues at work much more often than to one’s
best friend back home. We believe, however, that proxies
for tie strengths provide useful information that unweighted
networks miss, and tie strengths often reflect the truth in
a particular “universe” (e.g. the “Twitter universe”, or the
“DBLP universe”), where interactions do indicate better
social paths for interactions within that universe.

7. Related Work
Much work has focused on the problem of search in so-
cial networks, and especially on the problem of local social
search (that is, the search is conducted by nodes in the net-
work, and they do not have a global view of the network).
In a social search experiment, Dodds et al. asked people
to forward a message through acquaintances to target per-
sons they did not know [2]. They found that successful so-
cial searches did not require hubs as crucial relay points,
but did rely heavily on professional ties; ties tended to be
medium to weak in strength. Adamic et al. simulate similar
“small world” experiments using email data and online so-
cial networks [1]. Both of these research branches are based
on prior work by Watts et al. [13], which argues for social
hierarchies as a framework for modeling social search. A
common theme in all of this research is the notion of en-
riching tie strength with information such as geographical
proximity, homophily etc. We are not the first to express
frustration with the use of binary ties for social search.

In terms of global social search, Aardvark2, a service that
connects people with specific questions to the people most
qualified, or most likely, to have an answer, internally em-
ploys a symmetric measure of affinity between users [6].
The affinity between users is calculated using a weighted
cosine similarity over a number of features, including: vo-
cabulary match, profile similarity, and social connectedness
in real life. Aardvark’s success is testimony to the efficacy
of routing social requests using edge weights in global so-
cial search. Although our proposed method of weighted
edges is much coarser, it has the advantage of being ap-
plicable to a wider array of datasets: those which have com-
munication frequencies between node elements. Similarly,
Facebook employs an internal measure of edge weight be-
tween friends, which is used to weight items when generat-
ing users’ news feeds.

To date, most network metrics and methods (such as
diameter, clustering algorithms etc.) assume binary edges.
However, it seems that many of these could easily be
adapted for use with weighted, directed edges. The problem
remains to infer edge weights in social graphs. Communi-

2 www.vark.com
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cation frequency data, when available, is often used in the
form of a threshold (e.g. define an edge between A and B
if they have exchanged at least 5 messages) [7, 12].

However, some recent work has focused on inferring
edge annotations based on structural and metadata proper-
ties of original datasets.

A step up from binary networks, in signed networks,
edges may be either positive, negative or not present.
Leskovec et al. have researched properties of signed net-
works as well as methods of predicting signs for online so-
cial networks [8, 9].

Some recent work has focused on inducing relation-
ship tie strength from social network metadata. Gilbert
and Karahalios present a successful method for predicting
closeness from Facebook profile attributes, such as wall
posts, messages exchanged etc. [3] Xiang et al. present a
model for learning relationship strength based on commu-
nication activity and profile similarities in online networks
such as Facebook and LinkedIn [14].

8. Conclusion
In this paper, we posited that utilizing edge weights in the
problem of global social search could yield more effective
results than a search based on binary ties alone. Not only
do binary ties fail to capture relationship strength, but they
also do not model relationship asymmetry. We presented in-
fluence as a generalized, asymmetric measure of tie strength
between two nodes, defining influence of person A on per-
son B as the proportional investment that B makes in A,
and defined a method of calculating the most influential
path from a source to a target node. We conducted an ex-
periment designed to measure the relationship between path
strength and path length on two datasets: the DBLP paper
co-authorship network, and one month’s worth of Twitter
retweets (RTs). The results of our experiment showed that
in many cases, the most influential path between two nodes
is, on average, 1-2 hops longer than the shortest path be-
tween those nodes. Moreover, for cases in which the most
influential path has the same length as the shortest path,
choosing the most influential path is still more effective. We
conclude that incorporating edge weights into global social
search algorithms would be beneficial to online social net-
working sites.
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