
Wrangler: Interactive Visual Specification
of Data Transformation Scripts

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, Jeffrey Heer
{skandel, paepcke, jheer}@cs.stanford.edu; joeh@cs.berkeley.edu

ABSTRACT
Though data analysis tools continue to improve, analysts
still expend an inordinate amount of time and effort manip-
ulating data and assessing data quality issues. Such “data
wrangling” regularly involves reformatting data values or
layout, correcting erroneous or missing values, and integrat-
ing multiple data sources. These transforms are often dif-
ficult to specify and difficult to reuse across analysis tasks,
teams, and tools. In response, we introduce Wrangler, an
interactive system for creating data transformations. Wran-
gler combines direct manipulation of visualized data with
automatic inference of relevant transforms, enabling ana-
lysts to iteratively explore the space of applicable operations
and preview their effects. Wrangler leverages semantic data
types (e.g., geographic locations, dates, classification codes)
to aid validation and type conversion. Interactive histories
support review, refinement, and annotation of transformation
scripts. User study results show that Wrangler significantly
reduces specification time and promotes the use of robust,
auditable transforms instead of manual editing.

Author Keywords
Data, cleaning, transformation, validation, visualization, pro-
gramming by demonstration, mixed-initiative.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: UI

INTRODUCTION
Despite significant advances in technologies for data man-
agement and analysis, it remains time-consuming to inspect
a data set and mold it to a form that allows meaningful anal-
ysis to begin. Analysts must regularly restructure data to
make it palatable to databases, statistics packages, and vi-
sualization tools. To improve data quality, analysts must
also identify and address issues such as misspellings, miss-
ing data, unresolved duplicates, and outliers. Our own infor-
mal interviews with data analysts have found that these types
of transforms constitute the most tedious component of their
analytic process. Others estimate that data cleaning is re-
sponsible for up to 80% of the development time and cost in

Submitted for review to CHI 2011.

data warehousing projects [4]. Such “data wrangling” often
requires writing idiosyncratic scripts in programming lan-
guages such as Python and Perl, or extensive manual editing
using interactive tools such as Microsoft Excel. Moreover,
this hurdle discourages many people from working with data
in the first place. Sadly, when it comes to the practice of data
analysis, “the tedium is the message.”

Part of the problem is that reformatting and validating data
requires transforms that can be difficult to specify and eval-
uate. For instance, analysts often split data into meaning-
ful records and attributes—or validate fields such as dates
and addresses—using complex regular expressions that are
error-prone and tedious to interpret [2, 23]. Converting coded
values, such as mapping FIPS codes to U.S. state names,
requires integrating data from one or more external tables.
The effects of transforms that aggregate data or rearrange
data layout can be particularly hard to conceptualize ahead
of time. As data sets grow in size and complexity, discover-
ing data quality issues may be as difficult as correcting them.

Of course, transforming and cleaning a data set is only one
step in the larger data lifecycle. Data updates and evolving
schemas often necessitate the reuse and revision of transfor-
mations. Multiple analysts might use transformed data and
wish to review or refine the transformations that were previ-
ously applied; the importance of capturing data provenance
is magnified when data and scripts are shared. As a result,
we contend that the proper output of data wrangling is not
just transformed data, but an editable and auditable descrip-
tion of the data transformations applied.

This paper presents the design of Wrangler, a system for in-
teractive data transformation. We designed Wrangler to help
analysts author expressive transformations while simplify-
ing specification and minimizing manual repetition. To do
so, Wrangler couples a mixed-initiative user interface with
an underlying declarative transformation language.

With Wrangler, analysts specify transformations by build-
ing up a sequence of basic transforms. As users select data,
Wrangler suggests applicable transforms based on the cur-
rent context of interaction. Programming-by-demonstration
techniques help analysts specify complex criteria such as
regular expressions. To ensure relevance, Wrangler enumer-
ates and rank-orders possible transforms using a model that
incorporates user input, transform parameters, and the use
rate, diversity, and specification difficulty of suggested trans-
form types. To convey the effects of data transforms, Wran-

1



DataWrangler
ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Clear

Delete rows 7,9

Delete emtpy rows

Fill rows 7,9 in all columns by
copying values from above

Fold Year using rows 7,9 as
keys

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama
1
2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7
8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15
16 Reported crime in Arizona
17
18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23
24 Reported crime in Arkansas
25
26 2004 4033.1
27 2005 4068
28 2006 4021.6
29 2007 3945.5
30 2008 3843.7

Year Property_crime_rate

Figure 1. The Wrangler Interface. The left panel contains (from top-to-bottom) a history of transforms, a transform selection menu, and automat-
ically suggested transforms based on the current selection. Bold text within the transform descriptions indicate parameters that can be clicked and
revised. The right panel contains an interactive data table; above each column is a data quality meter.

gler provides short natural language descriptions—which
users can refine via interactive parameters—and visual pre-
views of transform results. These techniques enable analysts
to rapidly navigate and assess the space of viable transforms.

As analysts transform data, their steps are recorded in a script
to facilitate reuse and provide documentation of data prove-
nance. Wrangler’s interactive history viewer supports re-
view, refinement, and annotation of these scripts. Wran-
gler’s high-level language supports a variety of runtime plat-
forms: Wrangler scripts can be run in a web browser using
JavaScript or translated into MapReduce or Python code.

We also present a controlled user study comparing Wrangler
and Excel across a set of data wrangling tasks. We find that
Wrangler significantly reduces specification time and pro-
motes the use of robust transforms rather than manual edit-
ing. Wrangler is one piece of a larger effort to address bot-
tlenecks in the data lifecycle by carefully integrating insights
and methods from the HCI and database communities.

RELATED WORK
The database and machine learning communities have con-
tributed a number of algorithmic techniques for aiding data
cleaning and integration. These techniques include meth-
ods for detecting erroneous values [10, 11], information ex-
traction [1, 24], entity resolution [6], type inference [7], and
schema matching [9, 20]. In the Wrangler interface we seek
to surface such techniques in an accessible manner.

A number of commercial and research systems provide graph-
ical interfaces leveraging the above methods. Many of these
tools provide interfaces for schema matching or entity reso-
lution [3, 9, 15, 22]. Toped++ [23] is an interface for creating
Topes, objects that validate and transform data. Topes sup-
port transformations such as text formatting and lookups, but
provide little support for filtering, reshaping, or aggregation.
Bellman [5] helps users understand the structure and quality
of a database, but does not enable transformations.

Many data cleaning applications apply direct manipulation
and programming-by-demonstration (PBD) methods to spe-
cific cleaning tasks. Users of SWYN [2] build regular ex-
pressions by providing example text selections and can eval-
uate their effect in visual previews. Potluck [13] applies si-
multaneous text editing [18] to merge data sources. Karma
[25] infers text extractors and transformations for web data
from examples entered in a table. Vegemite [17] applies
PBD to integrate web data, automates the use of web ser-
vices, and generates shareable scripts. Other interfaces [14]
apply PBD to data integration via copy and paste actions.

Wrangler applies a number of these techniques. Wrangler
infers regular expressions from example text selections [2]
and provides support for mass editing [13, 18]. Wrangler
uses semantic roles akin to Topes [23] and provides natu-
ral language descriptions in interaction scripts [17]. How-
ever, Wrangler differs in important ways. Most PBD tools
for data support either text extraction or data integration, but
lack operations such as reshaping, aggregation, and missing
value imputation. In the case of ambiguous input, these tools
either offer no recourse or require users to specify more ex-
amples. With the exception of Vegemite [17], prior tools do
not generate editable scripts to document provenance.

Most closely related to Wrangler is prior work on interactive
data cleaning tools. Potter’s Wheel [21] provides a transfor-
mation language for data formatting and outlier detection.
Wrangler’s transformation language extends that of Potter’s
Wheel, with some key differences discussed later. Ajax [8]
also provides a graphical interface to specify transforms for
reformatting and entity resolution. Both tools provide lim-
ited support for direct manipulation: interaction is largely re-
stricted to menu-based commands or entering programming
statements. GridWorks [12] leverages Freebase to enable en-
tity resolution and discrepancy detection. It provides sum-
marization and filtering support through faceted histograms.
Though users can specify some commands graphically, oth-
ers must be written in a command language. Moreover, the

2



system assumes that input data arrives in a proper tabular
format, limiting the forms of data to which it can be applied.

Wrangler builds on this prior work to contribute novel tech-
niques for specifying data transforms. Wrangler’s support
of programming-by-demonstration techniques is enabled by
a more general inference engine that generates and rank-
orders suggested transformations in response to user inter-
actions. Analysts can navigate the space of transforms by
directly selecting data, indicating a desired transform via
menus, and modifying a related transform; each of these ac-
tions leads Wrangler to further refine the set of suggestions.
To help analysts understand the effects of an operation be-
fore they commit to it, Wrangler’s natural language trans-
form descriptions are augmented by a novel preview mecha-
nism that visualizes transform results. In concert, these tech-
niques help analysts hone in on a desired transformation.

USAGE SCENARIO
Consider an example wrangling task, using housing crime
data from the U.S. Bureau of Labor Statistics. The data were
downloaded as a CSV (comma-separated values) file, but
are not immediately usable by other tools: the data contains
empty lines, U.S. states are organized in disjoint matrices,
and the state names are embedded in other text. We describe
how an analyst can use Wrangler to transform the data into
more usable formats (Figures 1–7).

The analyst begins by pasting the text of the file into the
Wrangler input box (alternatively, the analyst could upload
the file). The interface now shows a data table occupying
most of the screen (Fig. 1). To the left of the data table is
a panel containing an interactive transformation history and
a transform editor. The history already contains three trans-
forms, as Wrangler inferred that the data was in CSV format
and so split the text into rows on newline characters, split the
rows into columns on commas, and then promoted the first
row to be the table header. Note that the analyst could undo
any transform by clicking the red undo button to the right
of the transform, or could edit the transform descriptions in
place. In this case, the analyst has no need.

The analyst then begins wrangling the file into a usable form.
First, she ctrl-clicks row headers for two empty rows (7 and
9) to select them; the transformation editor suggests possi-
ble operations in response (Fig. 1). The first suggestion is
to delete just the selected rows. The analyst can navigate the
suggestions using the up and down arrows on the keyboard,
or by mousing over the description in the editor on the left.
As she navigates the suggestions, Wrangler previews the ef-
fects of the transforms in the data table. For deletions, the
preview highlights the candidate deleted rows in red (Fig. 2).
The analyst mouses over the suggestion to delete all empty
rows in the table and clicks the green add button to execute
the transform. The system then adds the deletion operation
to the transformation history.

The analyst would like to compare data across states, so she
first needs to extract the state names and add them to each
row of the data. She selects the text ‘Alaska’ in row 6 of the

DataWrangler
ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Clear

Delete rows 7,9

Delete emtpy rows

Fill rows 7,9 in all columns by
copying values from above

Fold Year using rows 7,9 as
keys

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama
1
2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7
8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15
16 Reported crime in Arizona
17
18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23
24 Reported crime in Arkansas
25
26 2004 4033.1
27 2005 4068
28 2006 4021.6
29 2007 3945.5
30 2008 3843.7

Year Property_crime_rate

Figure 2. Row deletion. The analyst selects two empty rows and chooses
a delete transform. Red highlights preview which rows will be deleted.
DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Delete empty rows

Clear

Extract from Year once after
in whitespace

Extract from Year once after
whitespace in

whitespace

Cut from Year once after in
whitespace

Cut from Year once after
whitespace in

whitespace

Split Year once after in
whitespace into columns

Split Year once after
whitespace in

whitespace into columns

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3
18 Reported crime in Arkansas
19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7
24 Reported crime in

California25 2004 3423.9
26 2005 3321
27 2006 3175.2
28 2007 3032.6
29 2008 2940.3
30 Reported crime in Colorado

Year extract Property_crime_rate
Alabama

Alaska

Arizona

Arkansas

California

Colorado

Figure 3. Text extraction. The analyst selects state names to extract
them into a new column. Yellow highlights show a preview of the result.
DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Delete empty rows

Extract from Year once after in
whitespace

Set extract's column name to
State

Clear

Delete rows where State is
missing

Fill State by copying values
from above

Fill State by copying values
from below

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3
18 Reported crime in Arkansas Arkansas
19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7
24 Reported crime in

California
California

25 2004 3423.9
26 2005 3321
27 2006 3175.2
28 2007 3032.6
29 2008 2940.3
30 Reported crime in Colorado Colorado

Year State Property_crime_rate

Alabama
Alabama
Alabama
Alabama
Alabama

Alaska
Alaska
Alaska
Alaska
Alaska

Arizona
Arizona
Arizona
Arizona
Arizona

Arkansas
Arkansas
Arkansas
Arkansas
Arkansas

California
California
California
California
California

Figure 4. Filling missing values. The analyst populates empty cells
by clicking the gray bar in the data quality meter above the “State”
column, and then selecting a fill transform.
DataWrangler

ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Delete empty rows

Extract from Year once after in
whitespace

Set extract's column name to
State

Fill State by copying values
from above

Clear

Delete rows where Year starts
with 'Reported crime in'

Delete rows where Year
contains 'Reported crime in'

Delete rows where Year parses
incorrectly

Extract from Year once
between positions 0,17

Extract from Year once on
Reported whitespace

crime whitespace in

Cut from Year once between
positions 0,17

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama Alabama
1 2004 Alabama 4029.3
2 2005 Alabama 3900
3 2006 Alabama 3937
4 2007 Alabama 3974.9
5 2008 Alabama 4081.9
6 Reported crime in Alaska Alaska
7 2004 Alaska 3370.9
8 2005 Alaska 3615
9 2006 Alaska 3582

10 2007 Alaska 3373.9
11 2008 Alaska 2928.3
12 Reported crime in Arizona Arizona
13 2004 Arizona 5073.3
14 2005 Arizona 4827
15 2006 Arizona 4741.6
16 2007 Arizona 4502.6
17 2008 Arizona 4087.3
18 Reported crime in Arkansas Arkansas
19 2004 Arkansas 4033.1
20 2005 Arkansas 4068
21 2006 Arkansas 4021.6
22 2007 Arkansas 3945.5
23 2008 Arkansas 3843.7
24 Reported crime in

California
California

25 2004 California 3423.9
26 2005 California 3321
27 2006 California 3175.2
28 2007 California 3032.6
29 2008 California 2940.3
30 Reported crime in Colorado Colorado

Year State Property_crime_rate

Figure 5. Deleting rows. The analyst selects text in unwanted rows and
selects a delete operation within the “Rows” menu. Red highlighting
previews which rows will be deleted.

“Year” column. Wrangler initially interprets this as select-
ing text at positions 18-24. The analyst updates Wrangler’s
inference by selecting ‘Arizona’ in the cell six rows below.
Wrangler now suggests extracting text occurring after the

3



DataWrangler
ExportImport

Split data repeatedly on
newline into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Delete empty rows

Extract from Year once after in
whitespace

Set extract's column name to
State

Fill State by copying values
from above

Delete rows where Year starts
with 'Reported crime in'

Clear

Merge Year,Property_crim...
with whitespace

Drop Year,Property_crim...

Fill Year,Property_crim... by
copying values from above

Fold Year,Property_crim...
using header as a key

Unfold Year above
Property_crime_rate

Transform Script

Text Columns Rows Table

0 2004 Alabama 4029.3
1 2005 Alabama 3900
2 2006 Alabama 3937
3 2007 Alabama 3974.9
4 2008 Alabama 4081.9
5 2004 Alaska 3370.9
6 2005 Alaska 3615
7 2006 Alaska 3582
8 2007 Alaska 3373.9
9 2008 Alaska 2928.3

10 2004 Arizona 5073.3
11 2005 Arizona 4827
12 2006 Arizona 4741.6
13 2007 Arizona 4502.6
14 2008 Arizona 4087.3
15 2004 Arkansas 4033.1
16 2005 Arkansas 4068
17 2006 Arkansas 4021.6
18 2007 Arkansas 3945.5
19 2008 Arkansas 3843.7
20 2004 California 3423.9
21 2005 California 3321
22 2006 California 3175.2
23 2007 California 3032.6
24 2008 California 2940.3
25 2004 Colorado 3918.5
26 2005 Colorado 4041
27 2006 Colorado 3441.8
28 2007 Colorado 2991.3
29 2008 Colorado 2856.7
30 2004 Connecticut 2684.9
31 2005 Connecticut 2579
32 2006 Connecticut 2575
33 2007 Connecticut 2470.6
34 2008 Connecticut 2490.8
35 2004 Delaware 3283.6
36 2005 Delaware 3118

Year State Property_crime_rate

0 Alabama 4029.3 3900 3937 3974.9
1 Alaska 3370.9 3615 3582 3373.9
2 Arizona 5073.3 4827 4741.6 4502.6
3 Arkansas 4033.1 4068 4021.6 3945.5
4 California 3423.9 3321 3175.2 3032.6
5 Colorado 3918.5 4041 3441.8 2991.3
6 Connecticut 2684.9 2579 2575 2470.6
7 Delaware 3283.6 3118 3474.5 3427.1
8 District of Columbia 4852.8 4490 4653.9 4916.3
9 Florida 4182.5 4013 3986.2 4088.8

10 Georgia 4223.5 4145 3928.8 3893.1
11 Hawaii 4795.5 4800 4219.9 4119.3
12 Idaho 2781 2697 2386.9 2264.2

State 2004 2005 2006 2007

Figure 6. Table reshaping. The analyst selects two columns, and then elects to unfold them to create a cross-tabulation. A ghosted table overlay
previews the result. Color highlights show the correspondence of data between the start and end states.

string “in ” (Fig. 3). The analyst executes this transform and
renames the resulting column “State”. She notices that the
column is sparsely populated. These missing values are in-
dicated by the gray bar in the data quality meter above the
column. The analyst clicks the gray bar and Wrangler sug-
gests transforms for missing values. The analyst chooses to
fill empty cells with the value from above (Fig. 4).

Looking at the “Year” column, the analyst notices a red bar
in the data quality meter indicating inconsistent data types.
Wrangler has inferred that the column primarily contains
numbers, and so has flagged non-numeric values as potential
errors. She decides to remove the rows containing the text
‘Reported crime in’. She selects the text ‘Reported crime
in’ in row 0. Wrangler suggests split, extract, and cut trans-
forms, but no delete operations. In response, the analyst se-
lects the Delete if... command from the Rows menu in the
transform editor. This action reorders the suggestions so that
delete commands have higher ranking. She finds the sugges-
tion that deletes the unwanted rows containing the selected
text (Fig. 5) and executes the transform.

At this point the analyst has wrangled the data into a proper
relational format, sufficient for export to database and vi-
sualization tools. But now suppose she would like to cre-
ate a cross-tabulation of crime rates by state and year for
subsequent graphing in Excel. She selects the “Year” and
“Property crime rate” columns, previews the suggested un-
fold operation (Fig. 6), then executes it to create the de-
sired cross-tab. The unfold operation creates new columns
for each unique value found in the “Year” column, and reor-
ganizes the “Property crime rate” values by placing each in
the appropriate cell in the resulting matrix.

split('data').on(NEWLINE).max_splits(NO_MAX)
split('split').on(COMMA).max_splits(NO_MAX)
columnName().row(0)
delete(isEmpty())
extract('Year').on(/.*/).after(/in /)
columnName('extract').to('State')
fill('State').method(COPY).direction(DOWN)
delete('Year starts with "Reported crime in"')
unfold('Year').above('Property_crime_rate')

dw.wrangle()
.push(dwsplit('data').on(dw.Regex.NEWLINE).max_splits(dwsplit.NO_MAX))
.push(dwsplit('split').on(dw.Regex.TAB).max_splits(dwsplit.NO_MAX))
.push(dw.filter(dw.isEmpty()))
.push(dw.extract('Year')..on(/.*/)).after(/in /)
.push(dw.columnName('match').to('State'))
.push(dw.fill('State').method(dw.Fill.COPY).direction(dw.Fill.DOWN))
.push(dw.unfold('Year').above('Property_crime_rate'))

Figure 7. The result of the analyst’s data wrangling session is a declar-
ative data cleaning script, shown here as generated JavaScript code.

The analyst’s process results in a transformation script writ-
ten in a declarative transformation language. The script pro-
vides an auditable description of the transformation enabling
later inspection, reuse, and modification. The analyst can
also annotate these transformations with her rationale. By
clicking the Export button above the transformation history,
the analyst can either save the transformed data or generate
runnable code implementing the transformation (Figure 7).

DESIGN PROCESS
We based Wrangler on a transformation language with a
handful of operators. Originally we thought that each of
these operators might correspond to a single interaction with
example data in a table view. However, after considering dif-
ferent mappings and evaluating their implications, we were
unable to devise an intuitive and unambiguous mapping be-
tween simple gestures and the full expressiveness of the lan-
guage. A given interaction could imply multiple transforms
and multiple interactions might imply the same transform.

4



Although this many-to-many relationship between the lan-
guage and interaction might complicate our interface, we
found the relationship to be relatively sparse in practice: the
number of likely transforms for a given gesture is small. As a
result, we took a mixed-initiative approach. Instead of map-
ping an interaction to a single transform, we surface likely
transforms as an ordered list of suggestions. We then fo-
cused on rapid means for users to navigate—prune, refine,
and evaluate—these suggestions to find a desired transform.

Wrangler is a browser-based web application, written in Java-
Script. In the next section we describe the Wrangler trans-
formation language. We then present the Wrangler interface
and its techniques for navigating suggestion space. Next, we
describe Wrangler’s mechanisms for verification. We go on
to discuss the technical details of our suggestion inference.

THE WRANGLER TRANSFORMATION LANGUAGE
Underlying the Wrangler interface is a declarative data trans-
formation language that extends the Potter’s Wheel language
[21], which in turn borrows from SchemaSQL [16]. Our lan-
guage design process was guided by prior work [8, 21] and
empirical data; we gathered data sets from varied sources
(e.g., data.gov, NGOs, log files, web APIs) and used them to
drive language requirements. Language statements manip-
ulate data tables: collections of numbered rows and named
columns of data. Wrangler treats raw text as a “degenerate”
table containing one row and one column. The language
consists of eight classes of transforms, described below.

Map transforms map one input data row to zero, one, or
multiple output rows. Delete transforms (one-to-zero) ac-
cept predicates determining which rows to remove. One-to-
one transforms include extracting, cutting, and splitting val-
ues into multiple columns, reformatting, simple arithmetic,
and updates. One-to-many transforms include operations for
splitting data into new rows, such as splitting a text file on
newlines and unnesting arrays and sets.

Lookups and joins incorporate data from external tables.
Wrangler includes extensible lookup tables to support com-
mon types of transformations, such as mapping zip codes to
state names for aggregation across states. Currently Wran-
gler supports two types of joins: equi-joins and approximate
joins using string edit distance. These joins are useful for
lookups and correcting typos for known data types.

Reshape transforms manipulate table structure and schema.
Fold transforms collapse multiple columns to two or more
columns containing key-value sets. Unfold transforms cre-
ate new column headers from data values. See [21] for an
extended discussion. Reshaping transforms are common in
tools such as R and Excel Pivot Tables, and are necessary for
higher-order restructuring of data.

Positional transforms include Fill and Lag operations. Fill
operations generate values based on neighboring values in a
row or column and so depend on the sort order of the table.
For example, an analyst might fill empty cells with preceding
non-empty values. The Lag operator shifts the values of a
column up or down by a specified number of rows.

The language also includes functions for sorting, aggrega-
tion (e.g., sum, min, max, mean, standard deviation), and
key generation (a.k.a., skolemization). Finally, the language
contains schema transforms to set column names, specify
column data types, and assign semantic roles.

To aid data validation and transformation, Wrangler pro-
vides data types (e.g., integers, numbers, dates, strings) and
higher-level semantic roles (e.g., geographic location, clas-
sification codes, currencies). Data types comprise standard
primitives and associated parsing functions. Semantic roles
consist of additional functions for parsing and formatting
values, plus zero or more transformation functions that map
between related roles. As an example, consider a semantic
role defining a zip code. The zip code role can check that a
zip code parses correctly (i.e., is a 5 digit number) and that
it is a valid zip code (checking against an external dictio-
nary of known zipcodes). The zip code role can also regis-
ter mapping functions, e.g., to return the containing state or
a central lat-lon coordinate. Wrangler leverages types and
roles for parsing, validation, and transform suggestion. The
Wrangler semantic role system is extensible, but currently
supports a limited set of common roles such as geographic
locations, government codes, currencies, and dates.

The design of the Wrangler language co-evolved with the
Wrangler interface described in subsequent sections. We
desired a consistent mapping between transforms presented
in the interface and statements in the language. Discon-
nects between the two might cause confusion [19], espe-
cially when analysts try to interpret code-generated scripts.
As a result, we chose to introduce some redundancy in the
language. Some operations, particularly positional trans-
forms, are equivalent to a series of lower-level transforms
(i.e., using key transforms, self-joins, and scalar functions).
We present such high-level operations in the interface as a
single transform if they are commonly invoked and their
lower-level realization is unintuitive. We then add corre-
sponding high-level operators to the language. The result
is a clear one-to-one mapping between transforms presented
in the interface and statements in output scripts.

Prior work [16, 21] shows that our basic set of transforms
is sufficient to handle all one-to-one and one-to-many trans-
forms. Through both our own practice and discussions with
analysts, we believe our extended language is sufficient to
handle a large variety of data wrangling tasks.

THE WRANGLER INTERFACE DESIGN
The goal of the Wrangler interface is to enable data analysts
to author expressive transformations with minimal difficulty
and tedium. To this aim, our interface combines direct ma-
nipulation, menu-based command selection, automatic sug-
gestion, and transform refinement. This synthesis of tech-
niques enables analysts to navigate the space of applicable
transforms using whatever means they find most convenient.

Both novices and experts can find it difficult to specify trans-
form parameters such as regular expressions. While direct
manipulation selections can help, inference is required to

5



suggest transforms without programming. To reduce the
gulf of execution [19], Wrangler uses an inference engine
that suggests data transformations based on user input, data
type or semantic role, and a number of empirically-derived
heuristics. These suggestions are intended to facilitate the
discovery and application of more complicated transforms.

However, suggested transforms (and their consequences) may
be difficult to understand. To reduce the gulf of evaluation
[19], Wrangler provides natural language descriptions and
visual transform previews. Natural language descriptions are
intended to enhance analysts’ ability to review and refine
transformation steps. Lightweight annotation enables com-
munication of analyst intent. Wrangler also couples verifi-
cation (run in the background as data is transformed) with
visualization to help users discover data quality issues.

Basic Interactions
The Wrangler interface supports six basic interactions within
the data table. Users can select rows, select columns, click
bars in the data quality meter, select text within a cell, edit
data values within the table (for mass editing [13, 18]), and
assign column names, data types or semantic roles. Users
can also choose transforms from the menu or refine sugges-
tions by editing transform descriptions as described below.

Automated Transformation Suggestions
As a user interacts with data, Wrangler generates a context-
sensitive list of suggested transforms. Transforms are repre-
sented by editable natural language descriptions. Users can
cycle through suggestions using the up and down keys on the
keyboard or by mousing over a specific suggestion. When a
suggestion is highlighted, Wrangler previews the effect of
the suggestion in a visualization (discussed later). By cy-
cling through suggestions and viewing their previews, users
can identify the desired transform.

Navigating the space of suggestions efficiently involves a
number of considerations. In some cases the set of possible
suggestions is large (e.g., in the hundreds), but we wish to
show only a relevant handful in the interface to avoid over-
load. Instead of enumerating the entire suggestion space,
users can prune and reorder the space in three ways. First,
users can provide more examples to disambiguate input to
the inference engine. Providing examples is especially effec-
tive for text selections needed for splitting, extraction, and
reformatting; two or three well-chosen examples typically
suffice. Second, users can filter the space of transforms by
selecting an operator from the transform menu. Third, users
can edit a transform by altering the parameters of a trans-
form to a desired state. Wrangler does not immediately ex-
ecute selected suggestions. Instead, Wrangler promotes the
suggestion to be the current working transform. The user
can edit this transform directly; as a user edits parameters,
the suggestion space updates to reflect these edits. A user
can also continue interacting with the table to generate new
suggestions that use the working transform as context.

Natural Language Descriptions
To aid apprehension and refinement of suggested transforms,
Wrangler generates short natural language descriptions of

Figure 8. Editable Natural Language Descriptions. (a) An example of
an editable description; highlighted text indicates editable parameters.
(b) Clicking on a parameter reveals an in-place editor. (c) After editing,
the description may update to include new parameters. In this case, a
new window size parameter is displayed for the moving average.

the transform type and parameters. These descriptions are
editable, with parameters presented as bold hyperlinks (Fig.
8). Clicking a link reveals an in-place editor appropriate
to the parameter (Fig. 8b). Enumerable variables (such
as the direction of a fill) are mapped to selection widgets
(e.g., drop-down menus) while free-form text parameters are
mapped to text editors with autocomplete.

We designed these descriptions to be concise; default param-
eters that are not critical to understanding may be omitted.
For example, the unless between parameter for split opera-
tions indicates regions of text to ignore while splitting. In
most cases, this parameter is left undefined and including it
would bloat the description. To edit hidden parameters users
can click the expansion arrow to the left of the description,
revealing an editor with entries for all parameters.

We also sought to make parameters within descriptions read-
able by non-experts. For instance, we translate regular ex-
pressions into natural language via pattern substitution (e.g.,
(\d+) to ‘number’ and ˆ to ‘leading’). This translation can
make some descriptions less concise but increases readabil-
ity. Translation is only performed with regular expressions
generated by the Wrangler inference engine. If a user types
in a custom expression, Wrangler will reflect their input.

To generate descriptions, Wrangler assigns each transform
parameter five functions, controlling the type, prefix, suf-
fix, visibility, and description. The type function indicates
which type of in-place editor to use. The prefix and suffix
functions generate surrounding text for a parameter and take
as input both the value of the parameter and all other pa-
rameters for the given transform. The visibility function de-
termines whether or not the description includes a reference
to the parameter at all; the return value may depend on the
value of the parameter and all other parameters. The descrip-
tion function generates a readable representation for the pa-
rameter. This function is most useful for translating regular
expressions and simplifying complex selection clauses (e.g.,
“A=null and B=null and C=null” to “the row is empty”).
Wrangler strives for syntactic consistency across descrip-
tions, e.g., the transform name is always the first word and
the operand columns appear after the transform name.

6



Visual Transformation Previews
Wrangler uses visual previews to enable users to quickly
evaluate the effect of a transform. For most transforms, Wran-
gler displays these previews in the source data, and not as a
separate visualization (e.g., a side-by-side before and after
preview). In-place previews provide a visual economy that
serves a number of goals. First, displaying two versions of
a table inherently forces both versions to be small, which
is particularly frustrating when the differences are sparse.
Second, presenting in-place modifications draws user atten-
tion to the effect of the transformation in its original context,
without requiring a shift in focus across multiple tables. As
we discuss next, in-place previews better afford direct ma-
nipulation for users to revise the current transform.

Wrangler maps transform types to at least one of five pre-
view classes: selection, deletion, update, column and table.
In defining these mappings, we attempted to convey a trans-
form’s effect with minimum displacement of the original
data. This stability allows users to continue interacting with
the original data, e.g., to provide new selection examples.

Selection previews highlight relevant regions of text in all
affected cells (Fig. 3). Deletion previews color to-be-deleted
cells in red (Fig. 2). Update previews overwrite values in a
column and indicate differences with yellow highlights (Fig.
4). Column previews display new derived columns, e.g., as
results from an extract operation (Fig. 3). The one case for
which we show a side-by side display of versions is when
previewing transformations that alter the layout of data (fold
and unfold). These transforms alter the structure of the table
to such an extent that the best preview is to show another
table (Fig. 6, 9). Such Table previews use color highlights
to match input data to their new locations in the output table.
Some transforms map to multiple classes; for instance, an
extract command uses both selection and column previews.

When possible, previews also indicate where the user can
modify the transform through either direct manipulation or
description refinement. Simply highlighting selected text or
cells works well for certain transformations. For example,
by highlighting the text selected by a regular expression for
each cell, users can determine which examples they need
to fix to update the transform. For reshape transformations,
Wrangler highlights the input data in the same color as the
corresponding output in the secondary table. For instance, in
a fold operation, data values that will become keys are col-
ored to match the keys in the output table (Fig. 9). Wrangler
also highlights the parameters in the transform description
using the same colors as those generated in previews (Fig.
3–6). The consistent use of colors allows users to associate
clauses in a description with their effects in the table.

Transformation Histories and Export
As successive transforms are applied, Wrangler adds their
descriptions to an interactive transformation history viewer.
Users can edit individual transform descriptions and selec-
tively enable and disable prior transforms. Upon changes,
Wrangler runs the edited script and updates the data table.
Toggling or editing a transform may result in downstream er-

DataWrangler
ExportImport

Split data repeatedly
on newline  into
rows

Split split repeatedly
on ,  into columns

Promote row 0 to
header

Fold
split_2,split_3,sp...
using rows 0,1 as keys

Fold
split_2,split_3,sp...
using row 0 as a key

Fold
split_2,split_3,sp...
using rows 0,1,2 as
keys

Fold
split_2,split_3,sp...
using rows 0,1,2,3 as
keys

Fold
split_2,split_3,sp...
using header as a
key

Merge
split_2,split_3,sp...
with whitespace

Drop
split_2,split_3,sp...

Clear

Transform Script

Text Columns Rows
Table

0 2004 2004 2004 2003 2003
1 STATE Participation Rate 2004 Mean SAT I Verbal Mean SAT I Math Participation Rate 2003 Mean SAT I Verbal
2 New York
3 Connecticut
4 Massachusetts
5 New Jersey
6 New Hampshire
7 D.C.
8 Maine
9 Pennsylvania

10 Delaware
11 Georgia
12 Rhode Island
13 Virginia
14 North Carolina
15 Maryland
16 Florida
17 Vermont
18 Indiana
19 South Carolina
20 Hawaii
21 Oregon
22 Alaska
23 Texas
24 Washington
25 California
26 Nevada
27 Arizona
28 Montana
29 Ohio
30 Colorado
31 Idaho
32 West Virginia
33 Tennessee
34 New Mexico
35 Kentucky
36 Wyoming
37 Michigan

split_1 split_2 split_3 split_4 split_5 split_6

87 497 510 82 496
85 515 515 84 512
85 518 523 82 516
83 501 514 85 501
80 522 521 75 522
77 489 476 77 484
76 505 501 70 503
74 501 502 73 500
73 500 499 73 501
73 494 493 66 493
72 503 502 74 502
71 515 509 71 514
70 499 507 68 495
68 511 515 68 509
67 499 499 61 498
66 516 512 70 515

0 New York 2004 Participation Rate 2004
1 New York 2004 Mean SAT I Verbal
2 New York 2004 Mean SAT I Math
3 New York 2003 Participation Rate 2003
4 New York 2003 Mean SAT I Verbal
5 New York 2003 Mean SAT I Math
6 Connecticut 2004 Participation Rate 2004
7 Connecticut 2004 Mean SAT I Verbal
8 Connecticut 2004 Mean SAT I Math
9 Connecticut 2003 Participation Rate 2003

10 Connecticut 2003 Mean SAT I Verbal
11 Connecticut 2003 Mean SAT I Math
12 Massachusetts 2004 Participation Rate 2004
13 Massachusetts 2004 Mean SAT I Verbal
14 Massachusetts 2004 Mean SAT I Math

split_1 fold fold_1 fold_2
87
497
510
82
496
510
85
515
515
84
512
514
85
518
523

Figure 9. Visual preview of a fold operation. For transforms that rear-
range table layout, Wrangler previews the output table and uses color
highlights to show the correspondence of values across table states.

rors; Wrangler highlights broken transforms in red and pro-
vides an error message to aid debugging.

Wrangler scripts support lightweight text annotations. An-
alysts can use annotations to document their rationale for a
particular transform and may help future users better under-
stand data provenance. To annotate a transform, users can
click the edit icon next to the desired transform and write
their annotation in the resulting text editor. Users can view
an annotation by mousing over the same edit icon. These
annotations appear as comments in code-generated scripts.
Users can export both generated scripts and transformed data;
clicking the Export button in the transform history invokes
export options. Analysts can later run saved or exported
scripts on new data sources, modifying the script as needed.

TYPES, ROLES, AND VERIFICATION
It is often difficult to discover data quality issues and there-
fore difficult to address them by constructing the appropri-
ate transform. Wrangler aids discovery of data quality issues
through the use of data types and semantic roles.

As users transform data, Wrangler attempts to infer the data
type and semantic role for each column. Wrangler applies
validation functions to a sample of the user’s data to infer
these types. Wrangler assigns a column the data type that
validates for over half of the non-missing values. If multi-
ple data types satisfy this criteria, Wrangler assigns the more
specific data type (e.g., integer is more specific than double).
Wrangler infers semantic roles analogously. An icon in the
column header indicates the semantic role of the column, or
the underlying data type if no role has been assigned. Click-
ing on the icon reveals a pop-up menu with which users can
manually assign a type or role.

Atop each column resides a data quality meter that provides
a validation summary. A divided bar graph indicates the pro-
portion of values in the column that verify completely. Val-
ues that parse successfully are indicated in green; values that
match the type but do not match the role (e.g., a 6 digit zip
code) are shown in yellow; those that do not match the type
(e.g., ‘One’ does not parse as an integer) are shown in red;

7



and missing data are shown in gray. Clicking a bar generates
suggested transforms for that category. For instance, click-
ing the missing values bar will suggest transforms to fill in
missing values or delete those rows. Clicking the fails role
bar will suggest transforms such as a similarity-join on mis-
spelled country names.

THE WRANGLER INFERENCE ENGINE
The Wrangler inference engine is responsible for generating
the ranked list of suggested transforms. The engine models
transforms in the language as points in a multidimensional
feature space. Inputs to the engine consist of user interac-
tions; the current working transformation; and data descrip-
tions such as column data types, semantic roles, and sum-
mary statistics. In this section, we discuss the criteria the
inference engine uses to rank transforms by relevance.

The engine attempts to infer both the type of transform (e.g.,
split or fill) and the operands to this transform. Wrangler in-
fers sets of parameters from user selections and edits, which
Wrangler associates with one or more operand types. For
example, selecting text in a cell triggers inference of text se-
lection criteria, column selection, and row selection. Wran-
gler infers values for these operands independent of all other
parameters, e.g., it infers an ordered list of regular expres-
sions for text selection based solely on the selected text, a
process otherwise independent of which rows are selected.

To infer text selections, Wrangler generates a set of selec-
tions (including regular expressions) that match the exam-
ples, ranked by decreasing description length. To rank other
parameters, such as column selections and enumerable pa-
rameters (low-cardinality parameters with a pre-defined set
of alternatives), we order alternatives by their frequency of
occurrence in a collection of data wrangling scripts created
using our test corpus of data sets.

After inferring potential parameters, Wrangler enumerates
transforms that accept as input at least one of the inferred pa-
rameters. Continuing the text selection example from above,
split, cut, and extract transforms all accept each of the in-
ferred parameters (e.g., split column name on ‘,’ for all rows),
whereas delete transforms accept only row selection crite-
ria. Wrangler will instantiate suggested transforms using the
cross product of the inferred parameters, leaving all other pa-
rameters at their default values. Wrangler then filters these
transforms based on the data description. For example, Wran-
gler will not suggest unfolding numeric columns with high
cardinality, as it is unlikely a user wants to create a wide ta-
ble with columns named as numbers. Wrangler also filters
the suggestions based on explicit actions given by the user:
if a user chooses a transform from the menu or has selected a
current working transform, Wrangler will assign higher rank
to similar transforms.

Wrangler also considers specification difficulty and trans-
form diversity. Some parameters are harder than others to
specify, such as regular expressions and row selection clauses.
Wrangler preferentially ranks transforms that differ along
those parameters. In contrast, users can easily edit other pa-

DataWrangler
ExportImport

Split data repeatedly on newline
into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Clear

Extract from Year once between
positions 18,24

Extract from Year once on
Alaska

Cut from Year once between
positions 18,24

Cut from Year once on Alaska

Split Year once between positions
18,24 into columns

Split Year once on Alaska into
columns

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama
1
2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7
8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15
16 Reported crime in Arizona
17
18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23
24 Reported crime in Arkansas
25
26 2004 4033.1
27 2005 4068
28 2006 4021.6

2007 3945.5

Year Property_crime_rate

DataWrangler
ExportImport

Split data repeatedly on newline
into rows

Split split repeatedly on , into
columns

Promote row 0 to header

Clear

Extract from Year once after in
whitespace

Extract from Year once after
whitespace in whitespace

Cut from Year once after in
whitespace

Cut from Year once after
whitespace in whitespace

Split Year once after in
whitespace into columns

Split Year once after
whitespace in whitespace

into columns

Transform Script

Text Columns Rows Table

0 Reported crime in Alabama
1
2 2004 4029.3
3 2005 3900
4 2006 3937
5 2007 3974.9
6 2008 4081.9
7
8 Reported crime in Alaska
9

10 2004 3370.9
11 2005 3615
12 2006 3582
13 2007 3373.9
14 2008 2928.3
15
16 Reported crime in Arizona
17
18 2004 5073.3
19 2005 4827
20 2006 4741.6
21 2007 4502.6
22 2008 4087.3
23
24 Reported crime in Arkansas
25
26 2004 4033.1
27 2005 4068
28 2006 4021.6

2007 3945.5

Year Property_crime_rate

Figure 10. Suggested Transforms. (a) Sample suggestions generated
after the user selects the text ‘Alaska’. The suggestions range across
parameters (e.g., regular expressions) and across transformation types
(split, extract, cut). (b) The suggestions update after the user provides
another selection example: ‘Arizona’.

rameters such as the direction of a fill or the text to use as
glue in a merge. Based on hand-coded rules, Wrangler tags
transform parameters as hard or easy to specify and subse-
quently ranks transforms with hard parameters above those
with easy parameters. Also, Wrangler provides examples of
diverse types of transforms to enable discovery. Therefore
Wrangler will lower the ranking of transforms that have the
same transform type as ones already suggested.

We hand-coded our inference rules in an intuitive and prag-
matic fashion. In the future, our mapping of transforms to
an abstract feature space will allow us to experiment with
standard machine learning approaches for inference.

COMPARATIVE EVALUATION WITH EXCEL
We conducted a user study comparing Wrangler to Microsoft
Excel, a popular spreadsheet application. We chose Excel
because it is by far the most popular tool for manipulating
data, while most of the PBD tools discussed earlier have
limited use. Excel also provides an expressiveness of trans-
forms comparable to Wrangler, though often by quite differ-
ent means. The goals of the study were to test the usability
of the Wrangler interface, compare completion time and ac-
curacy across tools, and observe data cleaning strategies.

Participants and Methods
We recruited 12 participants, all graduate students or profes-
sionals who work with data in some capacity. Subjects rated
their prior experience with Excel on a 10-point scale (1 be-
ing basic knowledge and 10 being expert); the median score
was 5. Participants had never used the Wrangler interface.

We presented a 10 minute tutorial on using Wrangler to each
subject, describing Wrangler’s interface and how to create,
edit, and execute transforms. After the tutorial, we asked
subjects to complete three tasks using both Wrangler and
Excel. We randomized the presentation of tasks and tools
across subjects. In each task, we asked subjects to transform
a data set into a new format, presented to them as a picture.

8



0
100
200

T1

0
100
200

T2

0
100
200

T3

Study Task Completion Times (in seconds) Wrangler Excel

Figure 11. Task completion times, sorted and capped at 200 seconds.
Median Wrangler performance is at least twice as fast in all tasks.

Each task focused on a transform type: text extraction, miss-
ing value imputation, or reshaping table structure.

Task 1: Extract Text. In this task, we asked users to ex-
tract the number of bedrooms and housing price from hous-
ing listings on craigslist. The original data set contained one
cell for each listing, with all the information in a text string.
The target data set consisted of two columns: one for the
number of bedrooms and one for the housing price.

Task 2: Fill Missing Values. We gave users data containing
year-by-year agricultural data for three countries. Some of
the values in the data set were blank. The target data set con-
tained the same data with all missing values replaced with
the closest non-empty value from a previous year.1

Task 3: Reshape Table Structure. Users started with three
columns of housing data: year, month, and price. The target
data set contained the same data formatted as a cross-tab: the
data contained one row for each year, with the 12 months as
column headers and housing prices as cell values.

When using Excel, we allowed subjects to ask for references
to functions they could describe concretely (e.g., we would
answer “how do I split a cell?” but not “how do I get the
number of bedrooms out?”). For Wrangler tasks, we did not
respond to user inquiries. We permitted a maximum of 10
minutes per task. Each data set had at most 30 rows and
4 columns; complete manual manipulation in Excel was at-
tainable within the time limits. Afterwards, each user com-
pleted a post-study questionnaire.

Wrangler Accelerates Transform Specification
Across all tasks, median performance in Wrangler is at least
twice as fast as Excel (Fig. 11). Applying non-parametric
Mann-Whitney U tests, we found that Wrangler significantly
outperformed Excel in both Task 1 (U (12)=17.5, p<0.002)
and Task 2 (U (12)=18.5, p<0.003). For Task 3 we found no
significant difference between completion times (U (12)=51,
p=0.236). However, we noticed that subjects who reported
little experience with Excel (and presumably, less data anal-
ysis experience) performed poorly in Task 3 using both tools.
Restricting our attention to the 8 users who reported an ex-
perience rating of 4 or higher, we found Wrangler again sig-
nificantly outperforms Excel (U (8)=9, p<0.02).

These results show that not only can novice Wrangler users
specify data transformations more quickly, those who are al-

1We acknowledge that this is not an ideal cleaning solution for this
data, but it served as a useful test nonetheless.

ready skilled Excel users benefit even more. Furthermore,
the user study tasks involved small data sets amenable to
manual manipulation; as data set size grows, we expect the
benefits of Wrangler to come into even sharper relief. Of
course, larger data sets also complicate the process of assess-
ing a transform’s effect and might benefit from additional
validation and visualization techniques.

Strategies for Navigating Suggestion Space
When using Wrangler, subjects applied different navigation
strategies for different tasks. These strategies were largely
consistent across users. For operations with complex text
selection criteria, users most frequently provided multiple
examples to prune the space of transforms. For all other
operations, they would usually perform one selection or edit
and then cycle through the presented suggestions.

If users did not find a transform immediately, their most
common recourse was to filter suggestions by selecting a
transform type from the menu. If only imperfect matches
were found, users would select the nearest transform and
edit its parameters. However, users did this only when other
methods of navigation had failed.

These navigation strategies worked well when users under-
stood the nature of the desired transform, even if they did
not know how to specify it. However, we found that users
of both tools experienced difficulty when they lacked a con-
ceptual model of the transform. For instance, Task 3 ex-
hibited an uneven distribution of completion times; 7 of the
10 fastest times and 3 of the 4 slowest times were in Wran-
gler. Wrangler does not provide the recourse of manual edit-
ing, hence users who got stuck fared slightly better in Excel.
However, those familiar with pivot operations in Excel uni-
formly performed the task more quickly with Wrangler.

We also observed one recurring pitfall: a few users got stuck
in a “cul-de-sac” of suggestion space by incorrectly filtering
(e.g., by selecting a specific transform type from the menu).
When this happened, some users kept searching and refining
only these filtered transforms. This pitfall was most common
in Task 3, where users might mistakenly filter all but fold op-
erations when an unfold operation was needed. One way to
alleviate this pitfall may be to suggest some non-matching
transforms related to the one selected, in effect treating fil-
tering criteria as guidelines rather than strict rules.

Previewing Transform Effects
Subjects reported that the previews were more useful than
transform descriptions for evaluating transforms. One sub-
ject noted, “I just look at the picture.” Users with more pro-
gramming experience spent time reading the descriptions,
whereas users with limited programming experience relied
almost entirely on the previews. Relying too heavily on
previews introduces reusability issues, as the preview does
not capture a transform’s effect over new data. For instance,
multiple extraction transforms will extract the same text given
a certain sample of data. Without reading and understanding
the description, users may not understand how this transform
would perform on data not currently present in the table.

9



User Sentiment
Anecdotally, users tended to enjoy working with Wrangler.
Three users asked “Can I have this?” or “When can I use
this?”. In comparison to Excel and other packages, one sub-
ject said “It’s so much less frustrating. It is like soooo much
less frustrating.” Another participant sent us a message three
days after the experiment: “i was thinking more about wran-
gler. it is pretty cool.” The most commonly reported advan-
tages of using Wrangler were the ability to preview data and
use direct manipulation to specify transforms. One user re-
sponded, “It’s super easy to see whats going to happen.”
Another reported, “you can select stuff and it works.”

The most commonly reported advantages of Excel were the
ability to create graphs and to edit data layout manually.
Charting is not supported in Wrangler, but visualization is
an important component of data cleaning we plan to address
more deeply in future work. By design, Wrangler does not
afford users the same flexibility to layout data as in Excel.
This impediment relates to the pitfall described above; since
users cannot perform arbitrary editing in Wrangler, the re-
course is less obvious when they get stuck.

CONCLUSION AND FUTURE WORK
This paper introduced Wrangler, an interface and underly-
ing language for data transformation. The system provides a
mixed-initiative interface that maps a set of user interactions
to a space of suggested transforms, combined with natural
language transform descriptions and visual previews to help
assess each suggestion. With this set of techniques, we find
that users can rapidly navigate to a desired transform.

Our user study demonstrates that novice Wrangler users can
perform data cleaning tasks significantly faster than in Ex-
cel, an effect even more pronounced for skilled Excel users.
We found that users are comfortable switching navigation
strategies in Wrangler to suit a specific task, but can some-
times get stuck—in either tool—if they are unfamiliar with
the available transforms. Future work should help users form
data cleaning strategies, perhaps through improved tutorials.

We plan to release Wrangler as a public web application.
Deployment to a larger audience will allow us to further
study wrangling strategies and will provide usage data for
further improving our inference model. To enable use by a
wide audience, future work will include scaling Wrangler to
handle larger data sets. Wrangler is currently implemented
purely as a client-side application; we will extend it to in-
clude a scalable server component. We also plan to introduce
more summary visualizations, coupled with outlier detection
methods, to aid data diagnostics. More study is needed to as-
sess how visualizations can best support data profiling.

Looking forward, Wrangler addresses only a subset of the
hurdles faced by data analysts. As data processing has be-
come more sophisticated, there has been little progress on
improving the tedious parts of the pipeline: data entry, data
(re)formatting, data cleaning, etc. The result is that people
with highly specialized skills (e.g., statistics, molecular bi-
ology, micro-economics) spend more time in tedious “wran-

gling” tasks than they do in exercising their specialty, while
less technical audiences such as journalists are unnecessarily
shut out. We believe that more research integrating methods
from HCI, visualization, databases, and statistics can play a
vital role in making data more accessible and informative.

REFERENCES
1. A. Arasu and H. Garcia-Molina. Extracting structured data from web

pages. In ACM SIGMOD, pages 337–348, 2003.

2. A. F. Blackwell. SWYN: A visual representation for regular
expressions. In Your Wish is my Command: Programming by
Example, pages 245–270, 2001.

3. L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive generation of
integrated schemas. In ACM SIGMOD, pages 833–846, 2008.

4. T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning.
John Wiley & Sons, Inc., New York, NY, 2003.

5. T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In ACM
SIGMOD, pages 240–251, 2002.

6. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE TKDE, 19(1):1–16, 2007.

7. K. Fisher and R. Gruber. Pads: a domain-specific language for
processing ad hoc data. In ACM PLDI, pages 295–304, 2005.

8. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: an
extensible data cleaning tool. In ACM SIGMOD, page 590, 2000.

9. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
grows up: from research prototype to industrial tool. In ACM
SIGMOD, pages 805–810, 2005.

10. J. M. Hellerstein. Quantitative data cleaning for large databases, 2008.
White Paper, United Nations Economic Commission for Europe.

11. V. Hodge and J. Austin. A survey of outlier detection methodologies.
Artif. Intell. Rev., 22(2):85–126, 2004.

12. D. Huynh and S. Mazzocchi. Freebase GridWorks.
http://code.google.com/p/freebase-gridworks/.

13. D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck: semi-ontology
alignment for casual users. In ISWC, pages 903–910, 2007.

14. Z. G. Ives, C. A. Knoblock, S. Minton, M. Jacob, P. Pratim, T. R.
Tuchinda, J. Luis, A. Maria, and M. C. Gazen. Interactive data
integration through smart copy & paste. In CIDR, 2009.

15. H. Kang, L. Getoor, B. Shneiderman, M. Bilgic, and L. Licamele.
Interactive entity resolution in relational data: A visual analytic tool
and its evaluation. IEEE TVCG, 14(5):999–1014, 2008.

16. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL:
An extension to SQL for multidatabase interoperability. ACM Trans.
Database Syst., 26(4):476–519, 2001.

17. J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user
programming of mashups with vegemite. In IUI, pages 97–106, 2009.

18. R. C. Miller and B. A. Myers. Interactive simultaneous editing of
multiple text regions. In USENIX Tech. Conf., pages 161–174, 2001.

19. D. A. Norman. The Design of Everyday Things. Basic Books, 2002.

20. E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10:334–350, 2001.

21. V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, pages 381–390, 2001.

22. G. G. Robertson, M. P. Czerwinski, and J. E. Churchill. Visualization
of mappings between schemas. In ACM CHI, pages 431–439, 2005.

23. C. Scaffidi, B. Myers, and M. Shaw. Intelligently creating and
recommending reusable reformatting rules. In ACM IUI, pages
297–306, 2009.

24. S. Soderland. Learning information extraction rules for
semi-structured and free text. Mach. Learn., 34(1-3):233–272, 1999.

25. R. Tuchinda, P. Szekely, and C. A. Knoblock. Building mashups by
example. In ACM IUI, pages 139–148, 2008.

10

http://code.google.com/p/freebase-gridworks/

	Introduction
	Related Work
	Usage Scenario
	Design Process
	The Wrangler Transformation Language
	The Wrangler Interface Design
	Basic Interactions
	Automated Transformation Suggestions
	Natural Language Descriptions
	Visual Transformation Previews
	Transformation Histories and Export

	Types, Roles, and Verification
	The Wrangler Inference Engine
	Comparative Evaluation with Excel
	Participants and Methods
	Wrangler Accelerates Transform Specification
	Strategies for Navigating Suggestion Space
	Previewing Transform Effects
	User Sentiment

	Conclusion and Future Work
	REFERENCES 

