
c©Copyright 2020

Jane Hoffswell

Languages and Visualization Tools

for Data-Centric End-User Programming

of Interactive Visualization Designs

Jane Hoffswell

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2020

Reading Committee:

Jeffrey Heer, Chair

Alan Borning

Amy J. Ko

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Languages and Visualization Tools
for Data-Centric End-User Programming

of Interactive Visualization Designs

Jane Hoffswell

Chair of the Supervisory Committee:
Professor Jeffrey Heer

Paul G. Allen School of Computer Science & Engineering

Visualizations can facilitate data exploration and communication of insights. While many

tools exist to support the design of interactive visualizations, the development process relies

heavily on the user’s domain and programming expertise. To facilitate interactive visualiza-

tion design, improved tools should better align with and enrich the user’s mental model.

This dissertation contributes three projects to help end-user programmers more effectively

author, understand, and reuse both code and data to design interactive visualizations. To

this end, this dissertation explores (1) the design of customized graph layouts, (2) the de-

velopment and debugging process for interactive visualizations, and (3) the synchronization

and customization of multiple visualization versions for responsive visualization design.

Across these projects, this dissertation explores how new techniques that raise the level of

abstraction can help users focus on the domain-specific concepts of interest, while deferring

low-level implementation details to the underlying system. A crucial step in this process is to

identify and communicate actionable information to the end user. To accomplish this goal,

this dissertation contributes three sets of formative interviews with potential users to identify

unique challenges and design opportunities for the given domain. These interviews illustrate

the disconnect between users’ expectations and the functionality provided by existing systems

or development workflows, and further highlight the types of tangential, low-level information

that systems should hide from the user’s view to improve the development process. While this

information may be useful for completely or accurately representing the program behavior,

such details can unnecessarily complicate the program understanding or debugging process.

Motivated by these challenges and interviews, this dissertation contributes new program-

ming languages and program visualization tools to better help end-user programmers un-

derstand the underlying system behavior. These approaches raise the level of abstraction to

reflect the user’s unique domain expertise and obfuscate unnecessary system details. To this

end, the proposed techniques aim to communicate relevant and actionable information to

the user, and better prioritize the user’s most important development tasks.

This dissertation first contributes SetCoLa: a domain-specific language for custom graph

layout that leverages high-level constraints to encode the user’s domain knowledge. SetCoLa

facilitates code authoring and reuse by reducing the number of user-authored constraints by

one to two orders of magnitude. However, the declarative nature of this language requires

users to map between their high-level input and the system-produced output to debug or

interpret the behavior. To explore the unique challenges and novel solutions for program

understanding of declarative languages, this dissertation next turns to Vega: a declarative

grammar for interactive visualization design. This dissertation then contributes a series of

three projects for program understanding in Vega, which evolve to address the unique de-

velopment needs of users at different stages in the development process. These techniques

support (1) low-level system development via a data flow graph visualization, (2) debugging

interactions with visualizations of contextually relevant details, and (3) unobtrusively reveal-

ing details of the runtime behavior during both normal execution and debugging. Whereas

Vega focuses on the design of a single interactive visualization, responsive visualizations re-

quire designers to develop multiple concurrent designs that adapt based on the screen size or

interactive capabilities of the end user’s device. To support this process, this dissertation con-

tributes four design guidelines and a set of core system features for a responsive visualization

design system that supports simultaneous editing and device-specific customizations.

For each of these projects, this dissertation further contributes evaluations of this work

via user studies or reproductions of real-world examples. The user evaluations demonstrate

the utility of the proposed approaches for improving how end users interact with and un-

derstand the system functionality, whereas the reproductions illustrate the flexibility and

expressiveness of the proposed techniques. Overall, this dissertation aims to better under-

stand people and to help people better understand systems. This dissertation contributes

novel techniques to support end-user programmers in developing, understanding, and de-

bugging custom interactive visualization designs, and suggests new avenues for future work.

TABLE OF CONTENTS

Page

List of Figures . v

Chapter 1: Introduction . 1

Thesis Statement . 2

Challenge 1: Raise the level of abstraction to reflect user expertise. 3

Challenge 2: Communicate system behavior as actionable information. 3

Challenge 3: Support the tasks that matter most to the user. 3

1.1 Thesis Contributions . 4

1.2 Thesis Outline . 9

1.3 Prior Publications and Authorship . 11

Chapter 2: Background and Related Work . 12

2.1 Visualization Design Systems . 13

2.2 Graph Visualization Techniques . 15

2.3 Visualizations to Facilitate Program Understanding and Debugging 16

2.4 Text and Environment Augmentation with Visualizations 18

2.5 Empirical Studies of Programmers and Program Understanding 18

2.6 Declarative Programming Languages and Debugging 19

2.7 Domain-Specific Programming Languages . 20

2.8 Discussion and Applicability of Related Work 21

Chapter 3: Understanding the Program Behavior of Constraint Systems 22

3.1 Related Work: Constraint Programming Systems 23

3.2 Formative Interviews: Utilizing and Understanding Constraints 25

3.3 Limitations and Future Work . 30

3.4 Summary of Contributions . 31

i

Chapter 4: Authoring and Reusing Domain-Specific Graph Layouts with SetCoLa 32

4.1 Related Work: Domain-Specific Graph Visualization 35

4.2 Design of SetCoLa: A Set-Based Constraint Layout for Graphs 36

4.3 Evaluation: Real-World Examples Reproduced in SetCoLa 50

4.4 Limitations and Future Work . 60

4.5 Summary of Contributions . 64

Chapter 5: Program Understanding in Vega: A Declarative Visualization Grammar 65

5.1 Related Work: Functional Reactive Programming 66

5.2 Background and Terminology for the Vega Visualization Grammar 67

5.3 Visualizing the Vega Runtime Behavior as a Data Flow Graph 69

5.4 Formative Interviews: Understanding Declarative Visualization Design 73

5.5 Summary of Contributions . 76

Chapter 6: Visual Debugging Techniques for Reactive Data Visualization 77

6.1 Design of Visual Debugging Techniques for Program Understanding 78

6.2 Evaluation: Debugging Faulty Visualizations 85

6.3 Limitations and Future Work . 92

6.4 Summary of Contributions . 94

Chapter 7: Augmenting Code with In Situ Visualizations 95

7.1 Design Space of Code-Embedded Visualizations 97

7.2 Implementation of Code Augmentations for the Online Vega Editor 111

7.3 Evaluation: Understanding Program Behavior of Vega 113

7.4 Limitations and Future Work . 120

7.5 Summary of Contributions . 122

Chapter 8: Authoring and Reusing Responsive Visualization Designs 123

8.1 Related Work: Responsive Web Design and Mobile Visualization 126

8.2 Formative Interviews: Responsive Visualization Design Practices 127

8.3 Techniques for Flexible Responsive Visualization Design 132

8.4 Evaluation: Reproducing Real-World Responsive Visualizations 143

8.5 Limitations and Future Work . 149

8.6 Summary of Contributions . 151

ii

Chapter 9: Conclusion . 152

9.1 Summary of Contributions . 153

9.2 Discussion and Reflections on Three Core Dissertation Challenges 154

Challenge 1: Raise the level of abstraction to reflect user expertise. 154

Challenge 2: Communicate system behavior as actionable information. 156

Challenge 3: Support the tasks that matter most to the user. 157

9.3 Future Research Directions . 160

9.4 Concluding Remarks . 162

Bibliography . 163

Appendix A: Interview Resources: Understanding the Behavior of Constraint Systems 185

A.1 Formative Interview Screening Survey . 185

A.2 Formative Interview Script Template . 186

Appendix B: Historical Debugging Approach for Vega using the JavaScript Console 189

Appendix C: Interview Resources: Visualizing Vega’s Behavior as a Data Flow Graph 197

C.1 Formative Interview Script Template . 197

C.2 Data Flow Example Visualizations . 199

Appendix D: Evaluation Resources: Visual Debugging Techniques for Vega 203

D.1 Evaluation Post-Task Survey and Exit Survey 203

D.2 Evaluation Reference Sheet . 205

Appendix E: Evaluation Resources: Augmenting Code with In Situ Visualizations . 206

E.1 Evaluation Screening Survey . 206

E.2 Evaluation Script . 208

E.3 Evaluation Instruction Sheet . 211

E.4 Evaluation Instruction Sheet for the In Situ Visualizations 215

E.5 Evaluation Training Tasks . 215

E.6 Task-Specific Program Understanding Questions 216

E.7 Evaluation Exit Survey . 219

iii

Appendix F: Interview Resources: Responsive Visualization Design Practices 221

F.1 Formative Interview Script Template . 221

Appendix G: Responsive Visualization Corpus Bibliography 224

Appendix H: Responsive Visualization Examples . 229

H.1 “Total Cost of Major Natural Disasters” . 229

H.2 “Incidents at Sea” . 231

H.3 “In close decisions, Kennedy voted in the majority...” 232

H.4 “Percentage of the population without access to improved water” 233

H.5 “Activity at the time of spill” . 235

H.6 “Was Yahoo Late to Mobile?” . 236

H.7 “Beijing Air Quality Index (PM2.5)” . 237

iv

LIST OF FIGURES

Figure Number Page

4.1 The TLR4 biological system layout using Cerebral [6] and SetCoLa [83]. . . . 33

4.2 The SetCoLa spec and resulting WebCoLa constraints for a small tree layout. 37

4.3 The number of nodes, links, and constraints for each SetCoLa example. . . . 44

4.4 The syphilis network layout from Rothenberg et al. [164] and SetCoLa. . . . 51

4.5 The SetCoLa specification for the syphilis social network in Figure 4.4. . . . 52

4.6 The SetCoLa specification for the TLR4 biological system in Figure 4.1. . . . 53

4.7 A generic SetCola specification for biological networks from InnateDB. . . . 54

4.8 The layout for the TLR4 biological system using InnateDB and SetCoLa. . . 55

4.9 The layout for the DDX58 biological system using InnateDB and SetCoLa. . 55

4.10 The layout for the NOD-like signaling pathway using InnateDB and SetCoLa. 55

4.11 The layout for the MAPK1 biological system using InnateDB and SetCoLa. . 56

4.12 A simple Kruger National Park food web layout [124] reproduced in SetCoLa. 57

4.13 The SetCoLa specification for the Kruger National Park layout in Figure 4.12. 57

4.14 The Serengeti food web layout from Baskerville et al. [7] and SetCoLa. . . . 58

4.15 The SetCoLa specification for the Serengeti food web in Figure 4.14. 59

5.1 The Vega specification and simplified data flow graph for a grouped bar chart. 70

5.2 The prototype data flow graph for a grouped bar chart. 71

6.1 The visual debugging techniques and development environment for Vega. . . 80

6.2 The behavior of the overview, timeline, and signal annotations for debugging. 81

6.3 The user study methodology used to evaluate our visual debugging techniques. 85

6.4 Relevant program states and code for debugging an interactive index chart. . 87

6.5 Relevant program states and code for debugging panning on a scatterplot. . 88

6.6 Relevant program states and code for debugging brushing on a scatterplot. . 90

6.7 Average ratings for each visual debugging technique from the user evaluation. 91

7.1 The design space of code embedded visualizations. 96

v

7.2 An example set of code augmentations demonstrating object simplification. . 99

7.3 An example set of code augmentations demonstrating linked filtering. 106

7.4 Twelve placement techniques for code augmentations. 108

7.5 Example code augmentations for an index chart in the online Vega editor. . . 112

7.6 The user study methodology used to evaluate code augmentations for Vega. . 115

7.7 The helpfulness, interpretability, and intrusiveness of the code augmentations. 118

8.1 An example visualization annotated with the responsive techniques used. . . 124

8.2 The sources and visualization types in our responsive visualization corpus. . 132

8.3 The responsive visualization techniques used for mobile devices. 133

8.4 The overview of our responsive visualization system. 136

8.5 System panels showing the design variation for a responsive visualization. . . 141

8.6 System panels for interaction design in our responsive visualization system. . 142

8.7 Steps to recreate a responsive visualization from Reuters Graphics [G52]. . . 145

B.1 The historical Vega development and debugging environment. 189

B.2 The broken and correct version of an index chart visualization. 190

B.3 Screenshots of how to debug Vega using the JavaScript console. 191

B.4 Screenshots from the Vega specification for an index chart. 192

B.5 More screenshots of how to debug Vega using the JavaScript console. 193

B.6 More screenshots from the Vega specification for an index chart. 194

B.7 The Vega code to fix the broken index chart. 196

C.1 The data flow graph for a grouped bar chart. 199

C.2 The specification, output, and annotated data flow graph. 200

C.3 The specification, output, and simplified data flow graph. 201

C.4 The annotated specification, output, and simplified data flow graph. 202

D.1 A reference sheet of the visual debugging techniques available for Vega. . . . 205

E.1 The Vega example for the training task in the code augmentation evaluation. 212

E.2 Tooltips added to the online Vega editor to evaluate the code augmentations. 214

E.3 Descriptions of the in situ visualizations used in the user evaluation. 215

H.1 Reproductions of a New York Times visualization [G13]. 230

H.2 Reproductions of a Reuters Graphics visualization [G52]. 231

H.3 Reproductions of a New York Times visualization [G36]. 233

vi

H.4 Reproductions of a National Geographic visualization [G50]. 234

H.5 Reproductions of a Reuters Graphics visualization [G52]. 235

H.6 Reproductions of a Harvard Business Review visualization [G19]. 236

H.7 Reproductions of a ChartAccent [159] and Vega-Lite [176] visualization. . . . 237

H.8 Responsive visualization codes for our reproduced examples. 238

vii

ACKNOWLEDGMENTS

This dissertation is the culmination of many years of work and collaboration. I am

both excited and humbled to have reached this milestone, and so incredibly thankful

for all of the support I have received along the way. To all of the wonderful people

that have supported, encouraged, and cheered me on, thank you.

I would like to take a moment to give some special thanks to my advisor, Jeffrey Heer.

Jeff has supported me throughout the entirety of my grad school career and I am

absolutely honored to have been a part of his lab at the University of Washington.

Over the years, Jeff has always encouraged me to explore new and exciting topics,

and has helped guide me through my evolving research interests to ultimately grow

into a confident and independent researcher. I am certain that Jeff has had and will

continue to have a lasting impact on my development as a researcher, and for that I am

incredibly thankful. Beyond research, Jeff has created a lovely community of students

and colleagues. I have thoroughly enjoyed our many group potlucks and happy hours,

as great opportunities to relax and celebrate the achievements of our group.

I would also like to thank my many incredible research collaborators and mentors.

During my time at the University of Washington, I have had many wonderful oppor-

tunities to learn from and be inspired by the amazing people from within our school,

and from the larger computer science community. The work in this dissertation is a

testament to many of these impactful collaborations. I would first like to thank Alan

Borning for his support and collaboration on SetCoLa and for fostering my inter-

est in constraints, as well as for his continued enthusiasm as part of my dissertation

viii

committee. I would like to thank Arvind Satyanarayan for his mentorship and col-

laboration on my program understanding work for Vega; during my first few years

of grad school, Arvind encouraged and challenged me as a young researcher to step

outside my comfort zone and to establish my role in the computer science research

community. I would like to thank my mentors from Adobe Research, Zhicheng Liu

and Wilmot Li, for their collaboration on my responsive visualization work. My time

as an intern at Adobe was a uniquely valuable experience that enabled me to explore

a whole new set of research topics and to explore opportunities for research impact

in industry. I would also like to thank Amy Ko and Jevin West for participating

on my dissertation committee. To my entire committee, thank you for your insights,

critiques, and enthusiasm for this work that have helped push it to be stronger.

While my research collaborations played a crucial role in shaping my personal trajec-

tory, they are just one piece of the overall experience. I would therefore like to thank

my many friends and colleagues in the Interactive Data Lab and the UW Allen School

who have spent time giving me feedback on papers, talks, and projects, and for provid-

ing me with much needed breaks from work and all around fun times. The tremendous

amount of support from this community will have a lasting impact. My time at the

University of Washington has been truly special and one I will certainly never forget.

Finally, I would like to acknowledge and give special thanks to my friends and family.

I am so thankful for everyone that has come along with me on this remarkable journey.

You have all supported and encouraged me along this path, through all of the good

times and the challenges, and the experience has been that much better because of

your support. I appreciate every ounce of confidence you have placed in me and I am

excited to continue this journey with all of you as I move on to my major next steps.

Thank you.

ix

1

Chapter 1

INTRODUCTION

Visualizations fulfill many different roles in data analysis and communication. Visualizations

can provide insight during exploratory data analysis to confirm expectations about how the

data should look, or to surface surprising or incorrect results. Visualizations can further

communicate ideas for presentation or informational contexts, and may employ annotations

to tell a particular story by directing the viewer’s attention to elements of interest. In both

data analysis and communication, interaction plays a crucial role in visualization design as

a way to support users in personally exploring the underlying data.

Depending on the purpose of the visualization, there are a variety of approaches for con-

structing the visualization design. For exploratory data analysis, tools like Tableau (formally

Polaris [184]) and Voyager [206] support rapid visualization design via drag-and-drop in a

graphical user interface, which is an approach known as the shelf construction model [175].

This method is great for exploring data by allowing users to rapidly change what informa-

tion is visualized. Template-based approaches (e.g., [64, 131, 135, 142]) or domain-specific

systems (e.g., [6, 16, 120, 181]) leverage a standard data format to easily or quickly produce

visualization designs of a particular type, but do not otherwise support exploration of new

visualization designs. While emphasizing ease of use, many of the aforementioned techniques

offer only minimal support for customizing the visualization or interactive experience. To

such ends, visual builders like Lyra [174], Data Illustrator [129], and Charticulator [161] aim

to support flexible visualization design via direct manipulation. These systems allow users to

construct highly customized designs beyond what is possible with template based approaches

or the shelf construction model. To support maximal flexibility of the design, approaches like

D3 [23] and Vega [177] enable the construction of more complex and unique visualization de-

2

signs. Furthermore, both D3 and Vega enable the specification of end-user interactions with

the resulting visualization. However, these approaches also require extensive programming

expertise to effectively employ. In particular, the time-varying behavior of the visualization

design can add additional complexity that the programmer must understand in order to

effectively modify or debug the functionality of the resulting visualization.

Across these approaches, users are limited by what is possible in the system and may

therefore produce visualization designs that reflect the system defaults rather than their

personal preferences or goals. Users must try to adapt to the capabilities at hand in order

to produce a visualization design that is at least close to their desired result. To further

complicate this process, users often have their own unique, domain-specific expertise that

informs their design goals and approach to programming problems [113]. This expertise is

often underutilized or unsupported by the tools that users are trying to employ.

My research combines techniques from human-computer interaction (HCI), visualization,

and programming languages to first identify the types of challenges that users face, then to

develop and evaluate novel application solutions. By focusing new programming languages

and end-user systems on the domain expertise and tasks most relevant to the user, we can

improve how individuals interact with systems to better promote program understanding,

and to proactively surface surprising or incorrect results. In particular, this dissertation

explores the development process for how end users produce interactive visualization designs.

Across the work described in this dissertation, I demonstrate the idea that:

thesis statement

The design of new languages and program visualization tools that raise the
level of abstraction from low-level system details to domain-specific concepts
and operations for interactive visualization design can help end-user program-
mers more effectively author, understand, and reuse both code and data.

There are three core challenges that are central to the work explored in this dissertation that

arise from the thesis statement. These challenges reflect common considerations explored

in human-computer interaction research, but present particular challenges for how best to

3

identify and/or realize the appropriate approach for different contexts. I briefly introduce

these challenges in the following paragraphs and further discuss the unique implications of

these challenges to the projects in the individual chapters throughout this dissertation.

Challenge 1: Raise the level of abstraction to reflect user expertise.

The main approach proposed in the thesis statement and explored across this dissertation is

to raise the level of abstraction from low-level system details to domain-specific concepts and

operations. In other words, systems should take advantage of the unique knowledge and goals

of the user to better support the tasks that matter most and the program understanding

techniques that the user employs. The main challenge is therefore to identify what level of

abstraction is appropriate for a given context and how best to encode user expertise.

Challenge 2: Communicate system behavior as actionable information.

To help end-user programmers with the task at hand, it is essential for systems to com-

municate the behavior as actionable information for the user. Rather than attempting to

accurately reflect or provide insight into the full internal behavior, the system should prior-

itize surfacing relevant information that the user can immediately translate to the current

development task. In other words, the system should avoid presenting too much information

that will complicate how the user understands the behavior as related to their primary goals.

A major challenge is therefore identifying what information not to show to the user.

Challenge 3: Support the tasks that matter most to the user.

Users employ their personal expertise to identify the high-level task on which to focus. To

accomplish this task often requires navigating a series of sub-tasks, such as authoring, under-

standing, or reusing code and data. To provide a smooth development or design experience,

systems should adapt to support the user’s primary tasks while reducing the burden imposed

by less essential tasks. However, it can be difficult to identify what task is most important to

the user and how best to support users in accomplishing their goals. It can also be particularly

challenging to balance techniques given that the user’s goals may change.

4

In this dissertation, I will show that improved tools can better align with and enrich end-user

programmers’ mental models. In particular, this dissertation shows how new programming

languages and tools that emphasize relevant domain-specific concepts—what data should

be visualized or what tasks are most important—can help end-user programmers focus on

the behaviors that matter most to them while leveraging their personal expertise. For pro-

gramming contexts in particular, I show that by visualizing program state in situ, end-user

programmers will be more aware of the impact of code changes and thus reduce the time

spent ignorant of errors or switching between tasks [87, 88]. When developing new program-

ming languages or end-user facing systems, I show that raising the level of abstraction can

help domain experts encode their expertise while transferring responsibility for unessential

implementation details to the underlying system [83, 84].

1.1 Thesis Contributions

Visualizations can help people effectively analyze and communicate information. To support

the design of data-rich visualizations, numerous visualization tools and languages have been

developed, for example [23, 129, 161, 174, 176, 177, 184]. However, the process of designing

highly customized, domain-specific visualizations often requires programming and/or domain

expertise. This dissertation contributes three projects that help end-user programmers more

effectively author, understand, and reuse both code and data for interactive visualization

design. Across these projects, I explore how techniques that raise the level of abstraction

can help end users focus on the domain-specific concepts of interest, while deferring low-

level implementation details to the system. I also consider the design of new visualization

strategies to support users in understanding the system functionality and code behavior.

This dissertation first explores the design of customized graph visualizations. An effective

graph layout can reveal complex properties of the underlying structure, such as the hierarchy

or network connectedness. Graph visualizations can further provide unique, domain-specific

insights when the underlying layout appropriately reflects the important domain-specific

details of the data. For example, in a biological pathway, nodes can be layered by their sub-

5

cellular location to visualize the network relationships in the context of the cellular struc-

ture. For this use case, the visualization tool Cerebral [6] was specifically designed to handle

such networks. However, when a customized tool does not already exist for the domain of

interest, domain experts must fall back on ill-fitting techniques or develop a customized al-

gorithm of their own. One way in which to encode some flexibility in the graph layout is

using constraints; constraints combine the ease of an automatic layout approach with the

customizability needed for domain-specific layouts. However, low-level constraint approaches

often require developers to write and maintain constraints between individual nodes, thus

resulting in hundreds of constraints even for small graphs. Furthermore, these constraints

only apply to the individual nodes for which they were specified. To create a similar layout

for a different graph requires specifying a new set of constraints for the new graph.

To better understand the many complexities and advantages of constraints, this disserta-

tion first contributes a preliminary set of interviews with programmers developing constraint-

based applications. These interviews highlight the fact that constraints can be perfect for

applications in which they are appropriate, but can introduce unnecessary overhead in tasks

where a more straightforward algorithm or approach would be ideal. Furthermore, across all

participants, the process of learning and debugging the behavior of constraints proved to be a

substantial challenge and vastly undersupported by existing tools. Despite these challenges,

constraints can prove to be a natural way in which to express requirements and flexibility in

a system, and have been used for a variety of contexts such as scheduling [54], user interface

design [2, 38, 187, 188], and visualization layout for graphs [41, 43, 48] and charts [161].

To address the challenges in low-level constraint systems for graph layout, I contribute

SetCoLa: a new language for specifying high-level constraints for customized, domain-specific

graph layout. SetCoLa supports domain experts in authoring customized layouts by allowing

them to focus on how the layout corresponds to particular domain-specific properties of the

graph. Whereas prior approaches utilized node-level constraints between individual pairs of

nodes, SetCoLa reduces the number of user-authored constraints by one to two orders of

magnitude. Furthermore, by abstracting the application of constraints to apply to domain-

6

specific properties, SetCoLa allows the customized layout to be reused across multiple graphs

in the same domain. Finally, the constraints themselves are more understandable because

they reflect the relationships within the data, rather than between individual pairs of nodes.

I demonstrate the conciseness, generalizability, and expressiveness of SetCoLa on a series of

real-world examples from ecological networks, biological systems, and social networks.

To consider a wider class of visualizations, I next turn to Vega [177]: a declarative visu-

alization grammar for interactive visualization design. Vega emphasizes domain-specific vi-

sualization constructs to allow end-user programmers to focus on how a visualization should

be designed, while deferring the low-level implementation details to the underlying system.

In other words, the user may focus on high-level constructs—what data should be visualized

and in what way—without needing to control exactly how individual data elements are con-

nected to visual elements. While this abstraction allows end-user programmers to employ

their expertise and focus on the constructs of interest, the disconnect between the code and

output can prove challenging when it comes to understanding faulty visualization behaviors.

For this project, I first explore the design of a data flow graph visualization of the underlying

system behavior. In a set of interviews with expert Vega users, participants noted that while

this visualization can be useful for Vega system developers, it provides too much internal

information tangential to their end-user debugging tasks. Instead, user facing tools should

focus on the smaller fraction of actionable functionality relevant to the task at hand.

To address the needs of Vega end users, this dissertation next contributes a set of visual

debugging techniques for reactive data visualization that aim to improve program under-

standing. These techniques support the refinement of the end-user programmer’s mental

model through exploration of both the data and program state. To enable inspection of the

state and the behavior of changes over time, I introduce three elements: a timeline of in-

teractive signals which shows the time-varying behavior of the Vega output; annotations of

relevant encodings in situ on the output to show how data maps to visual elements; and a

dynamic data table showing the distribution and variation of data over time. These tech-

niques provide interpretable insights into core Vega elements that were otherwise hard to

7

grasp or recall. In an evaluation with first-time Vega users, I show that participants could

effectively understand the source code to accurately identify bugs or crucial dependencies.

While these techniques can prove essential to tracking problematic behaviors in the code,

users sometimes had a hard time identifying where or when to look for a particular piece of

information. Similar to other programming environments, the visual debugging techniques

were split across multiple, coordinated views. However, studies have shown that switching

between system views imposes a burden on programmers, making it difficult for them to

maintain a clear picture of the overall context of the runtime behavior [118, 147, 151, 167].

While my proposed techniques can help reduce the gap between the Vega code and resulting

output, opportunities still remained to better connect the debugging tools and code.

To help reduce the separation between code and the program understanding techniques,

this dissertation further contributes a design space of program visualizations that can be em-

bedded directly within the source code. These in situ visualizations similarly aim to support

program understanding while also allowing end-user programmers to focus on code author-

ing. Instead of requiring end-user programmers to shift their focus to a separate view, the

in situ visualizations act as a preemptive way to surface important information from the

otherwise hidden program state and to display it within the context of the code itself. In a

follow-up evaluation, I show that the embedded visualizations can help first-time Vega pro-

grammers improve their score on a set of program understanding questions. These techniques

also exhibit positive effects on participants’ self-reported speed and accuracy.

The proposed visual debugging techniques and in situ visualizations each surface hidden

details of the Vega system behavior to facilitate the design of interactive visualizations. For

some contexts however, the design of a single visualization is just one piece of the process.

When used in news articles, for example, journalists often need to develop multiple versions

of a visualization so as to support a responsive design that adapts to the device context—

such as the screen size or the interactive capabilities of the device. To better understand

the design process for responsive visualizations, this dissertation contributes semi-structured

interviews with journalists and a survey of responsive visualization techniques commonly used

8

by news outlets. Based on these results, I found that despite readers increasingly consuming

news content on mobile devices, many journalists still follow a desktop-first approach; the

rationale for this discrepancy reflects the perceived opportunities and defaults of existing

visualization construction systems rather than the values of the journalists themselves.

To better support responsive visualization design, I further contribute four design guide-

lines and a set of core system features that allow designers to view, create, and modify

multiple device-dependent visualizations simultaneously. To ensure that users can easily un-

derstand the differences between their designs, the system foregrounds variation to support

propagation of changes between visualization designs. To demonstrate the utility of this sys-

tem, I recreate four real-world responsive visualization examples selected from the analyzed

visualization corpus. For each example, I provide a step-by-step walkthrough for how to de-

velop the visualization designs. These walkthroughs demonstrate how a user can construct,

compare, customize, and iterate on different visualizations using a flexible development work-

flow that contrasts to the predominantly linear approach described by journalists.

Each of these projects pushes beyond what visualization construction systems can pro-

duce, to think about how users engage with the system or process to reach the desired

result. By shifting the system focus to the abstractions and concepts most relevant to users,

we can produce an experience that better reflects the user’s goals and expectations. Doing

so also opens opportunities for iterative changes to the underlying system and the devel-

opment of smart default functionalities. In other words, since users are not responsible for

directly manipulating the system behavior, we can introduce changes to the functionality

(e.g., updating the underlying algorithms or constraint solver) without impacting the user’s

experience. Throughout this dissertation, the main focus remains on how to surface the parts

of this underlying functionality that are most essential to the design decisions of the user.

9

1.2 Thesis Outline

This dissertation contributes new programming languages and visualization techniques for

end-user visualization authoring systems. The content of this thesis is organized as follows:

Chapter 2 surveys related work across projects in this thesis, including: visualization design

systems, graph visualization techniques, particularly those leveraging constraints, program

visualization and debugging, approaches to text and environment augmentation, empirical

studies of programmers, and both declarative and domain-specific programming languages.

Chapter 3 describes a set of formative interviews with programmers developing constraint-

based applications. Participants describe their development experience and challenges that

arise when utilizing constraints, particularly for end-user facing systems.

Chapter 4 contributes SetCoLa [83]: a new high-level language for specifying customized

graph layout based on domain-specific properties (e.g., node attributes and topology) using

constraints. I show how SetCoLa can support the design of custom layouts with an order of

magnitude fewer user-authored constraints than previous approaches, and can support reuse

of the layout across graphs from within the same domain.

Chapter 5 explores program understanding techniques in Vega [177]: a declarative visualiza-

tion grammar for creating interactive visualizations. I first describe the design of a prototype

data flow graph visualization of Vega’s underlying system functionality. Chapter 5 further

contributes a set of formative interviews with expert Vega users about their development

and debugging process, as well as the utility of the data flow graph visualization as a tool

for program understanding by end-user programmers of Vega.

Chapter 6 introduces a set of visual debugging techniques for reactive data visualization [87],

which are inspired by the formative interviews from Chapter 5. I show how these visualiza-

tions can help novice programmers effectively understand source code to identify bugs or

crucial dependencies in unfamiliar code written in an unfamiliar programming language.

10

Chapter 7 contributes a design space of code-embedded program visualizations that aim to

unobtrusively reveal runtime behavior during both normal execution and debugging [88].

Leveraging these visualizations for Vega, I show that users can more accurately answer

program understanding questions with the aid of inline visualizations of the code behavior.

Chapter 8 explores the design of responsive visualizations: visualizations that adapt based

on the screen size or interactive capabilities of the device. I contribute a set of formative

interviews with journalists and a survey of visualizations from news articles to explore how

responsive techniques are used. I then contribute a system for responsive visualization design

that supports simultaneous editing and device-specific customizations [84].

Finally, Chapter 9 summarizes the contributions, takeaways, and techniques employed across

each project for addressing the three challenges introduced in this chapter. Chapter 9 further

describes the potential impact of this dissertation to future work.

The remainder of this dissertation document includes the bibliography and additional ap-

pendices with other relevant material beyond the scope of the individual chapters. Specific

appendices are referenced from the relevant chapters throughout the dissertation.

How to Approach This Dissertation

This document includes years of work and is therefore rather long, as dissertations generally

are. If you are interested in a particular project, consider reading the original paper for

that work. That being said, in some cases the dissertation chapter may include a more

thorough or revised version of the publication content. In particular, consider reviewing

the additional figures that are included in the dissertation, which are beyond the scope

of the originally published papers. Furthermore, not all chapters in this thesis include a

corresponding publication and are therefore the only source of information on the topic. For

a longer, while still brief, overview of all the work described in this thesis, you may refer to

the individual “Summary of Contributions” section in each chapter.

11

1.3 Prior Publications and Authorship

Throughout this dissertation I present work for which I am the primary author, but I would

like to acknowledge that each and every project was done with the help and collaboration of

my research mentors. SetCoLa was published at EuroVis 2018 [83] in collaboration with my

advisor, Jeffrey Heer, and Alan Borning. For the Vega project, which was published at IEEE

VIS 2015 [177], I contributed figures inspired by my work on data flow visualizations, which

I presented at a EuroVis 2015 workshop on Reproducibility, Verification, and Validation in

Visualization (EuroRV3) [86]. This work on program understanding and debugging for Vega

inspired my projects on visual debugging techniques (EuroVis 2016 [87]) and in situ visual-

izations (ACM CHI 2018 [88]), which were both done in collaboration with Jeffrey Heer and

Arvind Satyanarayan. Finally, my work on responsive visualization design was published at

ACM CHI 2020 [84] in collaboration with Zhicheng “Leo” Liu and Wilmot Li from Adobe

Research. I will reiterate this information on collaboration in the “Summary of Contribu-

tions” section for each chapter. When describing my work throughout this dissertation, I will

use the first person plural to describe the work of myself and my collaborators.

12

Chapter 2

BACKGROUND AND RELATED WORK

There are many approaches to visualization design, depending on the ultimate goals of the

end user. To this end, I first outline the space of programming languages and tools available

for constructing visualizations (Section 2.1), which includes programming languages for visu-

alization design (Section 2.1.1), end-user visualization construction systems (Section 2.1.2),

and visualization systems for exploratory data analysis (Section 2.1.3). Graph visualizations

can prove particularly difficult to design effectively; Section 2.2 therefore introduces related

work on specific techniques for graph visualization, including graph layout techniques that

leverage constraints (Section 2.2.1). Continuing the visualization theme, Section 2.3 describes

the application of visualizations for program understanding and debugging, including the

design of in situ visualization of the program behavior. Related to the design of in situ

visualizations, Section 2.4 describes related work on text and environment augmentation.

While the approaches and tools themselves are important, understanding the experience

and behavior of the end user is just as essential; Section 2.5 introduces work on empirical

studies of programmers and program understanding. Section 2.6 describes particular pro-

gram understanding techniques explored in the space of declarative programming languages.

Finally, Section 2.7 introduces related work on domain-specific programming languages.

To conclude this chapter, Section 2.8 describes the applicability of this related work to the

content described throughout this dissertation. Individual sections of the related work in this

chapter highlight specific relationships of immediate interest. Furthermore, some chapters in

this dissertation include additional related work sections specifically related to the content

of that chapter (e.g., Section 3.1, Section 4.1, Section 5.1, and Section 8.1).

13

2.1 Visualization Design Systems

Visualization construction systems target different goals for the visualization design and dif-

ferent levels of expertise for the user. In exploratory data analysis, users strive to understand

the underlying data to uncover analysis insights. Visualizations can then be used for commu-

nicative purposes to inform others about important observations and trends. Visualization

construction systems enable users to implement a particular visualization design, but such

systems often expect users to be familiar with their data and have a particular design in mind.

2.1.1 Programming Approaches for Visualization Design

Programming systems provide the most flexible and customizable approach to visualization

design. Languages such as D3 [23], Processing [157], and Vega [177] are particularly popular

for designing visualizations programmatically. Whereas D3 supports interactive visualization

design via event callbacks, Vega leverages a declarative approach that makes it particularly

well-suited for the programmatic generation of visualization specifications. Given this advan-

tage, Vega also serves as the underlying platform for an ecosystem of tools [174, 176, 195, 206],

including several of the projects presented in this dissertation [84, 87, 88]. While these pro-

gramming approaches can support a huge range of designs, they require extensive expertise to

learn and employ effectively. Simpler languages such as Vega-Lite [176] can provide a quicker,

more lightweight approach to visualization design, but still require textual specification. In

this dissertation, we contribute SetCoLa [83]: a domain-specific programming language for

customized graph layout using constraints. SetCoLa is discussed in more detail in Chapter 4.

2.1.2 End-User Visualization Construction Systems

An alternative to programming approaches are visualization construction user interfaces.

Grammel et al. [69] surveyed such approaches and identified two main interface types: tem-

plate editors and shelf construction systems. Satyanarayan et al. [175] revisit this distinction

and introduce a third interface type: visual builders. As part of this work, Satyanarayan et al.

14

compare and contrast three systems, which they classify as visual builders : Lyra [174], Data

Illustrator [129], and Charticulator [161]. Satyanarayan et al. then provide critical reflections

on the design of these three systems and make explicit the implicit assumptions adopted in

the early implementation of each system, thus surfacing new areas for future work. I will

briefly describe these three classes of visualization construction systems here:

Template editors generally support a limited set of visualization designs. While some systems

support design customization to modify the visual style, these systems can only support new

visualizations through the introduction of new templates. Adding new templates can be

difficult and often requires additional programming expertise. Examples of template editors

include Datawrapper [64], Flourish [131], RAWGraphs [135], and Microsoft Excel [142].

Shelf construction systems utilize a drag-and-drop mechanism in which users map data fields

to encoding channels to produce the visualization design. These systems must often make

a number of default decisions in order to produce valid designs based on the specifications

of the user. Examples include Tableau (formerly Polaris [184]), and research systems such

as Polestar and Voyager [206]. Our proposed responsive visualization design system [84]

primarily employs the shelf construction approach to map data fields to encoding channels

via drag-and-drop, with minor modifications possible via direct manipulation (Chapter 8).

Visual builders are the most complex interface of the three, but also provide the most con-

trol and customization of the design. Lyra [174] provides an interactive environment for

visualization design via direct manipulation, which was built on top of Vega [177]. Data

Illustrator [129] follows a similar approach, modeled on existing vector graphics programs.

Charticulator [161] similarly enables direct manipulation design of visualizations, and addi-

tionally leverages constraints to produce the chart layout. Satyanarayan et al. [175] compare

and contrast these three systems [129, 161, 174] to provide critical reflections on the different

approaches. Other examples of visual builders include Data-Driven Guides [111], VisCom-

poser [138], iVoLVER [139], iVisDesigner [160], InfoNice [203], and DataInk [208].

15

2.1.3 Exploratory Analysis and Visualization

Visualization plays a crucial role in data and statistical analysis by confirming that the data

matches the expectations of the user, revealing errors in the underlying data, or surfacing data

insights. ggplot2 [204] is a visualization design language for data analysis in R. Altair [195] is

a Python library for lightweight visualization design built on top of Vega-Lite [176]. For these

approaches, designers are responsible for individually and programmatically specifying each

visualization in the analysis process. As an alternative, Voyager [206] is a mixed-initiative

system to support data exploration using both automatic and manual specification of visu-

alizations; the user is presented with a series of different visualizations and can steer which

visualizations are shown by partially specifying the design to focus on the data of interest.

2.2 Graph Visualization Techniques

Graph layout approaches often leverage the underlying structure to produce the layout [49,

63, 81]. For node-link diagrams of hierarchical data, Reingold & Tilford’s “tidy” layout [158]

arranges graph nodes into compact, symmetrical tree layouts based on aesthetic properties.

Radial layouts [13, 81] follow similar procedures using polar coordinates, with a root node

placed at the origin. Sugiyama-style layouts [186] visualize directed graphs by first assign-

ing nodes to hierarchical layers and then iteratively adjusting node placement to minimize

edge crossings. Force-directed techniques [56, 119, 155, 193] use physical simulation and/or

optimization methods that model repulsive forces between nodes and spring-like forces on

edges, and attempt to minimize the overall energy. Origraph [19] is an end-user system that

supports interactive network wrangling to restructure and visualize the underlying network

data. A number of popular tools support graph drawing, including D3.js [23], Gephi [11],

Graphviz [50], and Cytoscape [181]. This work on graph layout inspires both the design of

SetCoLa (Chapter 4) and the prototype data flow graph visualization for Vega (Chapter 5).

2.2.1 Constraint-Based Graph Visualization Layouts

Extending an existing layout method to support constraints enables customized layouts that

emphasize important structural or aesthetic properties of the graph. There is extensive re-

16

lated work in this space that explores the application of constraints for different use cases.

Dig-CoLa [42] encodes the hierarchy of nodes as constraints and attempts to minimize the

overall stress; this technique is a hybrid strategy that combines automatic hierarchical lay-

out with undirected layouts to ensure downward pointing edges. Dwyer and Robertson [47]

present a strategy for supporting non-linear constraints (e.g., circle constraints) that does

not constrain node positions along a single axis, and can incorporate these techniques into

other layout strategies. Kieffer et al. [109] present a force-directed, constraint-based layout for

creating graphs with node and edge alignment, and demonstrate its effectiveness for interac-

tive refinement within an end-user facing system for interactive graph layout: Dunnart [45].

IPSep-CoLa [43] extends force-directed layouts to apply separation constraints on pairs of

nodes to support properties such as customized node ordering or downward pointing edges.

Dwyer and Wybrow developed libcola [48], which utilizes constraints within a force-directed

graph layout [46] using stress majorization. Stress majorization [60] is a technique used for

graph layout that has been extended for efficient application on constrained layouts [44, 202].

WebCoLa [41] is a JavaScript library based on libcola [48] for constraint-based layout in a

web-programming context that can be used alongside D3 [23] or Cytoscape [181]. WebCoLa

enables constraints on the alignment and position of nodes as well as the specification of

high-level properties such as flow (to ensure edges point in the same direction) and non-

overlapping constraints. While WebCoLa can support customized constraints, the specifica-

tion of individual inter-node constraints can be labor intensive. To address this concern, we

developed SetCoLa [83]: a domain-specific language for specifying high-level constraints for

graph layout. The SetCoLa compiler (described in Chapter 4) translates the user-authored

constraints into low-level constraints for WebCola [41], which computes the final layout.

2.3 Visualizations to Facilitate Program Understanding and Debugging

Program visualization can facilitate both educational and debugging tasks. The Online

Python Tutor [71] visualizes objects, variables, and stack frames allowing students to in-

spect the runtime state of their code. The Online Python Tutor has been used by over 3.5

17

million people and has been extended to support additional languages including JavaScript

and C. Algorithm visualizations [21, 37, 180] can illustrate code by visualizing each step in the

algorithm. Such approaches have been shown to improve understanding of the behavior [70].

Many debugging tools provide coordinated views to display relevant system information

and facilitate tracing of the execution history. Brad Myers describes a taxonomy of program

visualizations—in contrast to visual programming—that are “used to illustrate some aspect

of the program or its run-time execution” [144]. The Whyline [115] visualizes the path of

runtime actions relevant to a “why” or “why not” question about the runtime behavior.

Timelapse [26] visualizes web event streams and displays linked views of internal state in-

formation; breakpoints allow programmers to trace state information to particular parts of

the original source code. FireCrystal [149] emphasizes the connection between code and run-

time behavior by extracting the relevant CSS, HTML, and JavaScript code responsible for

behaviors on a web page. Theseus [128] similarly narrows the connection between runtime

behavior and code by displaying visualizations of program calls alongside the source code

and call stack. Omnicode [102] employs a scatterplot matrix to visualize the entire execution

history of runtime variables, which helps novice Python programmers debug and explain the

behavior of their code. These types of environments with coordinated views have motivated

our visual debugging techniques proposed in Chapter 6; in our work, we focus on program un-

derstanding techniques for reactive programming languages such as React [93] and Elm [36].

Many of these debugging tools utilize separate coordinated views that require program-

mers to switch between code authoring and debugging tasks. In situ visualizations aim to

narrow the gap between the source code and program understanding techniques. In situ

visualizations of program behavior have been developed for a variety of programming top-

ics to show properties such as the edit history or code authorship [73], variable read/write

accesses [14], performance behavior [15], and real-time programming tasks [189]. Bret Vic-

tor [198] describes design considerations for a programming system to support program un-

derstanding tasks aided by both code annotations and visualizations. We build upon much of

this related work to contribute a design space of code-embedded visualizations in Chapter 7.

18

2.4 Text and Environment Augmentation with Visualizations

Related to the in situ visualization techniques described in Section 2.3, text augmentations

display additional information to support or extend the text [28, 211]. Tufte [192] describes

sparklines, which are small, data-rich visualizations incorporated into text. Goffin et al. [65]

have generalized this idea to include any form of word-scale graphics. Goffin et al. [66, 67]

additionally present design considerations for the placement of word-scale graphics and for

incorporating interactions. Latif et al. [125] present a design space of interactions for linking

between text, visualizations, and sparklines in interactive documents. Willett et al.’s scented

widgets [205] augment standard navigational widgets with visualizations of page visitation

or content engagement. Such visualizations orient users within the space of possible content

to view, and help them to engage with underutilized content. This work strongly motivates

the design of our in situ visualizations for program understanding in Vega (Chapter 7); in

Chapter 7, we contribute a design space of code-embedded visualizations and elaborate on

placement considerations particularly for programming contexts.

2.5 Empirical Studies of Programmers and Program Understanding

Program understanding plays an essential role in how programmers learn, debug, and au-

thor new code. There is extensive prior work examining how programmers understand

code [165, 185, 199]. Ko et al. [117] present six learning barriers in end-user programming

systems, which includes: design, selection, coordination, use, understanding, and information

barriers. Oleson et al. [148] describe learning difficulties from the perspective of students.

Ko & Myers [114] contribute a model of programming errors and discuss the evaluation of

this model on two studies of programmers using Alice. Many pieces of related work aim

to understand how potential users communicate ideas and concepts while uninhibited by a

particular programming language or environment [130, 146, 150, 212].

As described in Section 2.3, many debugging tools utilize separate coordinated views that

require programmers to switch between code authoring and debugging tasks. However, re-

quiring programmers to shift their attention between views can incur a high context switching

19

cost and interrupt programmers’ flow when writing code. Flow [147] is a well-studied topic

from the field of psychology and describes the state in which an individual “operates at full

capacity.” While “in flow,” programmers may introduce but overlook errors in their code.

Saff & Ernst [167] describe a model of developer behavior where the phase in which program-

mers have unknowingly introduced an error is called “ignorance.” Across two development

projects, Saff & Ernst [167] found that Java programmers were ignorant of program errors

for about 17 minutes on average (and sometimes more than 90 minutes).

Once an error has been introduced, programmers must invest time to find and fix the

error, which often requires programmers to switch between code authoring and debugging

tasks; Ko et al. [118] found that programmers spend 5% of their development time switching

between tasks on average. Ko & Myers [116] found that programmers spend 46% of their time

debugging. Saff & Ernst [167] found a significant relationship between the “ignorance time”

of an error and the amount of time needed to fix it. Parnin & Rugaber [151] studied the time

required to resume programming after an interruption and found that 30% of programming

sessions had a lag of over thirty minutes between entering the session and authoring new code,

potentially as a result of extensive debugging tasks. This dissertation aims to facilitate code

authoring and understanding by emphasizing the domain-specific concepts familiar to users

thereby reducing the gap between the code and program output; Chapter 7 contributes a

design space of code-embedded visualizations that help surface surprising or incorrect results

directly within the code to reduce programmers’ need to switch amongst different views.

2.6 Declarative Programming Languages and Debugging

Declarative languages have commonly been explored for visualization [23, 78, 177, 204]. The

declarative approach yields benefits, such as supporting retargeting across platforms [78] or

facilitating system-level optimizations. This approach can further enable the programmatic

generation of visualizations, thus providing a base for the design of new visualization sys-

tems [84, 174, 206]. However, the declarative approach also surfaces challenges for effective

debugging; in particular, users may struggle to understand how the user-provided input maps

20

to the system-produced output. Within this space, there remain new opportunities to better

support the program understanding and debugging process. In this dissertation, Chapters 5-7

contribute new debugging techniques for reactive visualization in Vega [177]. Similar to our

debugging techniques, the Elm language [36] has explored the development of an interactive

debugging environment for reactive programming, inspired by Bret Victor [197].

2.7 Domain-Specific Programming Languages

Domain-specific languages (DSLs) are programming languages that are customized to reflect

the knowledge and constructs of a particular domain, such as web computing [3, 27, 51, 58].

Van Deursen et al. [194] describe a survey of 75 publications exploring the use of domain-

specific languages for software systems. DSLs have also been proposed for a variety of vi-

sualization use cases, which includes designing mathematical diagrams [209], analyzing and

processing images [112, 156], as well as graph analysis [89] and layout [83], among many

others. For example, in this dissertation we present SetCoLa [83], which is a domain-specific

language for customized graph layout that allows users to map their knowledge of the un-

derlying graph properties to visual requirements in the layout using constraints (Chapter 4).

Extensive prior work has described the design of domain-specific languages [53, 91, 140],

including analyses of common design patterns [152, 183]. Compared to general-purpose pro-

gramming languages, domain-specific languages raise the level of abstraction to help users

reason about program behavior using the high-level constructs of the domain of interest. How-

ever, it can be challenging to develop effective DSLs. To this end, prior work has explored

domain-agnostic ways to support the development of domain-specific languages [12, 123, 163].

Domain-specific languages can usefully abstract details of the implementation by enabling

users to focus on high-level properties of the particular domain. To illustrate the benefits of

DSLs for program comprehension, Kosar et al. [122] present three studies comparing domain-

specific languages to general purpose languages and show that developers are both more

accurate and more efficient when working with DSLs. In recent work, Kosar et al. [121] repli-

cated these results to further demonstrate the advantages of DSLs for program comprehension

21

when used within an integrated development environment (IDE). While DSLs have many

advantages, users can encounter unique challenges when trying to understand the behavior of

internal errors that are obfuscated by the high-level language. Furthermore, these languages

often lack debugging tools. This dissertation first explores the challenges around developing a

DSL for graph layout using constraints (Chapter 3-4) and further contributes new techniques

for program understanding of interactive visualizations in Vega (Chapter 5-7).

2.8 Discussion and Applicability of Related Work

This dissertation primarily explores the design and utility of systems for interactive visual-

ization design; therefore, this dissertation is first motivated by related work on visualization

construction systems (Section 2.1). Inspired by work on programming languages for visualiza-

tion design (Section 2.1.1), graph layout (Section 2.2), and domain-specific languages (Sec-

tion 2.7), this dissertation contributes SetCoLa [83]: a new domain-specific programming

language for designing customized graph layouts using constraints (Chapter 4).

Chapter 5 includes additional background on Vega (Section 2.1.1), and contributes a pro-

totype data flow graph visualization inspired by related work on graph layout (Section 2.2)

and program visualization and debugging (Section 2.3). Chapter 6 contributes a set of vi-

sual debugging techniques for reactive data visualization inspired by program understanding

environments (Section 2.3) and empirical studies of programmers (Section 2.5). To better

address the remaining program understanding challenges surfaced in Chapter 6, Chapter 7

contributes in situ visualizations likewise inspired by related work on visualizing program

behavior (Section 2.3) as well as work on text and environment augmentations (Section 2.4).

Finally, Chapter 8 describes the design of a new visualization construction system tar-

geted at the design of responsive visualizations. Unlike prior visualization construction ap-

proaches (Section 2.1), our responsive visualization system supports the concurrent design

and customization of multiple linked visualizations. This environment is further motivated

by prior work on text and environment augmentations (Section 2.4).

22

Chapter 3

UNDERSTANDING THE PROGRAM
BEHAVIOR OF CONSTRAINT SYSTEMS

The first core challenge presented in this dissertation is to “raise the level of abstraction

to reflect user expertise.” One way in which to encode user expertise is through the appli-

cation of constraints. Constraints are a flexible and powerful approach to solving complex

problems. By applying constraints, users can express behaviors or circumstances of imme-

diate relevance to their unique domain-specific knowledge and their primary task at hand.

For example, constraints can be particularly applicable to visual layout use cases including

visualization, graph layout, or interface design. For these tasks, constraints provide a natural

way in which to encode requirements for the layout such as alignment, element order, and

hierarchy, while also providing some flexibility to the design. Constraints can also be applied

for more abstract use cases such as scheduling [54], automating statistical analysis proce-

dures [99], and the compilation and reapplication of visualization design guidelines [143].

These approaches provide an extensible way to encode domain knowledge, which can better

support reuse and reapplication of this expertise. Essentially, constraints are able to “support

the tasks that matter most to the user” by allowing users to encode their knowledge while

introducing additional flexibility in the system functionality.

While constraints exhibit the potential to support users in solving complex problems by

enabling them to encode their unique domain expertise, the application and invalidation

of constraints sometimes remains hard to comprehend. Furthermore, while constraints may

naturally reflect some domain knowledge (such as alignment requirements), users sometimes

struggle to identify how best to author or prioritize constraints for their particular task.

To further complicate this process, techniques to support program understanding and de-

23

bugging of constraint systems is currently limited. The difficulty surrounding the program

understanding of constraints illustrates the second challenge explored in this dissertation:

“communicate system behavior as actionable information.” In order to develop new systems

to support users in understanding the behavior of constraints, it is important to first iden-

tify the challenges and opportunities surrounding existing constraint programming systems.

To this end, inspired by prior work on empirical studies of programmers and program un-

derstanding (Section 2.5), this chapter aims to uncover existing strategies and challenges

surrounding program understanding of constraints, and to identify new opportunities for

future research. By better supporting program understanding in complex domains such as

constraint programming, we can open the domain to a wider group of end-user programmers

and better support the effective use of new constraint-based systems.

3.1 Related Work: Constraint Programming Systems

Constraints can help solve complex problems including user interface design [2, 38, 187, 188],

visualization layouts for graphs [41, 43, 45, 48, 83], charts [161], and diagrams [20, 172, 209],

the compilation and reapplication of visualization design guidelines [143], scheduling [54],

and the automation of statistical analysis procedures [99]. Constraints can simplify complex

problems by focusing the user’s attention on design essentials (such as the interplay amongst

related or disparate elements in the constraint problem). Several of the systems introduced

in this section take the abstraction one step further to produce a graphical user interface

that hides the use of constraints in the underlying system [45, 161, 187]. Michael Sannella

has explored debugging techniques for constraints in interactive user interfaces [169]. This

section focuses primarily on examples of end-user facing systems that leverage constraints.

As previously discussed in Section 2.2, constraints have been thoroughly explored within

the graph layout domain. Related to this body of work is a graphical user interface called

Dunnart [45], which is a graph layout environment that supports interactive refinement of

the layout powered by a force-directed, constraint layout engine [109]. Another example of a

system for graph layout using constraints is SetCoLa [83], which is discussed in more detail in

Chapter 4. In SetCoLa, the system generates constraints based on a specification provided

24

by the user to produce a customized graph layout. The SetCoLa compiler generates con-

straints for a low-level constraint engine for graph layout called WebCoLa [41], and displays

the system generated WebCoLa constraints using a similar format to the initial SetCoLa

specification. However, the number of constraints in the generated specification can increase

by one to two orders of magnitude, which complicates how users might go about understand-

ing the behavior of the final graph layout. As I will discuss later in this chapter, a common

challenge across different constraint approaches is that constraints can be tightly coupled

such that changes to one part of the solution cascade throughout the constraint problem.

While constraints have been extensively studied for graph layout, the flexibility of this

approach also applies to other visualization contexts. Charticulator [161] is an example of a

visualization construction system (Section 2.1.2) for producing bespoke chart layouts powered

by constraints. Charticulator aims to support the design of visualizations without program-

ming. To do this, Charticulator includes a set of user interactions for specifying properties

of the layout that are represented as constraints in the underlying system. The system then

uses a least squares minimization technique for weighted constraints to produce a layout.

While this solver is faster for the particular types of constraints generated by Charticulator,

it does limit the types of constraints that can be defined to equality constraints. The con-

straints produced by Charticulator are entirely hidden from the user, such that it can be hard

for the user to understand what happens when the produced layout differs from the user’s

expectations. Beyond the visualization domain, ThingLab [20] is a graphical programming

environment that allows users to interactively create physical simulations using constraints.

There are several other end-user systems that leverage constraints for the underlying

layout of graphical interfaces. Rewire [187] is a system to support designers in prototyping

user interfaces, which leverages constraints to ensure alignment and consistency in the user’s

design. Scout [188] is a system for generating user interface design variation based on user-

authored constraints. Constraint approaches for interface design are particularly common

within industry, including Apple’s AutoLayout [2] which leverages an incremental constraint-

solving algorithm called Cassowary [4], and Android’s ConstraintLayout [38].

25

3.2 Formative Interviews: Utilizing and Understanding Constraints

To better understand existing challenges and inform the design of new program understand-

ing techniques for constraint systems, we conducted preliminary formative interviews with

end-user programmers with experience designing and using constraint programming systems.

The goal of these interviews is to surface potential challenges and suggest new avenues for

future work on techniques for program understanding in constraint systems. This section de-

scribes a preliminary set of interviews with four participants to highlight some common chal-

lenges that arise when working with constraints. Future work can leverage this methodology

and preliminary set of insights to inform the design of new studies on program understanding

for constraints and new interventions to improve user interaction with constraints, for both

system developers using constraints and potential end users of constraint-based systems.

Participants. We recruited four participants (2 male, 2 female) from the University of Wash-

ington. All participants were PhD students with prior experience using constraints for per-

sonal and/or research projects. For the projects discussed in the interviews, participants used

solvers such as Z3, CBC, and Clingo. Participant ages ranged from 24 to 31 (mean 26.25,

s.d. 3.20). Each participant received a $20 gift card for completing a one hour session.

Data Collection. The interviews were conducted at the University of Washington. We cap-

tured audio recordings and took notes during the interviews for later review. We then used

Rev [162] to transcribe the audio recordings after the interviews.

Protocol. Prior to the interviews, participants completed a background survey in which they

briefly described their previous experience working with constraints and provided other de-

mographic information (see Appendix A.1). For the interviews, we utilized a semi-structured

approach following a basic interview question template (see Appendix A.2). To inform the

structure of these interviews, we conducted two pilot surveys with a similar set of questions.

26

Analysis. To analyze the results of these interviews, we reviewed the interview transcripts

and used an affinity diagramming approach to group participant quotes based on the topics

and ideas discussed. We further distilled these groups to identify a set of high-level topics

and challenges which we discuss in more detail in the following sections.

3.2.1 Natural Representations of Domain Expertise

The decision to use constraint-based approaches arises from the perceived appropriateness

or ease with which the domain reflects the nature of constraints. One participant explained

a straightforward approach to apply domain knowledge when generating constraints: “[We

were] basically just kind of putting numbers to things that we already kind of knew what

the priorities were” (P1). While participants would often consider using other approaches

to solve the problem of interest, one participant explained that “It was easier for me to

declare a [property] as following from a set of constraints about the data, then to try to

navigate a pretty dense if-else tree” (P4). In these cases, participants felt that the constraint

structure could concisely represent important domain knowledge that would otherwise be

hard to navigate with conventional programming approaches. Another participant explained

that “it’s more about... how we make the representation more natural, so that other people

can easily compile their thoughts and knowledge into the constraint system” (P3).

In the quote above, P3 noted the importance of intuitive constraint representations to

foster external collaborations. Constraints can also introduce flexibility and power into end-

user facing systems, but only if such systems can support the end user’s development needs.

One participant noted that “all the constraints I made, I’m trying to base them off design

principles that I found. I’ve been doing a lot of research on different things that designers

would wanna do and I’ve been trying to make [the constraints] naturally fit into the types of

concepts [designers] would use” (P2). Given that constraints may naturally reflect the end-

user’s domain expertise, systems can abstract the implementation to hide those details from

the end user. One participant reflected that “I feel like interface designers don’t necessarily

want to think in that way. So I’m not even telling them they’re constraints anymore” (P2).

27

3.2.2 Challenges Formalizing Domain Knowledge

While some domain expertise may naturally reflect the structure of constraints as we saw

in the previous section, other types of domain knowledge may prove challenging to formal-

ize. As one participant explained, “it can be challenging to encode the different rules into

the constraints that the software will understand” (P2). One of the first steps for specifying

a constraint problem is identifying the individual statements; P2 further reflected that “I

think just breaking [the problem] down into different statements... is really hard” (P2). To

fully specify a constraint problem requires the user to write a variety of unique, yet intercon-

nected constraints. For many debugging scenarios it can be hard to navigate and iterate on

a constraint problem that is underconstrained or overconstrained. One participant explained

that “It’s easier to add a new rule. But with a new rule, it’s hard to tune to work with other

rules” (P3). Another participant felt that “Removing them is harder, I think, because if you

have it too constrained it’s hard to figure out without seeing more examples. Because if it’s

just one example... it looks right. But maybe you’ve constrained it too much and there won’t

be enough variation and that’s harder to debug, I think” (P2).

Producing the desired result often required participants to change and iterate on the set

of constraints. One participant explained that this process could be difficult because “I had

a hard time evaluating what I had already done and what I hadn’t tried and which one was

better or worse” (P4). When iterating on a large set of constraints, it becomes essential to

recall the behavior, rationale, and interplay for different parts of the code. One participant

noted that “sometimes I go back to it later and I’m like, ‘I don’t need this constraint’ and

then I’ll remove it. But after I remove it... I ran it and it was really slow. And I’m like,

‘Oh, that’s why I did that’” (P2). While many participants primarily worked on the code by

themselves, collaboration further emphasized the importance of documenting the rationale.

However, one participant noted that “My original code may have some explanation, but it’s

just not something that other people, whoever comes in... it’s really hard to continue working

on that. How to make the code self-explanatory is also a very challenging problem” (P3).

28

3.2.3 Requirements and Challenges Around Solver Performance

A major challenge for our participants was around understanding the performance of the

underlying constraint solver: “performance was more important, ‘cause we were calling the

solver a lot, so we were really thinking about like... ‘how can we avoid calling the solver?

Can you optimize our queries?’” (P1). One participant commented on the general difficulty

surrounding performance to note that with “the performance issue... it’s really, really hard to

understand what’s wrong here” (P3). Another participant reflected that “it’s just with the way

you write them it can make the software go slower or fast, I don’t really know why, it’s just

how they work” (P2). When it comes to understanding the overall behavior of the application,

it can be particularly hard to identify program understanding strategies that reflect both the

user-authored constraints and the behavior of the underlying solver. One participant went

on to explain that “the solver, that part was kind of a black box that is something I cannot

control and I don’t know what’s going on” (P3). As one participant explained, overcoming

a performance issue can often require extensive time and/or user effort: “I had to redo all

of my constraints so they would be faster” (P2). While participants may be able to produce

the desired behavior, it still remains difficult to know whether additional improvements are

possible: “I want to know if there’s a better way of debugging constraints with Z3, because I

think what I did worked for my purpose but wasn’t necessarily efficient” (P4).

3.2.4 Current Approaches to Constraint Debugging

While powerful, constraints present a variety of challenges, particularly around debugging.

As one participant stated: “I think the biggest challenge would be... well there’s a couple.

There’s lots of different challenges, so don’t know if there’s one biggest one” (P2). Another

participant explained that “the first thing is actually debugging, so this constraint system

is declarative. It’s very hard to tell which part is wrong” (P3). This tension is one that we

continue to see across other projects in the declarative space, as we will discuss later in this

dissertation (Chapter 4-7). Another participant mentioned that “when it’s working great, it

works great, but when it goes wrong, there’s no real feedback” (P1).

29

When constraints fail to produce the desired output, or are completely unsatisfiable, the

authors must begin to debug the behavior. For some constraint applications, there are basic

techniques to help understand the behavior. One participant explained that “the solver ac-

tually has some way to interpret what’s wrong and what’s a conflict just using unsat core, for

example” (P3). However, another participant noted that “But sometimes [the unsat core] has

extra things in there that don’t really make sense, so it’s not easy to interpret that” (P2). To

actually begin making changes, many participants described just commenting out individual

lines of code. P2 went on to explain that “I would use [the unsat core] to figure out which

lines to comment out... and if I comment them out and it’s satisfied, then I’ll have to figure

out what the issue is with that constraint” (P2). Other participants explained that the easiest

way to understand the behavior was to simply inspect the output: “When there is something

wrong, the only way you can do is to work through all of my codes to inspect what’s really

wrong” (P3). Another participant reflected that “I just kind of lucked into it, in terms of

debugging. I was looking at this line, I was like, ‘Wait a minute, that’s not right.’ So, really,

no useful output from the program at all, it was just kind of like inspection of the code, which

is unfortunate, but it is what it is” (P1).

3.2.5 Takeaways: Understanding and Appropriately Employing Constraint Systems

For some domains—such as graph or interface layout and scheduling—constraints can provide

a natural way to record and apply domain knowledge to programming problems. However,

challenges may also arise when determining how best to break the particular problem into

small enough steps to formalize in both system and human understandable language. Col-

laboration can prove essential for the collection and reapplication of domain knowledge as

constraints; however, collaboration also introduces requirements for improving how to com-

municate the behavior of disparate elements in the constraint problem. For end-user facing

systems, it is particularly important for constraints to reflect the goals of the end user at a

sufficiently high-level to abstract away the underlying constraint implementation.

30

Many challenges arise when it comes to understanding the behavior of a constraint-based

system. Understanding the interplay of constraints can be essential when iterating on how

best to represent a constraint problem. Challenges often arise for both overconstrained or

underconstrained constraint problems requiring the user to reason about the connections (or

lack thereof) between constraints. When adding or removing constraints, it becomes essen-

tial to document the behavior and rationale so as to avoid repeated effort. In addition to

challenges surrounding the program understanding process for individual constraints, rea-

soning about the performance of the underlying solver can prove particularly challenging.

When it comes to debugging, users generally lack the tools necessary to fully explore or

interpret the program behavior. New techniques for program understanding of constraints

should aim to better support system behavior by leveraging the domain expertise of the user

to communicate actionable information and better support the user’s debugging process.

3.3 Limitations and Future Work

This chapter presents a preliminary set of interviews with four participants to better un-

derstand how individuals leverage, understand, and debug constraints. In particular, these

interviews focus on the use of constraints in collaborative settings and in the development

of end-user facing systems. While these interviews surface some themes about the existing

challenges faced by developers, future work should elaborate on the interviews to recruit a

broader class of participants. In particular, future work should aim to understand the expe-

rience of end users of constraint-based systems to further identify challenges that arise when

working with constraints indirectly and opportunities for new interventions to help end users

interpret the complex functionality presented by such systems. The interview methodology

described in this chapter can be extended or refined based on these results to help elicit new

sets of challenges and to better explore the design of new program understanding techniques.

31

3.4 Summary of Contributions

Constraints can provide a natural way to encode domain knowledge in the behavior of a

system to better support flexibility and prioritization of the underlying behavior. During the

interviews, one participant reflected on the power provided by the constraint-based approach,

noting that “we wrote down we valued these things highly, and I guess we expected that we had

always valued them highly, and that humans were doing a good job maximizing that. And that

turned out to just not be the case, so the tool was really able to outperform in that context,

and I think that was surprising” (P1). However, the process of authoring and understanding

the constraint behavior can often be challenging and labor intensive. In this preliminary set

of interviews, participants explained a variety of program understanding challenges including

the difficulty of formalizing knowledge as individual constraints, reasoning about the behav-

ior of underconstrained or overconstrained specifications, and interpreting the performance

and behavior of the underlying constraint solver. Current techniques to debug the behavior

generally involves manual inspection of the output or ad hoc experimentation with the con-

straint specification. These results hint at the extent to which users are underserved by the

constraint approaches they currently use.

Many of the challenges discussed in this chapter reinforce the three core challenges sur-

rounding this dissertation, particularly regarding the need for systems to better communicate

the underlying behavior and to support the user’s primary tasks. However, these interviews

also suggest strategies to help raise the level of abstraction in end-user facing systems. As

one participant explained: “I’ve been trying to make [the constraints] naturally fit into the

types of concepts [designers] would use” (P2). Given this careful consideration, P2 further

reflected that “I’m not even telling them they’re constraints anymore.” In order to better

support the end-user programmer, systems should adapt to the particular expertise of the

user rather than requiring users to adapt to the capabilities of the system.

This work was done in collaboration with Jeffrey Heer and Alan Borning. The results of these

interviews have not otherwise been published apart from their inclusion in this dissertation.

32

Chapter 4

AUTHORING AND REUSING DOMAIN-SPECIFIC
GRAPH LAYOUTS WITH SETCOLA

Graph visualization research has extensively explored the application of constraints for graph

layout (Section 2.2). Constraints can provide a natural way to encode properties of the data to

enforce visual considerations such as alignment, node ordering, and hierarchical relationships

(Chapter 3). By using an appropriate graph layout, node-link diagrams can effectively convey

properties of the network structure, such as the overall hierarchy or network connectedness.

Graph visualizations have been commonly explored for analysis and communication in a

many domains, including social networks [52, 57, 137, 164, 179], biological systems [6, 16, 61,

120, 127, 170, 181], and ecological networks [7, 18, 32, 82, 103, 124, 126, 166, 210], among

others. In many of these examples, the graph layout utilizes domain-specific properties to

emphasize relevant patterns in the data. In a biological pathway for example, nodes can be

layered by their subcellular location to contextualize the data with respect to the underlying

cellular structure (Figure 4.1). The “transcriptionally regulated genes” layer of this layout

further shows the biological outcomes of this network, grouped by molecular function.

To produce domain-specific graph layouts using existing constraint techniques often re-

quires users to define constraints on individual nodes or node pairs. This process can be labor

intensive, requiring thousands of similar constraints and careful reasoning about which nodes

should be constrained to produce the desired layout. Moreover, instance-level constraints

(e.g., defined extensionally via node indices) prevent reuse of a layout across graphs from

the same domain and instead require users to author new sets of constraints for each graph

individually. Authoring thousands of constraints or automating the generation of constraints

may require programming expertise beyond the individual skills of the domain expert.

33

extracellular

plasma membrane

cytoplasm

nucleus

transcriptionally
regulated
genes

a

b

Figure 4.1: The TLR4 biological system layout produced using (a) a domain-specific layout tool,
Cerebral [6], as compared to (b) SetCoLa. Layers correspond to the location of the biomolecule
within a cell and show immune response outcomes at the bottom, grouped by molecular function.

34

While constraints provide one option for customized graph layout, many other techniques

have been explored to address this need [6, 104, 105, 181]. These techniques leverage com-

mon structural properties relevant to the domain—such as known data hierarchies including

cellular structure or trophic level—as guiding properties of the underlying layout algorithm.

However, these techniques rarely generalize beyond the domain for which they were specifi-

cally designed. Furthermore, many other domains lack customized layout tools despite their

potential utility. When a layout technique does not exist for the domain of interest, domain

experts must either fit their data to available techniques or design and implement a new

algorithm. Creating a customized layout algorithm requires both domain and programming

expertise, and so introduces a gap between analysis needs and the techniques available. This

difficulty helps concretely illustrate the third challenge explored in this dissertation: “sup-

port the tasks that matter most to the user.” To produce customized graph layouts, domain

experts must be able to leverage their domain expertise to encode relevant layout properties

with reduced programming effort. Domain experts should be able to reapply this knowledge

across graphs from the same domain to further reduce specification effort for the layout.

To this end, we contribute SetCoLa: a domain-specific language for specifying high-level

constraints for graph layout. Users partition nodes into sets based on node or graph proper-

ties, and apply layout constraints to these sets. This approach allows domain experts to spec-

ify layout requirements at a high level, deferring the generation of instance-level constraints

to the underlying runtime system. These SetCoLa constraint definitions reduce specifica-

tion effort while enabling highly customized and reusable graph layouts. We implemented a

SetCoLa compiler, which generates instance-level constraints for WebCoLa [41], a JavaScript

library for constraint-based graph layout. To demonstrate the expressiveness of SetCoLa, we

recreated several customized layouts found in the scientific research literature [6, 7, 164]. We

show that SetCoLa supports compact specification of complex layouts, the output of which

resemble those produced by custom layout engines. Our SetCoLa specifications reduce the

number of user-authored constraints by one to two orders of magnitude. We also show that

these specifications can be reused across different graphs from the same domain.

35

4.1 Related Work: Domain-Specific Graph Visualization

Several techniques have been specifically developed to reflect domain-specific concerns within

graph layouts. However, these techniques tend to be highly-specialized, and so may not apply

to other possible domains of interest. In other words, the visualizations are often created using

specially designed tools or layout algorithms to leverage properties of the data specific to

the domain of interest. This section describes examples for ecological networks [7, 106, 107],

biological systems [6, 62, 109, 181, 182], and social networks [52, 57, 137, 164, 179].

4.1.1 Ecological Networks

Ecological networks are a common visualization to show the relationships amongst organisms

in an ecosystem. Baskerville et al. produced a customized visualization of the Serengeti food

web in which the nodes are positioned based on their trophic level (e.g., the role of the

organism within the larger food chain) and further grouped based on a Bayesian classification

of the elements [7]; in addition to the static visualization, Baskerville et al. published an

interactive version of the graph online [8]. Despite frequently publishing visualizations of

oceanic food webs [106, 107], Kelly Kearney describes several challenges around the design

of such visualizations in a blog post [103]; Kearney notes that the node placement algorithm

should “allow constraining y-position to match trophic level while allowing free movement in

the x-direction. With no such algorithm seemingly readily available, I decided to create my

own.” In response, Kearney developed customized plugins for D3 [104] and Ecopath [105].

4.1.2 Biological Systems

Biological systems also benefit from customized visualizations, such as those produced using

Cerebral [6]. Cytoscape [181] is a visualization system designed to explore biomolecular in-

teraction networks and provides a framework for customized plugins, including a WebCoLa

plugin for constraint-based layouts. Genc and Dogrusoz [62] describe a constrained force-

directed layout technique for visualizing biological pathways. CrowdLayout [182] introduces

36

a strategy for crowdsourcing biological network layouts from novices; Singh et al. [182] ar-

gue that this crowdsourced approach produces more high-quality layouts than Cerebral or

Graphviz. Kieffer et al.’s work on incremental grid layouts [109] was motivated by related

work for grid layouts of biological networks [6, 120, 127], but aims to provide a more flexible

mechanism for creating the constraints by supporting SBGN (Systems Biology Graphical

Notation). In later work, Kieffer et al. [110] improve upon grid layout techniques by first

identifying the aesthetic criteria humans use for manual graph layout, then producing a new

algorithm named HOLA, which employs these techniques for improved, human-like layouts.

4.1.3 Social Networks

Social networks often leverage force-directed layout techniques to demonstrate the connect-

edness or clustering of the graph nodes [179]. However, some network layouts may introduce

additional separation or clustering to highlight properties specific to the social network, such

as ethnographically-identified groups [164], the timeline of disease exposure [52, 137], or

differences in reported relationship types [57].

4.2 Design of SetCoLa: A Set-Based Constraint Layout for Graphs

SetCoLa is a domain-specific language for concisely specifying graph layouts using con-

straints. To provide a reusable specification without explicit reference to individual nodes

and edges, SetCoLa applies constraints to groups of nodes defined by shared attributes. The

central abstraction in SetCoLa is a set. The simplest elements of a set are graph nodes;

however, SetCoLa also supports hierarchical composition, with nested sets as elements.

A SetCoLa specification consists of one or more constraint definitions, and an optional

set of guides (reference elements that serve as positional anchors). An example SetCoLa spec-

ification for a small tree layout is shown in Figure 4.2a. Each constraint definition includes a

set definition and constraint application. SetCoLa provide several operators for defining

sets based on node attributes or structural properties, including (1) partitioning nodes into

disjoint sets, (2) specifying (potentially overlapping) sets via predicates, (3) collecting nodes

37

{
 "nodes": [
 {"name": "a", "_id": 0, "depth": 0}, {"name": "b", "_id": 1, "depth": 1},
 {"name": "c", "_id": 2, "depth": 1}, {"name": "d", "_id": 3, "depth": 2},
 {"name": "e", "_id": 4, "depth": 2}, {"name": "f", "_id": 5, "depth": 2},
 {
 "name": "boundary0", "_id": 6, "cid": "set0_order", "temp": true, "fixed": true,
 "width": 1, "height": 1, "padding": 0, "boundary": "y", "y": 0, "x": 0
 },
 {
 "name": "boundary1", "_id": 7, "cid": "set0_order", "temp": true, "fixed": true,
 "width": 1, "height": 1, "padding": 0, "boundary": "y", "y": 30, "x": 10
 }
],
 "links": [...],
 "constraints": [
 {
 "_type": "layer_align", "type": "alignment", "axis": "y",
 "offsets": [{"node": 0,"offset": 0}]
 },
 {
 "_type": "layer_align", "type": "alignment", "axis": "y",
 "offsets": [{"node": 1,"offset": 0},{"node": 2,"offset": 0}],
 },
 {
 "_type": "layer_align", "type": "alignment", "axis": "y",
 "offsets": [{"node": 3,"offset": 0},{"node": 4,"offset": 0},{"node": 5,"offset": 0}]
 },
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 0, "right": 6},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 6, "right": 1},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 1, "right": 7},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 6, "right": 2},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 2, "right": 7},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 7, "right": 3},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 7, "right": 4},
 {"_type": "set0_order", "axis": "y", "gap": 0, "left": 7, "right": 5}
]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

We generate three
WebCoLa alignment

constraints: one for
each set produced by

the SetCoLa "layer"
constraint definition.

Two temporary
nodes are added to
the graph to act as
boundaries for the

order constraint.

We generate eight
WebCoLa position

constraints to order the
three layers based on

the SetCoLa "sort"
constraint definition.

3 constraints

8 constraints

3 sets: [a], [b,c], [d,e,f]

1 set: "layer"

{
 "nodes": [
 {"name": "a", "depth": 0}, {"name": "b", "depth": 1},
 {"name": "c", "depth": 1}, {"name": "d", "depth": 2},
 {"name": "e", "depth": 2}, {"name": "f", "depth": 2}
],
 "links": [
 {"source": 0, "target": 1},
 {"source": 0, "target": 2},
 {"source": 1, "target": 3},
 {"source": 2, "target": 4},
 {"source": 2, "target": 5}
],
 "constraintDefinitions": [
 {
 "name": "layer",
 "sets": {"partition": "depth"},
 "forEach": [{ "constraint": "align", "axis": "x" }]
 },
 {
 "name": "sort",
 "sets": ["layer"],
 "forEach": [{ "constraint": "order", "axis": "y", "by": "depth" }]
 }
]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

a

b c

e fd

a

c

b

Figure 4.2: (a) The SetCoLa specification and graph data for (b) a tree with six nodes. The nodes
are split into three sets based on their depth and aligned along the x axis. A new set definition
composes a set with only the previously defined “layer” set, and orders each layer element in this
set by its depth to form the tree. (c) The WebCoLa specification created by the SetCoLa compiler.

38

into sets based on key expressions, and (4) composing previously defined sets to produce hi-

erarchical layouts. The result of a set definition produces one or more sets, which may have

either distinct or overlapping elements. Each constraint definition can define one or more

constraints (e.g., for position, ordering, or alignment), which are applied to the nodes within

each set created by the corresponding set definition. In other words, constraints defined by a

particular constraint definition with multiple corresponding sets are applied to nodes within

each individual set, not between the nodes in different sets.

The SetCoLa compiler takes an input graph and SetCoLa specification, and produces a

set of instance-level constraints for an existing constraint-based graph layout solver. In this

work, we target WebCoLa [41], a JavaScript library for interactive, web-based layouts. The

SetCoLa compiler generates one or more WebCoLa constraints for each SetCoLa constraint to

produce a WebCoLa specification (Figure 4.2c). Our implementation of SetCoLa is available

at the link: https://github.com/uwdata/setcola. In the following sections, we discuss the

design of SetCoLa including the process for specifying sets, the types of constraints currently

supported in SetCoLa, and how such constraints are applied over node sets.

4.2.1 Specifying Sets in SetCoLa

We provide several operators for defining sets based on node attributes or structural prop-

erties, which includes: (1) partitioning nodes into disjoint sets, (2) specifying (potentially

overlapping) sets via predicates, (3) collecting nodes into sets based on key expressions, and

(4) composing previously defined sets. Each of these set definitions produces one or more sets

for the constraint definition. For partitions, predicates, or collections, the constraint defini-

tion may designate a set from which the elements should be drawn; the default is simply all

graph nodes. For each subsection, we show a sample SetCoLa constraint in the header.

Partitioning Nodes into Sets example: { "partition": "depth" }

The partition operator creates a collection of disjoint sets based on properties of the node

(e.g., Figure 4.2a, Line 17). Given n nodes to partition, this operator can produce at most

https://github.com/uwdata/setcola

39

n sets. The user may reduce the number of sets produced by providing specific property

values to include or exclude. For each node, we identify a key based on the node values

for the partition properties and create sets based on the key. The include parameter allows

the user to identify particular node values to look for when partitioning and includes only

those values; the exclude property does the opposite. For example, in Figure 4.5, Line 9,

the user partitions the nodes by the group property and ignores the nodes for which the

value of group is “other.” This partition will produce three sets with the nodes separated

by group, and the thirteen nodes with group “other” will not appear in any of these sets.

Any constraints defined in the corresponding constraint definition will therefore only apply

to the partitioned nodes and not to the nodes with group “other.”

Rationale. The partition operator addresses challenge one of this dissertation—which is to

“raise the level of abstraction to reflect user expertise”—by allowing users to employ their

domain expertise to recognize and reason over similar groups of nodes. In particular, nodes

often include domain-specific properties about different groups in the underlying data, such

as the trophic level or location in the cellular structure. Effective domain-specific layouts

should therefore encode properties relative to these different groups. Rather than requiring

users to reason over the nodes as abstract visual elements tied to data, using this partitioning

strategy users can instead encode the data properties directly into the layout.

Specifying Sets with Predicates example: { "expr": "node.depth == 2" }

For more flexibility in the definition of sets, users can specify a concrete list of sets, each

defined by an arbitrary boolean expression. For each expression, each node is evaluated to

determine if it should be included in the set. The user may refer to properties of the node

using dot syntax; for example, node.depth refers to the depth property of the node. In

Figure 4.5, Lines 17, 18, and 19, we define three sets based on the group property. The set

on Line 18 includes nodes that are in the group “younger white women” and nodes in the

group “other.” Users may optionally specify a name for the set, which may be referred to in

40

subsequent composite set definitions. With this specification strategy, it is possible to create

node sets that are not disjoint, and may thus lead to unsatisfiable constraints. However, there

are also benefits to this flexibility. For example, nodes that occur in multiple sets can act as

bridges between different parts of the layout and highlight potential similarities between the

different sets that would not otherwise be captured by the simpler partition operator. Given

the potential benefits of this flexibility, we chose not to prevent such specifications, though

future work should consider adding a warning when overlapping sets have been specified.

Rationale. The predicate set specification strategy aims to support more flexible construction

of individual sets than the partition operator. By employing this approach, users can produce

a single set containing nodes of different types, produce sets based on combinations of domain-

specific properties, and produce overlapping sets to encode more complex relationships in

the underlying data. While the partition operator helps raise the level of abstraction to allow

users to encode individual domain-specific properties, the predicate operator provides more

flexibility. By specifying individual predicates, users can employ their domain knowledge to

extract more complex relationships from the underlying data.

Collecting Nodes Using Keys example: { "collect": ["node. id", "node.neighbors.extract(‘ id’)"] }

To combine the flexibility of predicates with the automation of partition, users may specify

sets as a union based on key expressions. For each element on which the constraint def-

inition is applied, each key expression is evaluated to identify the nodes in that set. For

example, in Figure 4.6, Line 37, the user creates a constraint definition that applies only

to nodes with type “unknown” (in this case, only one node). On Line 38, the user creates

a set definition with two key expressions: one key expression identifies the id of the node

(e.g., node. id), and the other key expression identifies the ids of the neighboring nodes

(e.g., node.neighbors.extract(" id")). The one set produced contains the element itself

and all its neighbors. We also include several built-in properties for identifying structural

relationships in the graph, which are described in Section 4.2.2.

41

Rationale. For this set specification strategy, users can programmatically generate complex

sets based on structural properties of the graph. Unlike prior work, this approach uses the

unique id of the nodes for the layout, while still supporting reuse of the layout across

different graphs since the particular ids are only identified during compilation. As with the

other set specification strategies, this approach raises the level of abstraction to focus on

general structural or domain-specific properties rather than the individual graph nodes.

Composing Previously Defined Sets example: ["set1", "set2"]

Sets may also be defined as hierarchical compositions of previously defined sets. For example,

in Figure 4.2a, Line 17, the first constraint definition (named “layer”) produces three sets via

partition. The next constraint definition uses the composition operator, referencing only the

“layer” set (Line 22): the result is a single set that contains the three layer sets as elements.

For composition, users may refer to any named entities previously defined in the specification

(e.g., previous set definitions or named sets produced from predicates). In the current version

of SetCoLa, we only support composition via set union, though future work should explore

the types of set definitions that other composition strategies could enable.

Rationale. While the previous three set specification strategies enable users to encode domain-

specific properties in the layout, the goal of the composition strategy is to support hierarchical

layouts via nesting. This approach further helps to raise the level of abstraction to represent

more complex layouts while employing a consistent specification strategy. In other words,

constraints can be applied in the same way as the three previous strategies, but with the

base elements representing nested elements (e.g., “sets”) rather than individual nodes.

4.2.2 Built-In Properties of the Graph Structure

In addition to defining constraints relative to node properties, it may also be important to

use properties of the graph structure. We support this functionality with a number of built-in

accessors. These properties are automatically computed and added to the graph specifica-

42

tion only when they are used in one of the SetCoLa constraints. These properties are only

computed if such a property does not already exist on the nodes and are subject to a number

of expectations regarding the graph input; for graphs that do not meet these expectations,

users are shown a warning and required to precompute the properties themselves. In this

section, we describe each built-in property and discuss the expectations for use.

id The node index in the graph specification. This property is always com-
puted regardless of whether or not it is referenced by the user. The id is a
unique identifier which is used to convert the SetCoLa constraints to low-level
WebCoLa constraints for the underlying constraint layout.

sources The list of nodes that have edges for which the current node is the
target (e.g., all parent nodes of the current node).

targets The list of nodes that have edges for which the current node is the
source (e.g., all child nodes of the current node).

neighbors The list of nodes that have edges connected to the current node.
This property is the union of the sources and targets properties. The
neighbors property may also take an optional value as input, which returns
all nodes with a graph distance less than or equal to the specified value.

incoming The list of edges in which the current node is the target (e.g., the
list of edges connecting the current node to all sources).

outgoing The list of edges in which the current node is the source (e.g., the
list of edges connecting the current node to all targets).

edges The list of edges that contain the current node. This property is the
union of the incoming and outgoing edges.

degree The number of neighbors for the current node.

depth One more than the max depth of the node’s parents. Root nodes (any
nodes with no edges for which the node is the target) have a depth of zero.
The depth property is only computed for graphs that do not contain cycles.

43

In the original graph specification, the links are defined by a source and target node. However,

whether or not these links are directed or undirected is up to the discretion of the user for

how they should be treated in the graph layout. For example, the neighbors property is more

appropriate than sources or targets for undirected graphs. This list of properties represents

common structural properties that are applicable to a variety of layout specifications. For

example, the depth property is useful for producing hierarchical tree layouts (e.g., Figure 4.2)

whereas the sources, targets, and neighbors properties depict the relationship between

nodes as dictated by the graph edges (e.g., Figure 4.6, Line 38). There are many other

properties that could be useful for graph layouts that are not included here and this list

could easily be extended in the future to include other common properties.

In addition to the built-in properties, we include several operators for manipulating

the resulting lists of elements: length, reverse, contains, sort, and extract. The func-

tion length() returns the length of the list, reverse() reverses the order of the list, and

contains(value) determines if the list contains the identified value. The user may also

choose to sort the list based on a property of the elements or extract the value of each ele-

ment for a particular property (e.g., Figure 4.6, Line 38). Values can also be extracted from

nodes or edges individually using the dot syntax at any point. The user may use standard

array access to extract elements from the list (e.g., the first element of the list is list[0]).

4.2.3 SetCoLa Constraints and WebCoLa Implementation

Users may specify one or more constraints for each constraint definition. These constraints

apply to the nodes within each set produced by the set definition. The current implemen-

tation of SetCoLa provides seven constraint types: alignment, position, order, circle,

cluster, hull, and padding. These constraints were selected to produce a range of expres-

sive graph layouts, which we will further discuss through a series of real-world reproductions

in Section 4.3. In the following sections, we explain the design, implementation, and utility

of each SetCoLa constraint. We show a sample SetCoLa constraint in each section header.

44

Figure 4.3: The number of nodes, links, and constraints in the layout for each example. The
columns labeled Constraint Definitions and SetCoLa Constraints list the number of SetCoLa
set definitions or constraints written by the user, respectively. We compare the number of user-
authored SetCoLa Constraints to the number of WebCoLa Constraints generated by the
SetCoLa compiler to determine the factor by which the number of constraints increases (Ratio).

The SetCoLa compiler converts each SetCoLa constraint into one or more constraints

in WebCoLa [41], which computes the final layout. We leverage two of WebCoLa’s con-

straints for our implementation: alignment constraints and position constraints. However,

some SetCoLa constraints cannot be directly represented in WebCoLa. For these SetCoLa

constraints, we approximate their behavior by imputing additional edges or by applying

padding to the nodes. This prototype functionality will be further explained in the following

sections. In SetCoLa the user may also define guides to control the layout. In WebCoLa,

we add a new node to the graph for each guide and generate constraints relative to this

node. These temporary nodes are included in WebCoLa’s layout but are hidden in the final

visualization. WebCoLa constraints are defined based on the id of the graph node.

Figure 4.3 shows the number of Constraint Definitions and SetCoLa Constraints

written by the user. We compare the number of SetCoLa Constraints to the number of

WebCoLa Constraints generated by the SetCoLa compiler to show the factor by which

the number of constraints increases: Ratio (WebCoLa/SetCoLa). This ratio presents a

lower bound on the impact of SetCoLa, since some constraints are not directly converted to

WebCoLa, but instead introduce new edges or padding to approximate the layout. In other

words, the number of WebCoLa constraints presented in this table is smaller than it would

be for a fully implemented constraint specification, which produces more conservative ratios.

45

Alignment Constraints example: { "constraint":"align", "axis":"x", "orientation":"top" }

Alignment constraints ensure that all nodes in the set share one of their coordinates. The user

must specify the axis as either x or y (Figure 4.2a, Line 18) and may optionally identify an

alignment orientation. The orientation enables different alignments for elements of varying

sizes. The orientation defaults to center and aligns the center point of each element. When

the alignment axis is defined as x, the user may specify the orientation as either top or bottom,

which introduces an offset to align the top or bottom of the elements. When the alignment

axis is defined as y, the user may specify the orientation as either right or left.

These constraints are defined as follows. Suppose that the user defines the axis as x

and the orientation as top. Then, for all nodes n1 and n2 in set S such that n1 6= n2, we

produce the constraint n1.y − n1.height/2 = n2.y − n2.height/2. Analogous constraints are

produced for the other possible combinations of axis and orientation. Alignment constraints

are one of the constraint types natively supported in WebCoLa. The WebCoLa alignment

constraint takes the id of all nodes that should be aligned and offsets for each node, which

can be used to change the orientation of the alignment (as discussed above).

Position Constraints example: { "constraint":"position", "position":"left", "of":"guide1", "gap":5 }

Position constraints ensure that all nodes in the set are positioned relative to a guide or

previously named set. The user must specify the relative placement for the nodes as one of

left, right, above, or below relative to the guide. The user may optionally define the minimum

gap between the node and guide (Figure 4.5, Line 11 and 12). These constraints are defined

as follows. Suppose the user defines the position as left, the guide as g, and the gap as v.

For all nodes n ∈ S1, we define a constraint that n.x + v < g.x. Position constraints are

natively supported in WebCoLa and are defined by the node ids, axis, and desired gap.

For each node in set S1, we produce one position constraint relative to the specified guide.

When the position constraint is defined relative to a named set S2, we produce one position

constraint for each pair of nodes (u, v) where u ∈ S1 and v ∈ S2.

46

Order Constraints example: { "constraint":"order", "axis":"y", "by":"depth", "reverse":true }

Order constraints enforce a sort order on the set elements. The user must specify the axis on

which to sort the elements as either x or y and must also define the node property by which

the element order is determined (Figure 4.2a, Line 23). The user can optionally define an

explicit list of values for a custom order (Figure 4.6, Line 23); otherwise, the elements are

ordered lexicographically by the specified property. The user may also indicate whether to

reverse the order of the elements (Figure 4.15, Line 52). Similar to the position constraint,

the user may also specify the minimum gap between the nodes in the sorted order along the

specified axis. These constraints are defined as follows. Suppose the user defines the axis as x

and the property to sort by as depth. For all nodes n1 and n2 in set S such that n1 6= n2 then

n1.x < n2.x if n1.depth < n2.depth. We optimize the implementation of this order constraint

by only producing constraints between adjacent nodes in the sorted order; in other words,

for a set S with n nodes we produce n− 1 constraints on the node positions.

When applying constraints to elements that are sets rather than to nodes directly, we

create temporary boundary nodes and compute constraints relative to these boundaries.

Consider a constraint definition that includes s sets. In this case, we define s− 1 boundary

guides b1, b2, ...bs−1. We then identify the order of the sets and produce constraints with the

internal nodes for the set. For constraint definition C with s sets, let S1 and S2 be two

adjacent sets such that S1 < S2 in the sort order. Let b1 be the boundary between these two

sets. We produce constraints such that for all nodes n ∈ S1 then n.x < b1.x and for all nodes

m ∈ S2 then b1.x < m.x. Users may optionally specify a band property (Figure 4.5, Line 22)

that determines a size for each set region to introduce fixed spacing. In this case, we create

s+ 1 boundary guides and generate constraints at the start and end of the ordering.

The band property can be useful for constraining the size of the layout along the specified

axis, by limiting the freedom of elements at either end of the ordering. This functionality

can be paired with position constraints relative to boundary guides to constrain the overall

chart area. For example, Figure 4.6 uses band to constrain the individual layers (Line 22)

along with position constraints relative to a left (Line 9) and right (Line 10) guide.

47

Circle Constraints example: { "constraint":"circle", "around":"center", "radius":75 }

Circle constraints allow the user to specify a ring layout for a set of elements. The user must

define the value around which to compute the layout. This value can be either a default

center or a previously named guide. The user may optionally define a radius that defines

the expected radius for the circle (Figure 4.5, Line 37).

Circle constraints are not currently supported in WebCoLa, making it difficult to support

them directly in SetCoLa. To demonstrate the utility of this constraint type for customized

layouts we approximate the behavior as follows. We first add a temporary node or identify

the guide node that will act as the center of the circle layout. We then add a link between

each node in the set and the center node. Finally, we link the set nodes in the circle with

additional temporary edges to produce a chain. We compute the expected length for each

edge based on the number of nodes in the circle and the radius defined by the user. This

strategy approximates a circular layout (Figure 4.4b), though future work should explore the

incorporation of alternative strategies to applying constraints that generate circle layouts [47].

Cluster Constraints example: { "constraint": "cluster" }

Cluster constraints encourage a clustering of the nodes into a compact group by reducing the

distance between nodes. This constraint does not currently introduce additional parameters;

instead, sets that should be clustered are simply defined as such (Figure 4.15, Line 17).

Cluster constraints are not currently supported in WebCoLa. In order to produce a clustered

appearance, we add temporary edges between all nodes in the set to produce a clique and

require the edges to have a length shorter than the size of the nodes, which pulls the nodes

together. These temporary edges remain in the layout but are hidden from the user. Future

work should explore how best to encode this stylistic requirement in terms of constraints on

the individual nodes; one approach may be to constrain the maximum gap between nodes

with respect to the anticipated distance across the cluster. In other words, each pair of nodes

in the set should have a gap less than or equal to the desired width of the cluster.

48

Hull Constraints example: { "constraint":"hull" }

Hull constraints create an enclosing boundary (hull) around the set elements and prevent

other nodes from residing within that boundary (Figure 4.6, Line 31). This constraint pro-

duces a visual grouping of nodes that is more strict than the cluster constraint. These con-

straints are defined as follows. We produce a minimally enclosing rectangle B with properties

B.x1, B.x2, B.y1, B.y2. For all nodes n ∈ S, we define constraints such that B.x1 < n.x,

n.x < B.x2, B.y1 < n.y, and n.y < B.y2. For all nodes m /∈ S, we define constraints that

m.x < B.x1 || B.x2 < m.x and m.y < B.y1 || B.y2 < m.y. We implement hull constraints

in WebCoLa using its built-in support for specifying groups, which produces a boundary

around the nodes defined by the ids of nodes in the group.

Padding Constraints example: { "constraint":"padding", "amount":5 }

Padding constraints enforce a minimum spacing around an element, without constraining

the axis on which the padding is added. In other words, for any pair of nodes the shortest

distance between the outer edge of the two nodes should be greater than or equal to the

specified padding. The user must define the amount of padding that should be added to the

node (Figure 4.5, Line 31). Our current implementation adds padding to the node geometry

which essentially increases the size of the element when WebCoLa’s non-overlap behavior is

applied. In this implementation padding can only be specified to a given node once because it

is defined in terms of the node geometry itself. Therefore, this padding impacts the spacing

relative to all other nodes in the layout. Future work should explore how best to define

constraints that respect the desired padding only relative to specific set elements.

4.2.4 Discussion: Application and Program Understanding for Multiple Constraints

The seven constraint types introduced in the previous section enable expressive layouts for

several real-world examples (see Section 4.3). However, not all combinations of constraints

produce desirable or satisfiable layouts. The current implementation of SetCoLa does not

49

limit the number or type of constraints that can be applied within a constraint definition. For

example, the user could produce contradictions by defining constraints that are the reverse of

one another (e.g., two order constraints, one with the ordering reversed). Similarly, applying

an alignment constraint to both the x and y axes would require all nodes in the set to

share the same position despite overall WebCoLa requirements to avoid node overlap. These

concerns are common in constraint systems, and are therefore not limited to SetCoLa.

While some combinations of constraints produce contradictory or overconstrained layouts,

many combinations can produce highly expressive layouts. For example, the small tree in

Figure 4.2 effectively combines node alignment with a total ordering on the sets to produce a

simple specification for a tree layout. Position constraints generally allow the user to arrange

the layout relative to global elements, whereas order constraints introduce additional sort

requirements between nodes within a particular set. Combining multiple (non-contradictory)

position and/or order constraints can allow the user to constrain node positions to particular

areas of the visualization, and thus produce overall constraints on the size of the chart

area (Figure 4.6, Figure 4.7). This approach can also enable users to introduce distinct

regions of interest based on the underlying node properties (Figure 4.4b, Figure 4.5).

One of the challenges explored in this dissertation is to “communicate system behavior as

actionable information,” which proves particularly essential and difficult when attempting to

debug or understand the behavior of constraints (as discussed in Chapter 3). One advantage

of the proposed approach is that the high-level nature of SetCoLa’s constraints can facilitate

understanding the source of contradictions with respect to domain-specific properties. We are

able to address this challenge by “raising the level of abstraction to reflect user expertise.”

In other words, constraints reflect domain-specific properties of the graph data rather than

abstract relationships between individual nodes based only on the node id. This example

further illustrates how we satisfy the need for systems to “support the tasks that matter

most to the user.” With the improved high-level encoding provided by SetCoLa, users can

now reason about the properties with which they are most familiar rather than attempting

to track or reason about changes to individual nodes in the underlying layout.

50

4.3 Evaluation: Real-World Examples Reproduced in SetCoLa

To demonstrate the conciseness and expressiveness of SetCoLa for creating domain-specific

graph layouts, we reproduce several real-world examples that visualize social networks [164],

biological systems [6, 25], and ecological networks [7, 124]. We compare our recreated visual-

izations to the original layouts and discuss the benefits of our technique for creating highly

customized graph layouts. For each recreated example, the layout of the nodes is produced

entirely in SetCoLa (e.g., no manual tweaking of the node positions). The nodes in each

graph are not given initial starting positions; instead we use WebCoLa to first apply a force-

directed layout with no constraints to initialize the graph, before computing the final layout

using the constraints produced by the SetCoLa compiler. We manually add labels to the final

figures to better match the originals. We include the specification for each of our example

layouts (Figure 4.5, 4.6, 4.7, 4.13, 4.15), and annotate the specification with the number of

sets produced for each constraint definition (green), the number of WebCoLa constraints

generated for each SetCoLa constraint (blue), and the behavior of the SetCoLa constraints

that are not directly translated to WebCoLa constraints (purple).

4.3.1 Syphilis Social Network

Social networks can be a powerful way to understand interpersonal relationships and are

useful for tracking the spread of diseases that result from personal contact [52, 57, 137, 164].

The ability to track and identify at risk individuals can lead to treatment and help manage the

spread of the disease. In addition to the links between individuals, structuring the layout by

node properties such as the social or ethnographically-identified group may reveal additional

details about how the disease is spread [164].

Rothenberg et al. discuss an ethnographic approach to identify the “core” groups in a so-

cial network to better understand the transmission of syphilis amongst sexual partners [164].

Rothenberg et al. found that there were three primary groups involved in the sexual network

under study: young affluent white men, younger white women, and young African-American

51

a b

Figure 4.4: The layout for the syphilis social network from (a) Rothenberg et al. [164]. (b) We
recreated and improved the layout in SetCoLa by introducing extra padding, alignment, and circle
constraints to emphasize the number of interactions between different groups. The nodes are split
into three groups, from left to right: young affluent white men, younger white women, and young
African-American men. Individuals not included in these “core” groups are positioned at the top.
Individuals diagnosed with syphilis during the outbreak are labeled with an “S” on the node.

men, which are visualized from left to right in Figure 4.4a. The authors note that several

outsiders to these “core” groups (visualized as the top cluster of Figure 4.4a) played a signif-

icant role in the network: “Visualization of these groups and all their sex partners uncovered

the importance of several people not specifically identified with these groups” [164].

We reproduced this visualization with SetCoLa (Figure 4.4b, 4.5) and included a number

of additional constraints on the layout apart from the separation constraints that are visible

in the original image. In particular, we included a circle constraint on the group of younger

white women to more strongly enforce the result shown in the original figure and applied an

alignment constraint on the two groups of young men, as well as some additional padding.

The simplest recreation of this layout uses three constraint definitions and three SetCoLa

constraints to produce 123 WebCoLa constraints. Our modified layout (Figure 4.4b, 4.5)

includes five constraint definitions and nine SetCoLa constraints, to generate 166 WebCoLa

constraints (Figure 4.3). With a small number of user-defined constraints, we can update the

layout to more effectively communicate the groupings. The alignment and circle constraints

52

28 constraints
28 constraints

3 sets

1 set

13 constraints

82 constraints

3 sets

13 constraints
padding added to 13 nodes

32 new edges added
1 set

2 constraints

2 sets

padding added to 12 nodes

"guides": [
 {"name": "top", "y": 50},
 {"name": "boundary", "y": 100},
 {"name": "bottom", "y": 400}
],
"constraintDefinitions": [
 {
 "name": "ethnographic groups",
 "sets": {"partition": "group", "exclude": ["other"]},
 "forEach": [
 {"constraint": "position", "position": "below", "of": "boundary", "gap": 75},
 {"constraint": "position", "position": "above", "of": "bottom", "gap": 30 }
]
 },
 {
 "sets": [[
 {"expr": "node.group === 'young white men'"},
 {"expr": "node.group === 'younger white women' || node.group === 'other'"},
 {"expr": "node.group === 'young african american men'"}
]],
 "forEach": [
 {"constraint": "order", "axis": "x", "by": "_exprIndex", "band": 300, "gap": 30}
]
 },
 {
 "name": "other individuals",
 "sets": {"partition": "group", "include": ["other"]},
 "forEach": [
 {"constraint": "position", "position": "below", "of": "top", "gap": 5},
 {"constraint": "position", "position": "above", "of": "boundary", "gap": 5},
 {"constraint": "padding", "amount": 8}
]
 },
 {
 "name": "women",
 "sets": {"partition": "group", "include": ["younger white women"]},
 "forEach": [{"constraint": "circle", "around": "center", "radius": 75}]
 },
 {
 "name": "men",
 "sets": {"partition": "group", "exclude": ["younger white women", "other"]},
 "forEach": [
 {"constraint": "align", "axis": "y"},
 {"constraint": "padding", "amount": 10}
]
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Figure 4.5: The SetCoLa specification for the syphilis social network shown in Figure 4.4. The
code is annotated with the number of sets produced (green), the number of WebCoLa constraints
generated (blue), and the behavior of SetCoLa constraints not converted to WebCoLa (purple).

emphasize the group relationships by introducing shared visual properties amongst the nodes.

The more grid-like layout also facilitates scanning of the nodes to read details included in

the node labels, such as whether or not the individual was diagnosed with syphilis (denoted

by an “S” in the label). The WebCoLa constraint solver includes a procedure to reduce the

length of the edges, which encourages the circle of women to shift towards the group of

African-American men (on the right), further demonstrating the relatively larger number of

interactions between the two groups, as described in the original paper [164].

53

91 constraints
91 constraints

padding added to 47 nodes
4 sets

12 sets

145 new edges added

1 set

180 constraints

1 set

padding added to 43 nodes

12 WebCoLa groups created

1 set that contains all nodes

1 constraint

"guides": [
 {"name": "left_guide", "x": 250},
 {"name": "right_guide", "x": 750}
],
"constraintDefinitions": [
 {
 "name": "boundary",
 "forEach": [
 {"constraint": "position", "position": "right", "of":"left_guide", "gap": 10},
 {"constraint": "position", "position": "left", "of":"right_guide", "gap": 10}
]
 },
 {
 "sets": {"partition": "type", "exclude": ["unknown", "downstream genes"]},
 "forEach": [{"constraint": "padding", "amount": 15}]
 },
 {
 "sets": [{"partition": "type", "exclude": ["unknown"]}],
 "forEach": [
 {
 "constraint": "order", "axis": "y", "by": "type",
 "band": 100, "gap": 30,
 "order": ["extracellular", ..., "downstream genes"]
 }
]
 },
 {
 "from": {"expr": "node.type === 'downstream genes'"},
 "sets": {"partition": "group"},
 "forEach": [
 {"constraint": "hull", "style": "visible"},
 {"constraint": "cluster"},
 {"constraint": "padding", "amount": 5}
]
 },
 {
 "from": {"expr": "node.type === 'unknown'"},
 "sets": {"collect": ["node._id", "node.neighbors.extract('_id')"]},
 "forEach": [{"constraint": "align", "axis": "x"}]
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Figure 4.6: The SetCoLa specification for the TLR4 biological system shown in Figure 4.1. The
code is annotated with the number of sets produced (green), the number of WebCoLa constraints
generated (blue), and the behavior of SetCoLa constraints not converted to WebCoLa (purple).

4.3.2 TLR4 Biological Network

Biological networks are a common domain requiring customized visualizations that repre-

sent the cellular structure of the nodes in addition to the links contained in the network.

Cerebral [6] is a visualization tool designed to show variations in biological networks across

experimental conditions. While such layouts are commonly produced by hand, Barsky et al.

show that Cerebral can automatically and efficiently arrange the nodes by the location of the

biomolecule within a cell (Figure 4.1a). The immune response outcomes are positioned at

the bottom of the figure and grouped by biological function. Our reproduction of this graph

in SetCoLa is shown in Figure 4.1b, with the specification shown in Figure 4.6.

54

"guides": [
 {"name": "left_guide", "x": 250},
 {"name": "right_guide", "x": 475}
],
"constraintDefinitions": [
 {
 "name": "boundary",
 "forEach": [
 {"constraint": "position", "position": "right", "of":"left_guide", "gap": 10},
 {"constraint": "position", "position": "left", "of":"right_guide", "gap": 10}
]
 },
 {
 "name": "cellular location",
 "sets": {"partition": "Localization"},
 "forEach": [{"constraint": "padding", "amount": 16}]
 },
 {
 "sets": ["cellular location"],
 "forEach": [
 {
 "constraint": "order", "axis": "y", "by": "Localization",
 "band": 125, "gap": 30,
 "order": ["Extracellular", "Cell surface", "Plasma membrane", "Cytoplasm", "Nucleus", "Unknown"]
 }
]
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
28
29
30
31
32
33
34

Figure 4.7: The SetCoLa specification for biological networks that can be reapplied across four
graphs: TLR4 interaction network (Figure 4.8), the DDX58 interaction network (Figure 4.9), the
NOD-like signaling pathway (Figure 4.10), and the MAPK1 interaction network (Figure 4.11). This
layout is a simplification of the SetCoLa specification for a TLR4 graph layout shown in Figure 4.6.

Our recreated layout includes five constraint definitions with eight SetCoLa constraints,

which generates 363 WebCoLa constraints (Figure 4.3). Similar to Cerebral, this SetCoLa

specification could easily be reused across different graphs in the domain since the specifica-

tion itself does not refer to the individual nodes but to the high-level properties expressed

by the layout. We demonstrate such reapplication across several biological networks from

InnateDB [25]. InnateDB is a public database containing a large quantity of biological infor-

mation and is integrated with Cerebral to enable visualization of properties such as protein

interactions or signaling pathways. We selected four biological networks from InnateDB to

reproduce using SetCoLa: the TLR4 biological system (Figure 4.8)—which shows similar

data to the previous example (Figure 4.1)—the DDX58 biological system (Figure 4.9), the

NOD-like signaling pathway (Figure 4.10), and the MAPK1 biological system (Figure 4.11).

For each example graph, we apply the same SetCoLa specification (Figure 4.7). The biolog-

ical systems from InnateDB do not include the grouped immune response outcomes, so we

use this simplified SetCoLa specification based on Figure 4.6 for the more general graphs.

55

Extracellular

Cell surface

Plasma membrane

Cytoplasm

Nucleus

Unknown

a b

Figure 4.8: The layout for the TLR4 biological system produced using (a) the Cerebral visualization
from InnateDB [96] as compared to (b) SetCoLa.

Extracellular

Cell surface

Plasma membrane

Cytoplasm

Nucleus

Unknown

a b

Figure 4.9: The layout for the DDX58 biological system produced using (a) the Cerebral visual-
ization from InnateDB [94] as compared to (b) SetCoLa.

Extracellular

Cell surface

Plasma membrane

Cytoplasm

Nucleus

Unknown

a b

Figure 4.10: The layout for the NOD-like signaling pathway produced using (a) the Cerebral
visualization from InnateDB [97] as compared to (b) SetCoLa.

56

Extracellular

Cell surface

Plasma membrane

Cytoplasm

Nucleus

Unknown

Extracellular

Cell surface

Plasma membrane

Cytoplasm

Nucleus

Unknown

b

a c

Figure 4.11: The layout for the MAPK1 biological system produced using (a) the Cerebral visual-
ization from InnateDB [95] as compared to (b) SetCoLa. The node padding and constraints on the
size of each layer produces an undesirable layout for this larger graph as compared to the smaller
alternatives (Figures 4.8, 4.9, 4.10). (c) By adding an additional constraint to reduce the spacing
between nodes in the “Nucleus” layer, we can achieve a more desirable layout for this graph.

While the SetCoLa specification works well for the TLR4 network, DDX58 network, and

NOD-like signaling pathway, it produces an undesirable result for the MAPK1 network (Fig-

ure 4.11b). This layout appears more flattened because it has over twice the number of nodes

as the other networks (e.g., 240 nodes as compared to about 100 in the smaller networks).

In this case, the constants used for spacing are not ideal for the larger network. Future work

should explore better techniques for applying spacing relative to graph properties rather

than constant values. An improved version of the MAPK1 network (with reduced spacing on

the nodes in the “Nucleus” layer) is shown in Figure 4.11c. One key difference between the

SetCoLa and Cerebral layouts is the rendering style for the links. Cerebral uses a bundled

routing style, which could be added to SetCoLa in the future to achieve this effect.

57

Cheetah Lion Wild Dog Leopard

Buffalo Duiker Waterbuck Impala
African

Elephant Giraffe Kudu

Creeping
Bristle
Grass

Foxtail
Buffalo
Grass

LM grass Sausage
Tree

Marula
Tree

a b

Figure 4.12: (a) A subset of the food web for Kruger National Park arranged by trophic level (i.e.,
carnivore, herbivore, and plant), as seen on the website [124] and (b) recreated using SetCoLa.

13 constraints

3 sets

3 constraints

1 set

23 constraints

"constraintDefinitions": [
 {
 "name": "tropic_level",
 "sets": {"partition": "type"},
 "forEach": [
 { "constraint": "order", "axis": "x", "by": "order", "gap": 100 },
 { "constraint": "align", "axis": "x" }
]
 },
 {
 "sets": ["tropic_level"],
 "forEach": [{
 "constraint": "order", "axis": "y", "by": "type",
 "order": ["carnivore", "herbivore", "plant"], "gap": 100,
 }]
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 4.13: The SetCoLa specification for the Kruger National Park food web shown in Figure 4.12.
The code is annotated with the number of sets produced for each set definition (green) and the
number of WebCoLa constraints generated for each SetCoLa constraint (blue).

4.3.3 Kruger National Park and Serengeti National Park Food Webs

Food webs visualize complex producer-consumer relationships in ecological systems based

on relevant domain-specific properties for the ecosystem. Despite the challenges in creating

an informative visualization [103], food webs are a common presentation strategy for this

information [7, 18, 32, 82, 106, 107, 124, 126, 166, 210]. Small or simplified food webs may

be drawn by hand, but many real world ecosystems can have hundreds of interconnected

organisms. In such cases, a customized layout may be useful for reasoning about the structure

of the ecological system by leveraging properties specific to the type of ecosystem, such as

the hierarchy of organisms in the food chain or the depth at which oceanic organisms reside.

58

Group 1
large carnivores

Group 2
small carnivores

Group 3
small herbivores

Group 4
large grazers

Group 5
hyraxes

Group 6

Group 7

Group 8
woodland*

Group 9
grassland*

Group 10

Group 11
riparian*

Group 12
Group 13
kopje*

Group 14
a b

Figure 4.14: The layout for the Serengeti food web from (a) Baskerville et al. [7] as compared to
(b) the layout recreated with SetCoLa. Nodes are layered by trophic level (e.g., plant, herbivore,
carnivore) and clustered into groups using a Bayesian analysis method.

Small food webs exhibit several of the properties of larger food webs, such as a node hier-

archy arranged by the node’s trophic level (e.g., the element’s role within the food web). For

example, Figure 4.12a visualizes a subset of the species found in Kruger National Park [124].

We can easily recreate the layout (Figure 4.12b) with a small number of constraints on the

nodes; for the SetCoLa specification (Figure 4.13), we include two constraint definitions with

three constraints, which generates 39 WebCoLa constraints (Figure 4.3). In particular, we

constrain each trophic level to be aligned and enforce an ordering of the layers that respects

the food web hierarchy. We also include a constraint to order each layer by a predefined order

property on the nodes to exactly match the original visualization; this particular constraint

would therefore be unnecessary for a more generic layout. This SetCoLa specification could

easily be applied to other small food webs to produce a similar layout. However, as the food

web gets more complex with more nodes associated with each trophic level, it may become

necessary to relax the alignment constraints or introduce additional clustering to highlight

other structures or domain-specific properties within the layout.

The Serengeti food web from Baskerville et al. [7, 8] is an example of a larger ecological

network, which depicts the relationships among 161 plants, herbivores, and carnivores with

592 links between entities. Baskerville et al. employ a Bayesian analysis method to produce

59

129 constraints
129 constraints

8 sets

1 set
253 constraints

4 constraints

4 sets

23 constraints
23 constraints
23 constraints
23 constraints

1 set
31 constraints

1 set

9 constraints
9 constraints

2 constraints

2 sets

9 constraints
9 constraints

129 constraints
129 constraints

4 WebCoLa groups created

2632 new edges added
padding added to 129 nodes

"guides": [
 {"name": "top_guide", "y": 0},
 {"name": "bottom_guide", "y": 100},
 {"name": "carnivore_guide", "x": 450},
 {"name": "herbivore_guide", "x": 300},
 {"name": "plant_guide", "x": 125}
],"constraintDefinitions": [
 {
 "name": "plants",
 "sets": {"partition": "group1", "include": [7,8,9,10,11,12,13,14]},
 "forEach": [
 {"constraint": "position", "position": "right", "of": "plantG", "gap": 185},
 {"constraint": "position", "position": "left", "of": "herbivoreG", "gap": 200},
 {"constraint": "position", "position": "below", "of": "topG", "gap": 0},
 {"constraint": "position", "position": "above", "of": "bottomG", "gap": 0},
 {"constraint": "padding", "amount":1},
 {"constraint": "cluster"}
]
 },
 {
 "sets": ["plants"],
 "forEach": [{"constraint": "order", "axis": "y", "by": "group1", "gap": 25}]
 },
 {
 "name": "herbivores",
 "sets": {"partition": "group1", "include": [3,4,5,6]},
 "forEach": [
 {"constraint": "align", "axis": "y"},
 {"constraint": "position", "position": "right", "of": "herbivoreG", "gap": 185},
 {"constraint": "position", "position": "left", "of": "carnivoreG", "gap": 185},
 {"constraint": "position", "position": "below", "of": "topG", "gap": 250},
 {"constraint": "position", "position": "above", "of": "bottomG", "gap": 50},
 {"constraint": "hull"}
]
 },
 {
 "sets": ["herbivores"],
 "forEach": [{"constraint": "order", "axis": "y", "by": "group1", "gap": 75}]
 },
 {
 "name": "carnivores",
 "sets": {"partition": "group1", "include": [1,2]},
 "forEach": [
 {"constraint": "align", "axis": "y"},
 {"constraint": "position", "position": "right", "of": "carnivoreG", "gap": 185},
 {"constraint": "position", "position": "below", "of": "topG", "gap": 450}
]
 },
 {
 "sets": ["carnivores"],
 "forEach": [
 {"constraint": "order", "axis": "x", "by": "group1", "reverse": true, "gap": 40},
 {"constraint": "order", "axis": "y", "by": "group1", "gap": 40}
]
 }
]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Figure 4.15: The SetCoLa specification for the Serengeti food web shown in Figure 4.14. The
code is annotated with the number of sets produced (green), the number of WebCoLa constraints
generated (blue), and the behavior of SetCoLa constraints not converted to WebCoLa (purple).

related clusters in each trophic level. Baskerville et al. visualize the results with a customized

layout showing both the trophic hierarchy and group clustering (Figure 4.14a). The Bayesian

analysis approach and customized visualization highlights relationships between the plant

habitats and underlying network structure that may be hard to identify from the data alone.

60

We reproduce this layout in SetCoLa (Figure 4.14b). For this specification (Figure 4.15),

we author six constraint definitions to create sets for each group in the layout and sets

representing each trophic level. For the carnivores and herbivores, we constrain the position

of the nodes within the visualization region, introduce alignments on the nodes, and manage

the order in which the sets are displayed. For the plant sets, we apply cluster constraints

to enforce a tighter grouping of the nodes. For this specification, we define a total of 19

SetCoLa constraints, which generate 934 WebCoLa constraints (Figure 4.3). One noticeable

difference in the SetCoLa layout is that the plant nodes (groups 7-14) form grid-like rather

than “organic” clusters. This behavior results from the current implementation of the cluster

constraint, which approximates the layout by adding additional edges. The node positions

are also impacted by various position constraints, the edges to nodes outside each group,

and WebCoLa’s non-overlap constraint. Future work should explore new approaches that

can support a similarly organic layout of nodes in a cluster.

Baskerville et al. [7] note that “We have not included invertebrates (insects and parasitic

helminths) or birds” in their published food web, though they “hypothesize that the general

conclusions will be largely robust to the addition of more species.” One advantage of SetCoLa

is that the layout is independent of the individual nodes. Therefore, the authors could reuse

this SetCoLa layout to visualize future iterations of the Serengeti food web or explore similar

structures across different ecological communities.

4.4 Limitations and Future Work

We have presented SetCoLa: a domain-specific language for specifying high-level constraints

for customized graph layout. SetCoLa enables concise specification of layouts by applying

constraints to node sets rather than individual nodes. These custom layouts can be reapplied

to different graphs that share domain-specific properties. We implemented SetCoLa using the

WebCoLa library [41] and demonstrated the expressiveness of SetCoLa on real-world exam-

ples from ecological networks, biological systems, and social networks. SetCoLa specifications

reduce the number of user-authored constraints by one to two orders of magnitude, while

61

enabling flexible and reusable domain-specific layouts. There are a number of useful areas

for future work, including optimizations for the current constraint generation procedure, the

development of useful debugging tools to facilitate the user’s understanding of unsatisfiable

constraints, and the evolution of constraint solvers more closely integrated with SetCoLa.

4.4.1 Prototyping and Constraint Generation

SetCoLa allows users to define constraints that apply to groups of nodes rather than apply-

ing constraints to individual nodes one at a time. By deferring this specification complexity

to the underlying constraint solver, the user can more easily prototype the layout and make

changes that have a large overall impact with a small number of written constraints. How-

ever, the current SetCoLa compiler is not optimized to reduce the number of constraints

produced. In particular, the procedure for generating order constraints adds potentially su-

perfluous inter-node constraints. For the small tree example (Figure 4.2c), the SetCoLa

compiler produces 11 WebCoLa constraints. The SetCoLa compiler creates two constraints:

b.y < boundary1.y (Line 31) and c.y < boundary1.y (Line 33), in addition to a constraint

that b.y == c.y (Line 21-24), thus making one of the first two constraints superfluous. Fu-

ture work should explore whether these redundant constraints have a significant performance

impact and investigate optimizations to reduce the generation of unnecessary constraints.

4.4.2 Debugging and Unsatisfiable Constraints in SetCoLa

SetCoLa specifications may include sets that are not disjoint, which can produce unsat-

isfiable constraints. The user may also specify unsatisfiable constraints indirectly through

combinations of set definitions and constraint applications. Finally, some specifications may

be underconstrained and thus produce layouts that do not meet the user’s expectations.

Concerns surrounding debugging and unsatisfiable constraints are not exclusive to SetCoLa,

and can also arise in WebCoLa and other constraint-based systems (see Chapter 3).

For the constraints described in this chapter, it is possible to determine if conflicts arise

at program runtime and highlight such conflicts. One advantage of the SetCoLa abstraction

62

is that the original user-authored constraints are defined on the high-level properties of the

nodes, which makes it easier to understand why conflicts occur. In order to debug the con-

straints, the user may first inspect the sets produced by SetCoLa to check for inconsistencies.

By identifying nodes that exist in multiple sets, users can more easily understand the source

of potential conflicts. Each WebCoLa constraint generated by the SetCoLa compiler is an-

notated with the SetCoLa constraint from which it was generated; these annotations help

“communicate system behavior as actionable information” by allowing users to map more

easily between the output constraints and the SetCoLa constraints from which they were

generated. While these properties may help with the debugging process, future work should

explore additional strategies for debugging the graph layout and underlying constraints.

4.4.3 Limitations of SetCoLa’s Expressiveness

The current SetCola implementation requires the graph to be fully formed at input, including

all properties (beyond the ones computed in Section 4.2.2). All the edges and nodes in this

graph are treated with equal weight in terms of the constraints, thus limiting the user’s

ability to introduce preferences regarding the importance of the nodes or links. Furthermore,

there are cases in which the user may want to break links, duplicate parts of the graph,

or otherwise modify the underlying structure based on properties of interest. The current

SetCoLa implementation does not support operations to modify the importance or structure

of the input graph, though this functionality would be an interesting area for future work.

4.4.4 Limitations Arising from the Constraint Solver

Our implementation with WebCoLa allows us to demonstrate the utility of SetCoLa for

creating reusable, customized domain-specific layouts. However, our current implementation

was limited in part by what WebCoLa currently supports. For example, we were unable to

directly express SetCoLa’s circle constraints in WebCoLa. However, circle constraints have

been identified in the WebCoLa wiki as an area for future work, and once they are supported

in the underlying constraint solver, it should be straightforward to use this improved support.

63

Our work contributes new strategies for the specification of graph layout constraints, but does

not aim to create its own constraint solver. WebCoLa is a useful library on which to build

and demonstrate our approach, but future work might explore how new or existing constraint

solvers might co-evolve alongside this high-level language for constraint specification.

We also encountered some behavioral mismatches between the WebCoLa implementation

and our expectations for the graph layout. For example, WebCoLa utilizes a default link

length which attempts to optimize node positions to produce links as close to the desired link

length as possible. While this technique can be useful for highlighting the underlying structure

of the graph, it has a significant effect on the layout that is produced by WebCoLa that may

vary from what is specified in SetCoLa. This behavior can be beneficial for some layouts.

As noted in Section 4.3.1, in the syphilis social network (Figure 4.4b), the circle is drawn

slightly off center between the groups since more links exist between the women and the

African-American men than between the women and the white men, which emphasizes the

strength of these connections. The underlying constraint solver can thus significantly impact

the resulting layout by implicitly encoding additional preferences, such as the preferred link

length. In future work, it may be useful to support additional parameters expressing global

preferences for the layout, which would then be passed on to the underlying solver. Another

direction would be to accommodate multiple solvers, which might encode different preferences

of these kinds, and to select among them, either automatically or as specified by the user.

Another useful WebCoLa behavior is that a global non-overlap constraint may be applied

to the nodes as part of the layout procedure. This constraint prevents nodes from overlapping

even at intermediate stages of the layout and may thus cause the layout to become stuck in

a local optimum that still includes unsatisfied constraints. Furthermore, our use of dummy

guide nodes with a fixed position may further complicate issues with local maxima. Future

work might explore additional procedures for iteratively adding constraints to the graph

layout, building up the final result incrementally. This technique would help to reduce the

burden on the layout to resolve all constraints at once and allow the user to incrementally

improve the layout through the addition of new constraints that restart the underlying solver.

64

4.5 Summary of Contributions

By using an appropriate graph layout, node-link diagrams can effectively convey properties

of the underlying graph structure, such as the node hierarchy or network connectedness. Such

visualizations are common across many domains, including social networks [52, 57, 137, 164,

179], biological systems [6, 16, 61, 120, 127, 170, 181], and ecological networks [7, 18, 32, 82,

103, 124, 126, 166, 210]. These graph layouts utilize domain-specific properties to emphasize

relevant patterns in the data. In a biological pathway for example, nodes can be layered by

their subcellular location to visualize the interconnectedness of the network relative to the

cellular structure. The design of effective graph layouts is highly dependent on the domain-

expertise of the visualization designer, but effective programming systems often remain out

of reach. In this chapter, we show how raising the level of abstraction for layout authoring

can support users in encoding their unique domain expertise with reduced programmatic

effort as compared to other approaches, and can further facilitate program understanding.

To this end, we contribute SetCoLa: a high-level language for specifying graph layout

constraints. SetCoLa aims to facilitate the process of authoring customized layouts by lever-

aging the domain expertise of the domain expert. Using SetCoLa, the domain expert can

focus on mapping domain-specific properties directly to the layout parameters of interest,

while deferring the low-level implementation details to the SetCoLa compiler and underlying

constraint engine. With this approach, SetCoLa is able to reduce the number of user-authored

constraints by one to two orders of magnitude. Furthermore, SetCoLa enables reuse of cus-

tomized layouts across graphs in the same domain because the constraints are generalized to

apply to properties of the network rather than the implementation specifics for the individual

nodes (such as the internal node ID). This mapping further improves how users understand

or debug the behavior of the constraint layout; constraints are now clearly grounded by the

user’s domain expertise to better support reasoning about the encoded relationships.

This work was done in collaboration with Alan Borning and Jeffrey Heer, and was originally

published and presented at EuroVis 2018 [83].

65

Chapter 5

PROGRAM UNDERSTANDING IN VEGA:
A DECLARATIVE VISUALIZATION GRAMMAR

Declarative languages introduce a trade-off between flexibility and comprehensibility. By

raising the level of abstraction, declarative languages can enable users to encode their unique

expertise while focusing on the tasks that matter most to them. For example, Chapter 4

explored how SetCoLa can facilitate the design of customized graph layouts based on domain-

specific properties of the data and support reuse of the layouts across graphs in the same

domain. However, one challenge that remained in SetCoLa—as well as the other constraint

systems discussed in Chapter 3—was interpreting the behavior of the underlying constraints.

This challenge further arises across declarative programming languages. Separating the user

specification from the system execution obfuscates the underlying program behavior and can

inhibit the developer’s ability to evaluate and debug the program output.

To explore the types of challenges that arise for program understanding in declarative

programming languages, this chapter examines the design of Vega: a declarative visualization

grammar [177, 178]. Similar to SetCoLa [83], Vega aims to raise the level of abstraction to

allow users to focus on visualization authoring, particularly for interactive visualization de-

signs. Interaction plays an essential role in visualization design, since interaction techniques

such as filtering, brushing, and dynamic queries can facilitate data exploration and under-

standing [80, 153]. However, implementing such interactions has traditionally required event

callbacks, which necessitate manually tracking interleaved state changes [145]. In response,

Vega leverages event-driven functional reactive programming [201] to provide declarative

primitives for interaction design. This approach models input events as data streams, which

in turn drive dynamic variables called signals. Signals parameterize the visualization, endow-

66

ing transforms, scales, and marks with reactivity. When new input events fire, corresponding

signals are automatically re-evaluated, updates are propagated to the visual encodings, and

the visualization is re-rendered. By deferring the low-level control flow to the system, Vega

enables rapid iteration of encoding and interaction design. However, identifying how changes

to the specification impact the output or how user interactions with the output and data are

propagated through the execution is particularly difficult for these time-varying behaviors.

In this chapter we first provide some relevant background on the design and terminology

associated with Vega [177] and the underlying reactive semantics. Inspired by prior work on

program visualization and debugging (see Section 2.3), we contribute a data flow graph visu-

alization of the Vega runtime behavior that aims to illustrate the underlying control flow of

the system in terms of these semantics. We then contribute a set of formative interviews with

expert Vega users about the utility of the proposed data flow graph visualization. This work

aims to better understand the challenges that arise when raising the level of abstraction and

new opportunities to better communicate the underlying system behavior as actionable in-

formation for potential end-user programmers. Through the formative interviews, we explore

a trade-off for program understanding techniques between accurately reflecting the system

behavior and providing useful debugging features that reduce the burden on programmers

and enables them to focus on their primary development tasks.

5.1 Related Work: Functional Reactive Programming

Event-Driven Functional Reactive Programming (E-FRP) [201], one of many FRP vari-

ants [5], is an increasingly popular paradigm for authoring interactive behaviors. E-FRP

models low-level input events as continuous streams of data, which can be composed into

dynamic variables called signals. When a new event fires, the E-FRP runtime propagates

the update to the corresponding streams, and dependent signals are updated in two phases.

In the first phase, signals are re-evaluated using their dependencies’ prior values; these de-

pendencies are then re-evaluated in the second phase [201]. E-FRP has been shown to be

suitably expressive for interactive web applications [36, 141] and visualizations [35, 108, 177].

67

However, debugging support remains weak. Many existing debugging techniques—such as

breakpoints and stack traces—no longer apply, as users declaratively specify interactions.

The E-FRP runtime is entirely responsible for the program execution, the particulars of

which will be unfamiliar to end users. In this space, the Elm language [36] began to develop

an interactive debugger, inspired by Bret Victor [197]. The Elm debugger allows users to

record and replay program states, but developers must manually annotate their code with

watch and trace statements. Tracked states are then simply printed out in a list.

5.2 Background and Terminology for the Vega Visualization Grammar

To explore program understanding techniques for declarative programming languages we

focus on the design of Vega [177]: a declarative visualization grammar for interactive visu-

alization design. In this section we provide some relevant background information on the

design and behavior of the Vega visualization grammar to inform our discussion of new pro-

gram understanding techniques for reactive systems. This chapter further introduces relevant

terminology that will apply across the remaining chapters in this dissertation.

Vega [177] is a declarative grammar for specifying interactive visualizations. The program-

mer produces a Vega specification in JSON format that describes the data transformations,

interactive behavior, and visual appearance for an output visualization. A JavaScript run-

time parses the input specification to produce the resulting visualization. To construct a

visualization, the programmer must first include the datasets of interest. Datasets represent

collections of data tuples and can be representative of more complex data structures with

arbitrary nesting and usage throughout the code. References to particular data fields extract

a property from each tuple in the underlying datasets to be used as variables throughout

the Vega specification. Integrated data transformation pipelines provide operations including

statistical summarization and spatial layout (e.g., treemaps and cartographic projections).

Closely following the model of Protovis [22] and D3.js [23], the visual appearance of the

Vega visualization is specified via scales, axes, legends, and graphical primitives called marks.

Scales are functions that map from data values to visual properties, and can themselves be

68

visualized as guides (e.g., axes and legends). Marks are graphical primitives such as bars,

plotting symbols, and lines ; marks can be arbitrarily nested and dynamically initialized at

runtime, thus introducing complex data flows during program execution. The properties of

marks (e.g., the position or color) can be parameterized by both signals and data, with the

help of scales to produce reasonable mappings from data fields to visual properties.

To support interaction design, Vega employs Event-Driven Functional Reactive Program-

ming (E-FRP) [177]. Input events are modeled as streams of data, and an event selector syn-

tax facilitates stream composition. Signals are in turn defined as reactive expressions over

stream values. For instance, a signal might extract the x and y coordinates from the most

recent mouse input event. Signal values defined in pixel space can be passed through inverse

scale transforms to map the coordinates back to the data domain. Scale inversions allow

interactive behaviors to generalize across distinct coordinate spaces (e.g., small multiples) or

coordinate interaction across multiple visualizations (e.g., brushing and linking).

Signals can parameterize the remainder of the Vega specification, thereby endowing data

transformations and visual encodings with reactive semantics. Reactive updates (referred to

as pulses) occur in two steps. When an event occurs, dependent signals are re-evaluated in

their specification order. This step allows signal expressions to access the previous values of

dependencies listed later in the specification; these dependencies are subsequently updated

on the same pulse. Once the signals have updated, the dependent data transformations and

visual encodings are recomputed in topological order of the underlying dependency graph.

Signals decouple low-level input events from interaction logic. For example, the same set

of named signals can be driven by mouse and touch events. Moreover, signals express the

bulk of the interaction logic and participate in visual encodings either as direct parameters

or by parameterizing simple if-then-else encoding rules. As a result, signals provide a mean-

ingful entry-point into an interaction specification. In contrast to imperative event handlers,

complex static analysis is not required to identify and surface the relevant program state.

69

5.2.1 Discussion on the Design of Vega

The Vega visualization grammar allows end-user programmers to focus on relevant visual

encoding decisions for the design of an interactive visualization, while deferring the execu-

tion of this design to the underlying Vega runtime. Similar to other declarative programming

languages, this approach enables users to employ their personal expertise while focusing on

their primary development task. However, the separation between user-authored code and

system produced output complicates the program understanding process. Vega provides a

unique opportunity to explore complex program understanding topics for a reactive pro-

gramming domain: interactive visualization design. The semantics of Vega reflect those of

similar reactive programming languages, such as React [93] and Elm [36].

One advantage of Vega as an environment in which to explore program understanding

is that the core Vega constructs—such as the datasets, data fields, and interactive signals—

fully encapsulate the interactive behavior of the code. These constructs provide a clear entry

point for new debugging opportunities, which we further explore in Chapters 6 and 7. The

time-varying behavior can be particularly difficult to understand and debug, but the provided

constructs can facilitate snapshotting and replay of the full program functionality. One of the

main challenges is therefore to “communicate system behavior as actionable information”

that can help reduce the gap between the user-authored code and system produced output.

5.3 Visualizing the Vega Runtime Behavior as a Data Flow Graph

Vega accepts a JSON specification that is parsed into a data flow graph representing the

execution pipeline. Data tuples are pushed through the data flow graph to be rendered into

the output visualization. Prior to this work, there was no infrastructure for debugging visu-

alizations in Vega. Users could only rely on the JavaScript console to traverse the underlying

system internals. However, accessing and navigating the system internals requires existing

knowledge of how to locate relevant information, which is often deeply nested in the internal

structure. This structure also contains extraneous details that complicate identification of

relevant information. The structural disconnect between signals, data, and encodings makes

70

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

{
 "data": [
 {"name": "table", "url": "data.json"},
 {
 "name": "groups", "source": "table",
 "transform": [{"type": "facet", "keys": ["category"]}]
 }
],

 "scales": [
 {
 "name": "cat", "type": "ordinal", "range": "width",
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "y", ...}
],

 "axes": [...],

 "marks": [
 {
 "type": "group",
 "from": { "data": "groups"},
 "properties": {
 "enter": {
 "x": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}
 }
 },

 "scales": [{
 "name": "pos", "type": "ordinal",
 "range": "height",
 "domain": {"field": "x"}
 }],

 "marks": [{
 "type": "rect",
 "properties": {
 "enter": {
 "x": {"scale": "pos", "field": "x"},
 "width": {"scale": "pos", "band": true},
 "y": {"scale": "y", "field": "y"},
 "y2": {"scale": "y", "value": 0},
 "fill": {"value": "steelblue"}
 }
 }
 }]
 }
]
}

Construct Group Mark

Draw Rectangle Marks

Group CGroup BGroup A

table

Root

Output

Input

Build
Group

Render

"cat"
Scale

"y"
Scale

Collector

Input

Facet

Output

Input

Output

Input

Output

Input

Output

Build
Group

"pos"
Scale

Build
Rect

Build
Rect

Build
Rect

(a) Vega bar chart specification (b) Grouped bar chart (c) Data flow graph

Figure 5.1: The components of a Vega workflow: (a) the Vega specification for a grouped bar chart,
(b) the output visualization, and (c) a simplified representation of the underlying data flow graph.
The specification highlights the code corresponding to different parts of the data flow graph.

it hard to track changes between components, and is impractical for complex tasks. An ex-

ample of the debugging process using this approach is available in Appendix B. However, this

method is not discoverable or intuitive for novice users. For developers without this expertise,

the specification and output visualization are the only sources available for debugging, but

neither provide insight into the underlying structure or how the two pieces relate.

Usage Scenario. Consider a scenario in which a user wants to implement a grouped bar

chart, but the initial specification produces a blank chart showing only the incomplete axes.

Upon inspecting the data flow graph, the user realizes that the bars are being drawn from

the root of a hierarchical data source, not from each of the groups produced by the facet

transformation. To resolve the error, the user notes that the rectangle marks must inherit

from a group mark to unpack the hierarchical structure. This hierarchical structure is clearer

in the data flow graph visualization (Figure 5.1c) than in the specification alone (Figure 5.1a).

71

a b

Figure 5.2: (a) The prototype data flow graph visualization for a grouped bar in Vega. (b) The same
data flow graph visualization with nodes corresponding to the axes removed. This simplification
produces a smaller graph that is more focused on the structure of the relevant visualization marks.

To provide insight into the Vega system structure, we can visualize and annotate the under-

lying data flow graph (Figure 5.1c). The simplest version of this graph represents the entirety

of the execution structure for rendering a Vega specification. However, an accurate portrayal

of the data flow graph contains intermediate nodes and edges, such as the “Collector” and

unlabeled nodes of Figure 5.1c. These nodes are artifacts of Vega’s low-level implementation

and internal system optimizations. For example, the “Build Group” node (shown in orange)

is responsible for constructing the group mark container for the rectangle marks. However,

the “Build Group” node is not directly connected to the nodes drawing the rectangle marks

(shown in blue) despite this hierarchical relationship. Instead, all nodes are routed through

a “Collector.” This extended internal relationship makes it hard to infer from the visualiza-

tion how the rectangle marks are related to the group mark and the faceted data source.

While these connections may be intuitive to Vega system developers, they do not have a

clear connection to the components with which end-user programmers will be most familiar,

such as the specification (Figure 5.1a) and output visualization (Figure 5.1b).

72

To better understand the potential utility of the data flow graph, we developed a proto-

type visualization that automatically extracts the data flow structure for any output Vega

visualization. An example of the output data flow graph is included in Figure 5.2. There are

several challenges that arise when considering this structure. First, the behavior of axes and

legends introduces superfluous detail to the data flow structure. Axes and legends are auto-

matically generated in Vega and are constructed based on several components including text

marks, tick marks, domain line, gridlines, and title. These components add complexity to the

data flow graph, but are rarely the most interesting component for an end user to examine.

Figure 5.2a shows the data flow graph with the axis components visible, whereas Figure 5.2b

simplifies the representation to remove the components related to each axis; in the simplified

version of the data flow graph, users can more easily focus on the relationships produced by

the facet transformation (shown in purple), as well as the subsequent data pipelines for each

of the three facets produced. These representations also include a variety of nodes specific to

the underlying system behavior—such as the collectors (shown in pale orange) or the other

unlabeled nodes (shown in gray)—which are likely unfamiliar to the end-user programmer.

Finally, these visualizations may include many repeated structures. For example, the facet

behavior used to produce a grouped bar chart introduces multiple duplicate pipelines in the

data flow graph depending on the number of facets that are produced.

To leverage the informative power of the data flow graph while addressing these compli-

cations, we explored a variety of customized representations of the data flow graph structure.

Figure 5.1c shows a simplified and stylized version of the data flow graphs from Figure 5.2.

In this structure, we introduced additional groupings to highlight the repeated structures in

the graph and to label essential components of the data flow structure—such as the nodes

responsible for drawing the “rect” marks of the output visualization. For expert Vega devel-

opers, these relationships can be extracted from the more general data flow graph, but the

annotations are important for ensuring the legibility of this structure for novice Vega users.

To illustrate the underlying functionality of Vega, we incorporate a variety of these stylized

data flow graph representations into the Reactive Vega paper published at VIS 2015 [177].

73

5.4 Formative Interviews: Understanding Declarative Visualization Design

To better understand the debugging needs of end users for reactive data visualization, we

conducted formative interviews with expert Vega users regarding their development pro-

cesses. At the time of the study (in May 2015), Vega’s reactive extensions had not yet been

officially released, so participants were primarily familiar with static visualizations.

Participants. We recruited 8 software professionals (all male), all with prior experience creat-

ing static Vega visualizations. None of the participants were affiliated with the University of

Washington. Participants were selected based on their participation in the Vega community.

Each interview lasted about 30 minutes; participants did not receive compensation.

Data Collection. The interviews took place over Skype and Google Hangouts. The example

visualizations were shared using Google Docs and are included in Appendix C.2. We captured

audio recordings for later review and transcribed notes during the interview.

Protocol. The semi-structured interviews examined each participant’s development process

as related to Vega. Participants were shown sample visualizations of Vega’s data flow graph

(see Appendix C.2) and asked to reflect on the utility of such techniques with respect to their

debugging needs; one participant was unable to access and view the sample visualizations

during the interview. The full script used for these interviews is included in Appendix C.1.

Analysis. After the interviews, we reviewed the conversations to extract common themes

regarding the challenges or potential areas for future work described by the participants.

These themes are discussed in more detail in the following section.

5.4.1 Understanding Debugging Challenges and Needs in Vega

Encoding errors are often visually salient (e.g., points are filled with the wrong color), but

tracing the error through the specification can be difficult: is the result due to an incorrect

scale definition, an error in the data transformations, or a problem with the input data itself?

74

With Vega’s declarative model, users lack visibility into the state of these components in the

underlying system. One participant noted that “when you mess up that JSON you get an

error from deep in JavaScript land” (P7). In the current development environment, users lack

clear approaches to debugging the internal functionality due to several degrees of separation

between the user-authored code and the errors that arise for ill-formed specifications. This

challenge proves even more difficult when no clear error is communicated by the system, but

rather the system output fails to meet the user’s expectations. Another participant described

this type of difficult debugging scenario where “[the resultant visualization is] just blank and

you don’t know why” (P2). Without a clear starting point for the debugging process or tools

to facilitate this type of analysis, users may resort to simply reading the specification or to

using other primitive forms of debugging, such as iteratively removing or modifying the code.

The proposed data flow graph visualization sought to provide a new method for inspecting

the underlying behavior to support users’ debugging needs. However, participants noted that

visualizing the internal data flow graph could be beneficial for Vega system developers, but

provides too much internal information tangential to their user-level debugging tasks. In

particular, one participant noted that “the [data flow] graph presumes insight into how Vega’s

internals operate” (P1). Inspecting the state via the JavaScript console (see Appendix B)

or viewing Vega’s data flow graph presents users with a mixture of state information, only

a small fraction of which is relevant to the debugging task at hand. The extraneous system

details complicate identification of relevant information, suggesting that it would be beneficial

to strip internal system information from the user’s view. While the data flow graph may

not be ideal for debugging particular Vega specifications, the structure can still provide

useful insights into the underlying system behavior. In July 2018, Jeffrey Heer published an

observable notebook explaining “How Vega Works” [76], which describes the reactive data

flow architecture using illustrative and annotated data flow graphs. As a precursor to the

descriptive content, Heer notes that “This notebook assumes basic familiarity with Vega.”

This disclaimer further reiterates the concerns expressed by our earlier formative interview

participants about the utility of the data flow graph for general debugging needs.

75

Given that the data flow graph itself may not be ideal for end-user debugging tasks,

the interviews further sought to identify areas in which new program understanding tech-

niques would be particularly helpful. Participants explained that their needs centered on the

relationships between data and encodings expressed within their Vega specifications. One

participant explained that Vega “need[s] a way to examine internal variables... [and] to see

the internals of the step-by-step process” (P3). Many user-authored data transformations

may restructure the data or introduce new attributes of which users are unaware. Because

of these opaque transformations, many participants expressed the need to understand “the

structure of the data that Vega is actually using” (P6). For the current development envi-

ronment, one participant explained that “the easiest path to solve [a specification error] was

to just break into the [JavaScript] debugger and see what state the data was in at various

stages” (P3). However, as previously discussed, this particular debugging strategy presents

its own challenges and may generally be out of reach for novice Vega users (see Appendix B).

Interactions further complicate the debugging process. For interactive specifications, sig-

nals parameterize data transformations and encodings, introducing additional dependencies.

Users are then required to reason about the behavior of both the data and interactive signals,

which may be interleaved to produce complex interactive functionalities. Furthermore, while

signals usefully abstract low-level input events, some users found that this abstraction com-

plicated reasoning about event propagation. As one participant stated, “debugging reactivity

is like a true true nightmare” (P5). In static visualizations, users already found it difficult to

reason about the step-by-step process employed to produce the output Vega visualization;

for interactive specifications, users must further understand the time-varying behavior of this

pipeline, which adds yet another dimension to the program understanding process.

These interviews illustrate aspects of the three core challenges explored in this disserta-

tion. To better support end-user debugging tasks, systems must communicate details of the

internal behavior at the level of abstraction with which users are already familiar. Further-

more, these details should aim to support users in understanding the system functionality as

related to their primary development tasks, rather than tangential details about the behavior.

76

5.5 Summary of Contributions

Declarative languages can enable users to focus on relevant design decisions—such as how

interactions should parameterize a visualization—while relying on the system to capture

and track the interactive behavior. However, when interactions produce erroneous results,

existing debugging techniques such as breakpoints or stack traces are no longer effective

since users are unfamiliar with the underlying control flow. In this chapter, we discuss the

design of Vega [177] as a platform on which to explore new debugging techniques for reactive

programming languages such as React [93] or Elm [36]. Regardless of programming style,

interactions can be inherently difficult to author and debug. End-user programmers must

understand complex dependencies among input events, program state, and visual output.

In this chapter, we first contribute a data flow graph visualization to illustrate Vega’s

complex underlying control flow. To better understand the potential utility of this approach,

we then contribute a series of formative interviews with expert Vega users. While partici-

pants felt that the data flow graph could facilitate program understanding for Vega system

developers, the visualization provided too much information tangential to their end-user de-

bugging tasks. In this case, the data flow graph did not communicate information at the

level of abstraction with which end users were most familiar. Instead, participants felt that

new debugging techniques could better help users interpret the time-varying behavior of

data transformations and help track changes through visual encoding pipelines. Vega’s well-

defined semantics provide new opportunities for enhanced debugging support, as new tools

can surface traces from pixels, through scale transforms, to source data (and vice versa).

The next chapter continues to explore this space through the development of new visual

debugging techniques that better reflect the expertise of end-user programmers in Vega.

Vega was presented at VIS 2015 [177], in collaboration with Arvind Satyanarayan, Ryan Rus-

sell, and Jeffrey Heer. Vega’s data flow graph visualization was presented at EuroRV3 2015 [86],

in collaboration with Arvind Satyanarayan and Jeffrey Heer. The formative interviews were

published as part of our later work on visual debugging techniques at EuroVis 2016 [87].

77

Chapter 6

VISUAL DEBUGGING TECHNIQUES
FOR REACTIVE DATA VISUALIZATION

Vega supports the design of interactive visualizations by allowing the end-user programmer

to focus on visual encoding decisions while deferring the low-level implementation details to

the underlying system. However, when errors arise in the interactive behavior, the separation

between the code the user writes and the output can complicate the program understanding

process (see Chapter 5). In formative interviews with visualization developers (Section 5.4),

one participant succinctly noted that “debugging reactivity is like a true true nightmare.” To

help end users understand and debug the time-varying behavior, participants reflected that

new systems should help users “to see the internals of the step-by-step process.” While the

proposed data flow graph visualization provides an accurate portrayal of the underlying Vega

control flow (Section 5.3), this approach provides too much information tangential to end-

users’ debugging needs. For new program understanding techniques, it is therefore essential

that the approach reflect the level of abstraction with which users are already familiar.

To this end, this chapter contributes a set of visual debugging techniques for reactive data

visualization motivated by prior work on program visualization and debugging (Section 2.3).

To inform the design of the proposed techniques, we identify three design goals: new systems

should enable users to (1) probe the state, (2) visualize relationships, and (3) inspect

transitions. Vega’s well-defined semantics provide a clear entry point for snapshotting the

time-varying behavior, and Vega further acts as a representative platform on which to explore

new debugging techniques for a more general class of reactive programming languages such

as React [93] and Elm [36]. In this chapter we introduce the design of an interactive timeline

to visualize the behavior of signals, in situ annotations to help users interpret the behavior

78

of visual encodings, and dynamic data tables that visualize the time-varying behavior of the

backing data. This chapter further contributes an evaluation with 12 first-time Vega users to

examine how users debug faulty interactions in unfamiliar specifications. Despite their lack

of expertise with Vega, we find that participants can accurately trace errors to problematic

lines in the specifications by employing our visual debugging techniques.

The techniques introduced in this chapter illustrate the importance of communicating

relevant system details to end users at the level of abstraction with which they are familiar.

By visualizing the core Vega constructs that are represented in the code, users can map

the results of the visual debugging techniques to corresponding code elements with minimal

expertise in the language. An important aspect of this approach was deciding which low-level

system details not to represent in our visual debugging techniques. Rather than trying to

completely and accurately represent the underlying system behavior, each component instead

focuses on a subset of Vega constructs specifically targeted towards end-user debugging tasks.

6.1 Design of Visual Debugging Techniques for Program Understanding

Based on our formative interviews with Vega users (described in Section 5.4), we identify

three core design goals for debugging interactive visualization code in Vega:

1. Probe the state: At any given moment, the visualization is determined by signal

values, data transformations, and encoding rules. Users must be able to inspect the

state of each of these components to better understand the behavior.

2. Visualize relationships: The state of one component often affects others—for exam-

ple, signals can parameterize encoding rules, or data transformations may affect scale

domains. Users must be able to identify dependencies between components.

3. Inspect state transitions: Input events trigger transitions from one state to another,

and debugging faulty interactions requires understanding the causes and consequences

of these transitions. To identify the source of an error, users must be able to inspect

how values propagate through the user-authored specification.

79

6.1.1 System Overview

We now present the design of our visual debugging techniques for reactive data visualization.

Our debugging techniques were implemented as part of the online Vega editor. In the online

editor, there are separate panels to view the user-authored specification and the output Vega

visualization. We add additional panels and interactions to this environment to support our

visual debugging techniques (Figure 6.1). To enable inspection of the state and the behavior

of changes over time, we incorporate three elements: a timeline of interactive signals, a tooltip

annotation showing context dependent visual encodings on the output visualizations, and a

dynamic data table. The end-user programmer can inspect the underlying program state and

replay to past states to view the behavior over time. In the following sections, we describe

the design and backing rationale for each of these debugging techniques.

In the formative studies (see Section 5.4), one participant observed that “There are two

possible errors. One is like a runtime error... The other is you actually have a well-formed

execution and [the visualization] is not showing what you expect it to show” (P1). These

debugging techniques focus on the latter debugging scenario in which the Vega specification

is technically correct, but the output Vega visualization deviates from the user’s expectations.

The proposed techniques therefore aim to support the refinement of the user’s mental model

through exploration of both the data and program state. These techniques focus on the Vega

components with which users are most likely to be familiar when developing an interactive

visualization: the interactive signals, the backing dataset, and the visual encoding decisions.

We first provide a short, illustrative example of how our visual debugging techniques can

be used to better understand and debug the behavior of an interactive index chart. Prior to

this work, the online Vega editor did not have debugging support for end-user programmers.

Instead, the historical debugging approach for this example only leverages the JavaScript

console in the browser. This approach requires users to have additional insight into the Vega

system internals that most end-user programmers are unlikely to possess. The complete

historical debugging approach for the interactive index chart is described in Appendix B.

80

h

f
e

d
g

b

a

c

Figure 6.1: Visual debugging techniques for an interactive index chart visualization in Vega. End-
user programmers author (a) a declarative specification to produce (b) an interactive visualization.
(c) Tooltips on the visualization provide introspection into visual encodings while viewing a past
state via (d) replay. Recorded interactions are displayed in (e) an overview and (f) a timeline. In
the overview, (g) a time series shows the variability of data attributes in (h) the backing datasets.

Usage Scenario. Consider debugging an index chart of stock prices that interactively renor-

malizes the data relative to the date associated with the mouse position (Figure 6.1b). The

user first writes a specification (Figure 6.1a) of encoding rules and interactions. During in-

teraction, the user notices that at certain time points, all the time series erroneously flatline

due to a specification error. The user must now assess the dependencies between interac-

tion, program state, and visual output. The user can start by recording interactions in the

timeline (Figure 6.1f), and replaying (Figure 6.1d) the interaction to observe how events

propagate. Mousing over events in the timeline shows the dependencies of the signal. The

overview (Figure 6.1e) summarizes activity, allowing for quick identification of interaction

patterns. A tooltip annotation (Figure 6.1c) exposes the position encoding by showing the

data values and encodings corresponding to the selected pixel. The user can then inspect the

backing dataset via dynamic tables (Figure 6.1h). Guided by the attribute variability (Fig-

ure 6.1g), the user observes that some data attributes have been zeroed out. The user can

then select the data attribute on the table to link back to the specification to fix the error.

81

(d) Signal annotations

(c) Dependencies

{
 "name": "xMax", "init": 1.6,
 "streams": [{
 "type": "xDelta",
 "expr": "xMax + (xMax-xMin)*xDelta/800"
 }]
}

(b) Stepping through the timeline

Renormalizing

Brushing

consistent interaction

Panning

mousemove drag mousemove

brush brush

(a) Overview interaction patterns

Figure 6.2: The overview, timeline, and signal annotations after performing interactions on a Vega
visualization. (a) The overview provides insight into different interaction patterns. (b) Stepping
within a pulse allows users to see intermediate states of an interaction. For example, the second
scatterplot shows a brush representing the new brush start and old brush end. (c) Dependencies
are shown as red outlines in the timeline on hover. (d) Signal annotations overlay the visualization,
with fill color encoding temporality: from darkest (past), through red (current), to lightest (future).

6.1.2 The Signal Timeline and Replay

The timeline (Figure 6.1f) lists every user-defined signal in specification order. Signal updates

are represented as colored cells, arranged into columns corresponding to reactive updates

(pulses). The current signal value is displayed on the far right; mouse hover expands the

contents and displays any scale transforms used to define the signal. As users interact with

the visualization, signal values update and populate new columns in the timeline. By default,

cell widths are automatically adjusted so all pulses are visible. An overview (Figure 6.1e)

summarizes pulse activity over time, with bar heights encoding the number of signal updates

on a given pulse. The overview exposes patterns in the recorded interaction (Figure 6.2a),

and brushing zooms the timeline to show only pulses within the selected range.

Hovering over a cell displays a tooltip of the signal value in the overview to enable rapid

comparison of values. Hovering also exposes the dependencies a signal update relies on—cells

are outlined in red to illustrate which dependency values are used, and link icons are

shown beside dependency names in case the corresponding cell is not visible (Figure 6.2c).

Keyboard navigation allows users to move up and down to understand the propagation of

signal values within the same pulse (Figure 6.2b), or left and right to identify a particular

82

pulse which exhibited the faulty behavior. The selected cell is shown in dark green, and

other signal values used by this particular state are shown in light green. Users can select a

cell in the timeline to rewind the visualization to an earlier state. Each time user interaction

triggers a signal to update, the system records the new value and pulse number. Replay is

enabled by setting the signal values for the desired pulse and re-rendering the visualization.

During replay, interaction is disabled to prevent new events from being added mid-stream.

Rationale. The timeline provides users introspection into the heart of the interaction logic—

signals—and is designed to reify the two-step reactive update process. As a result, pulses

populate the timeline from top to bottom, and hovering over a particular cell reveals if

an older value was used for a dependency listed later. Early prototypes took this one step

further: pulse propagation was more salient as each cell in the timeline was marginally offset,

producing a “cascade” or “waterfall” effect. This design required more space to encode the

same information and made coarse navigation difficult. In other words, it was only meaningful

to navigate left or right (i.e., backwards or forwards in time). As a result, locating a faulty

pulse required users to step through every intermediate state of other pulses. In contrast, by

condensing pulses into columns, users can quickly move back and forth across the timeline

and only deep dive into the intermediate states of pulses of interest.

The timeline also maintains the level of abstraction provided by signals. For example,

the particular low-level input events that trigger a reactive update are not identified. When

such low-level events are required for debugging erroneous event selectors, users can define

additional signals as needed that only capture the event.type that triggers them. Users can

then track these changes via the timeline and overview. Similarly, although Vega’s internal

data flow dependency graph can be readily visualized (see Section 5.3), the timeline only

surfaces dependency information for the particular cell a user hovers over. Helper signals

automatically generated by Vega are hidden from the view. Together, these design decisions

reflect the findings of our formative study (Section 5.4): users were overwhelmed by details of

Vega’s execution pipeline, and found them to be tangential to their primary debugging tasks.

83

6.1.3 In Situ Annotations

When users pause interaction recording, either explicitly (Figure 6.1d) or by rewinding to an

earlier state, a number of on-demand annotations become available to inspect the visualiza-

tion state in situ. The specification is analyzed to extract all scaled visual encoding rules for

each mark. Mousing over the visualization performs a hit test against the underlying scene

graph to find an intersecting mark or group. If a mark is not found, then the user’s cursor

is over a group’s background; the tooltip displays the cursor’s coordinates relative to the

group, along with any spatial scales used to encode the group’s children (Figure 6.1c). If a

mark is found, its visual encoding rules are shown in addition to the coordinates.

Mousing over a signal value in the timeline that duck-types to coordinates (i.e., an object

with x and y properties), displays all signal updates as signal annotations on the output

visualization. The current point is denoted with a white stroke, and the fill color encodes

the relative temporality—older points are darker and lighter points occur further in the

future (Figure 6.2d). By default, signal annotations are only shown when hovering over the

timeline; however, users can opt to have them drawn in real-time as interactions are recorded.

Rationale. Scale transforms are a common visual encoding operation, but can grow com-

plex under a nested scene graph model such as Vega’s. For example, scales defined within

nested group marks can shadow scales with the same name at higher levels. Generalizing

an interaction technique requires invoking an inverse scale transform, to move from pixel to

data values, but identifying the correct scale to use can be error-prone. Vega’s scene graph

can be easily visualized but would still require a user to manually map its tree structure

to the resultant visualization. Instead, our in situ annotations make inspection of the scene

graph a direct manipulation operation. So as not to conflict with user-defined interactions,

the annotations only appear when interaction recording is paused.

6.1.4 Dynamic Data Tables

Dynamic data tables (Figure 6.1h) display each user-defined dataset. The data tables provide

users with a rapid, high-level sense of the backing data. Tables initially show only the first

84

ten rows, which can be extended on-demand. This sample data allows users to review the

attributes of each dataset. Histograms summarize the distribution of each attribute at the

given timestamp. Selecting a bar highlights corresponding values in the data table. The data

tables update automatically as the user interacts with the visualization to immediately depict

changes in the distributions of data properties. While inspecting the table, a time series of the

variability of each property is shown in the overview (Figure 6.1g). The variability can help

users identify particular points during the recorded interaction that caused large changes to

the underlying datasets. Mousing over the name of an attribute shows only the corresponding

time series. The variability is calculated as follows, where bin′i is the number of values in bin

i of the histogram at the current state and bini is for the previous state:
∑

i∈bins |bin′i− bini|.

The variability for static attributes is a flat line along the bottom of the overview.

Rationale. In the formative study, one participant noted that users “have this expectation

about data... [that] is kind of unspoken and pretty hard to debug” (P7). Interaction un-

doubtedly exacerbates this problem, as signals can further parameterize data transforms. By

displaying the resulting data values for each dataset (i.e., after transforms have been eval-

uated), our dynamic data tables narrow the gulf of evaluation [92]. Moreover, the overview

is augmented with the dataset variability to help users map the effect of signal updates to

changes in the datasets. The current calculation for the variability detects large shifts in

the distribution of data, instead of individual property values, in order to better highlight

surprising changes. As with the timeline, datasets internal to Vega are hidden from the view.

6.1.5 Linked Highlighting of the Specification

Users can select the name of a signal or data property in order to highlight all occurrences

of that name in the specification; this functionality allows users to better connect the be-

havior seen in our visual debugging techniques back to the relevant context in the code.

If the specification panel is not currently visible in the development environment, it will be

displayed alongside the current view. This linking allows users to rapidly trace variables from

the timeline or dynamic data tables back to the original specification.

85

Instructions Training Renormalizing
an Index Chart

Post-Task
Survey

Post-Task
Survey Exit Survey

Panning a
Scatterplot

Brushing a
Scatterplot

Post-Task
Survey

Figure 6.3: Participants completed three evaluation tasks, each followed by a post-task survey to
identify candidate lines as the source of the error and to rate the visual debugging techniques.

6.2 Evaluation: Debugging Faulty Visualizations

We conducted a study of how 12 first-time Vega users employ these debugging techniques

to assess faulty specifications. Across a set of real-world errors, we examined participants’

debugging strategies and their interactions with our visual debugging techniques.

Participants. We recruited 12 first-time Vega users (8 male, 4 female), all with prior experi-

ence analyzing data and creating visualizations. Participant ages ranged from 23 to 42 (mean

27.5, s.d. 5.14). All participants were either graduate (11) or postdoctoral (1) students at

the University of Washington. Each study session lasted about 90 minutes; each participant

received a $15 gift card as compensation for participation in the study.

Protocol. Prior to the study, we asked participants to review Vega’s beginner tutorial [196].

We began the study with another Vega tutorial to introduce the visual debugging techniques.

Participants were also provided with a reference sheet containing the names and descriptions

of each technique (Appendix D.2). At the start of each task, we oriented participants with

an explanation of the visualization and its intended functionality. Participants were then

asked to diagnose the behavior by identifying one or more lines in the code that cause the

error. As part of the post-task survey, participants rated the utility of each visual debugging

technique. At the end of the study, participants completed an exit survey. The methodology

for the study is shown in Figure 6.3. The survey questions are included in Appendix D.1.

Participants completed three tasks, each with an unfamiliar specification. Each specifica-

tion was based on a real-world error encountered by Vega users and developers. These errors

86

represent a range of breakdowns, covering data transformations, interaction logic, and visual

encodings, respectively. Tasks were ordered by increasing conceptual difficulty and emphasize

different parts of the system. Detailed descriptions are provided in the following sections.

We used existing specifications rather than requiring participants to craft visualizations

from scratch in order to focus the evaluation on known debugging challenges. This approach

also ensured that each participant encountered the same set of errors to facilitate compar-

isons. Participants’ unfamiliarity with Vega provided a conservative test of our debugging

techniques, as participants could not rely on prior experience to inform the debugging process.

As described in Section 5.4, the previous debugging strategy required user familiarity with

the Vega system internals, which is not otherwise necessary when authoring visualizations.

Given that most users lack this familiarity, the previous debugging process is not represen-

tative of the behavior of real-world users and is not a fair comparison for our expected use

case. Manual exploration of the internal Vega structure is more low level than the abstraction

used when writing specifications and thus less fit for general debugging scenarios. In partic-

ular, the historical debugging approach relies heavily on the use of the JavaScript console

to navigate the system internals. A demonstration of this debugging approach is included in

Appendix B. Future work is required to assess how these visual debugging techniques will

be employed in real-world development processes by expert users.

Data Collection. We used a think-aloud protocol throughout the study. Audio and screen

recordings were captured for later review. At the end of each task, participants completed

a brief survey in which they identified faulty lines of the specification and explained the

reasoning for their choice. Participants also provided Likert ratings of the usefulness of each

debugging technique. At the end of the study, participants ranked the debugging features

and provided written impressions of the debugging experience overall (see Appendix D.1).

Analysis. We assessed participant accuracy by checking if they correctly identified lines in

the specification related to the error. We examined the average rating of each technique for

each task and assessed the utility of techniques for different types of errors.

87

1/12

5/12

1/12

3/12

1/12
5/12

ERROR

{
 "width": 650,
 "height": 300,
 "padding": "strict",

 "signals": [
 {
 "name": "indexDate",
 "init": {"expr": "time('Jan 1 2005')"},
 "streams": [{
 "type": "mousemove",
 "expr": "clamp(eventX(), 0, eventGroup('root').width)",
 "scale": {"name": "x", "invert": true}
 }]
 },
 {"name": "maxDate", "init": {"expr": "time('Mar 1 2010')"}}
],

 "data": [
 {
 "name": "stocks",
 "url": "data/stocks.csv",
 "format": {"type": "csv", "parse": {"price":"number", "date":"date"}}
 },
 {
 "name": "index",
 "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "datum.date + 1296000000 >= indexDate && datum.date - 1296000000 <= indexDate"
 }]
 },
 {
 "name": "indexified_stocks",
 "source": "stocks",
 "transform": [{
 "type": "lookup",
 "on": "index", "onKey": "symbol",
 "keys": ["symbol"], "as": ["index_term"],
 "default": {"price": 0}
 }, {
 "type": "formula",
 "field": "indexed_price",
 "expr": "datum.index_term.price > 0 ? (datum.price - datum.index_term.price)/datum.index_term.price : 0"
 }]
 }
],

 "scales": [
 {
 "name": "x",
 "type": "time",
 "domain": {"data": "stocks", "field": "date"},
 "range": "width"
 },
 {
 "name": "y",
 "type": "linear",
 "domain": {"data": "indexified_stocks", "field": "indexed_price"},
 "range": "height",
 "nice": true
 },
 {
 "name": "color",
 "type": "ordinal",
 "domain": {"data": "stocks", "field": "symbol"},
 "range": "category10"
 }
],
 "axes": [
 {"type": "y", "scale": "y", "grid": true, "layer": "back", "format": "%"}
],
 "marks": [
 {
 "type": "group",
 "from": {
 "data": "indexified_stocks",
 "transform": [{"type": "facet", "groupby": ["symbol"]}]
 },
 "marks": [
 {
 "type": "line",
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "date"},
 "y": {"scale": "y", "field": "indexed_price"},
 "stroke": {"scale": "color", "field": "symbol"},
 "strokeWidth": {"value": 2}
 }
 }
 },
 {
 "type": "text",
 "from": {
 "transform": [{"type": "filter", "test": "datum.date == maxDate"}]
 },
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "date", "offset": 2},
 "y": {"scale": "y", "field": "indexed_price"},
 "fill": {"scale": "color", "field": "symbol"},
 "text": {"field": "symbol"},
 "baseline": {"value": "middle"}
 }
 }
 }
]
 },
 {
 "type":"rule",
 "properties": {
 "update": {
 "x": {"field": {"group": "x"}},
 "x2": {"field": {"group": "width"}},
 "y": {"scale": "y", "value": 0},
 "stroke": {"value": "black"},
 "strokeWidth": {"value": 1}
 }
 }
 },
 {
 "type":"rule",
 "properties": {
 "update": {
 "x": {"scale": "x", "signal": "indexDate"},
 "y": {"value": 0},
 "y2": {"field": {"group": "height"}},
 "stroke": {"value": "red"}
 }
 }
 },
 {
 "type":"text",
 "properties": {
 "update": {
 "x": {"scale": "x", "signal": "indexDate"},
 "y2": {"field": {"group": "height"}, "offset": 15},
 "align": {"value": "center"},
 "text": {"template": "{{indexDate | time: '%b %Y'}}"},
 "fill": {"value": "red"}
 }
 }
 }
]
}

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

...
"signals": [
 {
 "name": "indexDate",
 "init": {"expr": "time('Jan 1 2005')"},
 "streams": [{
 "type": "mousemove",
 "expr": "clamp(eventX(), 0, eventGroup('root').width)",
 "scale": {"name": "x", "invert": true}
 }]
 }
],

"data": [
 {"name": "stocks", "url": "data/stocks.csv"},
 {
 "name": "index", "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "datum.date + 1296000000 >= indexDate && datum.date - 1296000000 <= indexDate"
 }]
 },
 {
 "name": "indexified_stocks", "source": "stocks",
 "transform": [{
 "type": "lookup",
 "on": "index", "onKey": "symbol",
 "keys": ["symbol"], "as": ["index_term"],
 "default": {"price": 0}
 }, {
 "type": "formula",
 "field": "indexed_price",
 "expr": "datum.index_term.price>0 ? (datum.price-datum.index_term.price)/datum.index_term.price : 0"
 }]
 }
],
...

a

b

c

Figure 6.4: (a) An index chart interactively renormalizes the stock price time series data based on
the mouse position of the interactive cursor, (b) but a data transformation error sometimes zeros
out the indexed price variable, causing the chart to flatline. (c) An excerpt of the specification
shows the distribution of lines identified by participants as the source of the error (Line 24).

6.2.1 Data Transformation Errors: Renormalizing an Index Chart

An index chart of stock prices normalizes the data relative to a mouse-selected time point. At

certain dates in the visualization, the lines flatline due to an erroneous data transformation

that incorrectly filters the backing dataset (Figure 6.4b). The filter uses a constant to specify a

range with the same month and year as the index point, but the constant incorrectly excludes

some points due to a slight time offset between the data and index point. The error can be

fixed using Vega’s date support to compare the month and year. Appendix B describes this

error using the JavaScript console. Participants had 15 minutes for this task.

Five participants (42%) correctly identified the exact line causing the error. All remain-

ing participants correctly identified dependent lines that are corrupted by the faulty data

filter (Figure 6.4c). Participants identified nine distinct lines (out of 145). Participants first

identified dates where the visualization flatlines. By replaying to those points in the timeline,

all participants verified that the signal value for the index point was capturing a logical date.

Participants switched to the data table to compare attributes across states and observed that

during the error condition, the indexed price was always zero. Participants linked back to

the code to identify dependencies and select candidate lines. Participants rated replay and

the data table most highly (Figure 6.7). The data table is essential for identifying corrupted

values from the faulty filter transformation. Replay is crucial for isolating the error states.

88

3/12

1/12

2/12

1/12

6/12

8/12

7/12

6/12

1/12

ERROR

{
 "width": 800,
 "height": 500,
 "padding": {"left": 45, "right": 65, "top": 50, "bottom": 50},
 "data": [
 {
 "name": "points",
 "url": "data/points.json"
 }
],
 "signals": [
 {
 "name": "xDelta",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "xCoord - eventX()"}
]
 },
 {
 "name": "xCoord",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventX()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventX()"}
]
 },
 {
 "name": "yDelta",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY() - yCoord"}
]
 },
 {
 "name": "yCoord",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventY()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY()"}
]
 },
 {
 "name": "xMin",
 "init": -1.6,
 "streams": [
 {"type": "xDelta", "expr": "xMin + (xMax-xMin)*xDelta/800"}
]
 },
 {
 "name": "xMax",
 "init": 1.6,
 "streams": [
 {"type": "xDelta", "expr": "xMax + (xMax-xMin)*xDelta/800"}
]
 },
 {
 "name": "yMin",
 "init": -1,
 "streams": [
 {"type": "yDelta", "expr": "yMin + (yMax-yMin)*yDelta/500"}
]
 },
 {
 "name": "yMax",
 "init": 1,
 "streams": [
 {"type": "yDelta", "expr": "yMax + (yMax-yMin)*yDelta/500"}
]
 },
 {
 "name": "pointSize",
 "init": 30,
 "streams": [
 {"type": "xMin", "expr": "min(max(60/(xMax-xMin), 30),100)"}
]
 }
],
 "scales": [
 {
 "name": "x",
 "type": "linear",
 "range": "width", "zero": false,
 "domainMin": {"signal": "xMin"},
 "domainMax": {"signal": "xMax"}
 },
 {
 "name": "y",
 "type": "linear",
 "range": "height", "zero": false,
 "domainMin": {"signal": "yMin"},
 "domainMax": {"signal": "yMax"}
 }
],
 "axes": [
 {"type": "x", "scale": "x", "grid": true, "layer": "back", "properties": {
 "labels": {
 "fontSize": {"value": 14}
 }
 }},
 {"type": "y", "scale": "y", "grid": true, "layer": "back", "properties": {
 "labels": {
 "fontSize": {"value": 14}
 }
 }}
],
 "marks": [
 {
 "type": "group",
 "properties": {
 "enter": {
 "x": {"value": 0},
 "width": {"value": 800},
 "y": {"value": 0},
 "height": {"value": 500},
 "clip": {"value": true}
 }
 },
 "marks": [
 {
 "type": "symbol",
 "from": {"data": "points"},
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "x"},
 "y": {"scale": "y", "field": "y"},
 "fill": {"value": "steelblue"},
 "size": {"signal": "pointSize"}
 }
 }
 }
]
 }
]
}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

...
"signals": [
 { "name": "xDelta", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "xCoord - eventX()"}
]
 },
 { "name": "xCoord", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventX()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventX()"}
]
 },
 { "name": "yDelta", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY() - yCoord"}
]
 },
 { "name": "yCoord", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventY()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY()"}
]
 },
 { "name": "xMin", "init": -1.6,
 "streams": [{"type": "xDelta", "expr": "xMin + (xMax-xMin)*xDelta/800"}]
 },
 { "name": "xMax", "init": 1.6,
 "streams": [{"type": "xDelta", "expr": "xMax + (xMax-xMin)*xDelta/800"}]
 },
 { "name": "yMin", "init": -1,
 "streams": [{"type": "yDelta", "expr": "yMin + (yMax-yMin)*yDelta/500"}]
 },
 { "name": "yMax", "init": 1,
 "streams": [{"type": "yDelta", "expr": "yMax + (yMax-yMin)*yDelta/500"}]
 },
 { "name": "pointSize", "init": 30,
 "streams": [{"type": "xMin", "expr": "min(max(60/(xMax-xMin), 30),100)"}]
 }
],
...

a

c

d

b

Figure 6.5: (a) As the user pans the scatterplot, the axes begin to stretch and distort the plot. This
distortion occurs due to an interdependency in the definition of the signals responsible for setting
the range of the scale. (b) The xMin signal uses the old values of both xMin and xMax to compute
its new value, whereas (c) the xMax signal uses the new xMin value and the old xMax value, thus
causing the range to drift. (d) An excerpt of the specification indicates the problematic lines and
shows the distribution of lines identified by participants as the source of the error.

6.2.2 Interaction Logic Errors: Panning a Scatterplot

A scatterplot supports panning via mouse drag. Over repeated panning actions, the aspect

ratio of the plot distorts (Figure 6.5a). Panning is implemented as a set of signals defining

the minimum and maximum domain values for each axis (xMin, xMax, yMin, yMax). The

error occurs due to a mutual dependency between these signals: the minimum signal uses

the old minimum and maximum values to compute the new value (Figure 6.5b), whereas

the maximum signal uses the new minimum value and old maximum value (Figure 6.5c).

Resolving the error requires a redesign of the specification to remove the mutual dependency

in the interaction logic. Participants had 20 minutes for this task.

Eight participants (67%) correctly identified the minimum and maximum signals as the

source of the error. One participant even attempted to fix the error. The remaining partic-

ipants identified either immediate upstream or downstream dependencies of the erroneous

signals (Figure 6.5d). Participants identified nine distinct lines (out of 136). Participants

89

started the debugging process by panning the scatterplot and forming hypotheses about the

behavior of the error. In testing each hypothesis, participants often reset the timeline to

only view the most recent signal updates. Once participants observed the distortion in the

scatterplot, they used the timeline to compare the signal behaviors. To assess the relation-

ships between signals, some participants used the dependency markers to determine how

the signal values propagated whereas others attempted to glean these relationships from

the specification. Due to participants’ lack of familiarity with the Vega syntax, reading the

specification alone in the short time frame was a challenge. Participants noticed that many

signals computed the difference between the minimum and maximum to represent the visual

range, and noted that the size of this range should not be changing during the panning

interaction. Participants thus identified signals utilizing this computation as candidate lines.

Participants rated the dependencies and timeline most highly for this task, as they revealed

the relationships between signal values and the underlying interaction logic (Figure 6.7).

6.2.3 Visual Encoding Errors: Brushing a Scatterplot

A scatterplot enables brushing to highlight points: points within the brush extents should

have their fill color updated. The pixel values of the brush extents are run through scale

inversions to determine a selection over data attributes. However, the brushing interaction

does not always highlight points when the visualization is first parsed (Figure 6.6a). The

error occurs because the scatterplot signal (which represents a group mark containing the

plot) is needed to find the appropriate scale to invert the pixel-level brush extents, but is

initialized as an empty object that is only set on mousedown events. However, these events do

not correctly propagate if the user performs a mousedown on the background, as the enclosing

group element has no fill color (an idiosyncrasy inherited from Scalable Vector Graphics). If

the mousedown occurs over any of the plotting symbols, which do have a fill color, the event

fires and scatterplot is accordingly set (Figure 6.6b), enabling all future brushing actions

to work appropriately (Figure 6.6c). This example is a simplification of a breakdown that

can occur in scatterplot matrices. Participants had 15 minutes for this task.

90

1/12

1/12

2/12

1/12

2/12

3/12

7/12

ERROR

{
 "width": 175,
 "height": 175,

 "data": [{
 "name": "iris",
 "url": "data/iris.json"
 }],

 "signals": [
 {"name": "w", "init": 175},
 {"name": "h", "init": 175},
 {
 "name": "scatterplot",
 "init": "{}",
 "streams": [
 {
 "type": "@scatterplot:mousedown",
 "expr": "eventGroup('scatterplot')"
 }
]
 },
 {
 "name": "brush_start",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 },
 {
 "name": "brush_end",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown, [mousedown, window:mouseup] > window:mousemove",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 }
],

 "predicates": [
 {
 "name": "xRange",
 "type": "in",
 "item": {"arg": "x"},
 "range": [{"signal": "brush_start.x"}, {"signal": "brush_end.x"}],
 "scale": {
 "name": "x",
 "invert": true,
 "scope": {"signal": "scatterplot"}
 }
 },
 {
 "name": "yRange",
 "type": "in",
 "item": {"arg": "y"},
 "range": [{"signal": "brush_start.y"}, {"signal": "brush_end.y"}],
 "scale": {
 "name": "y",
 "invert": true,
 "scope": {"signal": "scatterplot"}
 }
 },
 {
 "name": "inRange",
 "type": "&&",
 "operands": [{"predicate": "xRange"}, {"predicate": "yRange"}]
 }
],

 "marks": [
 {
 "type": "group",
 "name": "scatterplot",

 "properties": {
 "enter": {
 "x": {"value": 0},
 "y": {"value": 0},
 "width": {"value": 175},
 "height": {"value": 175}
 }
 },

 "scales": [
 {
 "name": "x",
 "type": "linear",
 "domain": {"data": "iris", "field": "sepalWidth"},
 "range": "width",
 "zero": false
 },
 {
 "name": "y",
 "type": "linear",
 "domain": {"data": "iris", "field": "petalLength"},
 "range": "height",
 "nice": true,
 "zero": false
 },
 {
 "name": "c",
 "type": "ordinal",
 "domain": {"data": "iris", "field": "species"},
 "range": "category10"
 }
],

 "legends": [
 {
 "fill": "c",
 "title": "Species",
 "offset": 10,
 "properties": {
 "symbols": {
 "fillOpacity": {"value": 0.5},
 "stroke": {"value": "transparent"}
 }
 }
 }
],

 "axes": [
 {"type": "x", "scale": "x", "offset": 5, "ticks": 5, "title": "Sepal Width"},
 {"type": "y", "scale": "y", "offset": 5, "ticks": 5, "title": "Petal Length"}
],

 "marks": [
 {
 "type": "rect",
 "properties": {
 "enter": {
 "fill": {"value": "grey"},
 "fillOpacity": {"value": 0.2}
 },
 "update": {
 "x": {"signal": "brush_start.x"},
 "x2": {"signal": "brush_end.x"},
 "y": {"signal": "brush_start.y"},
 "y2": {"signal": "brush_end.y"}
 }
 }
 },
 {
 "type": "symbol",
 "from": {"data": "iris"},
 "properties": {
 "enter": {
 "x": {"scale": "x", "field": "sepalWidth"},
 "y": {"scale": "y", "field": "petalLength"},
 "fill": {"scale": "c", "field": "species"},
 "size": {"value": 150},
 "fillOpacity": {"value": 0.4}
 },
 "update": {
 "fill": {
 "rule": [
 {
 "predicate": {
 "name": "inRange",
 "x": {"field": "sepalWidth"},
 "y": {"field": "petalLength"}
 },
 "scale": "c",
 "field": "species"
 },
 {"value": "grey"}
]
 }
 }
 }
 }
]
 }
]
}

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

...
139
140
141
...
150
151
152
153
154
155
156
157
158
159
160
161
...

...
"signals": [...,
 { "name": "scatterplot",
 "init": "{}",
 "streams": [{
 "type": "@scatterplot:mousedown",
 "expr": "eventGroup('scatterplot')"
 }]
 },
 { "name": "brush_start",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 },
 { "name": "brush_end",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown, [mousedown, window:mouseup] > window:mousemove",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 }
],
...
"marks": [...,
 {
 "type": "symbol",
 "from": {"data": "iris"},
 "properties": {
 "enter": {...},
 "update": {
 "fill": { "rule": [
 {
 "predicate": {
 "name": "inRange",
 "x": {"field": "sepalWidth"},
 "y": {"field": "petalLength"}
 },
 "scale": "c", "field": "species"
 },
 {"value": "grey"}
]}
...

a c

d

b

Figure 6.6: Relevant scale definitions are extracted from the scatterplot signal to drive the color
encoding of the brush. The scatterplot signal is initialized as an empty object, which causes (a) the
brush to display but fails to highlight the points. When a point is clicked, (b) the scatterplot

signal is defined and (c) the brush works correctly for all future interactions. (d) An excerpt of the
specifications displays the distribution of lines identified as the source of the error.

Nine participants (75%) correctly identified the scatterplot signal as the source of the

error (Figure 6.6d). The remaining participants incorrectly selected lines associated with the

brush signal and the fill color encoding. Participants identified eleven distinct lines from

the specification (out of 176). Two participants implemented a partial fix by changing the

definition of the scatterplot signal to update on mouseover instead of mousedown. While this

solution causes the brush to correctly color points, it does not correctly address the problem of

event propagation as described above. Participants began by trying to reliably reproduce the

erratic brushing behavior. Once the conditions of the behavior were determined, participants

examined the timeline to compare the signals across working and faulty brushing runs.

Participants observed that when a mark was selected, the scatterplot signal was set in the

timeline to the appropriate scope. By selecting the scatterplot signal in the timeline, users

highlighted its use in the specification in order to identify the corresponding specification

lines. Consequently, the timeline received the highest ratings (Figure 6.7), since it allowed

participants to observe and track the inconsistent behavior of the scatterplot signal.

91

Figure 6.7: Average ratings for the utility of each debugging technique, based on the task (shape)
and across all tasks (lines), with one standard deviation shown in gray.

6.2.4 Discussion of Evaluation Results

For each task, the majority of participants were successful in either precisely identifying

erroneous specification lines or detecting lines directly related to the error. Despite being

first-time users, participants accurately identified erroneous lines for faulty panning (67%)

and brushing (75%) interactions. Three participants even attempted partial fixes (1 panning,

2 brushing)—an encouraging result given their lack of familiarity with Vega. In only 15-20

minutes, these participants were able to observe, diagnose, and experiment with solutions to

the error in an unfamiliar specification and environment. For the index chart, 42% of partic-

ipants correctly identified the problematic line, with the remaining participants identifying

dependent lines corrupted by the error. As participants used the debugging techniques to

conceptually hone in on an unfamiliar problem, we consider this a promising result.

Figure 6.7 plots participant ratings for each debugging technique. Of particular note is

that the utility of each technique is highly dependent on the type of error—for example,

dynamic data tables were rated highly for the index chart, which featured a data transfor-

mation error, whereas the timeline was rated poorly as the interaction for the index chart

required only a single signal. In order to understand the complex dependencies within the

panning example, the dependencies on the timeline were much more salient. On average, the

92

combination of timeline and replay techniques were deemed universally useful for assessing

program state and observing relevant changes (Figure 6.7). One participant noted that “the

combination of the timeline, replay, automatic text highlight, and dependencies makes for a

pretty useful and smooth debugging experience.”

The remaining techniques (overview, tooltip, attribute variability, and signal annotations)

were rated lower on average as each technique was less effective at surfacing information rel-

evant to the debugging tasks. The tooltip had the largest spread of average ratings, and was

particularly useful in debugging the index chart by allowing users to inspect the encoding

of the broken state and track the underlying error to the backing dataset. The attribute

variability was designed to support quick identification of data changes, but was often over-

looked by participants. One participant noted that the low rating suggests that the system

should “promote its appearance more.” Currently, users must explicitly select the debug-

ging technique they wish to use, which requires them to know what information would be

most useful. Future development of these techniques should examine how to automatically

surface relevant details with less intervention; we further explore this idea in Chapter 7.

Additional static analysis, or new higher-level specifications, could help the system better

understand the semantics of interactions (e.g., do signals define point or range selections?)

and automatically surface appropriate techniques.

6.3 Limitations and Future Work

Vega’s reactive semantics enabled us to efficiently snapshot the program state at every point

in the execution history; furthermore, we were able to utilize the structure of the Vega code to

easily identify and visualize all relevant program variables. While this work exemplifies how

the techniques may be applied for a large class of reactive programming languages, future

work should explore how to effectively incorporate real-time program visualizations into im-

perative programming domains. Extending this work to such programming contexts requires

additional insight into how to efficiently log relevant details of the program execution [26].

While the semantics of Vega facilitate identification of relevant program variables, future

93

work would need to explore new workflows to predict which variables are most relevant to

end-user debugging tasks. One strategy would be to employ static analysis of the program

behavior prior to executing the code or to require users to manually annotate interesting

parts of the program execution [36]. However, future work is needed to explore new ways to

limit the burden on programmers to better support preventative debugging strategies that

surface surprising details before the user knows to look for them (see Chapter 7).

The replay technique currently employed in this work updates the visualization by setting

the signal values of the previous state and re-rendering the visualization as if it were a

new pulse in the execution. However, this functionality assumes a consistent definition of

the set of signals, limiting support for hot-swapping changes in the specification. Future

work should examine what additional information should be recorded to support replay of

interactions across specification changes. Though low-level input events are abstracted into

signal definitions for easier debugging by users, such events may be necessary to support

replay when signal definitions have changed or been added to the specification.

In the evaluation, one participant explained that “I would have loved a way to use the

visualization essentially as an editor to modify the specification (and then see those changes

update the viz in real time).” This approach for direct manipulation design has been explored

through a number of visualization construction systems (see Section 2.1.2). For example,

Lyra [174] provides an interactive environment for visualization design via direct manipula-

tion, but does not yet support authoring interactions. Our timeline visualizes the propagation

of events to the interaction logic, but may be too low level for an interactive development

environment like Lyra. By shifting the focus of the signal annotations from a summary of all

events, to an indication of the current state, the annotations could support better debugging

of interaction sequences in situ. Replay could then support playback and refinement of in-

teraction sequences to enable authoring of interactions in an interactive design environment

like Lyra [174], Data Illustrator [129], or Charticulator [161].

94

6.4 Summary of Contributions

Interaction techniques are crucial for exploring and understanding visualizations, but are

often difficult to author and debug. Vega’s reactive semantics encapsulate the bulk of the

interaction logic, providing a meaningful entry point for the program understanding process.

We contribute a set of visual debugging techniques that allow users to probe the state, vi-

sualize relationships, and inspect state transitions over time. These techniques include

a timeline visualizing interactive signals, in situ annotations of visual encodings, and dynamic

data tables. The three tasks in the user evaluation demonstrate data transformation, inter-

action logic, and encoding errors that arise during the design of interactive visualizations.

The evaluation demonstrates how the proposed techniques can be used by novice users to

accurately identify and understand these errors and better support their debugging needs.

In particular, these visual debugging techniques surface relevant details of the underlying

system behavior at the level of abstraction with which users are most familiar. Using these

debugging techniques, three participants felt sufficiently comfortable with the unfamiliar

code to attempt to fix the errors rather than simply identifying the source of the error.

From the evaluation, we found that the utility of each technique was highly dependent on

the debugging needs and awareness of the participant. For example, the attribute variability

was designed to support quick identification of data changes, but was often overlooked by

participants. In response, one participant felt that the system should “promote its appearance

more.” For this work, users must explicitly select the debugging technique they wish to use

by navigating to the appropriate part of the debugging environment. However, to select the

right approach requires the end-user programmer to already know what information would

be most useful for a given task. In the next chapter, I present a design space of program

visualizations that augment source code and thus reduce the separation between the end-user

programmer’s code and the proposed program understanding visualizations.

This work was done in collaboration with Arvind Satyanarayan and Jeffrey Heer, and was

originally published and presented at EuroVis 2016 [87].

95

Chapter 7

AUGMENTING CODE WITH IN SITU VISUALIZATIONS

Similar to the visual debugging techniques described in the previous chapter, many existing

program understanding tools must be explicitly invoked and are presented to programmers

in separate, coordinated views. However, studies have shown that switching between views

imposes a burden on developers, making it difficult for them to maintain a clear picture of the

overall context of the runtime behavior [118, 147, 151, 167]. This separation is particularly

problematic when programmers are immersed in a particular task—they may overlook details

that would be obvious in an alternate view [167]. Expectations about the desired behavior

may also cause programmers to overlook errors when the behavior diverges from expectation.

These scenarios illustrate the challenge faced by systems to “support the tasks that matter

most to the user.” While debugging approaches may be available (and useful) for testing

or debugging tasks, these same approaches may be inappropriate when the programmer’s

goals shift towards authoring or reviewing the code. New approaches are therefore required

to support proactive program debugging by adapting to the user’s changing needs.

To better support proactive program understanding for source code, we explore the design

of program visualizations that are displayed directly inline in the code. To this end, we con-

tribute a design space of embedded visualizations for interactive applications that visualize

the behavior of time-varying variables. As with the visual debugging techniques introduced

in Chapter 6, the in situ visualizations represent the program behavior at the level of ab-

straction with which users are most familiar. Snapshots of the program state highlight the

exact value of scalar variables, or the underlying distributions of set variables. Sequence vi-

sualizations demonstrate how these variables change over time. Motivated by prior work [66],

we further contribute criteria for the placement of code augmentations based on trade-off

96

metrics, such as considerations for the amount of code reflow or occlusion, and the impact

on the comparability, unobtrusiveness, and salience of the visualizations.

We then show that these interactive visualizations of the program state can enable richer

interactions across the development environment and present runtime information as a first-

class component of the code authoring process. In an evaluation with 18 first-time Vega

users, we found that participants could improve their overall task grade on a set of program

understanding questions by about 2 points (out of 42) when using the in situ visualizations.

Furthermore, these in situ visualizations helped increase participants’ perceptions about the

speed and accuracy of their answers and helped better situate themselves within the code.

Visualization
Exact
Value

Indicator

Modification
Indicator

Horizon

Timeline

Tick

Name

Stacked
Area

Line

Heatmap

Histogram

Snapshot

Sequence

Sequence

Snapshot

Snapshot

Snapshot

Sequence

Value

Set

Value

Set

Data:
Visualize the exact

value or underlying
data distributions

Change:
Visualize how

variables update
between steps in

the execution

Type TemporalityDetail

Summary
Horizon

Summary
Line

Sequence

Page #

100

102

103

104

101

No Change: Change:

Figure 7.1: We identified ten visualizations designs for code augmentations based on the level of
detail to show, the data type of the variable, and the temporality level of interest.

97

7.1 Design Space of Code-Embedded Visualizations

Programmers must understand the values of, and changes to, variables as their code executes.

In this section, we describe a design space of code-embedded visualizations (Figure 7.1). We

decompose the design space into two types of visualized data (value and set) at two levels

of detail (data and change) across two temporalities (snapshot and sequence). We will first

motivate the design of our in situ visualizations with a usage scenario and a set of design

considerations. Programmers often have a set of implicit assumptions about how their code

will behave, which reflect their original intentions when writing the code.

Consider a scenario in which a programmer is creating a scatterplot that supports panning

and zooming. The programmer defines xMin, xMax, yMin, and yMax values to track the

viewport position and update the variables based on how much the end user has interacted

with the visualization. These values can then be used to determine the domain for each axis

(xDomain and yDomain). The programmer also decides to vary the point size based on the

relative zoom level, using the span of the xDomain as a proxy. However, the programmer

accidentally introduces an error where the xMin and xMax values are mutually dependent

and therefore cause the xDomain to stretch as the end user pans the visualization. With the

visual encodings updated to reference these variables, the programmer may begin testing the

output via interaction. This example is based on the evaluation task from Section 6.2.2.

Usage Scenario. The programmer starts by performing pan operations to see how the visual-

ization updates based on changes to the axis minimum and maximum values (xMin ,

xMax , yMin , yMax), the axis domains computed from these

values (xDomain and yDomain), and the point size . How-

ever, even while only panning, the scatterplot visualization seems to also zoom into the

points. This behavior is surprising, as it does not reflect the programmer’s intentions. Look-

ing at the dynamic code behavior indicated by the inline visualizations, the programmer

notices that the size is increasing while panning. The size variable is based on

the span of the xDomain (which should not change while panning), revealing an underlying

error in how the xDomain is computed: the xMin and xMax values are mutually dependent

98

and thus produce an error when updated sequentially. The in situ visualizations provide a

contextually appropriate representation of the program behavior directly in the code, thus

reducing the separation between code authoring and program understanding.

7.1.1 Design Considerations

Code augmentations narrow the gulf of evaluation between the programmer’s code and the

runtime behavior by surfacing contextually relevant information in situ. Motivated by prior

work, we describe three requirements that inform the design of effective in situ visualizations:

code augmentations must be (1) comparable, (2) salient, and (3) unobtrusive.

1. Comparable: In situ visualizations help programmers draw connections between vari-

ables in the code and the runtime behavior, and should further facilitate identification

of important trends. Programmers may need to interact with multiple visualizations to

understand relationships between different variables in the code, by using on-demand

linking [17], for example. When comparability is essential to the programmer’s current

task (e.g., to compare related variables), the augmentations should prioritize placement

decisions that facilitate comparison by using alignment and shared axes [154].

2. Salient: The code augmentations should adapt to provide contextually relevant infor-

mation for the programmer’s current task and should update their salience to attract

the programmer’s attention to potential areas of interest. The placement [66, 211] and

animation [75, 136] for a code augmentation can influence the salience. The temporality

(snapshot or sequence) of the augmentation impacts its utility for particular tasks.

3. Unobtrusive: The code augmentations must remain unobtrusive so as to not detract

from the programmer’s primary task. The amount of text reflow and occlusion [66,

211] can increase the obtrusiveness; the code augmentations should therefore minimize

changes to the code position and visibility when the programmer is actively reading the

code. However, violating such layout concerns may help maintain the code structure

or improve salience at the programmer’s periphery (e.g., while testing the behavior).

99

Figure 7.2: The index term variable in this Vega [177] specification represents an array of objects,
so we select a representative property to visualize and differentiate the augmentation from others
using the orange color. On line 44, the programmer uses the index term.price, so we choose
price as the representative property. The selected object key is also shown on mouseover.

7.1.2 Data Type: Value and Set

We separate program variables into two data types: value and set. Value variables represent

a single element of interest to the programmer that takes the form of either a value (e.g., a

number, date, or string) or an object (e.g., a set of key-value pairs). Set variables represent

a collection of value elements for which the programmer needs to understand the underlying

distribution. To represent objects in both value and set data, we perform an object simpli-

fication in which the object is represented by one of its properties (Figure 7.2). We select a

representative property of the object by identifying which of its properties is most commonly

used within the code. Visualizations of objects are differentiated from others with an orange

color to help avoid misunderstandings about the type of object variables.

7.1.3 Level of Detail: Data

For the data level of detail, the programmer is interested in understanding the exact value and

underlying distributions of the program variables. We thus identified several visualizations

to highlight properties of the data at different temporalities.

100

Exact Value level of detail: data, data type: value, temporality: snapshot

When viewing a snapshot of the runtime behavior, we display the exact value of the data

variable. For variables representing a single object, we produce a simplified representation

that shows a single property of the object ; the full object can then be viewed

on-demand via mouseover.

Rationale. The programmer often has expectations about the type or value of variables. Dis-

playing the exact value makes it easy to determine whether or not the value is of the expected

type or near the expected value. Development environments often enable this check as an

on-demand tooltip showing the current value [9]. Whereas other development environments

require the user to view this information via mouseover, our representation reduces the need

for interaction by surfacing the same information automatically. Interaction is only required

when users want to view the full value of object variables (which may be arbitrarily large).

Line Chart and Horizon Chart level of detail: data, data type: value, temporality: sequence

Sequence representations emphasize comparisons across the history (or a subset of the his-

tory) of the program runtime. We identified two visualizations to show sequence data: a line

chart and a horizon chart [79].

Design. For numeric values, we display the exact value over time. For categorical values,

we position each category at its own point on the y axis, which allows the programmer to

view trends in the visitation history; for example, a sawtooth pattern indicates

habitual revisitation of an earlier state. For arrays of values, we create a line for each element

in the array , based on the value type. The length of the history can quickly surpass

the number of states that a programmer can easily reason over; in response, we limit the

number of states visualized as the program executes to a subset of the most recent states.

We found that visualizing up to twenty states with the horizon chart provides an

interpretable view of the data, using four layers (for both positive and negative values) [79].

The programmer can expand the time window on-demand to view a larger slice of the history.

101

Rationale. The horizon chart is particularly useful for comparisons across positive and neg-

ative values [79], whereas the line chart provides a more easily interpretable view of the

overall trend. For categorical values, the line chart may be useful for visualizing patterns in

the visitation history, but does not otherwise encode useful information in the y position.

Histogram and Heatmap level of detail: data, data type: set, temporality: snapshot

To provide an overview of set variables, we identified two visualizations to represent the

underlying distribution of set data: a histogram and a heatmap .

Design. For sets of numeric values, we arrange the values into uniformly sized bins. For

categorical data, we compute distinct bins for each category and visualize the top n. We

place all remaining values in a separate (“other”) bin and visualize it alongside the top n.

The “other” bin is colored black and is drawn to scale up to the size of the largest bin in the

top n. This representation allows the programmer to make comparisons among the largest

bins while still representing all the data. For example, in this histogram , the set

contains eight different values in varying quantities. We visualize the top n (where n = 6)

and thus place two values into the “other” bin.

Rationale. We recommend the histogram as the position encoding is more effective than the

color encoding in the heatmap [132]. We found that visualizations with a size of about eight

pixels per bin are easily interpretable (as in the previous examples shown in this section)

and can support interaction on the elements. Representations that reduce the width to about

two pixels make it harder to distinguish between bins or interact effectively. We

include the heatmap for its amenability to miniaturization, which we discuss in Section 7.1.5.

Summary Line Chart and Horizon Chart level of detail: data, data type: set, temporality: sequence

For set variables, the sequence representation aggregates the underlying results to provide

an informative summary of the behavior over time. Similar to the value type, we visualize

the aggregated sequence data as either a line or horizon chart [79].

102

Design. There are multiple ways to represent the value of a set variable at the sequence

temporality. For this work, we compute the variance of the dataset and visualize the difference

in the variance between the current and previous points in the runtime behavior. Numerous

aggregation measures could be applied, and the utility of these measures is highly dependent

on the programmer’s task and requirements for the dataset. As such, programmers can

configure the system to use the appropriate aggregation measure for their task.

Rationale. Our decision to use the difference in the variance was selected to show large

shifts in the underlying distribution of the data between states in the program runtime.

However, if the difference between states is of less interest, standard aggregations (e.g., mean

or median) may be more appropriate. For set representations using the difference measure,

we recommend using the horizon chart as it more strongly emphasizes large values

and the direction of the change [79]. Horizon charts also provide a more easily interpretable

view of small differences given the small size of the visualization.

7.1.4 Level of Detail: Change

At the change level of detail, the value and set data types are simplified to indicate how

variables change. For value variables, the change is a boolean indicator of whether or not

the variable was updated between snapshots of the program runtime. For set variables, the

change is defined as the number of elements that were added, modified, or removed. The

change level of detail helps attract the programmer’s attention to dynamic variable updates.

Indicator level of detail: change, data type: value, temporality: snapshot

The indicator shows whether or not a program variable has changed between particular

snapshots (or within a certain time period) of the runtime behavior.

Design. The indicator is displayed as either empty when no change to the variable has

occurred, or filled when the variable has changed between snapshots of the program

runtime. The indicator can be extended to provide more information by displaying an arrow

indicating the direction of the change or other informative inline glyphs.

103

Rationale. The indicator acts as a midpoint between the snapshot and sequence temporalities

by showing a comparison of the current and previous states, or by summarizing whether any

changes have occurred in a set of states. This augmentation is the simplest one proposed in

this work and provides a small indication of where programmers may want to focus their

debugging efforts when understanding changes in the runtime behavior.

Tick and Timeline level of detail: change, data type: value, temporality: sequence

We identified two visualizations to show the history of changes to value variables at the

sequence temporality: tick and timeline .

Design. The timeline visualization shows a bar for each state in which the variable is updated.

The tick visualization shows a teal block when a variable is updated and a brown block

for states when the variable is not updated, similar to the indicator visualization.

Rationale. The tick visualization is based on Tufte’s baseball sparkline [192], whereas the

timeline is motivated by the timeline we developed in Chapter 6. For the change level of

detail, we recommend the tick visualization as it provides a clearer indication of the behavior

for every snapshot in the sequence. The tick visualization allows the programmer to inspect

the value of a program variable even when it has not been recently updated; for example,

the programmer may be interested in the value when it is used but not updated (e.g., the

variable represents a previously defined value and is only “read”). The redundant position

and color encoding allows the programmer to easily extract the update status at a glance

while also facilitating miniaturization (see Section 7.1.5). The timeline visualization may be

more appropriate when the variable does not have a value during states when it was not

updated (e.g., the variable only exists for states when it has been newly defined).

Modification Indicator level of detail: change, data type: set, temporality: snapshot

Similar to the indicator, the modification indicator shows changes to set variables by

counting the number of elements added, modified, or removed at the current snapshot.

104

Design. The modification indicator creates a bar representing the number of values that were

added , modified , or removed in the data. The starting point in the dataset labels all

values as “added” and otherwise displays changes between snapshots of the program runtime.

Rationale. This representation allows the programmer to understand the impact of transfor-

mations on set data at a more granular level than whether or not any change has occurred.

This approach can be particularly important for understanding the behavior of datasets that

frequently filter or update the data during the program runtime.

Stacked Area Chart level of detail: change, data type: set, temporality: sequence

We selected the stacked area chart to show the changes within a set variable at

the sequence temporality, similar to the modification indicator.

Design. The stacked area chart creates a band representing the number of values that were

added , modified , or removed in the data at each snapshot within a sequence of

program states, similar to the modification indicator described in the previous section.

Rationale. This representation allows the programmer to see information about the impact

of transformations on set data over time. In particular, this behavior can help programmers

understand when changes to a set variable are particularly expensive due to unnecessary

additions or removals. As with the modification indicator, this approach can be particularly

important for understanding the behavior of datasets that filter or update the data values.

7.1.5 Miniaturizations

To reduce the obtrusiveness of the code augmentations, we designed miniaturizations for

the visualizations introduced in the previous section. The miniaturization for the horizon

chart and line chart is a smaller version of the horizon chart that appears as an underline

of the text. The miniaturization for both the histogram and heatmap is a smaller version of

the heatmap that appears as an underline of the text. Finally, for the tick and timeline visu-

105

alizations, the miniaturization is a compacted version of the full visualization that appears

as an underline of the text. We also use the compacted version of the tick visualization as

the miniaturization of the stacked area chart. Each of these miniaturizations was designed

to provide useful information similar to that of the full visualization but amenable to the

size constraints. As the indicator is already small, and the exact value itself is important,

we do not provide additional miniaturizations of these visualizations. Examples of these

miniaturizations are visible in Figure 7.4, Expand Inline and Expand Below.

7.1.6 Interaction with Code-Embedded Visualizations

We include a number of interactions to facilitate analysis of the visualizations and enable

comparisons across representations. For the exact value representation, mousing over a

simplified object augmentation displays the full object . For

the line chart and horizon chart, mousing over the visualization shows a red cursor and

the value at the current point . To facilitate comparison between augmentations,

holding shift draws a cursor and value for the current snapshot across all visible charts in

gray (as in the next figure). For augmentations representing an object simplification, the

cursor displays the property name in addition to the full value .

For the histogram and heatmap, hovering over a bar shows additional details, including

the range or value for the current bin and the number of elements. For visualizations rep-

resenting a simplified object, the augmentation similarly shows the bin and count, but also

shows the name of the property that is currently visualized (Figure 7.2). If the programmer

holds shift while interacting with the histogram, the environment updates all the related

visualizations to show the distribution relative to the current selection (Figure 7.3).

Mousing over the tick and timeline visualizations highlights the snapshot and displays the

value of the program variable at that snapshot . To facilitate comparisons, holding

shift highlights and displays the value for all visible augmentations. For the modification

indicator and stacked area chart , mousing over the visualization shows the

number of elements added, modified, or removed from the set variable at the given snapshot.

106

Figure 7.3: Code augmentations visualize the runtime state of program variables in Vega [177]
code. A histogram shows the distribution of variables containing set data. Interacting with the year
histogram filters all other histograms to only show the data values where the year is between 1995
and 2002 (hand cursor shown here for clarity; in a real implementation the cursor is hidden mid-
interaction to aid chart reading). For mouseover year, a tick visualization depicts value changes.

7.1.7 Visualization Color for Code-Embedded Visualizations

We vary the color for the code augmentations based on the type of data being displayed

in order to facilitate identification of the type when similar visualizations are displayed in

the development environment. For each type of visualized data, we select a diverging color

scheme to encode positive and negative values in the visualizations described in the preceding

sections. For augmentations that show object simplifications, we further differentiate the color

to attract the programmer’s attention to the simplification (e.g., index term in Figure 7.2).

The decision to change the color based on the type of the data makes it easier to differentiate

between value and set data, as value data often represents exact values

whereas set data performs some aggregation on the underlying data (such as the variability).

Further differentiating the color for object simplifications ensures that these

visualizations stand out from both value and set variable augmentations (Figure 7.2).

107

7.1.8 Visualization Size for Code-Embedded Visualizations

To support the comparability of augmentations throughout the code, we standardize the

augmentation width, which is set to a constant value based on the average token size in

the programming language. The augmentation height is determined by the line height. The

standard size allows programmers to more easily compare between sequence augmentations as

the visualized time scale is the same [154]. We add additional inter-word and inter-line space

as necessary depending on the placement strategy (Section 7.1.9). For certain placement

techniques, we use a variable width since the miniaturization and augmentations appear in

place. Goffin et al. [66] discuss design considerations for increasing the visualization size to

fill the inter-line space or to add additional inter-word padding in more detail.

7.1.9 Placement of Code-Embedded Visualizations

We identified twelve techniques for the placement of code augmentations (Figure 7.4) and

assessed each technique based on a set of design trade-offs. These placement options are an

extension of the techniques previously presented by Goffin et al. [66].

Placement Techniques

The right and left placements position augmentations adjacent to the corresponding token.

The above and below placements ensure that individual lines of code maintain their original

structure, but may add new whitespace lines that increase the overall code length. The inline-

transparent and inline-opaque placements draw augmentations over the corresponding token,

thus requiring interaction to improve legibility of the visualization or code.

To satisfy the need for unobtrusive augmentations, we include the placement techniques:

expand-inline and expand-below. These placement techniques require the augmentation to

include a miniaturization that displays the augmentation as an underline of the text. Hovering

over the token expands the augmentation as either inline-opaque or below. However, unlike

below, expand-below does not add a whitespace line and instead draws the augmentation over

the existing code so as not to require additional spacing in the code.

108

Placement Visualization Reflow

Right

Left

Above

Below

Inline
Transparent

Inline
Opaque

Expand
Inline

Expand
Below

Left
Margin

Right
Margin

Spacing Occlusion Width

Inline
Start

Inline
End

Alignment

Figure 7.4: Twelve placement techniques for code-embedded visualizations shown within a sample
Vega [177] specification. Each technique has different trade-offs regarding the amount of inline text
reflow, additional line spacing, occlusion of other text, variable width requirements, and alignment of
the augmentations within the development environment. A cursor is shown for placement techniques
requiring interaction (hand cursor shown here for clarity; in a real implementation the cursor is
hidden mid-interaction to aid chart reading). The trade-offs are labeled as required , up to the
discretion of the implementer , or not required .

The inline-start and inline-end placement techniques position augmentations on the same

line, but not adjacent to their corresponding tokens. The inline-start placement leverages

the code indentation to place augmentations in the whitespace at the start of the line. The

inline-end placement maintains the full readability of the line, using the augmentations as

the final punctuating marks. As multiple tokens may occur on the same line, the augmen-

tations can either be placed adjacently or overlapping, but some interaction is required to

relate augmentations back to their corresponding tokens (e.g., via highlighting).

109

The left-margin and right-margin placement techniques separate the augmentations from

the token by placing them in the margin of the code editor, and in doing so improve compa-

rability across augmentations. When multiple augmentations exist on the same line, they

overlap, thus requiring additional interaction to select the augmentation of interest.

Placement Trade-off Metrics

For each placement technique described in this section, we discuss trade-offs in the application

of the technique with respect to the reflow requirements, line spacing, augmentation width,

vertical alignment, and occlusion. We provide a brief description of each metric below, and

include the results of the various placement techniques in Figure 7.4.

reflow The code must reflow the text inline to make space for the augmen-
tation, thus increasing the length of the line.

spacing The code must add additional space between lines to include the
augmentation, thus increasing the length of the document.

occlusion The augmentation partially or fully occludes the code, thus re-
quiring interaction to improve legibility of the augmentation or code.

width The augmentation must have a variable (rather than fixed) width to
fulfill placement requirements in the code, thus reducing the comparability.

alignment The augmentation will be positioned such that it is vertically
aligned with other augmentations in the document to support comparison.

Reflow. The left and right placement techniques introduce reflow changes inline to make

space for the visualization. Depending on the programming language used, these changes

may be minimal due to the amount of existing whitespace and structure in the code. The

inline-transparent and inline-opaque placement techniques may require some reflow for small

tokens to improve the legibility of the augmentations by increasing their width. If many

augmentations are on the same line, the inline-start placement may increase the indentation

at the start of the line. All other techniques do not cause reflow changes.

110

Spacing. Only the above and below placements add additional spacing to the document.

The impact of this additional spacing is highly dependent on the structure of the code; for

augmentations where whitespace is already available above or below the line, we do not

introduce a new line but instead use the existing whitespace (Figure 7.4, Above).

Occlusion. The inline-transparent and inline-opaque placements occlude the token, thus re-

quiring interaction to improve the legibility of the augmentation or code. For the expand-

inline and expand-below techniques, the augmentations will not occlude the code when minia-

turized, but will introduce some occlusion when expanded to their full size. The left-margin,

right-margin, and inline-start techniques may introduce occlusion if the augmentations over-

lap when there are more than one on a given line. For the inline-end placement, augmenta-

tions can be positioned side-by-side to facilitate comparison. The above and below placements

may need to handle occlusion with other augmentations on the same line, as described by

Goffin et al. [66]. Neither the right nor left placement techniques occludes the text.

Width. The right, left, above, below, inline-start, inline-end, left-margin, and right-margin

techniques use a standard width to facilitate comparisons. For the inline-transparent, inline-

opaque, expand-inline, and expand-below techniques, the width matches the size of the token.

Alignment. The left-margin and right-margin augmentations will be aligned, thus facilitating

comparisons. Using the inline-start placement can produce augmentations that are aligned

based on the indentation depth of their corresponding tokens. All other techniques position

tokens relative to the original positions and will therefore not be aligned.

7.1.10 General Placement Guidelines

Based on our design considerations, the augmentations must be comparable, unobtrusive,

and salient, such that they attract programmers’ attention to interesting trends, without

detracting from programmers’ ability to perform their primary task. These considerations

are directly related to the third challenge: “support the tasks that matter most to the user.”

111

The comparability of the augmentations is primarily impacted by their alignment and

width. When programmers need to make fine-grained comparisons between augmentations,

the margin-left and margin-right placements are ideal because they maintain the same tem-

poral axis across augmentations and provide a standard location at which to find information.

The unobtrusiveness of the augmentations requires that minimal changes be made to

the code structure caused by reflow or additional spacing ; large structural changes can be

detrimental to programmers’ ability to review the code [211]. Occlusion is also relevant to

the programmer’s ability to read the code or extract information from the augmentations at

a glance. When the unobtrusiveness of the augmentations is most important, we recommend

using the expand-inline placement technique; this technique provides an indicator of what

variables are updating during program execution while limiting changes to the code visibility.

The salience of the augmentations influences how easily the programmer’s attention

is attracted to particular augmentations of interest. Whereas the expand-inline placement

provides some indication of variable changes or distributions, it can easily be overlooked as

it appears only as an underline of the text. To better attract the programmer’s attention,

we recommend using the right placement technique to produce a large augmentation near

the source of the token. For tokens on the periphery of the programmer’s attention, the

inline-opaque technique may be better so as to reduce reflow changes to the document.

7.2 Implementation of Code Augmentations for the Online Vega Editor

To explore the utility of these code augmentations in a real programming environment, we

implemented a set of embedded visualizations as an extension to the online Vega code editor.

In particular, we identified in situ visualizations from our design space that are relevant to

novice users and appropriate for the Vega runtime state. We followed a simple rule-based

process for selecting the type of in situ visualization to display for each variable in the Vega

specification. For this implementation, we do not currently allow the visualization type to

change once selected, though such automatic updates are an important part of future work.

Figure 7.5 shows an example of the code augmentations in the online Vega editor.

112

Figure 7.5: Code augmentations visualize the runtime state to show the distribution of data. Inter-
acting with the "symbol" histogram filters all other histograms to only show the data values where
the "symbol" is "GOOG" (Line 38, hand cursor shown for clarity; in the editor the cursor is hidden
mid-interaction to aid chart reading). This interaction shows that "GOOG" has missing data for early
dates in the dataset (Line 24), which results from a later IPO date than the other companies.

Tooltip Hovering over a data field or signal name shows the current state of the

variable on-demand, similar to existing debugging environments [9]. For data fields, the

tooltip shows summary information about the dataset (e.g., the min, max, and mean value

for that field). For signals, the tooltip shows the current value. See Appendix E.3 for an

example figure showing the tooltip behavior (Figure E.2).

Indicator For signal variables that are not expected to change (e.g., do not include an

“update” clause or react to input events), we selected the indicator to deemphasize the signal

definition. The indicator also allows for quick value extraction.

Line For signal variables where the type at runtime is a number, we select the

line visualization because it represents the range and value of the variable over time, rather

than a snapshot of the change. For signal variables that are an array of numbers, we use a

different line for each element in the array to fully represent the variable.

Tick For signal variables that are initialized to null or are not a number at

runtime, we selected the tick visualization to emphasize when changes occur and to show

the behavior of the variable over time. We selected the tick visualization rather than the

timeline because the tick visualization explicitly represents each state in the

program runtime and may thus be more informative for novice users.

113

Histogram We selected the histogram for data field variables because it visu-

alizes the current state. While the horizon chart can highlight substantial shifts

in the historical values of the variables, this visualization summarizes the variable rather

than explicitly representing the underlying values. The horizon chart is also more likely to

be unfamiliar to novice users and may thus require additional training to interpret. The his-

tograms can highlight changes between states by observing shifts in the distribution. Since

position encodings are more interpretable than color encodings [132], we chose not to utilize

the heatmap visualization for our final implementation.

We selected this set of visualizations to provide ones that were likely to be familiar to novice

Vega users and thus interpretable with minimal training. While this selection only covers a

subset of augmentations from our design space, we did first prototype all the augmentations

proposed in this system, as well as the various placement techniques. Other visualization de-

signs not included in this implementation may be useful for specialized tasks by expert users.

For example, the modification indicator or stacked area chart could be use-

ful for visualizing tuple-specific changes to the underlying Vega datasets. These visualizations

could therefore be particularly useful for debugging tasks surrounding data transformations.

Future work should further explore techniques to enable users to customize which visualiza-

tions are displayed for different program variables.

7.3 Evaluation: Understanding Program Behavior of Vega

To evaluate the utility of in situ visualizations for program understanding tasks, we conducted

a user study with 18 novice programmers. Participants were presented with two unfamiliar

Vega programs and asked to answer 18 program understanding questions about the behav-

ior (see Appendix E.6). We compared our in situ visualizations implemented in the online

Vega editor to a baseline condition in which participants were only able to use a tooltip to

inspect individual values. Participants completed a post-task questionnaire (Appendix E.7)

in which they rated their self-perceived speed and accuracy on the task questions on a scale

114

from 1 (better with the baseline condition) to 7 (better with the visualization condition).

Participants also scored how helpful, interpretable, and intrusive each of the in situ visual-

izations were on a scale from 1 (not) to 5 (extremely). For the evaluation, we selected the

right placement to ensure that the in situ visualizations are salient and in close proximity to

their corresponding token. This placement choice was motivated by Zellweger et al.’s [211]

discussion of the importance of proximity for embedding contextual information. Further-

more, the right placement reduces the overall reflow of the document and follows the reading

direction of the code. Appendix E includes the various resources used for the evaluation.

Participants. We recruited 18 participants (11 male, 7 female) from the University of Wash-

ington. Participants included both PhD (4) and undergraduate students (14). Participant

ages ranged from 18 to 30 (mean 21.1, s.d. 3.74). Participants completed a screening survey

about their experience and programing language familiarity to ensure participants had prior

programming coursework or job experience (Appendix E.1). The most common program-

ming language regularly used by our participants is Java, followed by Python, JavaScript,

and C/C++. All of our participants were novice Vega users (i.e., were unfamiliar program-

ming in Vega), though two participants had previously seen Vega in other contexts. Each

participant received a $20 gift card for completing a 90 minute session.

Methods. Participants answered program understanding questions about two Vega programs,

with and without the assistance of in situ visualizations of the program behavior. At the start

of the evaluation, participants were given an instruction sheet with a sample Vega program,

an explanation of the code, and an introduction to the development environment and impor-

tant keywords (Appendix E.3). Participants were then given a training task in which they

answered several sample questions and viewed the sample answers (Appendix E.5). During

this time, participants were encouraged to ask any questions about Vega or the task setup.

Once participants started the tasks, we no longer answered questions. For the study tasks,

we selected four Vega programs that cover a range of visualization designs, datasets, and

program understanding challenges. Three of these scenarios exhibit an error in the behavior.

115

Instructions Training

Baseline
Condition

Visualization
Training

Visualization
Condition

Post-Task
Questionnaire

Visualization
Training

Visualization
Condition

Baseline
Condition

Figure 7.6: Participants completed two evaluation tasks, one in each of two conditions (baseline or
visualization); we counterbalanced the conditions across participants. This figure shows the steps
followed in the evaluation, with each participant completing only one path.

Population. A population pyramid includes a slider to select the year that is visualized. This

Vega specification includes missing data for the year 1890, which causes derived datasets to

be empty and the visualization to be blank at this point.

Index. A line chart of stock prices with an interactive cursor that renormalizes the data

relative to this point to show the return on investment. The Vega specification includes

derived datasets and nested data declarations. An error in one of the data transformations

causes all tuples to be filtered out at certain points, causing the lines to visually flatline.

This example was previously described in Section 6.2.1 and Appendix B.

Scatterplot. A scatterplot of points that supports infinite panning. This Vega specification

includes many interconnected signal definitions to define the interaction. Due to a bug with

the evaluation order of signals, the domain of the axes becomes distorted while panning.

This example is similar to the one described in Section 6.2.2 and Section 7.1.

Overview. Two area charts showing stock price over time; selecting a region in the smaller

chart zooms the larger one to produce a filter+context visualization. This Vega specification

includes many interconnected signal definitions nested in the specification. There is no error.

Participants completed two tasks, one in each of two conditions: baseline and visualization. In

the baseline condition, participants were given a simple code editor based on the online Vega

editor. Tooltips were added to the signal and data field tokens to show information about the

runtime state, similar to other common development environments [9]. For the visualization

116

condition, the editor was additionally augmented with our in situ visualizations. Prior to the

visualization condition, participants were shown an instruction sheet with an explanation

of the in situ visualizations (Appendix E.4) and were encouraged to experiment with the

augmentations using the same visualization as the training task. We counterbalanced the

order of the conditions across participants. The experimental protocol is shown in Figure 7.6.

Participants answered 18 program understanding questions for each task about major

Vega concepts, such as signals, datasets, and data fields, which required participants to reason

about how the visualization state changes during interaction. These questions encouraged

participants to read and experiment with the program to develop an understanding of the

interconnectedness and runtime behavior of the code. Participants were asked to identify any

unexpected behavior in the Vega output and answer follow-up questions about the source

of that unexpected behavior; participants were not informed that an error existed if they

did not identify it themselves. Participants provided free-form answers to each question and

rated their confidence on a scale from 1 (not confident) to 5 (extremely confident). The list

of program understanding questions used for the evaluation is included in Appendix E.6.

At the end of the session, participants completed a post-task questionnaire (Appendix E.7)

in which they rated their self-perceived speed and accuracy on the task questions on a scale

from 1 (better with the baseline condition) to 7 (better with the visualization condition).

Participants also scored how helpful, interpretable, and intrusive each of the in situ visual-

izations were on a scale from 1 (not) to 5 (extremely). The larger scale for the speed and

accuracy was selected to encourage nuanced comparison across the conditions.

7.3.1 Quantitative Results & Analysis

To perform the analysis, we first created a gold-standard set of answers for each task and

scored participant answers on an integer scale from 0 to 2 (“incorrect,” “partially correct,”

“correct”). Scores on each participant’s answers were provided by the second author for this

work (Arvind Satyanarayan), who was blinded to the study condition for each task. Final

grades for each participant were determined by simple summation.

117

We fit linear mixed-effects models for participants’ grades, log-transformed task times,

and average confidence. Each model included fixed effects for condition and presentation or-

der, plus per-subject random intercepts. Likelihood ratio tests indicated a marginally signif-

icant effect of the visualization condition on task grade (χ2(1) = 3.30, p < 0.1). Participants

had roughly one more “correct” (or two more “partially correct”) answers in the visualization

condition overall. On average, participants had a score of 22.5 in the baseline condition and

about 24.5 in the visualization condition (out of 42 total points). Exploratory data analysis

indicated a strong difference in grades due to education level, but with similar absolute grade

improvements in the visualization condition. There was a significant effect of task order on

the log time for participants to complete the task (χ2(1) = 8.96, p < 0.01), with participants

faster in the second task regardless of condition. We found no significant effect of condition or

order on participant confidence. For the post-task questionnaire, we used 1-sample nonpara-

metric Wilcoxon signed rank tests with a null hypothesis that the result is neutral (middle

Likert scale value). We found significant positive effects in favor of the in situ visualizations

for participants’ self-reported speed (p = 0.002) and accuracy (p = 0.0026).

Figure 7.7 depicts subject ratings of how helpful, interpretable, and intrusive each of the

visualizations were. We found a significant positive effect for line visualization helpfulness

(p = 0.005) and a marginally positive effect for histogram helpfulness (p = 0.186). We found

a significant positive effect for how interpretable the value (p = 0.003), indicator (p = 0.021),

and line (p = 0.015) visualizations were, and a marginally significant positive effect for the

histogram (p = 0.132). For the visualization intrusiveness, we found a significant negative

effect for the value (p = 0), indicator (p = 0.005), line (p = 0.009), and tick (p = 0.031).

7.3.2 Qualitative Results & Discussion

We selected questions that would be reasonable to expect participants to answer regardless of

condition. The notable significant effect of task order on the completion time suggests some

improved knowledge of the language and questions, which helped participants know where

to look. While we did see a marginally significant effect of the visualization condition on task

118

Figure 7.7: The pseudo-median value and 95% confidence interval (unless otherwise noted) for
how helpful, interpretable, and intrusive each code augmentation was on a scale from 1 (not) to
5 (extremely). Median values are labeled with the p-value for the 1-sample Wilcoxon signed rank
test. Note: the Wilcoxon rank test could not compute the full 95% confidence interval for scores
tightly clustered near one or five, and therefore show the confidence interval otherwise noted in
the figure: *For the intrusiveness of the line, tick, and value, the range shows the 90% confidence
interval; **For the interpretability of the value, the range shows the 80% confidence interval.

grade, participants were generally able to answer the task questions by reviewing the code

and probing the state information with the tooltip on signals and data fields. In particular,

there were a number of question and task combinations for which all participants provided

the correct answer, regardless of condition. For example, the first question in the task asks:

“What is the name of the primary dataset being visualized?” 34 out of 36 answers on this

question were correct; the two incorrect answers occurred during the baseline condition.

The question answering process could be quite different between the two conditions. Ques-

tion 8 asked participants to identify how each signal that updates is used throughout the

code. In the baseline condition, P18 spent over 16 minutes attempting to identify how each

signal in the specification behaved (Q8 median 3.65 min). To fully answer this question, P18

carefully experimented with different interactions, probing the signal value with the tooltip

to identify when it changed. This back and forth between testing interactions and assess-

ing the state clearly demonstrates the disconnect between the code behavior and output.

Participants in the visualization condition similarly tested interactions, but could identify

changes at a glance. As P2 put it: “the [in situ] visualizations allowed me to connect the

119

dots between the code, its properties, and what it did.” When comparing the two conditions,

P11 noted that “The biggest factor for me was just seeing which values change in real-time

when interacting with the visualization.” Rather than reading the code or probing the state

on-demand, participants could view changes as they worked rather than as a separate task.

We saw a significant positive effect in favor of the in situ visualizations on both partic-

ipants’ self-reported speed and accuracy. Across conditions, participants utilized search to

find keywords of interest. But, as P15 explains, “the code visualizations helped better locate

the signals and made me more confident about my answers.” Moreover, the in situ visual-

izations turned the underlying data into a physical artifact to reason over. P2 noted that

“I found it helpful to be able to interact with the data on a graphical, physical level.” Unlike

our prior work on visual debugging techniques, the in situ visualizations were more con-

cretely grounded in the source code. Instead of requiring participants to shift their attention

amongst different views, the embedded code visualizations reduced the separation to allow

participants to focus on the program understanding process within the code context.

The error in the index chart is a particularly challenging one to reason about because it

occurs due to a small difference in the date/time of the tuples in the dataset compared to

the filter window (see Appendix B). For most participants, it was clear that the error only

occurred at certain dates in the visualization. However, the error was not with the signal

itself. For P9, it became clear that the error was in the data because “when I mouse over the

flatline behavior, the ‘index’ field changes and the [histogram] shifts to the left (next to the

variable).” When interacting with the in situ visualization of the signal, P9 also correctly

noticed that the indexDate contained a time in addition to the date. While none of the

participants correctly diagnosed the error in its entirety, P9’s observations were crucial steps

towards uncovering the convoluted source of this error. The in situ visualizations provide a

lightweight way to incorporate the underlying state into the program understanding process.

While the utility of in situ visualizations for interpreting interactive behavior was appar-

ent, participants sometimes struggled to understand the contextual implications, particularly

for the data fields. For instance, to understand the range of data fields in the index chart, P9

120

inspected one of the visual encodings and noted “Oh, okay, I guess Microsoft... for some rea-

son.” Although P9 identified that the data field only had one value (which was Microsoft), it

was not clear why this was the case when other parts of the code showed the full range (e.g.,

all five companies). In this case, P9 had overlooked the nested dataset declaration;

five different marks are dynamically created, but the embedded visualizations only show the

results for one of them. To understand where each data field came from, participants needed

a more intimate understanding of the implementation hierarchy and data flow.

7.4 Limitations and Future Work

While Vega’s relative simplicity was convenient for evaluating the design space of in situ

visualizations, Vega is an exemplar of a larger class of reactive languages, such as React [93]

and Elm [36], for which these techniques could apply. For example, Elm [36] was originally

designed as a reactive programming language that similarly utilizes the streaming constructs

implemented (and now visualized) in Vega. Moreover, many of Vega’s constructs are rep-

resentative of properties seen in other languages. The arbitrary nesting of mark definitions

produces numerous examples of how scope can be a concern when referencing particular

variables and how such environments are dynamically allocated at runtime. Since marks can

be dynamically added and removed, the scope and number of instances can change as the

programmer interacts with the output Vega visualization. While the design space presented

in this chapter provides a breakdown of potential data types of interest (Figure 7.1), we

do not currently address this underlying code structure. The user evaluation (Section 7.3)

surfaced some of the challenges in this space; as discussed in Section 7.3.2, P9 struggled to

interpret the nested dataset declaration when viewing derived code augmentations for the

line marks in an interactive index chart. The use of object simplification and summarization

in the embedded visualization shows one approach to handling complex nested data struc-

tures by emphasizing particular properties of interest. However, future work should explore

how interaction or other techniques might surface relevant scoping information or better help

users to navigate complex nested data structures in the code.

121

Vega’s reactive framework was useful for effectively snapshotting the program behavior

to produce the in situ visualizations. Section 5.2.1 provides some additional discussion about

the design of Vega as a framework on which to explore new program understanding tech-

niques. While we do not propose advances in system logging, techniques such as Dolos from

Burg et al. [26] enable efficient logging with minimal overhead for web programming. This

infrastructure could provide an effective framework on which to introduce in situ visualiza-

tions for web development contexts. However, such an extension also raises new questions

about how best to identify relevant code variables for imperative programming domains.

While techniques such as static analysis or manually added annotations for important vari-

ables [36] can help address this problem, future work should explore new techniques that

can preemptively surface interesting details before the programmer becomes aware that a

problem exists, and adapt to changes in the programmer’s workflow.

The goal of these in situ visualizations was to enable the system to better “support the

tasks that matter most to the user” by communicating relevant details of the program be-

havior directly within the code. By utilizing this approach, programmers can view important

information while otherwise focused on authoring or reviewing code. While in situ visual-

izations can helpfully call attention to the dynamic behavior of program variables, it may

be important to change their salience relative to the programmer’s current task. P14 noted

that “I thought the code visualizations were cool and helpful, but they could also be a little

distracting.” In order to appropriately incorporate inline visualizations for real-world use

cases, future work should explore how the style and placement of inline visualizations could

dynamically adapt based on the programmer’s current task to only employ in situ visualiza-

tions as needed. While the work presented in this dissertation moves one step close towards

recognizing and supporting the user’s primary task, future work is required to identify how

best to adapt program understanding approaches to the ever-changing needs of the user.

122

7.5 Summary of Contributions

Vega allows programmers to focus on authoring interactive visualizations while deferring

implementation details to the underlying Vega system. However, this approach to visualiza-

tion design introduces a gap between the code written by the programmer and the system

output, which complicates the program understanding process particularly when debugging

the time-varying behavior of end-user interactions. To alleviate the need to switch amongst

different program understanding tools (see Chapter 6), we contribute a design space of in situ

visualizations that appear directly inline in the source code to support program

understanding during all phases of the development process, not just while debugging.

In the formative interviews on new debugging techniques for Vega (Section 5.4) one of

the participants stated that Vega “need[s] a way to examine internal variables... [and] to

see the internals of the step-by-step process.” In an evaluation of this work (Chapter 6),

we showed that new visual debugging techniques can in fact help programmers accurately

trace changes through the code to identify bugs or crucial dependencies. While the visual

debugging techniques helped with program understanding, there still remained a disconnect

between the user-authored code and visual debugging techniques. The in situ visualizations

presented in this chapter further reduce this gap. In evaluating these results (Section 7.3),

one participant explained that “the [in situ] visualizations allowed me to connect the dots

between the code, its properties, and what it did.” By leveraging the domain-specific concepts

that are familiar to the user (e.g., the program variables and interaction logic), we were able

to design visual debugging techniques that address the debugging needs surfaced in our early

formative interviews. As with the original visual debugging techniques, these visualizations

reflect the level of abstraction with which users are most familiar, but were specifically

designed to better support users in completing the tasks that matter most—such as authoring

or reviewing code—by communicating relevant program details directly within the code.

This work was done in collaboration with Arvind Satyanarayan and Jeffrey Heer, and was

originally published and presented at CHI 2018 [88].

123

Chapter 8

AUTHORING AND REUSING RESPONSIVE
VISUALIZATION DESIGNS

Visualization plays an essential role in both performing data analysis and communicating

analysis insights. The previous chapters have explored new strategies to produce graph visual-

izations that encode domain knowledge (Chapter 4) and new techniques to support program

understanding for interactive visualization design (Chapter 5-7). This chapter explores the

final piece of this process: customizing and annotating visualizations for communicative pur-

poses. A crucial component of this step is the design of responsive visualizations. Responsive

visualizations adapt the visualization content based on the screen size or interactive capa-

bilities of the viewer’s device (e.g., a mobile phone or tablet).

Consider the use of visualizations in news articles. Mobile devices are now a more im-

portant platform than desktop or laptop computers for consuming news articles [200]. While

the text content of the article may easily adapt to the device size, it is non-trivial to create

responsive visualizations. Responsive visualizations must adapt the design so that content

remains informative and legible across different device contexts. For example, designers may

choose to resize certain visualization marks or swap the axis encodings so that a chart fits

better on a mobile screen. Designers may also employ different interaction techniques de-

pending on the interactive capabilities of the device. Despite the necessity of responsive

visualizations, the process of developing and maintaining multiple designs requires extensive

user time and effort. Responsive visualizations therefore become a burden on the designer’s

development workflow. While responsive considerations may be discussed in the abstract

throughout the visualization design process, implementation of the responsive design often

occurs only in the final stages once the idea for the visualization has been fully formed.

124

Action: reposition
Component: title
Description: unwrap & move titleb Action: remove

Component: label
Description: delete cost label c Action: modify

Component: label
Description: simplify textd Action: add

Component: mark
Description: add linese

Action: resize
Component: view
Description: compress

a

Figure 8.1: Desktop (left) and mobile (right) visualizations from the New York Times article
“The Places in the U.S. Where Disaster Strikes Again and Again” [G13]. This example demon-
strates responsive techniques that: (a) resize the view to compress the width; (b) reposition content
(e.g., axes, labels, and title); (c) remove unnecessary labels; (d) modify the text and axis labels to
reduce complexity; and (e) add new line marks to connect labels to the corresponding bars.

To understand current practices for responsive visualization design, this chapter first

contributes a survey of 53 news articles gathered from 12 sources. From these articles, we

identified 231 visualizations and labeled the visualization type and responsive techniques used

by the article. Figure 8.1 shows an example visualization from this corpus as well as several

of the responsive techniques used to modify the design. Based on this survey, we identified six

high-level actions performed on individual components of a responsive visualization design:

no change, resize, reposition, add, modify, and remove. The most common action in our corpus

is to remove content from the mobile visualization. However, visualizations often exhibit

multiple techniques, including more complex customizations such as completely redesigning

the visualization encoding or adding clarifying marks. While a few designs take into account

device-specific interaction capabilities, the vast majority of adaptations focus on creating

legible charts at different sizes corresponding to different device categories (e.g., desktop,

tablet, or portrait orientation on mobile). Thus, in this chapter we use the terms “device

size/context” and “chart size” interchangeably to describe the responsive visualizations.

This chapter further contributes interviews with five authors of the coded visualizations

to better understand their development processes and the responsive visualization techniques

used in their work. These interviews surface some of the core challenges faced by journalists

125

for producing responsive visualization design. In particular, we find that responsive designs

regularly require authors to maintain different artboards for different device sizes. This diffi-

culty demonstrates the complexity of the third challenge explored in this dissertation: “sup-

port the tasks that matter most to the user.” While responsive visualization design is an

essential component for developing communicative visualizations for news contexts, existing

tools rarely provide the support needed to handle this task. Journalists are therefore required

to adapt their own preferred workflow around the capabilities of the tools at hand.

To better address these development needs, we identify four central design guidelines to

inform the development of new systems for responsive visualization design: (1) enable si-

multaneous cross-device edits to facilitate design exploration for multiple target devices;

(2) facilitate device-specific customization to address the need for adaptive designs;

(3) show cross-device previews to provide an overview of customizations applied across

devices; and (4) support propagation of edits to reduce user effort and accelerate design

iterations. Based on these guidelines, we contribute a set of core system features that allow

designers to view, create, and modify multiple device-dependent visualizations. These fea-

tures raise the level of abstraction from a single visualization specification (as in the previous

chapters) to generalize the development process for multiple linked views. To this end, our

system displays separate views for each chart size and supports simultaneous editing across

views. The system then enables generalized selections and view control to support robust

customization of marks. Finally, the system foregrounds the variation between visualizations

to help designers assess the full picture of the applied modifications and propagate changes.

To demonstrate the utility of our system, this chapter contributes four reproductions

of real-world examples from our corpus [G13, G36, G50, G52]. These examples represent a

range of visualization types (bar chart, dot plot, line chart, and symbol map) and exhibit

unique workflows that demonstrate our core system features. For each example, we provide

a step-by-step walkthrough of the development process for the visualization design. These

walkthroughs demonstrate how a designer can construct, compare, customize, and iterate on

different visualizations using a flexible development workflow for responsive visualizations.

126

8.1 Related Work: Responsive Web Design and Mobile Visualization

While responsive visualization design is still a nascent area, responsive web design has re-

ceived more attention. Patterns and principles of responsive web design have been exten-

sively studied [133, 134]. HTML5 and CSS3 are popular standards to implement responsive

designs [55]. Techniques for responsive web design, however, are not directly transferable to

visualization: webpages primarily employ text wrapping, image resizing, and document re-

flow to achieve responsiveness; these approaches offer little insight on visualization challenges

such as data encoding, scale adjustment, or annotation placement.

Responsive visualization becomes particularly necessary for a journalism context in which

readers often consume content on mobile devices. Conlen et al. [34] describe techniques to ex-

amine reading behaviors for interactive articles, with an implementation targeting Idyll [33];

the articles analyzed by Conlen et al. [34] were primarily designed for desktop use, but 30%-

50% of readers consumed and interacted with the content on a mobile device despite the

limitations, which suggests that “mobile users are willing to engage with interactive content,

and that the specific interactions should have been refined to better accommodate them” [34].

Despite the need for responsive articles, there is limited support for designing responsive

visualizations. Journalists often combine a variety of approaches including data analysis

in R and Python, dynamic visualization development using D3.js [23], and customization

in Adobe Illustrator. Static visualization approaches require designers to implement and

maintain multiple artboards, which can be time consuming and labor intensive. The New

York Times developed ai2html [190], which converts Adobe Illustrator documents into a

web format by separating the text and graphic components; this approach ensures that the

visualization text remains legible by supporting dynamic placement and scaling, but does

not explicitly promote considerations for mobile visualization [168].

Datawrapper [64] is a tool created specifically for journalists to design interactive and

responsive visualizations based on a set of templates and device sizes. Datawrapper makes

it easy to preview the design across devices, but limits the customization options available

127

for the visualization designs and narrative content. Power BI has also introduced an auto-

matic approach to responsive visualization design for mobile dashboards [59]. Recent work

discusses the application of responsive web design techniques for responsive visualization [1]

and strategies for designing visualizations for both desktop and mobile devices [24].

There are several more general approaches for resizing and utilizing the device context

for visualization construction. D3.js [23] and Vega-Lite [176] enable the construction of dy-

namic visualizations that can automatically resize to the available space. Charticulator [161]

enables automatic chart layout using constraints and can constrain the layout to fit within

a particular artboard size. ViSizer [207] is a framework for applying local optimizations to

more effectively resize a visualization. Vistribute [90] is a system for assigning interactive

visualizations amongst multiple devices based on properties of the visualization and device.

Visualizations for news contexts also require extra communicative elements and interac-

tive considerations. Idyll [33] is a language for authoring interactive web articles, including

the design and parameterization of visualizations. ChartAccent [159] enables free-form and

data driven annotations of visualizations. Ellipsis [173] is a tool for authoring visualizations

without programming by describing the narrative structure through distinct scenes.

8.2 Formative Interviews: Responsive Visualization Design Practices

To better understand existing responsive design practices, we conducted semi-structured

interviews with five journalists about their development approach and rationale for the re-

sponsive visualization techniques they employ.

Participants. We recruited five journalists selected from authors of items in the responsive

visualization corpus described in Section 8.3.1. All participants had previously published

at least one article that exhibited responsive visualization techniques and were personally

responsible for the visualization design in the article. We omit demographic information

from this section to protect the anonymity of the interview participants. Each interview

lasted about one hour; participants did not receive compensation.

128

Data Collection. The interviews took place over the phone. We captured audio recordings

for later review and transcribed notes during each interview.

Protocol. Participants were asked to describe their general process when developing a vi-

sualization for a news article and the responsive techniques used in one (or more) of their

published articles. Over the course of all interviews, we discussed ten articles from five news

organizations. Finally, participants were asked to describe the major challenges they face

when designing responsive visualizations. We used a common, semi-structured interview

question template across all interviews (see Appendix F).

Analysis. After the interviews, we reviewed the recordings and transcripts to extract common

themes regarding the challenges and approaches used for responsive visualization design.

These themes are discussed in more detail in the following sections.

8.2.1 Desktop-First or Mobile-First Development

Our participants generally described a desktop-first development approach for designing

responsive visualizations. Part of the rationale for desktop-first development was that “by

virtue of sort of sketching graphics on my laptop or on my desktop screen, often the first

iteration of something works best at those screen widths” (P3). Another participant explained

that “It’s easier to try things and to come up with an idea... on desktop, cause that’s where

we work” (P2). For the visualizations, one participant noted that “I think it’s easier to sort

of be ambitious when you have a larger palette” (P1). Designers were generally motivated by

the flexibility and ease provided by a desktop development environment, such that mobile

designs were not at the forefront of their minds.

While our participants noted that desktop development was often their primary focus,

participants also mentioned that they kept the mobile version of the visualization in mind

throughout the development process. One participant explained that “when we’re sketching

something and deciding whether something is gonna work, the question of... how is it gonna

work on a phone comes up before we’ve gone too far” (P3). Another participant noted that

“I guess it is always in the back of our minds, like ‘how will this work on mobile’ and often

129

we will use that as a rationale to simplify ideas early on in the process because we know that

they won’t really work on mobile” (P1). While designers may think about the mobile version,

they are not necessarily exploring the mobile designs in a practical sense.

Some participants did explain that mobile-first development could be advantageous by

encouraging more careful design and simplification of the content. In particular, mobile-

first development can help designers “focus on what’s essential” (P2) and “it makes us

more concise and it makes us get to the point quicker” (P4). When reflecting on the trade-

offs of mobile-first or desktop-first development, one participant noted that the focus was

“Aspirationally, certainly mobile phones. I think in practice, that doesn’t really happen” (P3).

Another participant observed that “much of the programs we use are geared towards desktop

first or feel that way, anyway, so if all of them had a slight shift in default or in tone I feel

like that would also help us to think that way” (P4).

8.2.2 Adapting Desktop Visualizations for Mobile

When producing responsive visualizations, participants noted that they would finalize the

desktop design before creating the mobile version. As one participant explained, “the mo-

bile version comes after, when I’m happy with the desktop version, to avoid too many

changes” (P2). To adapt the visualization to a mobile context, our participants often men-

tioned the need to prioritize information and remove unimportant content. For one example,

the participant explained that “I do remember now removing all of the annotations from that

map and I think that was because those annotations weren’t fundamental” (P1). Another par-

ticipant explained that “There’s a hierarchy of information, right? So as you go down in the

artboard size you make the decision about what information can be cut first” (P3). When

reflecting on the adaptation process, another participant explained that “I think it’s easier

to eliminate things when you have everything” (P2). For many of our participants, the most

common workflow was to start with the full desktop visualization and to select what content

could be removed when scaling visualizations down to mobile sizes; this trend also matches

the overall preference for removing rather than adding content, as described in Section 8.3.1.

130

8.2.3 Artboards, Dynamic Designs, and Automatic Techniques

To produce responsive visualizations, many of our participants chose to focus on a set of pre-

defined artboard sizes. However, a major challenge with multiple artboards is maintaining

and propagating changes to the design. One participant noted that “It’s annoying when you

have to make changes to three or four or five different artboards and that usually introduces

mistakes... so that’s one of the reasons why the design for mobile comes later” (P2). To

produce multiple designs can be a time consuming and labor intensive process. One partici-

pant explained that it is “not the most intellectually stimulating exercise to redesign or make

your graphic work... but it is something that needs to be done for every single graphic” (P3).

Another participant noted that “it feels like a chore... You want to be working on the story;

you want to not be working on polishing things for small audiences” (P1). While there are

clear benefits to responsive visualization design, the process of producing these alternative

designs can feel like a hindrance to the overall development workflow.

Several participants discussed the use of D3 [23] for easily producing responsive visualiza-

tions. One participant mentioned using D3 for a design and the need to dynamically resize

the window to test the responsiveness: “We more just change the width of the screen pixel

by pixel to make sure every pixel is properly looking okay” (P5). However, one participant

expressed a hesitance towards dynamic artboard resizing because “dynamically positioning

things like labels and annotations at every possible screen width is very easy for that to go

wrong and having a fixed number of breakpoints tends to be a little bit less error-prone” (P3).

While the ability to make designs dynamic could be helpful for producing visualizations

that work for any screen size, testing the full range of possibilities was a common source of

difficulty and undesirable user effort during the development process.

While there are a variety of common approaches for responsive visualization design (e.g.,

removing content or simplifying labels), there is not necessarily a straightforward procedure

for identifying when and how to employ these techniques. When reflecting on the general

workflow, one participant noted that “I think that it’s usually a pretty iterative, ad hoc pro-

131

cess. It takes a bit of thinking. It’s usually not the same solution for any two graphics” (P3).

Participants often noted that responsive designs were an essential component to their work,

but that the development process was currently underserved by existing tools. This observa-

tion reinforces the challenge that systems must “support the tasks that matter most to the

user.” While many visualization constructions exist for different visualization use cases (see

Section 2.1), these approaches do not currently address responsive visualization design.

8.2.4 Takeaways from the Formative Interviews

Participants mentioned benefits of both a mobile-first and desktop-first design approach.

Mobile-first encourages designers to focus on only the most important aspects of the data

whereas desktop-first development enables more complex, creative, or impressive designs.

Since development often happens on a desktop, the designs tend to reflect this default rather

than the personal development preferences expressed by our participants. Participants felt

that designing for multiple screen sizes (especially mobile) early in the process can lead to

better and more consistent cross-device design decisions. More specifically, working through

the challenges of visualizing data for various devices helps designers decide what information

is most critical, how to effectively highlight key characteristics, and how to effectively encode

or layout the data. Empirical evidence suggests that working on multiple prototypes in

parallel leads to better and more diverse designs, and increased self-efficacy [39].

However, cross-device design with existing tools is tedious and error-prone because each

visualization is treated as a separate artifact, which requires edits to be manually dupli-

cated across designs. While having direct control is important for ensuring that designs meet

publication standards, too much repetition discourages iterative design modifications. As a

result, most workflows start with a fully-executed desktop design that is modified to better

fit mobile screen sizes. While expedient, this approach limits the amount of cross-device de-

sign exploration and can lead to inconsistencies between the designs for various devices. This

discussion reinforces the challenge that new systems should “support the tasks that matter

most to the user,” rather than requiring users to adapt to particular system defaults.

132

b
a

r
c
h

a
rt

d
o

t
p

lo
t

m
a

p

li
n

e
 c

h
a

rt

n
e

tw
o

rk

ta
b
le

c
a

rt
o

g
ra

m

b
u

m
p

 c
h

a
rt

s
c
a

tt
e

rp
lo

t

a
rc

 d
ia

g
ra

m

g
ri
d

a
re

a
 c

h
a

rt

tr
e

e
m

a
p

in
fo

g
ra

p
h

ic

p
ie

 c
h

a
rt

g
a

n
tt
 c

h
a

rt

h
e

a
d

s
h

o
ts

h
e

a
tm

a
p

m
a

tr
ix

s
tr

e
a

m
g

ra
p

h

b
u

b
b

le
 c

h
a

rt

3
D

 d
ia

g
ra

m

b
e

e
s
w

a
rm

w
o

rd
 c

lo
u

d

s
a

n
k
e

y

d
ra

w
in

g

New York Times (9)

Reuters Graphics (6)

FiveThirtyEight (7)

Bloomberg (7)

NPR (4)

The Pudding (4)

The Guardian (4)

The Marshall Project (4)

Harvard Business Review (2)

National Geographic (4)

The Economist (1)

The Washington Post (1)

News Source (# Articles)
2 237 3 2 1117 2

14 21 332 11 1

941 1 3 5 25

1 5

2 1232 1

11

56 121 1

5 11 3 1

1 12 1 11 1

47 37 18 21 12

91 15 1

6 21 1

Number of Coded Visualizations per Visualization Type

Figure 8.2: We examined 231 visualizations from twelve sources to inform our analysis of responsive
visualization techniques. The number of articles per source is shown in parentheses. For the full
list of articles analyzed in this work, see Appendix G. We labeled each visualization with the core
visualization type. However, some visualizations were more complex (e.g., a normalized, stacked
bar chart); 46 of the 231 visualizations were small multiples.

8.3 Techniques for Flexible Responsive Visualization Design

To better understand the space of responsive visualization techniques currently employed in

news articles, we first analyzed a corpus of responsive visualizations from 53 news articles

(Section 8.3.1). Based on this analysis and the results of the formative interviews described

in Section 8.2, we identified a set of four design goals for new systems to promote responsive

visualization design (Section 8.3.2). We then propose a set of core system features to better

support flexible responsive visualization design (Section 8.3.3).

8.3.1 Responsive Visualization Corpus

We selected 53 news articles gathered from twelve sources—including the New York Times,

Reuters Graphics, and FiveThirtyEight—to produce a corpus of 231 responsive visualization

examples. To build this corpus, we surveyed best-of lists and selected articles that included at

least one visualization exhibiting responsive techniques. We made sure to select articles that

include a wide range of different visualization types. We labeled each visualization instance

with the visualization type (Figure 8.2) and responsive techniques used when adapting the

133

ax
is

ax
is

 la
be

ls

ax
is

 ti
ck

s

gr
id

lin
es

le
ge

nd

da
ta

m
ar

ks

la
be

ls

tit
le

vi
ew

in
te

ra
ct

io
n

no changes

resize

reposition

add

modify

remove

Action

16225 2 72

2

10

7

71

293 5

7

1

172

41 23

1

2

3

1922

20

3

2056

24

4

1

13 29

1

211

59

1

1

1

1

Number of Visualizations (Portrait)

ax
is

ax
is

 la
be

ls

ax
is

 ti
ck

s

gr
id

lin
es

le
ge

nd

da
ta

m
ar

ks

la
be

ls

tit
le

vi
ew

in
te

ra
ct

io
n

no changes

resize

reposition

add

modify

remove

Action

52 1 1

6

34

110

2325 16

3

19

21469

9 279

3

7

1

11

4

3

1

1

Number of Visualizations (Landscape)

1

231

Figure 8.3: We performed an open coding of the responsive techniques used for the portrait (left)
and landscape (right) orientation of a phone. The labeled techniques reflect the changes made from
a desktop visualization to the mobile visualization. We then clustered the techniques to indicate
the type of action and the component to which it applies. Responsive techniques were used much
more frequently to customize the portrait visualizations than the landscape visualizations. It was
also more common to remove or reposition content, than to add new content for the mobile version.

design between the desktop and mobile versions of the visualization (Figure 8.3). For the anal-

ysis, we performed an open-coding of the responsive techniques for the visualization design

and interactive techniques used. Two of the authors coded and discussed a set of overlapping

visualizations to ensure inter-coder agreement. When labeling the responsive techniques,

we identified changes from the desktop to the mobile version of the visualization. To view

the mobile version of the visualization, we used the Device Mode [10] provided by Chrome

DevTools to simulate an iPhone X device. We then examined the responsive techniques used

for both the portrait and landscape orientation of a phone. Figure 8.1 shows several of the

open-coding labels generated for the visualization (e.g., the description); we provide the full

list of open-coding labels generated for seven visualization designs in Appendix H.

We grouped the codes based on their behavioral similarity to determine the core editing

action, and we associated the action with a particular visualization component. The respon-

sive techniques generally fall along a spectrum of simple editing actions: no changes, resize,

reposition, add, modify, and remove. These techniques may independently impact different

visualization components (e.g., axes, legends, marks, labels, and title), allowing for complex

and varied modifications based on the device context. The modifications may apply to either

134

a single component, several components, or all components in the view. While most changes

reflected small shifts in either layout or content, a subset of visualizations drastically changed

the design (e.g., [G19, G23, G36]). The coded results are shown in Figure 8.3.

From our analysis, we found that a larger range of responsive techniques were used for the

portrait orientation than the landscape orientation of a phone (Figure 8.3). For the landscape

orientation, 69 of the visualizations exhibited no changes (29.9%) as opposed to only 6 in

the portrait orientation. This difference likely reflects the fact that the landscape orientation

is closer in overall shape to the screen space afforded by a desktop computer. When it

comes to applying responsive techniques, we saw a variety of modifications; in particular,

resizing the design often requires device-specific customizations (e.g., to reposition the visual

content [G13, G36], add clarifying information [G5], modify annotations to change or shorten

the text [G10, G13], remove visualization details [G13, G50, G52], or remove interactivity

altogether [G1, G14]). Across examples in our corpus, we found that it was much more

common to remove elements from the view (87 or 37.7%, portrait orientation) than to add

new elements to a mobile visualization (26 or 11.3%, portrait orientation). While most designs

generally employ a few minor modifications, in rare cases, authors completely redesign the

visualization and/or interaction for different device contexts [G19, G23, G36].

In addition to the visual techniques, we examined the end-user interactions included in

the visualizations. Most visualizations were static or did not change the core interaction type,

aside from using tap rather than click. Similar to the visual techniques, many visualizations

removed the interactivity completely from the mobile version rather than redesigning the

interactive capabilities (e.g., [G1, G14]). However, a small subset introduced or updated

the interaction to improve the experience on mobile (e.g., [G2, G23]). For example, in the

New York Times article titled “Connecting the Dots Behind the 2016 Presidential Candi-

dates” [G2], the desktop visualization includes a node-link diagram that shows the connection

between individuals and organizations on mouseover. The authors updated this functionality

for mobile to utilize a carousel navigation strategy (two buttons) to loop through individuals

and show these same connections on a simplified version of the node-link diagram.

135

8.3.2 Responsive Visualization System Design Considerations

Based on our investigation of existing responsive visualizations and current design practice,

we propose a new responsive visualization design system that facilitates flexible, cross-device

development workflows. To realize this goal, our system adopts four key design guidelines:

1. Enable simultaneous cross-device edits. Simultaneous editing can accelerate it-

eration by reducing the time it takes to experiment with different design ideas across

multiple target sizes. This capability also reduces the chance of introducing errors and

inconsistencies from repeated manual application of edits.

2. Facilitate device-specific customization. Adaptation of the visualization content

to particular device contexts is central to producing effective responsive designs. Our

system therefore enables the application of device-specific customizations by focusing

editing operations on a particular view or mark.

3. Show cross-device previews. Providing immediate, visual feedback across multiple

designs allows designers to evaluate their choices in the context of all target chart

sizes. Such previews help designers determine which choices should be consistent across

devices and which should be customized for a particular view. Foregrounding design

variation provides a complete picture of the customizations that have been applied.

4. Support propagation of edits. During the development process, designers may focus

on refining the visualization design for one specific chart size. Techniques to propagate

edits from one design to another can enable designers to quickly transfer ideas that

work well for a particular size to other device contexts.

8.3.3 Responsive Visualization System

To realize these goals, we implemented a responsive visualization design tool that maintains

a synchronized representation of a design across multiple target screen sizes. Figure 8.4 shows

an overview of our system. The main panel displays a different visualization for each speci-

fied chart size. The toolbar and other system panels display information about the data and

136

main panel: display one visualization view for each chart sizeviews panel attributes panel:
based on selection of text mark

to
ol

ba
r:

op
tio

ns
 fo

r c
re

at
in

g
m

ar
ks

, e
di

tin
g

m
od

es
, a

nd
 se

le
ct

io
n

ty
pe

s

data panel

a

layers panel
interaction panel

Figure 8.4: The designer creates a visualization mark by dragging a mark icon from the toolbar to
a visualization canvas in the main panel. The main panel displays one visualization view for each
device context specified by the designer. The size and name of each view is displayed in the views
panel. The marks in the visualizations are shown in the layers panel. Designers can select a mark
from the layers panel or directly on the visualization; the encodings for the mark are then displayed
in the attributes panel. The backing data fields for the visualization are displayed in the data panel.
To define new encodings, the designer can drag fields from the data panel to the attributes panel. De-
signers can specify interactive behaviors in the interaction panel. This figure shows the intermediate
state of the responsive design process described in Section 8.4.1 with the text marks selected.

visualization components introduced for each view. Our tool supports generalized selections

of visualization components both within and across views to facilitate simultaneous editing

operations and customization of specific designs. Motivated by prior work [77], these gener-

alized selections allow designers to refine the selection based on properties of the underlying

data or mark encoding values. From the system panels, designers can edit and propagate

customizations to multiple visualizations at once, thus reducing the need for repeated work.

The attribute panel and layers panel foreground design variations between views to provide

an overview of the customizations that have been applied to different designs.

137

In contrast to the desktop-first strategy most designers currently adopt, our system en-

ables more flexible and iterative workflows. For example, when first developing a visualiza-

tion, designers can leverage simultaneous editing to quickly explore the impact of high-

level design decisions (e.g., overall layout or what information should be displayed) across

multiple target devices. Designers can immediately preview the design for all device

contexts while making these global edits. To resolve layout concerns for particular views,

designers can apply device-specific customizations by selecting visualization compo-

nents in a subset of views and applying local edits. Designers can also propagate edits

to different views if a device-specific refinement works well for other device contexts. A key

benefit of our system is that it allows designers to iterate fluidly back-and-forth between

these global and local editing modes. The result is a more flexible workflow that promotes

design exploration, view-specific adaptations, and consistency across devices. The following

sections describe our system features in the context of this basic workflow.

System Startup: Viewing Multiple Device Visualizations

The main panel displays a blank canvas for each default chart size. Designers may import a

previously constructed visualization which automatically resizes the design for these default

sizes. Designers can customize the defaults to match the standard artboard sizes used by

their organization. Our system automatically displays multiple, device-specific visualizations,

which allows designers to preview the design for all device contexts and thus better

incorporate considerations for the responsiveness of the design earlier in the development

cycle. The view names and sizes are displayed in the views panel. From this panel designers

can rename, resize, and create new views at any point. When creating a new view, the

system copies the design for whichever active view is closest to the new size. The system

supports an arbitrary number of different views, up to the discretion of the designer. Designers

may select or resize views directly from the main panel. The data panel shows the datasets and

fields that have been loaded for the visualization. Each field is labeled with the automatically

detected data type; clicking the data type symbol allows designers to change the type.

138

Rationale. One of the core challenges explored in this dissertation is to “support the tasks

that matter most to the user.” Existing visualization construction systems have generally

fallen short of this goal for responsive visualization design. As discussed in the formative

interviews (Section 8.2), journalists tend to utilize a desktop-first development approach

driven by system defaults rather than their personal preferences. In this system, responsive

design becomes a first-class feature of the environment: multiple visualization versions are

shown by default, with no implicit prioritization between designs imposed by the system.

Simultaneous Editing of the Basic Visualization Structure

To construct a new visualization, designers first create a new mark. The system uses Vega-

Lite [176] as the underlying language for producing the visualizations and currently supports

seven mark types: “rule” , “line” , “bar” , “circle” , “symbol” , “text” , and

“geoshape” . Designers create a mark by dragging the icon from the toolbar to any visual-

ization canvas, or by using keyboard shortcuts to select the mark type, followed by the view.

Designers can construct multiple visualizations concurrently using simultaneous editing.

When a mark is first created it is added to all active views. By default, all views are “active.”

To apply customizations, designers can focus on a single design by selecting the view number

on the canvas () or from the views panel. Designers can select multiple views via locking

or unlocking commands. Locked or “inactive” visualizations are partially grayed out.

For new marks, designers must first link the mark to one of the backing datasets in

order to map data fields to the visual encodings. Similar to other shelf construction [175]

systems, designers can drag data properties from the data panel to encoding shelves in the

attributes panel to specify the visual encodings. As new encodings are specified, the system

automatically adds axes and legends as appropriate. Once again, edits apply to all “active”

views. When the mark has been bound to a dataset, all individual elements (e.g., all the

bars in a bar chart) are placed in a group, similar to the notion of a collection in Data

Illustrator [129]. The newly created group and marks are shown in the layers panel, which

displays both the user-specified marks and marks for auto-generated guides for all views.

139

Rationale. To better support responsive visualization design, we raise the level of abstraction

from a single visualization specification to a generalized representation that supports the

design of multiple linked visualization versions. With this approach, designers can focus on

the core design considerations—what data should be visualized and how—while deferring

control for the adaptation of the design to the underlying system. Designers can therefore

utilize their unique domain expertise to develop effective visualization designs rather than

focusing on manually constructing similar designs for each device of interest.

Applying Customizations Using Flexible Selections

Designers may want to customize the visual appearance of particular marks or fully customize

the visualization design for particular chart sizes. The system provides several strategies for

performing flexible selections of visualization elements. Designers can select marks directly

on the visualization or from the layers panel. When designers first click a mark, the system

selects all marks in its group; designers can double click a mark to select only the particular

item. Designers can toggle the selection mode from the toolbar. When editing visualizations,

the customizations only apply to the selected marks (those highlighted in orange).

Designers can refine the selection using data filters on the mark. Data filters are displayed

in the attributes panel (Figure 8.4a) based on the selected mark. Regardless of the selection

type (group or item), the particular element that was selected acts as the anchor for the

data filters; for each data field in the underlying dataset, a filter is suggested using the value

of that field for the selection anchor. When selecting a data filter the system refines the

selection to only the marks where the condition holds. Repeatedly selecting a filter toggles

the comparison operator (e.g., >=, <=, ==, and so on). In Figure 8.4 for example, the

text “Hurricane Katrina” acts as the anchor for the labels; for each of the five data fields,

a simple filter is created using the underlying values of this anchor point (e.g., cost >= 161

and year >= 2005). Selecting a different anchor changes the suggested filters (e.g., selecting

“Hurricane Harvey” suggests cost >= 125 and year >= 2017). All of the marks in this

visualization share the same backing dataset. Therefore, selecting the bar mark associated

with “Hurricane Harvey” would produce the same data filters as the corresponding text mark.

140

Rationale. The system aims to simplify the creation of responsive visualization designs by

raising the level of abstraction from a single visualization specification to the design of multi-

ple linked versions. However, customization remains an important task for many journalists.

In response, the proposed system enables users to customize the visual appearance of indi-

vidual marks in the visualization. These updates can apply across visualization versions to

facilitate the process of annotating and highlighting information for communicative purposes.

Enabling Customizations and Displaying Design Variation

When designers apply customizations to particular marks or views, the system helps to show

cross-device previews by foregrounding the variation in the layers panel and attributes

panel. When a mark is added or removed from a particular view, the contents of the layers

panel are reordered to sort the elements based on which views they apply to. For example, in

Figure 8.5 a separator shows that each view (“portrait” and “landscape”) has a custom axis;

the marks displayed above these separators apply to all views (e.g., the two text marks).

Customizations are also displayed in the attributes panel ; in Figure 8.5, the selected “bar”

mark originally had the color encoding set to “#f0f0f0” . A modification to this encoding

has subsequently been applied to update the color to “firebrick” . The attributes panel

allows designers to view design variation for the mark encodings of the currently active

views. Designers can select an icon next to a customization to refine the selection to only

include marks where the customization applies. For example, in Figure 8.5, clicking the arrow

icon beside the “firebrick” customization refines the selection to only update the

marks with this color when subsequent edits are applied. This functionality demonstrates

the system’s support for flexible workflows; designers can edit particular customizations even

when multiple views with different encodings are active.

Designers may also propagate edits across views by identifying and deleting design

variation from the system. To propagate edits, designers can delete encodings that should

no longer apply to the active visualizations. When hovering over the “delete” symbol,

the system shows cross-device previews of the change. This functionality helps designers

141

Figure 8.5: The system panels for recreating the New York Times visualization: “In close decisions,
Kennedy voted in the majority 76 percent of the time” [G36]. The layers panel shows that while
the title and subtitle appear in both views, each device has a custom set of axes and marks. The
attributes panel shows variation in the encoding properties such as the “color,” which has been used
to highlight a particular bar. Note: the panels have been resized to improve legibility of the figure.

to quickly preview the result of different modifications across multiple visualization designs

and update concurrent designs with different encoding decisions. For example, in Figure 8.4,

imagine that the designer wants to propagate the label simplifications in the “portrait” visual-

ization to the “landscape” visualization. To do this, the designer marks both views as “active”

(e.g., by locking the “desktop” visualization). The user can then delete the customized en-

codings that are no longer desirable (e.g., align→left and text→name), which changes the

alignment of the text to right and the text to replace(datum.name(‘Hurricane’, ‘’))

for all of the selected elements across both the “active” views.

Rationale. One of the core challenges described in this dissertation is to “communicate system

behavior as actionable information.” To this end, the system emphasizes the design variation

that has been applied across visualization versions and provides a direct method for removing

unwanted variation. This approach enables users to form a complete picture of the customized

designs and make educated decisions about how to proceed with the design process.

142

Figure 8.6: Designers may also customize the behavior of end-user interactions with the visual-
ization. In this case, the designer specifies a dropdown interaction to update the line color and
stroke width of the visualization. These customizations appear when the end user interacts with a
dropdown; however, the customizations are similarly displayed alongside the other encodings and
customizations in the attributes panel. Note: the panels have been resized to improve figure legibility.

Enabling and Customizing End-User Interactions

When a mark is selected, the interaction panel allows designers to specify the functionality

of end-user interactions with the visualizations. Designers can first define the interaction

type and then use the interaction to customize the visibility and encodings of visualization

marks. Similar to other encoding customizations, when a customization applies only during

interaction, it is still displayed in the attributes panel as a form of variation (Figure 8.6).

Customizations based on end-user interaction are annotated with a symbol representing the

type of end-user interaction that has been applied to the visualization element. In Figure 8.6

for example, both the color and stroke width of the line mark have been customized to respond

to end-user interactions with a dropdown to select which country should be highlighted.

Rationale. Similar to the other approaches described in this section, the functionality for

specifying customizations based on end-user interaction aims to raise the level of abstraction

to mirror the related functionality from other parts of the system. The customizations from

interaction are similarly treated as a type of design variation and can thus utilize the same

approaches to help communicate relevant and actionable information to the user.

143

8.4 Evaluation: Reproducing Real-World Responsive Visualizations

To demonstrate the utility of the proposed techniques for responsive visualization design,

we reproduced four real-world examples using our system [G13, G36, G50, G52]. These

examples illustrate four visualization types: bar chart [G13, G36], map [G52], dot plot [G36],

and line chart [G50]. Each example also demonstrates a major component of our system:

(1) visualization design and customization as an iterative workflow [G13]; (2) flexible data

filtering for customizing annotations [G52]; (3) designing drastically different visualizations

via linked editing [G36]; (4) customizing end-user interactions for different chart sizes [G50].

The following sections explore each example in terms of the design guidelines. Demo videos for

each of the four walkthroughs are available on YouTube; the links are included in Appendix H.

We also introduce three additional examples in Appendix H. For all seven examples, we show

the different device-specific visualizations that were designed with our system.

8.4.1 An Iterative Workflow for Simplifying a Mobile Design

The New York Times article “The Places in the U.S. Where Disaster Strikes Again and

Again” [G13] exhibits a variety of responsive visualization techniques to simplify the mobile

version of the “Total Cost of Major Natural Disasters” visualization (Figure 8.1).

The designer starts by creating the basic visualization: a bar chart with the year on the

x-axis and the disaster cost on the y-axis. Next, the designer annotates the major natural

disasters contained in the data. The designer duplicates the bar mark using the “copy”

option from the toolbar to create a new layer with the same encodings, and customizes

the mark to display the disaster name and position the marks appropriately. The designer

decides to duplicate this text mark and update the text to display the disaster cost. Using

simultaneous cross-device edits, the visualization is constructed for each separate view.

Using the cross-device previews of how this design looks for all device contexts, the

designer can easily notice that the current layout is ineffective on the “portrait” orientation

of the phone: the large whitespace margin wastes too much space and the bars become too

144

narrow. Before finalizing the design, the designer can apply device-specific customiza-

tions to the portrait visualization including modifying and repositioning the labels, and

adding rule marks to more clearly label the bars (Figure 8.1c-e). The state of the system

after customizations have been applied is shown in Figure 8.4.

After applying customizations, the designer can use simultaneous cross-device edits

to finalize the axis styles, bar colors, and font styling. These updates apply to all views,

even though customizations have been performed for the portrait visualization. Finally, the

designer can add a title to the top of the view. For the desktop and landscape visualizations

however, the designer might decide to reposition the title in the whitespace of the chart area

instead. After making this change, the designer decides that the title was actually preferable

above the chart area for the landscape visualization. To reapply this design, the designer

activates both the “portrait” and “landscape” visualizations and propagates edits from

one view to the other by deleting the customizations associated with the title.

Discussion. This example illustrates a flexible, iterative workflow in which the designer can

switch between different device views to apply customizations. By maintaining links between

visualization marks, the system can support global customizations even after modifications

have been applied. By displaying all device views and the specific customizations to these

views, the designer can maintain a complete picture of the responsive visualization design.

The final visualizations produced for this example are included in Appendix H.1.

8.4.2 Applying and Refining Data-Driven Customizations

The Reuters article “Oil Spilled at Sea” [G52] includes a map visualization that reduces the

number of text annotations, rescales the text, and updates the size encoding and legend for

mobile visualization contexts. In our formative interviews (Section 8.2), several participants

noted that maps present a particular challenge because the aspect ratio of the chart is

predetermined by the map itself. One participant explained that the “US map is a nightmare

for responsiveness... you can have a very beautiful, detailed US map on the desktop but when

you shrink it down to the phone you can barely see like five cities named in it” (P2).

145

a

b

c

Figure 8.7: Recreating the map “Incidents at Sea” from Reuters Graphics [G52]. (a) The map
is cluttered with many symbol and text marks; inset: text mark encodings in the attributes panel.
(b) Removing the text marks where size < 252,000 emphasizes the major spills; inset: the possible
and selected data filters in the attributes panel. (c) Reintroducing annotations for notable, historical
spills provides a point of comparison; inset: the text marks as displayed in the layers panel.

146

For this visualization, the designer starts by producing the basic visualization design

using simultaneous cross-device edits. However, this process produces a cluttered map

exhibiting many overlapping labels (Figure 8.7a). To reduce this clutter, the designer can

select the mark elements and use a data filter to remove elements below a particular threshold

(e.g., size < 252,000). This action removes most of the labels in the view except for the

largest ones (Figure 8.7b). However, the designer wants to compare these spills to others

of historical notability. The designer can use the “annotate” mode from the toolbar to

reintroduce labels by clicking the points for the Sanchi and Exxon Valdez spills (Figure 8.7c).

Due to the shape of the map and density of the data, the designer might feel at this point

that the mobile versions could be improved. The designer starts with the “landscape” phone

orientation (the more natural fit for the map) and applies device-specific customizations

to rescale and reposition the map projection to only include one of the comparison points:

the Sanchi disaster. The designer also wants to include the Sanchi disaster in the “portrait”

version, but due to the distance of this point from the core data, it is hard to make the visu-

alization fit. The designer therefore decides to rotate the map for the “portrait” orientation;

this change maintains the text direction of the labels for proper reading on a phone. To view

the map in the unrotated orientation, the reader could change to the landscape orientation,

which would adapt the view to the other version of the customized visualization.

To better support this reading experience, the designer wants to ensure that the two

mobile visualizations are similar in all design decisions besides the rotation. The designer

thus reactivates the “landscape” visualization, and can immediately see the cross-device

previews in the attributes panel, which shows that the scale and translate properties

do not match. The designer can thus propagate edits from the landscape visualization by

deleting the undesirable customizations that were applied to the “portrait” visualization.

Discussion. Our system enables flexible selection behaviors to support customizations. The

data filter selection provides a lightweight mechanism for refining selections based on the

underlying data, to facilitate data-driven customizations. The “annotate” mode provides

147

a lightweight mechanism for reincorporating deleted annotations to the view. This example

also highlights the challenges with responsive visualization design for maps, but shows how

a designer can mitigate this difficulty by considering the final experience of the reader. The

final visualizations produced for this example are included in Appendix H.2.

8.4.3 Producing and Reusing Radically Different Designs

The New York Times article “With Kennedy’s Retirement, the Supreme Court Loses Its

Center” [G36] includes a radical responsive redesign for the visualization: “In close decisions,

Kennedy voted in the majority 76 percent of the time.” In this example, the desktop version

uses a horizontal dot plot whereas the mobile version uses a vertical bar chart; each design

takes advantage of the device orientation while displaying the same data.

To produce these visualizations, the designer can start by creating either the bar chart or

dot plot visualization, including the marks and text labels. The designer can then focus on

applying device-specific customizations by setting the active view and changing the un-

derlying encodings for the mark and text (e.g., to change the mark from “bar” to “circle” and

the text from percentage to justice). The designer can switch amongst the visualization

views to further customize the encodings or design.

For both of these visualization versions, the designer wants to emphasize Kennedy’s posi-

tion in the Supreme Court with respect to decisions by the majority and therefore customizes

some of the individual marks accordingly. Down the line, the designer might decide to reuse

this visualization to emphasize the position of a future justice within the larger context.

To do this, the designer could swap out the underlying dataset to include updated num-

bers; since the customizations are applied relative to the device context and data fields, the

visualization could easily adapt to a new set of data. The designer might then decide to

propagate edits representing the highlight to a new justice in the dataset.

Discussion. While the visualizations for this example are drastically different and therefore

highly customized to the device, our system can help the designer maintain a clear overall

148

picture of the two versions: how they vary and how they are the same. Figure 8.5 shows the

state of the system panels when one of the marks has been selected. From this view, the

designer can see that the mark “color” has changed from “#f0f0f0” to “firebrick”

for some of the visualization marks. The layers panel also shows variation in which mark

elements are visible on which views (e.g., to show that each device has a customized axis).

The final visualizations produced for this example are included in Appendix H.3.

8.4.4 Custom End-User Interactions and Interactive Encodings

The National Geographic article “See Where Access to Clean Water Is Getting Better – and

Worse” [G50] exhibits many responsive updates between the desktop and mobile version of

the “Percentage of population without access to improved water” visualization. This example

shows the need for custom end-user interactions: the interactive dropdown has fewer options

on mobile and customized visual encodings for elements that have been interacted with.

For this example, the designer starts by customizing how the visualization should look

when no interaction is applied. The designer creates the basic visualizations using simul-

taneous cross-device edits and applies device-specific customizations to the mobile

design to remove excessive marks and update the encodings. To define the end-user interac-

tion behavior, the designer selects the mark that should be updated during interaction, and

adds a new interaction from the interaction panel. The designer can then specify how the

end-user interaction should behave and update the mark encodings. Similar to the device-

specific customizations, encodings or marks associated with an interaction are displayed in

the hierarchical structure of the system. Figure 8.6 shows the state of the system panels after

defining a dropdown interaction to select a line and display a corresponding text mark.

Discussion. Design variation from end-user interaction is similarly displayed alongside other

encoding modifications within the system to provide cross-device previews. The attributes

panel and layers panel provide a clear overview of all encoding decisions for a particular mark,

allowing the designer to easily update encodings for any use case throughout the system. The

final visualizations produced for this example are included in Appendix H.4.

149

8.5 Limitations and Future Work

We built our system on top of Vega-Lite [176] to leverage its ability to express parameterized

graphical elements (marks and axes) that exhibit reasonable default behavior when scaled to

different chart sizes. While this decision reduced the effort required to implement a functional

visualization design tool, the capabilities of our current prototype are coupled with the

underlying representation, sometimes resulting in awkward user experiences. For example,

axis labels and text marks exhibit different sets of editable properties due to differences in

the Vega-Lite specification. Furthermore, elements in one view only match those in other

views if they were specified simultaneously. Future work should better decouple the front

end from low-level details of the core visualization machinery. Matches could be computed

based on the visual similarity and underlying data, rather than the internal structure.

The current system allows designers to specify an arbitrary number of views based on

their design needs. However, for real-world use cases designers generally focus on a limited

set of artboard sizes as defined by their organization. Therefore, our examples similarly

use three or four views targeting different device sizes. While it is possible to create more

views, there are limitations on the amount of screen space available for development and

the number of views that a designer could feasibly view or comprehend at one time. Future

work should explore the development patterns of designers and how they would work with

multiple views simultaneously. New techniques to cluster and summarize views could prove

useful for alleviating challenges that arise when working with a larger space of designs.

Due to a hesitance from our interview participants regarding automatic techniques, we

chose to focus on an ad hoc, user-driven visualization design, which does produce a largely

manual process. Exploring new techniques to increase the number of views or better sum-

marize the space of designs could help designers transition to more automated or dynamic

procedures. Such automation could be particularly useful for more general responsive use

cases such as the design of dashboards [171]. Future work should explore how best to ensure

the transparency of automation within the development process, as related to the challenge

that systems should “communicate system behavior as actionable information” to the user.

150

One approach to the automation of visualization designs could be to incorporate con-

straints that encode the desired customizations for different visualizations versions. Related

to the discussion from Chapter 3, this approach introduces a number of new considerations

about how best to support users in authoring and debugging the behavior of constraints, and

further raises a question about the extent to which this functionality should be communi-

cated to the user. Charticulator [161] has begun to explore this space by utilizing constraints

as the underlying layout engine for a visual builder system for bespoke visualization design

(see Section 2.1.2); however, these constraints are hidden from the end user and can there-

fore prove challenging to understand or debug. New systems for visualization design utilizing

constraints should therefore explore trade-offs about the level of abstraction employed in the

system and new strategies for debugging and program understanding.

Our system includes a variety of interaction techniques such as keyboard shortcuts, tool-

bar menus, and different types of mouse clicks for refining selections. Since generalized selec-

tions are a key part of our proposed workflow, it would be valuable to refine the usability and

performance of such interactions. In particular, updating the data filter procedure to provide

more intricate or generalizable suggestions could improve the overall utility. There are also

opportunities to explore new ways for designers to propagate customizations across views,

perhaps through analysis of how the graphics themselves are arranged in each visualization.

In this work, we reproduce four real-world examples [G13, G36, G50, G52] to demonstrate

the benefits of our system for responsive visualization design. To be clear, the procedures

presented do not reflect the actual design process for the published visualizations; instead,

they highlight a set of flexible, iterative workflows that contrast the more linear design process

that designers typically adopt. Future work should explore the nuances of this system and

the overall impact on the design of responsive visualizations in practice.

151

8.6 Summary of Contributions

This chapter explores the design of responsive visualizations that adapt the visualization

design based on the screen size or interactive capabilities of the device. This chapter con-

tributes a survey of 231 responsive visualizations from twelve news organizations to examine

existing responsive design practices. This chapter further contributes formative interviews

with five authors about their design process and rationale. From these interviews we found

that designers generally leverage a linear, desktop-first development process while largely

considering the mobile implications in the abstract. Based on the formative interviews and

survey results, we identified four design guidelines and contribute a set of core system fea-

tures to support responsive visualization design. Our system displays multiple views for

different device contexts and foregrounds design variation to provide a complete picture of

the responsive techniques applied. Designers can construct visualizations using both simulta-

neous global edits or local customizations to the designs. To demonstrate the utility of these

techniques for more flexible development workflows, we reproduced four real-world examples

selected from our earlier survey and described the relevant system functionality.

In contrast to the existing linear workflows described in the formative interviews, these

examples demonstrated the expressiveness and flexibility of our system for supporting the

iterative design of responsive visualizations. This process allows designers to focus on impor-

tant considerations around how the design should look for each device context, while reducing

the burden of creating multiple designs and propagating changes amongst designs manually.

Our techniques to surface the design variation can also help designers better understand the

set of modifications that have been made and highlight potential disconnects that might

otherwise be overlooked. Finally, this approach demonstrates opportunities for visualization

reuse by allowing designers to swap out the data while maintaining the customized views.

This work was done in collaboration with Wilmot Li and Zhicheng Liu from Adobe Research,

and was originally published at CHI 2020 [84].

152

Chapter 9

CONCLUSION

In this dissertation, I contribute the design of new programming languages and program

visualization tools for constructing interactive visualizations. In particular, this work explores

the design of custom graph layouts (Chapter 4), interactive visualizations (Chapter 5-7),

and responsive visualizations (Chapter 8). Across these projects, my research aims to better

understand people and to help people better understand systems. For each project, I first

sought to understand the pain points faced by individuals in their current development

process (Section 3.2, Section 5.4, Section 8.2). These interviews surfaced concerns specific to

each domain, as well as aspects of the three high-level challenges explored in dissertation.

These challenges complicate the design of new programming languages and program un-

derstanding techniques, while also suggesting exciting opportunities for future research. The

first challenge is to “raise the level of abstraction to reflect user expertise.” This challenge is

a central guiding principle behind the work explored in this dissertation, but the main chal-

lenge here lies in identifying the appropriate level of abstraction to employ. When abstracting

the underlying system behavior, low-level system details become less useful for end-user pro-

grammers. The second challenge is therefore to “communicate system behavior as actionable

information” to the user. An important part of this process is not only to identify how best

to communicate information, but also what information not to show to the user. To this end,

the third challenge is to “support the tasks that matter most to the user.” When raising the

level of abstraction and communicating system details, it is important for systems to do so

in such a way that users can focus on the most important development tasks while reducing

the burden for less essential operations. This requirement can be further complicated when

acknowledging that users often have changing, and sometimes conflicting, needs.

153

Motivated by these challenges, I identified and developed new ways in which to improve

the development process by designing systems that allow users to focus on the high-level

constructs with which they are most familiar, as well as their preferences regarding their pri-

mary tasks (Section 4.2, Section 6.1.1, Section 7.1, Section 8.3.3). To better understand the

impact and utility of these systems, I then evaluated the proposed techniques via user studies

(Section 6.2, Section 7.3) or by reproducing real-world examples (Section 4.3, Section 8.4).

While these projects contribute novel advances for visualization design and program un-

derstanding, they also surface exciting new areas for future work (Section 3.3, Section 4.4,

Section 6.3, Section 7.4, Section 8.5, Section 9.3). To conclude this dissertation, I reflect on

the three core challenges and their relationship to the work presented in this dissertation

(Section 9.2). I then wrap up this dissertation with some short concluding remarks.

9.1 Summary of Contributions

In Chapter 3, I contribute a set of preliminary interviews with programmers about the utility

and program understanding challenges of constraints in end-user systems. I then explore the

use of constraints for customized graph layout in Chapter 4, and contribute SetCoLa: a

new domain-specific language for customized graph layout using constraints. While SetCoLa

can reduce the number of user-authored constraints by one to two orders of magnitude, this

approach surfaces program understanding challenges for declarative programming languages.

In Chapter 5, I introduce Vega [177] as a platform on which to explore new opportunities

to improve program understanding for declarative languages. To this end, I contribute a

prototype data flow graph visualization of the underlying Vega runtime, and interviews with

expert Vega users about the utility of this approach. Participants felt that while the data flow

graph can prove useful for system developers, it provides too much information tangential

to their end-user debugging needs. To better support program understanding for end-user

programmers, I contribute a set of visual debugging techniques for reactive data visualization

in Chapter 6. These techniques raise the level of abstraction for program understanding tools

to communicate relevant system details in terms of constructs with which users are familiar.

154

In an evaluation, these techniques helped participants trace errors through unfamiliar code,

but sometimes required users to already know where to look across separate system panels.

To reduce the gap between the program understanding techniques and user-authored code,

Chapter 7 contributes a design space of embedded visualizations that appear directly inline

in the code. This approach facilitates code authoring while surfacing relevant system details.

Finally, whereas Vega supports the design of a single interactive visualization, designers

sometimes need to develop responsive visualizations that adapt the content based on the

screen size or interactive capabilities of the viewer’s device. To this end, Chapter 8 contributes

a survey of existing responsive visualization techniques used in news articles, and interviews

with journalists about their design and development process. This chapter further contributes

a set of design guidelines and core system features inspired by the survey and interviews

that promotes responsive visualization design via more flexible development workflows. To

demonstrate the utility of these features, I reproduced four real-world examples to highlight

the expressiveness and flexibility for responsive visualization design.

9.2 Discussion and Reflections on Three Core Dissertation Challenges

Chapter 1 introduces three core challenges that are central to the work described throughout

this dissertation and are motivated by the thesis statement: “the design of new languages

and program visualization tools that raise the level of abstraction from low-level system

details to domain-specific concepts and operations for interactive visualization design can

help end-user programmers more effectively author, understand, and reuse both code and

data.” The challenges are as follows: (1) raise the level of abstraction to reflect user expertise;

(2) communicate system behavior as actionable information; and (3) support the tasks that

matter most to the user. While the challenges themselves intuitively reflect concepts from

human-computer interaction research, the techniques required to realize each goal are not im-

mediately apparent or straightforward. In the following sections, I reflect on these challenges

and the approaches employed in my dissertation work. This discussion helps to illustrate my

overall research process and motivate new areas for future research (Section 9.3).

155

Challenge 1: Raise the level of abstraction to reflect user expertise.

The goals and intent of the user are the primary driving factors for any system behavior, so it

is essential that systems prioritize the user’s unique position. By ensuring that systems reflect

the user’s expertise, systems can better support program understanding and allow users to

effectively employ their expertise beyond concerns for the system-level implementation.

This challenge often arose during our interviews with both expert and novice users. In

our formative interviews on understanding constraints (Chapter 3), participants noted that

while constraints can provide a useful way to encode domain knowledge, for end-user facing

systems “designers don’t necessarily want to think in that way. So I’m not even telling them

they’re constraints anymore.” Participants from our formative interviews on visual debug-

ging techniques (Chapter 5) expressed similar concerns, this time from the end-user side: “the

[data flow] graph presumes insight into how Vega’s internals operate.” Participants explained

that while the data flow graph visualization can be helpful for system developers, assuming

that end users will be familiar with the low-level implementation constructs does not ap-

propriately reflect their needs for end-user program understanding tasks. To address these

concerns, this dissertation contributes SetCoLa (Chapter 4) and new automatic visualization

techniques (Chapter 5-7) for Vega [177]. These approaches help end-user programmers better

navigate and understand code by allowing users to focus on the domain-specific concepts and

operations of interest rather than the low-level system details. To accomplish this goal, these

techniques aim to reduce the level of separation between the code the end-user programmer

writes, and the tools used to understand the underlying system behavior.

As described in Chapter 4, SetCoLa is a high-level language for designing customized,

domain-specific graph layouts by leveraging the domain expertise of the user. SetCoLa allows

the user to design custom layouts using a simple set of constraints relative to the particular,

domain-specific properties of interest. This approach reduces the number of user-authored

constraints by one to two orders of magnitude and further supports reuse of the layout across

multiple graphs in the same domain. For this project, the user can focus primarily on how

the layout should encode domain properties based on the user’s unique domain knowledge.

156

The proposed visual debugging techniques (Chapter 6-7) emphasize Vega’s high-level

concepts and are thus at the appropriate level of abstraction for end-user programmers. The

visualizations focus on the signal values which encapsulate the interaction logic for inter-

active visualizations and the data properties that drive these visual encoding decisions. In

evaluations of these techniques, we showed that novice programmers were able to accurately

trace errors through unfamiliar code (Chapter 6) and better answer program understand-

ing questions (Chapter 7) when supported by visualizations of the program behavior. As

one participant explained: “the code visualizations helped better locate the signals and made

me more confident about my answers.” These visualizations allow users to more effectively

navigate the code and have a better overall understanding of the program behavior.

While Vega focuses on the design of a single visualization, journalists must often produce

multiple designs to support responsive adaptation of the content for different devices. When

reflecting on the process of creating multiple responsive designs, one journalist explained

that when producing the separate designs, “it feels like a chore... You want to be working on

the story; you want to not be working on polishing things for small audiences.” To this end,

our proposed responsive visualization system (Chapter 8) raises the level of abstraction from

a single visualization specification to support the concurrent design of multiple customized

visualization versions. Utilizing this approach, designers can develop visualizations using

simultaneous editing; components across views are linked so as to reduce the specification

effort and allow users to focus on authoring and reusing the design, rather than requiring

users to manage manual changes to individual visualization versions.

Challenge 2: Communicate system behavior as actionable information.

In order to improve how people interact with systems, systems should communicate informa-

tion about the behavior in ways that are immediately actionable by the user. For program-

ming contexts, an important part of understanding an error is to identify what the error is,

when it occurs, and how that behavior relates to the original source code. For my projects ex-

ploring visual debugging techniques for Vega (Chapter 5-7), the system provides a direct link

157

between the debugging properties and the corresponding components in the source code. As

one participant from our evaluation noted: “the [in situ] visualizations allowed me to connect

the dots between the code, its properties, and what it did.” Another participant explained

that “I found it helpful to be able to interact with the data on a graphical, physical level.”

In many programming or data science pipelines, the data plays an essential but sometimes

hidden role in the analysis process. While techniques to inspect the data are common, it is

not always clear exactly how to use the information that is gleaned when simply printing

out rows in a table. In our approach, by reducing the separation between the code and the

availability of the program understanding tools, users can better focus on authoring new

code and understanding the data responsible for driving the overall program behavior.

For our responsive visualization system (Chapter 8), we similarly provided contextually

relevant information that could support users by steering their interactions with the system.

To do this, we display design variation as a first-class component of our system panels; for

example, users can immediately see which visualization marks have been modified or exist on

particular versions but not others. Users therefore have an immediate way in which to identify

incorrect or unnecessary variation and better standardize the views. This system also ensures

that the target of any edits has been clearly identified prior to a change; marks or views that

will be updated are highlighted whereas those outside the selection are deemphasized.

Finally, SetCoLa presents a particular challenge for how best to communicate the system

behavior (Chapter 4). In SetCoLa, users focus on writing a small series of constraints that

encode their domain knowledge, which compiles into one to two orders of magnitude more

low-level constraints for the underlying layout engine. To support program understanding,

SetCoLa labels all system generated constraints with the source information and displays

details of the conversion in the system view. With this approach, users can inspect how

sets are created by highlighting the constituent nodes and view the corresponding low-level

constraints. An advantage of SetCoLa is that constraints reflect domain-specific details, so

the user can employ this information to better understand when particular sets or generated

constraints break the original expectations for how the domain layout should be computed.

158

Challenge 3: Support the tasks that matter most to the user.

This challenge is particularly difficult because it can be hard to correctly identify what task is

most essential to the user, especially given that users may have ever-changing needs. Consider

our work on the design of responsive visualizations (Chapter 8). Journalists are constantly

developing responsive visualizations to display content for news articles: “it is something that

needs to be done for every single graphic.” However, journalists are currently undersupported

in completing this highly essential task by the range of tools that are currently available.

When reflecting on the predominantly linear and desktop-first development process, one

journalist noted that “by virtue of sort of sketching graphics on my laptop or on my desktop

screen, often the first iteration of something works best at those screen widths.” An important

takeaway from these interviews is that system defaults can have a major impact on how the

user will engage with the system. This impact can even be strong enough to override the

primary goals of the user (responsive mobile designs) to enforce the system defaults. Another

journalist shared a similar observation about the desktop-first development process, but more

explicitly called out the role of the system in this pipeline: “much of the programs we use

are geared towards desktop first or feel that way, anyway, so if all of them had a slight

shift in default or in tone I feel like that would also help us to think that way.” To this

end, when developing our prototype system for responsive visualization design (Chapter 8)

it was therefore essential for the system to reflect the flexible workflows that journalists

wanted to follow. As suggested by our interview participants, we developed a visualization

construction system that represents all device contexts that designers are interested in. With

this workflow, journalists can see and explore how visualizations will look across devices

rather than dismissing ideas based on their presumptions of how it might work on mobile.

Our earlier work on visual debugging techniques observed a similar trajectory in the

evolution of our approach (Chapter 5-7). Our first prototype data flow graph visualization

provided an accurate representation of the system behavior, with too much information tan-

gential to end-user debugging needs (Chapter 5). While our follow-up set of visual debugging

techniques were able to effectively help users trace errors back to the original code, these

159

techniques employed a series of separate but coordinated views to display the useful program

visualizations (Chapter 6). In the evaluation, we found that participants often overlooked

informative views that were on the periphery of their attention or were otherwise hidden

from view. When reflecting on the low score provided for one of the proposed techniques,

one participant noted that the system should “promote its appearance more.” Similar to this

approach, many existing debugging tools present program understanding techniques that

must be explicitly invoked and appear in separate, coordinated views. However, this process

imposes a burden on users required to now seek out the information of interest. To better

proactively support users during their primary development task (e.g., code authoring or

testing) we devised a series of in situ code augmentations that appear directly inline in the

source code (Chapter 7). These visualizations provide insightful slices of the program be-

havior without requiring users to stop their main development task to explicitly seek this

information out. In support of this approach, one participant explained that “the biggest

factor for me was just seeing which values change in real-time when interacting with the

visualization.” These visualizations can better attract attention to relevant changes in the

code and provide contextually appropriate information based on the user’s current focus.

The SetCoLa project was directly motivated by the need to better support how domain

experts author customized graph layouts (Chapter 4). Existing techniques tend to require

extensive programming expertise and user effort to develop customized layout algorithms or

tools. We therefore sought to better support this development task by focusing the imple-

mentation on the unique domain knowledge of the user. In addition to creating a custom

layout for a particular graph, it was important for these layouts to be extensible to other

graphs in the same domain to limit the amount of specification effort required by the domain

expert to reuse the layout. SetCoLa effectively realizes these goals by allowing users to specify

custom layouts with one to two orders of magnitude fewer constraints than required by the

underlying constraint engine. We further demonstrated how these layouts can be reapplied

across any number of graphs exhibiting the same set of domain-specific properties.

160

9.3 Future Research Directions

Motivated by three core challenges, this dissertation contributes new programming languages

and program visualization tools for constructing interactive visualizations. This work partic-

ularly focuses on understanding and improving how users interact with systems for visual-

ization design. However, there are many interesting avenues for future research in this space

and beyond. In particular, future work should continue to explore how to ease the burden

on people and empower them to focus on the applications and designs that matter most.

Towards this goal, future work should explore how novel methods and tools might offset the

burden on users while adapting to their changing needs and available resources.

My work on visualizations for code understanding [87, 88] exemplifies how such techniques

may be applied for a large class of reactive programming languages, but future work should

explore how to effectively incorporate real-time program visualizations into imperative pro-

gramming domains or other data-centric end-user systems. For example, while SetCoLa [83]

aims to simplify the process of creating customized graph layouts, the results from constraint

satisfaction can still be hard to comprehend; many challenges remain around understanding

why a satisfying set of constraints is not achieving the desired layout, or deciding which

constraints need to be added, changed, or removed to accomplish the intended result. Future

research should therefore explore new techniques to facilitate program understanding for

constraints, which remains a largely open area for novel research contributions. Constraints

may also prove useful for reflecting the expectations of the user for responsive visualization

design [84], and similarly raises issues of program understanding and debugging as explored

in my prior work. An open challenge in this space is to further explore options for automat-

ically adapting the visualization content based on device or user context. As the number of

visualizations grows, new techniques are required to group and summarize multiple designs,

and support designers in exploring the space of visualizations that they create.

The second challenge discussed in this dissertation is to “communicate system behavior

as actionable information.” This challenge raises many questions about what information is

most important and how best to communicate such information to end users. To facilitate the

161

process of interacting with complex end-user systems, future work should explore how best to

communicate the user’s intent in the system and translate the system output into actionable

information. This future work could prove integral to the application and widespread use of

constraints. Furthermore, these challenges and research questions can apply to a wider range

of systems. Future work should therefore continue to explore how communicating both user

and system intent can positively impact a larger class of end-user systems.

One common assumption across my research projects to date is that the data will arrive in

a clean, ready-to-use format. However, such assumptions rarely hold in real-world workflows.

Future work should therefore explore how best to incorporate data cleaning or data trans-

formation alongside existing design and development processes. Related work has begun to

explore new techniques to support the initial data wrangling step [40, 68, 72, 101, 191]. For ex-

ample, Wrangler [101] enables users to interactively specify and preview data transformations

directly on a data table to produce reusable data wrangling scripts. More recently, Wrex [40]

aims to support data scientists in authoring data transformation code via programming-by-

example for computational notebooks. While powerful, these techniques also require a fully-

formed, albeit imperfect, data table. Recent work has also explored strategies to support the

extraction of tabular data [29, 30, 31, 74, 85]. Rousillon [29] is a tool for easily scraping hi-

erarchical data from the web using programming-by-demonstration. My prior work has also

explored automatic extraction and analysis of tabular data from PDFs, as well as interactive

techniques for users to repair structural errors in such tables [85]. However, an important

part of effective data wrangling is the ability to easily integrate the process into developers’

existing workflows. Kandel et al. [100] describe several exciting research directions for incor-

porating visualization into the data wrangling process, and further note the importance of

developing new integrated wrangling and analysis tools. Future work should therefore explore

new strategies for debugging and employing data transformations during other steps of the

analysis process, and new ways to better support iterative refinement of the underlying data.

Many data transformations are possible in Vega [177], but there is limited support for

authoring or debugging these transformations. My work on program understanding systems

162

aims to provide insight into how these transformations behave or what happens when they

fail [87, 88]. For example, visual encodings, particularly those involving scales, are often diffi-

cult to debug or conceptualize; these mappings prove especially challenging to understand in

end-user systems for which the programmatic component is sometimes deemphasized. Satya-

narayan et al. [175] discuss the challenges and design trade-offs regarding the visibility of

scales for three different visual builders: Lyra [174], Data Illustrator [129], Charticulator [161].

However, future work should explore new techniques to facilitate the program understanding

process of such transformations. My work on visual debugging techniques proposes one ap-

proach (Chapter 6): users can probe points in the output visualization to see how data maps

to the visual encodings of the marks (e.g., the color) as a tooltip

directly on the output visualization [87]. While interpreting the behavior of scales is one

source of difficulty, the underlying data and behavior of data transformations is also dif-

ficult to understand. In my follow-up work (Chapter 7), users may view code-embedded

visualizations to see the variation in a dataset based on the behavior of data

transformations over time [88]. Both of these approaches surface details of the otherwise

opaque data processing pipeline in Vega. While Vega acts as an exemplar of a larger class

of reactive programming languages, future work should explore how these techniques or new

approaches can better support users in developing and integrating data transformations into

their development processes for different end-user systems and data analysis workflows.

9.4 Concluding Remarks

Visualizations play an important role in the analysis and communication of data. Yet existing

strategies for how people design and develop customized, interactive visualizations presents

unique challenges for how best to employ the expertise of the user and achieve their devel-

opment goals. In this dissertation I contribute new techniques to support users in authoring

and reusing customized visualizations by helping them better understand the behavior of

the system at hand. I believe that these approaches can help inform future work to develop

new systems that adapt based on the user’s intent, and ever-changing goals and resources.

163

BIBLIOGRAPHY

[1] Keith Andrews. 2018. Responsive Visualisation. In CHI Workshop on Data
Visualization on Mobile Devices (MobileVis).
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf

[2] Apple Inc. 2018. Understanding Auto Layout.
https://developer.apple.com/library/archive/documentation/

UserExperience/Conceptual/AutolayoutPG/index.html. (2018). Accessed:
2020-05-26.

[3] David L Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. 1999. Mawl: A
Domain-Specific Language for Form-Based Services. IEEE Transactions on Software
Engineering (1999). https://doi.org/10.1109/32.798323

[4] Greg J Badros, Alan Borning, and Peter J Stuckey. 2001. The Cassowary Linear
Arithmetic Constraint Solving Algorithm. ACM Transactions on Computer-Human
Interaction (TOCHI) (2001). https://doi.org/10.1145/504704.504705

[5] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reactive Programming.
ACM Computing Surveys (CSUR) (2013).
https://doi.org/10.1145/2501654.2501666

[6] Aaron Barsky, Tamara Munzner, Jennifer Gardy, and Robert Kincaid. 2008.
Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological
Context. IEEE Transactions on Visualization & Computer Graphics (2008).
https://doi.org/10.1109/TVCG.2008.117

[7] Edward B Baskerville, Andy P Dobson, Trevor Bedford, Stefano Allesina, T Michael
Anderson, and Mercedes Pascual. 2011a. Spatial Guilds in the Serengeti Food Web
Revealed by a Bayesian Group Model. PLoS Computational Biology (2011).
https://doi.org/10.1371/journal.pcbi.1002321

[8] Edward B Baskerville, Andy P Dobson, Trevor Bedford, Stefano Allesina, T Michael
Anderson, and Mercedes Pascual. 2011b. Interactive Serengeti Food Web.
http://edbaskerville.com/research/serengeti-food-web/

groups-figure3-interactive/. (2011). Accessed: 2020-04-21.

https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://doi.org/10.1109/32.798323
https://doi.org/10.1145/504704.504705
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1109/TVCG.2008.117
https://doi.org/10.1371/journal.pcbi.1002321
http://edbaskerville.com/research/serengeti-food-web/groups-figure3-interactive/
http://edbaskerville.com/research/serengeti-food-web/groups-figure3-interactive/

164

[9] Kayce Basques. 2019a. JavaScript Debugging Reference. https:
//developers.google.com/web/tools/chrome-devtools/javascript/reference.
(2019). Accessed: 2020-04-29.

[10] Kayce Basques. 2019b. Simulate Mobile Devices with Device Mode in Chrome
DevTools.
https://developers.google.com/web/tools/chrome-devtools/device-mode/.
(2019). Accessed: 2020-04-26.

[11] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An Open
Source Software for Exploring and Manipulating Networks. International AAAI
Conference on Weblogs and Social Media (2009).
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

[12] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. 1998. JTS: Tools for
Implementing Domain-Specific Languages. In Proceedings of the 5th International
Conference on Software Reuse. https://doi.org/10.1109/ICSR.1998.685739

[13] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. 1998.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR.

[14] Fabian Beck, Fabrice Hollerich, Stephan Diehl, and Daniel Weiskopf. 2013a. Visual
Monitoring of Numeric Variables Embedded in Source Code. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT).
https://doi.org/10.1109/VISSOFT.2013.6650545

[15] Fabian Beck, Oliver Moseler, Stephan Diehl, and Günter Daniel Rey. 2013b. In Situ
Understanding of Performance Bottlenecks Through Visually Augmented Code. In
2013 21st International Conference on Program Comprehension (ICPC).
https://doi.org/10.1109/ICPC.2013.6613834

[16] Moritz Y Becker and Isabel Rojas. 2001. A Graph Layout Algorithm for Drawing
Metabolic Pathways. Bioinformatics (2001).
https://doi.org/10.1093/bioinformatics/17.5.461

[17] Richard A Becker and William S Cleveland. 1987. Brushing Scatterplots.
Technometrics (1987). https://www.jstor.org/stable/1269768

[18] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-Order
Organization of Complex Networks. Science (2016).
https://doi.org/10.1126/science.aad9029

https://developers.google.com/web/tools/chrome-devtools/javascript/reference
https://developers.google.com/web/tools/chrome-devtools/javascript/reference
https://developers.google.com/web/tools/chrome-devtools/device-mode/
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://doi.org/10.1109/ICSR.1998.685739
https://doi.org/10.1109/VISSOFT.2013.6650545
https://doi.org/10.1109/ICPC.2013.6613834
https://doi.org/10.1093/bioinformatics/17.5.461
https://www.jstor.org/stable/1269768
https://doi.org/10.1126/science.aad9029

165

[19] Alex Bigelow, Carolina Nobre, Miriah Meyer, and Alexander Lex. 2019. Origraph:
Interactive Network Wrangling. In IEEE Conference on Visual Analytics Science and
Technology (VAST). https://doi.org/10.1109/VAST47406.2019.8986909

[20] Alan Borning. 1981. The Programming Language Aspects of ThingLab, A
Constraint-Oriented Simulation Laboratory. In ACM Transactions on Programming
Languages and Systems. https://doi.org/10.1145/357146.357147

[21] Mike Bostock. 2014. Visualizing Algorithms.
https://bost.ocks.org/mike/algorithms/. (2014). Accessed: 2020-04-21.

[22] Michael Bostock and Jeffrey Heer. 2009. Protovis: A Graphical Toolkit for
Visualization. IEEE Transactions on Visualization & Computer Graphics (2009).
https://doi.org/10.1109/TVCG.2009.174

[23] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-Driven
Documents. IEEE Transactions on Visualization & Computer Graphics (2011).
https://doi.org/10.1109/TVCG.2011.185

[24] Nadieh Bremer. 2019. Techniques for Data Visualization on both Mobile & Desktop.
https://www.visualcinnamon.com/2019/04/mobile-vs-desktop-dataviz. (2019).
Accessed: 2020-04-21.

[25] Karin Breuer, Amir K Foroushani, Matthew R Laird, Carol Chen, Anastasia
Sribnaia, Raymond Lo, Geoffrey L Winsor, Robert EW Hancock, Fiona SL
Brinkman, and David J Lynn. 2012. InnateDB: Systems Biology of Innate Immunity
and Beyond—Recent Updates and Continuing Curation. Nucleic Acids Research
(2012). https://doi.org/10.1093/nar/gks1147

[26] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In ACM User Interface Software &
Technology (UIST). https://doi.org/10.1145/2501988.2502050

[27] Luca Cardelli and Rowan Davies. 1999. Service Sombinators for Web Computing.
IEEE Transactions on Software Engineering (1999).
https://doi.org/10.1109/32.798321

[28] Bay-Wei Chang, Jock D Mackinlay, Polle T Zellweger, and Takeo Igarashi. 1998. A
Negotiation Architecture for Fluid Documents. In ACM User Interface Software &
Technology (UIST). https://doi.org/10.1145/288392.288585

https://doi.org/10.1109/VAST47406.2019.8986909
https://doi.org/10.1145/357146.357147
https://bost.ocks.org/mike/algorithms/
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://www.visualcinnamon.com/2019/04/mobile-vs-desktop-dataviz
https://doi.org/10.1093/nar/gks1147
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1109/32.798321
https://doi.org/10.1145/288392.288585

166

[29] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping
Distributed Hierarchical Web Data. In ACM User Interface Software & Technology
(UIST). https://doi.org/10.1145/3242587.3242661

[30] Zhe Chen and Michael Cafarella. 2013. Automatic Web Spreadsheet Data
Extraction. In Proceedings of the 3rd International Workshop on Semantic Search
over the Web. https://doi.org/10.1145/2509908.2509909

[31] Zhe Chen and Michael Cafarella. 2014. Integrating Spreadsheet Data via Accurate
and Low-Effort Extraction. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
https://doi.org/10.1145/2623330.2623617

[32] Joel E Cohen, Tomas Jonsson, and Stephen R Carpenter. 2003. Ecological
Community Description using the Food Web, Species Abundance, and Body Size.
Proceedings of the National Academy of Sciences (2003).
https://doi.org/10.1073/pnas.232715699

[33] Matt Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Authoring and
Publishing Interactive Articles on the Web. In ACM User Interface Software &
Technology (UIST). https://doi.org/10.1145/3242587.3242600

[34] Matt Conlen, Alex Kale, and Jeffrey Heer. 2019. Capture & Analysis of Active
Reading Behaviors for Interactive Articles on the Web. Computer Graphics Forum
(Proc. EuroVis) (2019). https://doi.org/10.1111/cgf.13720

[35] Joseph Cottam and Andrew Lumsdaine. 2008. Stencil: A Conceptual Model for
Representation and Interaction. In Information Visualisation.
https://doi.org/10.1109/IV.2008.66

[36] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive
Programming for GUIs. ACM SIGPLAN Notices (2013).
https://doi.org/10.1145/2499370.2462161

[37] Camil Demetrescu, Irene Finocchi, and John T Stasko. 2002. Specifying Algorithm
Visualizations: Interesting Events or State Mapping? In Software Visualization.
https://doi.org/10.1007/3-540-45875-1_2

[38] Google Developers. 2019. ConstraintLayout. https://developer.android.com/
reference/android/support/constraint/ConstraintLayout. (December 2019).
Accessed: 2020-04-22.

https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/2509908.2509909
https://doi.org/10.1145/2623330.2623617
https://doi.org/10.1073/pnas.232715699
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1111/cgf.13720
https://doi.org/10.1109/IV.2008.66
https://doi.org/10.1145/2499370.2462161
https://doi.org/10.1007/3-540-45875-1_2
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout

167

[39] Steven P Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L Schwartz,
and Scott R Klemmer. 2010. Parallel prototyping leads to better design results, more
divergence, and increased self-efficacy. ACM Transactions on Computer-Human
Interaction (TOCHI) (2010). https://doi.org/10.1145/1879831.1879836

[40] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3313831.3376442

[41] Tim Dwyer. 2020. cola.js: Constraint-Based Layout in the Browser.
http://marvl.infotech.monash.edu/webcola/. (2020). Accessed: 2020-04-22.

[42] Tim Dwyer and Yehuda Koren. 2005. Dig-CoLa: Directed Graph Layout through
Constrained Energy Minimization. In IEEE Symposium on Information Visualization
(InfoVis 2005). https://doi.org/10.1109/INFVIS.2005.1532130

[43] Tim Dwyer, Yehuda Koren, and Kim Marriott. 2006. IPSep-CoLa: An Incremental
Procedure for Separation Constraint Layout of Graphs. IEEE Transactions on
Visualization & Computer Graphics (2006).
https://doi.org/10.1109/TVCG.2006.156

[44] Tim Dwyer and Kim Marriott. 2007. Constrained Stress Majorization using
Diagonally Scaled Gradient Projection. In International Symposium on Graph
Drawing. https://doi.org/10.1007/978-3-540-77537-9_23

[45] Tim Dwyer, Kim Marriott, and Michael Wybrow. 2008a. Dunnart: A
Constraint-Based Network Diagram Authoring Tool. In International Symposium on
Graph Drawing. https://doi.org/10.1007/978-3-642-00219-9_41

[46] Tim Dwyer, Kim Marriott, and Michael Wybrow. 2008b. Topology Preserving
Constrained Graph Layout. In International Symposium on Graph Drawing.
https://doi.org/10.1007/978-3-642-00219-9_22

[47] Tim Dwyer and George Robertson. 2009. Layout with Circular and Other
Non-Linear Constraints using Procrustes Projection. In International Symposium on
Graph Drawing. https://doi.org/10.1007/978-3-642-11805-0_37

[48] Tim Dwyer and Michael Wybrow. 2018. libcola — Overview.
http://www.adaptagrams.org/documentation/libcola.html. (2018). Accessed:
2020-04-22.

https://doi.org/10.1145/1879831.1879836
https://doi.org/10.1145/3313831.3376442
http://marvl.infotech.monash.edu/webcola/
https://doi.org/10.1109/INFVIS.2005.1532130
https://doi.org/10.1109/TVCG.2006.156
https://doi.org/10.1007/978-3-540-77537-9_23
https://doi.org/10.1007/978-3-642-00219-9_41
https://doi.org/10.1007/978-3-642-00219-9_22
https://doi.org/10.1007/978-3-642-11805-0_37
http://www.adaptagrams.org/documentation/libcola.html

168

[49] Peter Eades, Carsten Gutwenger, Seok-Hee Hong, and Petra Mutzel. 2009. Graph
Drawing Algorithms. In Algorithms and Theory of Computation Handbook.

[50] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. 2001. Graphviz—Open Source Graph Drawing Tools. In International
Symposium on Graph Drawing. https://doi.org/10.1007/3-540-45848-4_57

[51] Mary Fernández, Dan Suciu, and Igor Tatarinov. 1999. Declarative Specification of
Data-Intensive Web Sites. In Proceedings of the 2nd Conference on Domain-Specific
Languages. https://doi.org/10.1145/331960.331979

[52] Lisa K Fitzpatrick, Jo Ann Hardacker, Wendy Heirendt, Tracy Agerton, Amy
Streicher, Heather Melnyk, Renee Ridzon, Sarah Valway, and Ida Onorato. 2001. A
Preventable Outbreak of Tuberculosis Investigated through an Intricate Social
Network. Clinical Infectious Diseases (2001). https://doi.org/10.1086/323671

[53] Martin Fowler. 2010. Domain-Specific Languages. Pearson Education.

[54] Mark S Fox. 1983. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Technical Report. Carnegie-Mellon University, The Robotics Institute.
https://apps.dtic.mil/docs/citations/ADA138307

[55] Ben Frain. 2015. Responsive Web Design with HTML5 and CSS3. Packt Publishing.

[56] Thomas MJ Fruchterman and Edward M Reingold. 1991. Graph Drawing by
Force-Directed Placement. Software: Practice and Experience (1991).
https://doi.org/10.1002/spe.4380211102

[57] Zhuohua Fu, Na He, Song Duan, Qingwu Jiang, Runhua Ye, Yongcheng Pu, Genming
Zhao, Z Jennifer Huang, and Frank Y Wong. 2011. HIV Infection, Sexual Behaviors,
Sexual Networks, and Drug Use among Rural Residents in Yunnan Province, China.
AIDS and Behavior (2011). https://doi.org/10.1007/s10461-010-9797-6

[58] Matthew Fuchs. 1997. Domain Specific Languages for ad hoc Distributed
Applications. In Proceedings of the Conference on Domain-Specific Languages.
https://dl.acm.org/doi/10.5555/1267950.1267953

[59] Roy Gal. 2017. Responsive Visualizations coming to Power BI. Microsoft Power BI
Blog (2017). https://powerbi.microsoft.com/en-us/blog/
responsive-visualizations-coming-to-power-bi/

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1145/331960.331979
https://doi.org/10.1086/323671
https://apps.dtic.mil/docs/citations/ADA138307
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/s10461-010-9797-6
https://dl.acm.org/doi/10.5555/1267950.1267953
https://powerbi.microsoft.com/en-us/blog/responsive-visualizations-coming-to-power-bi/
https://powerbi.microsoft.com/en-us/blog/responsive-visualizations-coming-to-power-bi/

169

[60] Emden R Gansner, Yehuda Koren, and Stephen North. 2004. Graph Drawing by
Stress Majorization. In International Symposium on Graph Drawing.
https://doi.org/10.1007/978-3-540-31843-9_25

[61] Nils Gehlenborg, Seán I O’donoghue, Nitin S Baliga, Alexander Goesmann,
Matthew A Hibbs, Hiroaki Kitano, Oliver Kohlbacher, Heiko Neuweger, Reinhard
Schneider, Dan Tenenbaum, and Anne-Claude Gavin. 2010. Visualization of Omics
Data for Systems Biology. Nature Methods (2010).
https://doi.org/10.1038/nmeth.1436

[62] Burkay Genc and Ugur Dogrusoz. 2003. A Constrained, Force-Directed Layout
Algorithm for Biological Pathways. In International Symposium on Graph Drawing.
https://doi.org/10.1007/978-3-540-24595-7_29

[63] Helen Gibson, Joe Faith, and Paul Vickers. 2013. A Survey of Two-Dimensional
Graph Layout Techniques for Information Visualisation. Information Visualization
(2013). https://doi.org/10.1177/1473871612455749

[64] Datawrapper GmbH. 2019. Datawrapper. https://www.datawrapper.de/. (2019).
Accessed: 2020-04-22.

[65] Pascal Goffin, Jeremy Boy, Wesley Willett, and Petra Isenberg. 2016. An
Exploratory Study of Word-Scale Graphics in Data-Rich Text Documents. IEEE
Transactions on Visualization & Computer Graphics (2016).
https://doi.org/10.1109/TVCG.2016.2618797

[66] Pascal Goffin, Wesley Willett, Jean-Daniel Fekete, and Petra Isenberg. 2014.
Exploring the Placement and Design of Word-Scale Visualizations. IEEE
Transactions on Visualization & Computer Graphics (2014).
https://doi.org/10.1109/TVCG.2014.2346435

[67] Pascal Goffin, Wesley Willett, Jean-Daniel Fekete, and Petra Isenberg. 2015. Design
Considerations for Enhancing Word-Scale Visualizations with Interaction. In Posters
of the Conference on Information Visualization (InfoVis).
https://hal.inria.fr/hal-01216216

[68] Google. 2020. OpenRefine. https://openrefine.org/. (2020). Accessed:
2020-06-23.

[69] Lars Grammel, Chris Bennett, Melanie Tory, and Margaret-Anne D Storey. 2013. A
Survey of Visualization Construction User Interfaces. In Computer Graphics Forum
(Proc. EuroVis, Short Papers).

https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1038/nmeth.1436
https://doi.org/10.1007/978-3-540-24595-7_29
https://doi.org/10.1177/1473871612455749
https://www.datawrapper.de/
https://doi.org/10.1109/TVCG.2016.2618797
https://doi.org/10.1109/TVCG.2014.2346435
https://hal.inria.fr/hal-01216216
https://openrefine.org/

170

[70] Scott Grissom, Myles F McNally, and Tom Naps. 2003. Algorithm Visualization in
CS Education: Comparing Levels of Student Engagement. In Proceedings of the ACM
Symposium on Software Visualization (SoftVis 2003).
https://doi.org/10.1145/774833.774846

[71] Philip J Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education. In Proceedings of the 44th ACM Technical
Symposium on Computer Science Education (SIGCSE).
https://doi.org/10.1145/2445196.2445368

[72] Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer. 2011. Proactive
Wrangling: Mixed-Initiative End-User Programming of Data Transformation Scripts.
In ACM User Interface Software & Technology (UIST).
https://doi.org/10.1145/2047196.2047205

[73] Matthew Harward, Warwick Irwin, and Neville Churcher. 2010. In Situ Software
Visualisation. In 21st Australian Software Engineering Conference (ASWEC).
https://doi.org/10.1109/ASWEC.2010.18

[74] Dafang He, Scott Cohen, Brian Price, Daniel Kifer, and C Lee Giles. 2017.
Multi-Scale Multi-Task FCN for Semantic Page Segmentation and Table Detection.
In IAPR International Conference on Document Analysis and Recognition (ICDAR).
https://doi.org/10.1109/ICDAR.2017.50

[75] Christopher Healey and James Enns. 2012. Attention and Visual Memory in
Visualization and Computer Graphics. IEEE Transactions on Visualization &
Computer Graphics (2012). https://doi.org/10.1109/TVCG.2011.127

[76] Jeffrey Heer. 2018. How Vega Works.
https://observablehq.com/@vega/how-vega-works. (2018). Accessed: 2020-02-24.

[77] Jeffrey Heer, Maneesh Agrawala, and Wesley Willett. 2008. Generalized Selection via
Interactive Query Relaxation. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/1357054.1357203

[78] Jeffrey Heer and Michael Bostock. 2010. Declarative Language Design for Interactive
Visualization. IEEE Transactions on Visualization & Computer Graphics (2010).
https://doi.org/10.1109/TVCG.2010.144

[79] Jeffrey Heer, Nicholas Kong, and Maneesh Agrawala. 2009. Sizing the Horizon: The
Effects of Chart Size and Layering on the Graphical Perception of Time Series
Visualizations. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/1518701.1518897

https://doi.org/10.1145/774833.774846
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1109/ASWEC.2010.18
https://doi.org/10.1109/ICDAR.2017.50
https://doi.org/10.1109/TVCG.2011.127
https://observablehq.com/@vega/how-vega-works
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1109/TVCG.2010.144
https://doi.org/10.1145/1518701.1518897

171

[80] Jeffrey Heer and Ben Shneiderman. 2012. Interactive Dynamics for Visual Analysis.
Queue (2012). https://doi.org/10.1145/2133416.2146416

[81] Ivan Herman, Guy Melançon, and M Scott Marshall. 2000. Graph Visualization and
Navigation in Information Visualization: A Survey. IEEE Transactions on
Visualization & Computer Graphics (2000).
https://doi.org/10.1109/2945.841119

[82] Jefferson Hinke, Isaac Kaplan, Kerim Aydin, George Watters, Robert Olson, and
James FK Kitchell. 2004. Visualizing the Food-Web Effects of Fishing for Tunas in
the Pacific Ocean. Ecology and Society (2004).
https://www.jstor.org/stable/26267649

[83] Jane Hoffswell, Alan Borning, and Jeffrey Heer. 2018. SetCoLa: High-Level
Constraints for Graph Layout. Computer Graphics Forum (Proc. EuroVis) (2018).
https://doi.org/10.1111/cgf.13440

[84] Jane Hoffswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for Flexible
Responsive Visualization Design. ACM Human Factors in Computing Systems (CHI)
(2020). http://doi.org/10.1145/3313831.3376777

[85] Jane Hoffswell and Zhicheng Liu. 2019. Interactive Repair of Tables Extracted from
PDF Documents on Mobile Devices. ACM Human Factors in Computing Systems
(CHI) (2019). https://doi.org/10.1145/3290605.3300523

[86] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2015. Debugging Vega
through Inspection of the Data Flow Graph. In EuroVis Workshop on
Reproducibility, Verification, and Validation in Visualization (EuroRV3).
http://doi.org/10.2312/eurorv3.20151144

[87] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual Debugging
Techniques for Reactive Data Visualization. Computer Graphics Forum (Proc.
EuroVis) (2016). https://doi.org/10.1111/cgf.12903

[88] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code with
In Situ Visualizations to Aid Program Understanding. ACM Human Factors in
Computing Systems (CHI) (2018). https://doi.org/10.1145/3173574.3174106

[89] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012. Green-Marl:
A DSL for Easy and Efficient Graph Analysis. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/2150976.2151013

https://doi.org/10.1145/2133416.2146416
https://doi.org/10.1109/2945.841119
https://www.jstor.org/stable/26267649
https://doi.org/10.1111/cgf.13440
http://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/3290605.3300523
http://doi.org/10.2312/eurorv3.20151144
https://doi.org/10.1111/cgf.12903
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/2150976.2151013

172

[90] Tom Horak, Andreas Mathisen, Clemens N Klokmose, Raimund Dachselt, and Niklas
Elmqvist. 2019. Vistribute: Distributing Interactive Visualizations in Dynamic
Multi-Device Setups. In ACM Human Factors in Computing Systems (CHI).
http://doi.acm.org/10.1145/3290605.3300846

[91] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACM
Computing Surveys (CSUR) (1996). https://doi.org/10.1145/242224.242477

[92] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct
Manipulation Interfaces. Human-Computer Interaction (1985).
https://doi.org/10.1207/s15327051hci0104_2

[93] Facebook Inc. 2020. React: A JavaScript Library for Building User Interfaces.
https://reactjs.org/. (2020). Accessed: 2020-04-29.

[94] InnateDB. 2014a. Homo Sapiens Gene: DDX58.
http://www.innatedb.com/getGeneCard.do?id=55854. (2014). Accessed:
2018-03-12.

[95] InnateDB. 2014b. Homo Sapiens Gene: MAPK1.
http://www.innatedb.com/getGeneCard.do?id=2147. (2014). Accessed:
2018-03-12.

[96] InnateDB. 2014c. Homo Sapiens Gene: TLR4.
http://www.innatedb.com/getGeneCard.do?id=82738. (2014). Accessed:
2018-03-12.

[97] InnateDB. 2018. NOD-like Receptor Signaling Pathway. http://www.innatedb.
com/interactionSearch.do?from=pw&exPathwayXref=8112&pathwayFilter=

&pathwayXrefDB=&pathwayXref=&listType=interaction&coreInteractors=true.
(2018). Accessed: 2018-03-12.

[98] ITOPF. 2019. Oil Tanker Spill Statistics 2019.
http://www.itopf.org/knowledge-resources/data-statistics/statistics/.
(2019). Accessed: 2020-04-26.

[99] Eunice Jun, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene Just,
and Katharina Reinecke. 2019. Tea: A High-level Language and Runtime System for
Automating Statistical Analysis. In ACM User Interface Software & Technology
(UIST). https://doi.org/10.1145/3332165.3347940

http://doi.acm.org/10.1145/3290605.3300846
https://doi.org/10.1145/242224.242477
https://doi.org/10.1207/s15327051hci0104_2
https://reactjs.org/
http://www.innatedb.com/getGeneCard.do?id=55854
http://www.innatedb.com/getGeneCard.do?id=2147
http://www.innatedb.com/getGeneCard.do?id=82738
http://www.innatedb.com/interactionSearch.do?from=pw&exPathwayXref=8112&pathwayFilter=&pathwayXrefDB=&pathwayXref=&listType=interaction&coreInteractors=true
http://www.innatedb.com/interactionSearch.do?from=pw&exPathwayXref=8112&pathwayFilter=&pathwayXrefDB=&pathwayXref=&listType=interaction&coreInteractors=true
http://www.innatedb.com/interactionSearch.do?from=pw&exPathwayXref=8112&pathwayFilter=&pathwayXrefDB=&pathwayXref=&listType=interaction&coreInteractors=true
http://www.itopf.org/knowledge-resources/data-statistics/statistics/
https://doi.org/10.1145/3332165.3347940

173

[100] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank Van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and Paolo
Buono. 2011a. Research Directions in Data Wrangling: Visualizations and
Transformations for Usable and Credible Data. Information Visualization (2011).
https://doi.org/10.1177/1473871611415994

[101] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011b.
Wrangler: Interactive Visual Specification of Data Transformation Scripts. In ACM
Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/1978942.1979444

[102] Hyeonsu Kang and Philip J Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In ACM
User Interface Software & Technology (UIST).
https://doi.org/10.1145/3126594.3126632

[103] Kelly A Kearney. 2016. Food Webs as Network Graphs.
http://kellyakearney.net/2016/01/19/food-webs-as-network-graphs-1.html.
(2016). Accessed: 2017-03-14.

[104] Kelly A Kearney. 2017a. d3-foodweb.
https://github.com/kakearney/d3-foodweb. (2017). Accessed: 2020-04-25.

[105] Kelly A Kearney. 2017b. foodwebgraph-pkg.
https://github.com/kakearney/foodwebgraph-pkg. (2017). Accessed: 2020-04-25.

[106] Kelly A Kearney, Charles Stock, Kerim Aydin, and Jorge L Sarmiento. 2012.
Coupling Planktonic Ecosystem and Fisheries Food Web Models for a Pelagic
Ecosystem: Description and Validation for the Subarctic Pacific. Ecological Modelling
(2012). https://doi.org/10.1016/j.ecolmodel.2012.04.006

[107] Kelly A Kearney, Charles Stock, and Jorge L Sarmiento. 2013. Amplification and
Attenuation of Increased Primary Production in a Marine Food Web. Marine Ecology
Progress Series (2013). https://doi.org/10.3354/meps10484

[108] Curran Kelleher and Haim Levkowitz. 2015. Reactive Data Visualizations. In
Visualization and Data Analysis. https://doi.org/10.1117/12.2078301

[109] Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. 2013. Incremental
Grid-Like Layout Using Soft and Hard Constraints. In International Symposium on
Graph Drawing. https://doi.org/10.1007/978-3-319-03841-4_39

https://doi.org/10.1177/1473871611415994
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/3126594.3126632
http://kellyakearney.net/2016/01/19/food-webs-as-network-graphs-1.html
https://github.com/kakearney/d3-foodweb
https://github.com/kakearney/foodwebgraph-pkg
https://doi.org/10.1016/j.ecolmodel.2012.04.006
https://doi.org/10.3354/meps10484
https://doi.org/10.1117/12.2078301
https://doi.org/10.1007/978-3-319-03841-4_39

174

[110] Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. 2016. HOLA:
Human-Like Orthogonal Network Layout. IEEE Transactions on Visualization &
Computer Graphics (2016). https://doi.org/10.1109/TVCG.2015.2467451

[111] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li,
Jovan Popovic, and Hanspeter Pfister. 2016. Data-Driven Guides: Supporting
Expressive Design for Information Graphics. IEEE Transactions on Visualization &
Computer Graphics (2016). https://doi.org/10.1109/TVCG.2016.2598620

[112] Gordon Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels, and John
Reppy. 2015. Diderot: A Domain-Specific Language for Portable Parallel Scientific
Visualization and Image Analysis. IEEE Transactions on Visualization & Computer
Graphics (2015). https://doi.org/10.1109/TVCG.2015.2467449

[113] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011. The
State of the Art in End-User Software Engineering. ACM Computing Surveys
(CSUR) (2011). https://doi.org/10.1145/1922649.1922658

[114] Amy J Ko and Brad A Myers. 2003. Development and evaluation of a model of
programming errors. In IEEE Symposium on Human Centric Computing Languages
and Environments. https://doi.org/10.1109/HCC.2003.1260196

[115] Amy J Ko and Brad A Myers. 2004. Designing the Whyline: A Debugging Interface
for Asking Questions about Program Behavior. In ACM Human Factors in
Computing Systems (CHI). https://doi.org/10.1145/985692.985712

[116] Amy J Ko and Brad A Myers. 2005. A Framework and Methodology for Studying
the Causes of Software Errors in Programming Systems. Journal of Visual Languages
& Computing (2005). https://doi.org/10.1016/j.jvlc.2004.08.003

[117] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). https://doi.org/10.1109/VLHCC.2004.47

[118] Amy J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information
during Software Maintenance Tasks. IEEE Transactions on Software Engineering
(2006). https://doi.org/10.1109/TSE.2006.116

https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2015.2467449
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/HCC.2003.1260196
https://doi.org/10.1145/985692.985712
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/TSE.2006.116

175

[119] Stephen G Kobourov. 2012. Spring Embedders and Force Directed Graph Drawing
Algorithms. arXiv preprint arXiv:1201.3011 (2012).
https://arxiv.org/abs/1201.3011

[120] Kaname Kojima, Masao Nagasaki, Euna Jeong, Mitsuru Kato, and Satoru Miyano.
2007. An Efficient Grid Layout Algorithm for Biological Networks Utilizing Various
Biological Attributes. BMC Bioinformatics (2007).
https://doi.org/10.1186/1471-2105-8-76

[121] Tomaž Kosar, Sašo Gaberc, Jeffrey C Carver, and Marjan Mernik. 2018. Program
Comprehension of Domain-Specific and General-Purpose Languages: Replication of a
Family of Experiments Using Integrated Development Environments. Empirical
Software Engineering (2018). https://doi.org/10.1007/s10664-017-9593-2

[122] Tomaž Kosar, Marjan Mernik, and Jeffrey C Carver. 2012. Program Comprehension
of Domain-Specific and General-Purpose Languages: Comparison Using a Family of
Experiments. Empirical Software Engineering (2012).
https://doi.org/10.1007/s10664-011-9172-x

[123] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2008. Monticore: Modular
Development of Textual Domain Specific Languages. In International Conference on
Objects, Components, Models and Patterns.
https://doi.org/10.1007/978-3-540-69824-1_17

[124] Kruger National Park 2017. Kruger National Park: What is a Food Web?
https://kruger-nationalpark.weebly.com/the-food-web.html. (2017).
Accessed: 2020-04-25.

[125] Shahid Latif, Diao Liu, and Fabian Beck. 2018. Exploring Interactive Linking
Between Text and Visualization. Computer Graphics Forum (Proc. EuroVis, Short
Papers) (2018). https://www.vis.wiwi.uni-due.de/uploads/tx_itochairt3/
publications/091-094.pdf

[126] David Lavigne. 1996. Cod Food Web.
http://www.visualcomplexity.com/vc/project.cfm?id=47. (1996). Accessed:
2017-03-14.

[127] Weijiang Li and Hiroyuki Kurata. 2005. A Grid Layout Algorithm for Automatic
Drawing of Biochemical Networks. Bioinformatics (2005).
https://doi.org/10.1093/bioinformatics/bti290

https://arxiv.org/abs/1201.3011
https://doi.org/10.1186/1471-2105-8-76
https://doi.org/10.1007/s10664-017-9593-2
https://doi.org/10.1007/s10664-011-9172-x
https://doi.org/10.1007/978-3-540-69824-1_17
https://kruger-nationalpark.weebly.com/the-food-web.html
https://www.vis.wiwi.uni-due.de/uploads/tx_itochairt3/publications/091-094.pdf
https://www.vis.wiwi.uni-due.de/uploads/tx_itochairt3/publications/091-094.pdf
http://www.visualcomplexity.com/vc/project.cfm?id=47
https://doi.org/10.1093/bioinformatics/bti290

176

[128] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing Misconceptions
about Code with Always-On Programming Visualizations. In ACM Human Factors
in Computing Systems (CHI). https://doi.org/10.1145/2556288.2557409

[129] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3173574.3173697

[130] Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J Ko. 2020. Investigating
Novices’ In Situ Reflections on Their Programming Process. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education.
https://doi.org/10.1145/3328778.3366846

[131] Kiln Enterprises Ltd. 2020. Flourish. https://flourish.studio/. (2020). Accessed:
2020-04-25.

[132] Jock Mackinlay. 1986. Automating the Design of Graphical Presentations of
Relational Information. ACM Transactions on Graphics (1986).
https://doi.org/10.1145/22949.22950

[133] Ethan Marcotte. 2014. Responsive Web Design. A Book Apart Publ.

[134] Ethan Marcotte. 2015. Responsive Design: Patterns and Principles. A Book Apart
Publ.

[135] Michele Mauri, Tommaso Elli, Giorgio Caviglia, Giorgio Uboldi, and Matteo Azzi.
2017. RAWGraphs: A Visualisation Platform to Create Open Outputs. In
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (CHItaly
’17). https://doi.org/10.1145/3125571.3125585

[136] D Scott McCrickard and Christa M Chewar. 2003. Attuning Notification Design to
User Goals and Attention Costs. Commun. ACM (2003).
https://doi.org/10.1145/636772.636800

[137] PD McElroy, RB Rothenberg, R Varghese, R Woodruff, GO Minns, SQ Muth, LA
Lambert, and R Ridzon. 2003. A Network-Informed Approach to Investigating a
Tuberculosis Outbreak: Implications for Enhancing Contact Investigations. The
International Journal of Tuberculosis and Lung Disease (2003).

https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3328778.3366846
https://flourish.studio/
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/3125571.3125585
https://doi.org/10.1145/636772.636800

177

[138] Honghui Mei, Wei Chen, Yuxin Ma, Huihua Guan, and Wanqi Hu. 2018.
VisComposer: A Visual Programmable Composition Environment for Enformation
Visualization. Visual Informatics (2018).
https://doi.org/10.1016/j.visinf.2018.04.008

[139] Gonzalo Gabriel Méndez, Miguel A Nacenta, and Sebastien Vandenheste. 2016.
iVoLVER: Interactive Visual Language for Visualization Extraction and
Reconstruction. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/2858036.2858435

[140] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and How to
Develop Domain-Specific Languages. ACM Computing Surveys (CSUR) (2005).
https://doi.org/10.1145/1118890.1118892

[141] Leo A Meyerovich, Arjun Guha, Jacob Baskin, Gregory H Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: A
Programming Language for Ajax Applications. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). https://doi.org/10.1145/1640089.1640091

[142] Microsoft. 2020. Microsoft Excel. https://products.office.com/en-us/excel.
(2020). Accessed: 2020-04-25.

[143] Dominik Moritz, Chenglong Wang, Gregory Nelson, Halden Lin, Adam M Smith, Bill
Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on
Visualization & Computer Graphics (Proc. InfoVis) (2019).
https://doi.org/10.1109/TVCG.2018.2865240

[144] Brad A Myers. 1990. Taxonomies of Visual Programming and Program Visualization.
Journal of Visual Languages & Computing (1990).
https://doi.org/10.1016/S1045-926X(05)80036-9

[145] Brad A Myers. 1991. Separating Application Code from Toolkits: Eliminating the
Spaghetti of Call-Backs. In ACM User Interface Software & Technology (UIST).
https://doi.org/10.1145/120782.120805

[146] Brad A Myers, John F Pane, and Amy Ko. 2004. Natural Programming Languages
and Environments. Commun. ACM (2004).
https://doi.org/10.1145/1015864.1015888

https://doi.org/10.1016/j.visinf.2018.04.008
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1640089.1640091
https://products.office.com/en-us/excel
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/1015864.1015888

178

[147] Jeanne Nakamura and Mihaly Csikszentmihalyi. 2014. The Concept of Flow. In Flow
and the Foundations of Positive Psychology.
https://doi.org/10.1007/978-94-017-9088-8_16

[148] Alannah Oleson, Meron Solomon, and Amy J Ko. 2020. Computing Students’
Learning Difficulties in HCI Education. In CHI Conference on Human Factors in
Computing Systems. https://doi.org/10.1145/3313831.3376149

[149] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding Interactive
Vehaviors in Dynamic Web Pages. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC).
https://doi.org/10.1109/VLHCC.2009.5295287

[150] John F Pane, Chotirat “Ann” Ratanamahatana, and Brad A Myers. 2001. Studying
the Language and Structure in Non-Programmers’ Solutions to Programming
Problems. International Journal of Human-Computer Studies (2001).
https://doi.org/10.1006/ijhc.2000.0410

[151] Chris Parnin and Spencer Rugaber. 2011. Resumption Strategies for Interrupted
Programming Tasks. Software Quality Journal (2011).
https://doi.org/10.1007/s11219-010-9104-9

[152] Terence Parr. 2009. Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages. Pragmatic Bookshelf.

[153] William A Pike, John Stasko, Remco Chang, and Theresa A O’Connell. 2009. The
Science of Interaction. Information Visualization (2009).
https://doi.org/10.1057/ivs.2009.22

[154] Zening Qu and Jessica Hullman. 2018. Keeping Multiple Views Consistent:
Constraints, Validations, and Exceptions in Visualization Authoring. IEEE
Transactions on Visualization & Computer Graphics (Proc. InfoVis) (2018).
https://doi.org/10.1109/TVCG.2017.2744198

[155] N Quinn and M Breuer. 1979. A Forced Directed Component Placement Procedure
for Printed Circuit Boards. IEEE Transactions on Circuits and Systems (1979).
https://doi.org/10.1109/TCS.1979.1084652

[156] Jonathan Millard Ragan-Kelley. 2014. Decoupling Algorithms from the Organization
of Computation for High Performance Image Processing. Ph.D. Dissertation.
Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/89996

https://doi.org/10.1007/978-94-017-9088-8_16
https://doi.org/10.1145/3313831.3376149
https://doi.org/10.1109/VLHCC.2009.5295287
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1007/s11219-010-9104-9
https://doi.org/10.1057/ivs.2009.22
https://doi.org/10.1109/TVCG.2017.2744198
https://doi.org/10.1109/TCS.1979.1084652
http://hdl.handle.net/1721.1/89996

179

[157] Casey Reas and Ben Fry. 2006. Processing: Programming for the Media Arts. AI &
SOCIETY (2006). https://doi.org/10.1007/s00146-006-0050-9

[158] Edward M Reingold and John S Tilford. 1981. Tidier Drawings of Trees. IEEE
Transactions on Software Engineering (1981).
https://doi.org/10.1109/TSE.1981.234519

[159] Donghao Ren, Matthew Brehmer, Bongshin Lee, Tobias Höllerer, and Eun Kyoung
Choe. 2017. ChartAccent: Annotation for Data-Driven Storytelling. In IEEE Pacific
Visualization Symposium (PacificVis).
https://doi.org/10.1109/PACIFICVIS.2017.8031599

[160] Donghao Ren, Tobias Höllerer, and Xiaoru Yuan. 2014. iVisDesigner: Expressive
Interactive Design of Information Visualizations. IEEE Transactions on Visualization
& Computer Graphics (2014). https://doi.org/10.1109/TVCG.2014.2346291

[161] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2018. Charticulator: Interactive
Construction of Bespoke Chart Layouts. IEEE Transactions on Visualization &
Computer Graphics (2018). https://doi.org/10.1109/TVCG.2018.2865158

[162] Rev.com. 2020. Rev. https://www.rev.com/. (2020). Accessed: 2020-05-26.

[163] Tiark Rompf, Arvind K Sujeeth, HyoukJoong Lee, Kevin J Brown, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2011. Building-Blocks for Performance
Oriented DSLs. arXiv preprint arXiv:1109.0778 (2011).
http://dx.doi.org/10.4204/EPTCS.66.5

[164] Richard B Rothenberg, Claire Sterk, Kathleen E Toomey, John J Potterat, David
Johnson, Mark Schrader, and Stefani Hatch. 1998. Using Social Network and
Ethnographic Tools to Evaluate Syphilis Transmission. Sexually Transmitted Diseases
(1998).

[165] Spencer Rugaber. 2000. The Use of Domain Knowledge in Program Understanding.
Annals of Software Engineering (2000).
https://doi.org/10.1023/A:1018976708691

[166] Peter C de Ruiter, Wolters Volkmar, and John C Moore. 2006. Dynamic Food Webs:
Multispecies Assemblages, Ecosystem Development, and Environmental Change.
https://doi.org/10.1016/B978-012088458-2/50000-X

[167] David Saff and Michael D Ernst. 2003. Reducing Wasted Development Time via
Continuous Testing. In 14th International Symposium on Software Reliability
Engineering (ISSRE 2003). https://doi.org/10.1109/ISSRE.2003.1251050

https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1109/TSE.1981.234519
https://doi.org/10.1109/PACIFICVIS.2017.8031599
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2018.2865158
https://www.rev.com/
http://dx.doi.org/10.4204/EPTCS.66.5
https://doi.org/10.1023/A:1018976708691
https://doi.org/10.1016/B978-012088458-2/50000-X
https://doi.org/10.1109/ISSRE.2003.1251050

180

[168] Cedric Sam. 2018. Ai2html and Its Impact on the News Graphics Industry. CHI
Workshop on Data Visualization on Mobile Devices (MobileVis) (2018).
https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf

[169] Michael John Sannella. 1994. Constraint Satisfaction and Debugging for Interactive
User Interfaces. Ph.D. Dissertation. University of Washington Seattle, Washington.

[170] Purvi Saraiya, Chris North, and Karen Duca. 2005. Visualizing Biological Pathways:
Requirements Analysis, Systems Evaluation and Research Agenda. Information
Visualization (2005). https://doi.org/10.1057/palgrave.ivs.9500102

[171] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and Danyel Fisher.
2019. What Do We Talk About When We Talk About Dashboards? IEEE
Transactions on Visualization & Computer Graphics (2019).
https://doi.org/10.1109/TVCG.2018.2864903

[172] John Sarracino, Odaris Barrios-Arciga, Jasmine Zhu, Noah Marcus, Sorin Lerner, and
Ben Wiedermann. 2017. User-Guided Synthesis of Interactive Diagrams. In ACM
Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3025453.3025467

[173] Arvind Satyanarayan and Jeffrey Heer. 2014a. Authoring Narrative Visualizations
with Ellipsis. Computer Graphics Forum (Proc. EuroVis) (2014).
https://doi.org/10.1111/cgf.12392

[174] Arvind Satyanarayan and Jeffrey Heer. 2014b. Lyra: An Interactive Visualization
Design Environment. In Computer Graphics Forum (Proc. EuroVis).
https://doi.org/10.1111/cgf.12391

[175] Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John Stasko,
John R Thompson, Matthew Brehmer, and Zhicheng Liu. 2020. Critical Reflections
on Visualization Authoring Systems. IEEE Transactions on Visualization &
Computer Graphics (Proc. InfoVis) (2020).
https://doi.org/10.1109/TVCG.2019.2934281

[176] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization & Computer Graphics (Proc. InfoVis) (2017).
https://doi.org/10.1109/TVCG.2016.2599030

[177] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2015. Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interactive Visualization.

https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf
https://doi.org/10.1057/palgrave.ivs.9500102
https://doi.org/10.1109/TVCG.2018.2864903
https://doi.org/10.1145/3025453.3025467
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030

181

IEEE Transactions on Visualization & Computer Graphics (Proc. InfoVis) (2015).
https://doi.org/10.1109/TVCG.2015.2467091

[178] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative
Interaction Design for Data Visualization. In ACM User Interface Software &
Technology (UIST). https://doi.org/10.1145/2642918.2647360

[179] John Scott. 1988. Social Network Analysis. Sociology (1988).
https://doi.org/10.1177/0038038588022001007

[180] Clifford A Shaffer, Matthew Cooper, and Stephen H Edwards. 2007. Algorithm
Visualization: A Report on the State of the Field. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE).
https://doi.org/10.1145/1227310.1227366

[181] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. Cytoscape:
A Software Environment for Integrated Models of Biomolecular Interaction Networks.
Genome Research (2003). http://www.genome.org/cgi/doi/10.1101/gr.1239303

[182] Divit P Singh, Lee Lisle, TM Murali, and Kurt Luther. 2018. CrowdLayout:
Crowdsourced Design and Evaluation of Biological Network Visualizations. In ACM
Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3173574.3173806

[183] Diomidis Spinellis. 2001. Notable Design Patterns for Domain-Specific Languages.
Journal of Systems and Software (2001).
https://doi.org/10.1016/S0164-1212(00)00089-3

[184] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Relational Databases. IEEE
Transactions on Visualization & Computer Graphics (2002).
https://doi.org/10.1109/2945.981851

[185] M-AD Storey, Kenny Wong, and Hausi A Müller. 2000. How do Program
Understanding Tools Affect How Programmers Understand Programs? Science of
Computer Programming (2000).
https://doi.org/10.1016/S0167-6423(99)00036-2

[186] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. 1981. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Transactions on Systems,
Man, and Cybernetics (1981). https://doi.org/10.1109/TSMC.1981.4308636

https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1177/0038038588022001007
https://doi.org/10.1145/1227310.1227366
http://www.genome.org/cgi/doi/10.1101/gr.1239303
https://doi.org/10.1145/3173574.3173806
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1109/2945.981851
https://doi.org/10.1016/S0167-6423(99)00036-2
https://doi.org/10.1109/TSMC.1981.4308636

182

[187] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, and
Amy J Ko. 2018. Rewire: Interface Design Assistance from Examples. In ACM
Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3173574.3174078

[188] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and Amy J
Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives through
High-Level Design Constraints. ACM Human Factors in Computing Systems (CHI)
(2020). https://doi.org/10.1145/3313831.3376593

[189] Ben Swift, Andrew Sorensen, Henry Gardner, and John Hosking. 2013. Visual Code
Annotations for Cyberphysical Programming. In Proceedings of the 1st International
Workshop on Live Programming. https://doi.org/10.1109/LIVE.2013.6617345

[190] The New York Times Company. 2017. ai2html. http://ai2html.org/. (2017).
Accessed: 2020-04-21.

[191] Trifacta. 2020. Trifacta. https://www.trifacta.com/. (2020). Accessed: 2020-06-23.

[192] Edward R Tufte. 2006. Beautiful Evidence. Graphis Pr.

[193] William Thomas Tutte. 1963. How to Draw a Graph. Proceedings of the London
Mathematical Society (1963). https://doi.org/10.1112/plms/s3-13.1.743

[194] Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages:
An Annotated Bibliography. ACM SIGPLAN Notices (2000).
https://doi.org/10.1145/352029.352035

[195] Jacob VanderPlas, Brian E Granger, Jeffrey Heer, Dominik Moritz, Kanit
Wongsuphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and
Scott Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. The
Journal of Open Source Software (2018). https://doi.org/10.21105/joss.01057

[196] Vega. 2016. Vega Tutorial. https://github.com/vega/vega/wiki/Tutorial.
(2016). Accessed: 2020-04-28.

[197] Bret Victor. 2012a. Inventing on Principle. https://vimeo.com/36579366. (2012).
Accessed: 2020-04-27.

[198] Bret Victor. 2012b. Learnable Programming: Designing a Programming System for
Understanding Programs. http://worrydream.com/LearnableProgramming. (2012).
Accessed: 2020-04-25.

https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1145/3313831.3376593
https://doi.org/10.1109/LIVE.2013.6617345
http://ai2html.org/
https://www.trifacta.com/
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1145/352029.352035
https://doi.org/10.21105/joss.01057
https://github.com/vega/vega/wiki/Tutorial
https://vimeo.com/36579366
http://worrydream.com/LearnableProgramming

183

[199] Anneliese von Mayrhauser and A Marie Vans. 1997. Program Understanding
Behavior During Debugging of Large Scale Software. In Workshop on Empirical
Studies of Programmers. https://doi.org/10.1145/266399.266414

[200] Mason Walker. 2019. Americans Favor Mobile Devices over Desktops and Laptops for
Getting News. Pew Research Center (2019). https://pewrsr.ch/2uvqS04

[201] Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-Driven FRP. In Practical
Aspects of Declarative Languages. https://doi.org/10.1007/3-540-45587-6_11

[202] Yunhai Wang, Yanyan Wang, Yinqi Sun, Lifeng Zhu, Kecheng Lu, Chi-Wing Fu,
Michael Sedlmair, Oliver Deussen, and Baoquan Chen. 2018a. Revisiting Stress
Majorization as a Unified Framework for Interactive Constrained Graph
Visualization. IEEE Transactions on Visualization & Computer Graphics (2018).
https://doi.org/10.1109/TVCG.2017.2745919

[203] Yun Wang, Haidong Zhang, He Huang, Xi Chen, Qiufeng Yin, Zhitao Hou, Dongmei
Zhang, Qiong Luo, and Huamin Qu. 2018b. InfoNice: Easy Creation of Information
Graphics. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3173574.3173909

[204] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer.

[205] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. 2007. Scented Widgets:
Improving Navigation Cues with Embedded Visualizations. IEEE Transactions on
Visualization & Computer Graphics (2007).
https://doi.org/10.1109/TVCG.2007.70589

[206] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting Visual Analysis with Partial View Specifications. In ACM Human
Factors in Computing Systems (CHI). https://doi.org/10.1145/3025453.3025768

[207] Yingcai Wu, Xiaotong Liu, Shixia Liu, and Kwan-Liu Ma. 2012. ViSizer: A
Visualization Resizing Framework. IEEE Transactions on Visualization & Computer
Graphics (2012). https://doi.org/10.1109/TVCG.2012.114

[208] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and Daniel
Wigdor. 2018. DataInk: Direct and Creative Data-Oriented Drawing. In ACM Human
Factors in Computing Systems (CHI). https://doi.org/10.1145/3173574.3173797

https://doi.org/10.1145/266399.266414
https://pewrsr.ch/2uvqS04
https://doi.org/10.1007/3-540-45587-6_11
https://doi.org/10.1109/TVCG.2017.2745919
https://doi.org/10.1145/3173574.3173909
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2012.114
https://doi.org/10.1145/3173574.3173797

184

[209] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: From Mathematical Notation to
Beautiful Diagrams. ACM Transactions on Graphics (TOG (2020).
https://doi.org/10.1145/3386569.3392375

[210] Peter Yodzis. 1998. Local Trophodynamics and the Enteraction of Marine Mammals
and Fisheries in the Benguela Ecosystem. Journal of Animal Ecology (1998).
https://doi.org/10.1046/j.1365-2656.1998.00224.x

[211] Polle T Zellweger, Susan Harkness Regli, Jock D Mackinlay, and Bay-Wei Chang.
2000. The Impact of Fluid Documents on Reading and Browsing: An Observational
Study. In ACM Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/332040.332440

[212] Xu Zhu, Miguel Nacenta, Özgür Akgün, and Peter William Nightingale. 2019. How
People Visually Represent Discrete Constraint Problems. IEEE Transactions on
Visualization and Computer Graphics (2019).
https://doi.org/10.1109/TVCG.2019.2895085

https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1046/j.1365-2656.1998.00224.x
https://doi.org/10.1145/332040.332440
https://doi.org/10.1109/TVCG.2019.2895085

185

Appendix A

INTERVIEW RESOURCES: UNDERSTANDING THE
BEHAVIOR OF CONSTRAINT SYSTEMS

Section 3.2 describes a set of formative interviews exploring how people use and understand

the behavior of constraints. The goal of these interviews was to learn more about exist-

ing program understanding practice for constraints and the current limitations encountered

when developing constraint-based systems. Prior to the interviews, participants completed a

screening survey in which they described their prior experience with constraints and other

demographic information. Participants were then contacted by the research team to set up

the interview. The questions used in the screening survey are included in Section A.1. The

basic interview template is included in Section A.2; the primary question is shown in bold,

followed by back-up questions that may optionally be used to encourage more discussion.

A.1 Formative Interview Screening Survey

Thank you for your interest in our study on constraint programming systems. The goal of

this study is to learn more about how people use, interact with, and understand constraints.

This study consists of an informal interview in which you will be asked to share particular

anecdotes and impressions regarding your personal experience working with constraints.

If you are interested in participating in this study, please fill out the following survey. This

survey aims to learn a bit about your experience to determine if you are a good fit for this

study. If you have any questions about this study, please contact <<Interviewer Name>>

(<<Interviewer Email>>). If selected to participate in this study, you will be contacted by

the research team to schedule the interview. The interview will last about 1 hour, and you

will receive a $20 gift card as compensation.

186

1. What was the primary goal of the project? How were constraints applied?

2. Why did you decide to use constraints for this project? Please describe any alternative
tools or methods that you may have considered.

3. What were the biggest challenges / hurdles you faced in your use of constraints?

4. (Optional) Please share links to any resources you have found particularly useful or to
any illustrative examples you would like to share.

5. (Optional) Additional comments

Demographic Information:Demographic Information:

6. Name

7. Email

8. Gender

9. Age

10. What is the highest degree or level of school you have completed?
If currently enrolled, what is the highest degree received so far?

11. Current Organizational Affiliation

12. Current Job For example: “2nd year PhD student,” “Associate Professor,” “Research
Scientist,” “Software Developer,” etc.

13. (Optional) Please share any additional comments or information that you think may
be relevant to this study.

A.2 Formative Interview Script Template

The goal of these interviews is to learn more about your experience working with constraints.

I will ask some questions to get you started, but please feel free to share any information or

anecdotes you would like. I would also like to encourage you to share any particular examples

or resources that you think might be beneficial to our research team. Before we get started,

do you have any questions for me?

187

1. Tell me about a particular programming project using constraints that ex-
cited or challenged you. For example, what was the goal of this project? What
was the desired end result? What was your background with constraints prior to this
project? Can you walk me through your mental model for how the project works?

2. What was the biggest challenge you faced in working on this project? What
steps did you take to overcome this challenge?

3. Can you recall a time when the constraints produced a result you did not
expect? What was your process for handling this situation?

4. At what stage is this project now? At what point in the process did you feel the
project was complete/ready to ship? How did you know that it had reached this point?

[Aside: Discussing and collaborating on constraint-based systems can be particularly difficult,

so we aimed to specifically ask about this experience in the interviews.]

5. Did you collaborate with others during this project? What was your role on
the team?

6. What parts of the project were most essential to communicate? What parts
were the hardest to communicate? What parts could you gloss over or
abstract?

[Aside: For participants that work on end-user facing systems, interesting challenges can arise

around how end users interact with the systems. The following questions aim to explore those

challenges and any potential interventions the participants have explored.]

7. What was one of the most surprising applications of your system?

8. To the best of your knowledge, what are some of the most common stum-
bling points expressed by end users of this system?

[Aside: Next, the interviews aim to encourage a more general discussion of the challenges

that arose or are common across multiple projects.]

9. How many different projects have you worked on involving constraints?

10. How common were the challenges you mentioned previously? During the
project you mentioned? Across different projects?

188

11. In general, what were the most common hurdles / sticking points that you
have encountered when working with constraints?

12. Have you ever considered using constraints for a project, but ultimately
decided to use a different approach? What approach did you ultimately use?
Why did you decide against using constraints? In what way were they not appropriate
or sufficient for the project?

[Aside: Finally, the interviews aim to encourage the participants to think broadly about how

their development process might be improved.]

13. How satisfied are you with your current development process? How might
this process be improved?

189

Appendix B

HISTORICAL DEBUGGING APPROACH FOR VEGA
USING THE JAVASCRIPT CONSOLE

(a) Vega specification (b) Output interactive visualization (c) Console

Figure B.1: The historical Vega development and debugging environment. The user writes (a) the
Vega specification to produce (b) an output Vega visualization. To debug the behavior, the user
can open (c) the JavaScript console of the browser to inspect the underlying system internals.

As described in Section 5.3 of this dissertation, the original Vega development environment

did not have debugging support. Instead, users were required to manually traverse the

underlying data flow graph and scene graph of Vega’s system internals via the JavaScript

console. In order to illustrate this process, consider the following series of steps that would

be required to debug the index chart example described in Section 6.2.1. This visualization

is an interactive index chart which shows stock prices over time normalized to the location

of an interactive cursor. As the user moves the cursor, the lines in the stock chart update

based on the date-time that corresponds to the cursor location. The former Vega IDE

consists of a user-defined specification (Figure B.1a), an output visualization (Figure B.1b),

and access to the system internals via the JavaScript console (Figure B.1c).

190

a b

Figure B.2: (a) The broken state for an interactive index chart, as compared to (b) the correct
version of the visualization at the same time point.

Step 1: Identify the problem state. Upon observing an error (Figure B.2a), the user must

isolate the problem state. In the index chart, the error occurs at a particular timestamp for

the interactive cursor, which is only a few pixels wide and thus difficult to hit exactly.

Step 2: View the system internals. The user must know that the system internals can be

accessed from the JavaScript console via the command shown here: ved.view (Figure B.3a).

Step 3: What should the user look for? The user notices that no lines appear to be

drawn in this error case (Figure B.2a). In response, the user wants to navigate the Vega

scene graph to identify what marks appear on the canvas (if any). The Vega scene graph can

be accessed via the command: ved.view.model().scene() (Figure B.3b).

Step 4: Navigating the scene graph. By navigating the scene graph, the user can locate

the group that corresponds to the set of line marks (Figure B.3c) and locate the part of

the scene graph corresponding to the individual lines (Figure B.3d). The user may therefore

wonder: since the lines appear to exist, why are they not visible?

Step 5: Inspect the encoding. The line mark is defined by multiple points with an x and

y value. Based on a random sampling of the values, it seems that while the x value varies

the y value is always the same: 265 (Figure B.3e).

191

(d) Navigate the scene graph.(a) View the system internals.

(e) Inspect the encoding.

(b) View the scene graph.

(c) Navigate the scene graph.

(f) Inspect the data.

(g) Inspect the data.

Figure B.3: Snapshots of different points in the debugging process described in this section. Each
of these screenshots captures a particular state of the JavaScript console. To really understand the
behavior, users must be able to effectively navigate this complex internal structure.

192

(b) The Vega code responsible for creating the backing "indexified_stocks" dataset.

(a) The Vega code responsible for creating the line marks.

Figure B.4: (a) The Vega code responsible for creating the line marks. (b) The code for the
indexified stocks dataset which defines the indexed price variable used in the line encoding.

Step 6: How is the y value determined? Inspecting the visualization, the user notices

that the lines are not missing, they are flat against the y axis. In particular, the user notices

that the text is visible at the end of the line (Figure B.2a). By locating the point in the

specification where the y value is defined, the user can identify that this value is drawn from

a data field: indexed price (Figure B.4a).

193

(e) Explore the filter.

(b) View the interactive signal.

(c) Explore the constant date.

(d) View the underlying data.

(a) View the datasets.

Figure B.5: Snapshots of different points in the debugging process described in this section. Each
of these screenshots captures a particular state of the JavaScript console.

Step 7: How is indexed price defined? The indexed price variable is a field in the

indexified stocks dataset, so the user can locate that part of the code and find the cal-

culation for indexed price. However, this line is so long that it does not fit in the editor

window (Figure B.4b, Line 45). Looking at this calculation, the user can figure out that if

the index term is not greater than zero, then indexed price is set to zero. The user may

therefore wonder: what is the index term?

Step 8: Inspect the data. The user can return to the console to locate the data in the

console via the command: ved.view.model().data() (Figure B.3f). A sampling of data

for the indexified stocks dataset shows that for all points, both the indexed price and

index term are zero (Figure B.3g). The user may wonder: why is index term always zero?

194

(a) The Vega code responsible for creating the "index" dataset.

(b) The Vega code responsible for specifying the behavior of the interactive cursor.

Figure B.6: The Vega code for defining (a) the index dataset and (b) the interactive cursor.

Step 9: Why is index term zero? Looking at the code, the index term is defined as a

lookup on the index dataset with a default of zero (Figure B.4b). Then, what is index?

Step 10: What does index look like? Returning to the console, the user inspect the

values of the index dataset to examine why the lookup is using the default or why the value

identified from the lookup is zero (Figure B.5a). However, the user finds that there are no

values in the dataset, which raises the question: how is the index dataset defined?

Step 11: How is index defined? Looking at the specification, the user can find the

definition of the index dataset (Figure B.6a). The user can see that index is a filter on

stocks based on a complex test definition. Based on Step 10, it looks like the filter removes

everything. But why is this the case? The filter tests each data point in stocks (the datum)

plus or minus some value (1296000000) against indexDate. So then what is indexDate?

195

Step 12: What is indexDate? indexDate is defined as a signal that updates on mousemove

to get the current time value (Figure B.6b). Using the console, we can find the value of

the signal for indexDate to see if there is a problem in the interaction. We can extract

the value using the command: ved.view.model().signal("indexDate") (Figure B.5b).

However, looking at the result, it seems that the value (Dec. 16, 2002) is reasonable. The

filter tests each data point in stocks (datum) plus or minus some value against indexDate.

Revisiting the definition of the index dataset, we find that the filter tests each data point in

stocks plus or minus some value against indexDate. So then how does this equation work?

The value is kept if: date - value <= indexDate <= date + value.

But to understand how this equation works, the user must first understand the behavior of

the constant (1296000000). The constant specifies the range in which the data tuples pass

the filter, so what is the constant doing? The constant looks like unix time, similar to other

values in the data set. We can use the console to explore what it might mean (Figure B.5c):

the date corresponds to Jan. 15th, which does not really make sense for a generic filter. The

day is the 15th. The indexDate was Dec. 16th, so we are looking for all data values such that

Dec. 16th falls within the range: date plus or minus 15.

Step 13: What are the dates in the dataset? To understand how values work with

this range, we can use the console to inspect the stocks dataset to identify what dates are

being tested in the filter (Figure B.5d). From a random sampling of points in the dataset,

the user can see that every point corresponds to the first of the month. So for each data

point, what happens with the filter? If we look at Dec. 01, we see that it does not pass the

filter. And neither do any of the other dates (Figure B.5e). In particular, notice that there

is a time associated with the index point as well as the date, such that the indexDate is

equal to “Mon Dec 16 2002 10:58:17 GMT-0800 (PST)” (Figure B.5b). However, the data

in the stocks dataset does not have an associated time (Figure B.5d). Two of these dates

are compared side-by-side in Figure B.5e: in this case, Dec01 corresponds to data from the

stocks dataset and Dec16 corresponds to the indexDate.

196

Figure B.7: The Vega code to fix the broken index chart uses the month and year to appropriately
filter the data, rather than an usual calculation involving a constant (Figure B.6a). The visualization
will no longer flatline (Figure B.2a) and instead will produce the desired result (Figure B.2b).

Step 14: The answer. No values pass the filter because the associated time is pushing them

out of the range. The filter is attempting to capture the point associated with the month and

year of the index point. In particular, the constant is trying to create a month-wide range

around the current date. But this does not work for all index dates and times. By updating

the equation for the filter to factor in the actual month calculation correctly (Figure B.7),

the visualization starts to work as expected (Figure B.2b).

197

Appendix C

INTERVIEW RESOURCES: VISUALIZING VEGA’S
BEHAVIOR AS A DATA FLOW GRAPH

Section 5.4 describes a set of formative interviews exploring how expert Vega users under-

stand and debug the output Vega visualizations. The goal of these interviews was to learn

more about existing program understanding practice and the current challenges around de-

bugging in Vega. The interviews also aimed to explore the potential utility of a prototype

data flow graph visualization for Vega (see Section 5.3). The basic interview template is

included in Section C.1. The example data flow graph visualizations shown to participants

during the interview are included in Section C.2.

C.1 Formative Interview Script Template

The goal of these interviews is to gather insight into your development and debugging process.

1. Walk me through the process you use when working with Vega.

2. What version of Vega are you currently using?

3. What is your primary method for producing Vega specifications? To clarify, methods
include: (1) by hand, (2) modifications to existing specifications, (3) programmatically
generated by your own code, (4) programmatically generated by another system.

4. What was the last (or most troublesome) error you encountered when generating a
Vega specification?

(a) What was your approach towards resolving this problem?

(b) What information was most important in identifying the problem?

(c) What tools did you use to facilitate the debugging process?

5. In what ways do you think the debugging process could have been facilitated?

198

6. Are there any other errors that you found particularly difficult to debug?
Repeat Question 5 and Question 6 if so.

Up to this point, we have mainly discussed your current strategies when developing and

debugging Vega. I would now like to dive a little deeper into what strategies or techniques

could be added to facilitate the development process.

7. In general, what additional functionality or information could be added to facilitate
your development process?

8. One debugging strategy is to use the console to inspect the underlying execution struc-
ture and scene graph of Vega. How often do you use the console for debugging Vega?

(a) To what extent do you examine the underlying execution structure of Vega?

(b) Do you think this structure is something you could/will use in the future for
debugging Vega specifications? If so, how? If not, why not?

The JavaScript console allows the user to access a lot of potentially useful information, but

may require more domain knowledge or an intricate understanding of the Vega internals. One

way to reduce the difficulty associated with inspecting the textual structure is to provide a

visualization of the underlying structure. This example shows the spec, visualization, and

underlying data flow graph (Section C.2).

9. What is your initial impression of the data flow graph? In particular, what do you
notice? What are you confused by?

10. Do you think that this structure would be useful for the development process?

(a) (yes) What parts of this representation do you think would be most useful? What
sorts of interactions or information do you think would be relevant or helpful?

(b) (no) Why do you think this representation would not be useful? Is there any
information within this structure that would be useful to surface in another way?

11. What do you think could be added or changed to improve this visual representation?

Those are all the questions I have. Thank you for taking the time to discuss these problems

and topics with me. Please feel free to reach out if you have any additional thoughts on the

topic or uncover other debugging scenarios that could be facilitated.

199

Figure C.1: A data flow graph of a grouped bar chart showing the axis marks (“cat” and “val”).
Note: only the figure was shown during the interview; this caption was added to explain the content.

C.2 Data Flow Example Visualizations

For the formative interviews on program understanding techniques for Vega, we provided

several example visualizations of the Vega data flow graph (see Section 5.3). In this section,

we include the four resources that were shown to participants during the interviews. These

resources show the data flow graph with varying degrees of detail and annotation. Figure C.1

shows the full, unannotated data flow graph for a grouped bar chart (Figure 5.2a). Figure C.2

shows the same data flow graph with annotations, the corresponding Vega specification, and

output visualization. Figure C.3 shows a simplified version of the data flow graph alongside

the Vega code and output. Finally, Figure C.4 shows the same information as Figure C.3,

but with the code highlighted corresponding to the data flow graph.

200

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

Figure C.2: The Vega specification, output visualization, and annotated data flow graph for a
grouped bar chart visualization. The annotations show which parts of the graph correspond to
relevant Vega components such as the axes and data. Note: only the figure was included in the
original interview materials; this caption was added here to explain the content and rationale.

201

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

Figure C.3: The Vega specification, output visualization, and simplified data flow graph for a
grouped bar chart visualization. The data flow graph has been simplified to hide the nodes cor-
responding to the axes, which are visible in Figure C.1. Note: only the figure was included in the
original interview materials; this caption was added here to explain the content and rationale.

202

B. Example Visualizations for Semi-Structured Interviews

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

{ "width": 300,
 "height": 240,
 "data": [{ "name": "table",
 "values": [
 {"category":"A", "position":0, "value":0.1},
 {"category":"A", "position":1, "value":0.6},
 {"category":"A", "position":2, "value":0.9},
 {"category":"A", "position":3, "value":0.4},
 {"category":"B", "position":0, "value":0.7},
 {"category":"B", "position":1, "value":0.2},
 {"category":"B", "position":2, "value":1.1},
 {"category":"B", "position":3, "value":0.8},
 {"category":"C", "position":0, "value":0.6},
 {"category":"C", "position":1, "value":0.1},
 {"category":"C", "position":2, "value":0.2},
 {"category":"C", "position":3, "value":0.7}]
 }],
 "scales": [{ "name": "cat", "type": "ordinal",
 "range": "height", "padding": 0.2,
 "domain": {"data": "table", "field": "category"}
 },
 { "name": "val", "range": "width",
 "round": true, "nice": true,
 "domain": {"data": "table", "field": "value"}
 },
 { "name": "color", "type": "ordinal", "range": "category20"
 "domain": {"data": "table", "field": "position"}
 }],
 "axes": [
 {"type": "y", "scale": "cat", "tickSize": 0, "tickPadding": 8},
 {"type": "x", "scale": "val"}
],
 "marks": [{ "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}}
 },
 "scales": [{
 "name": "pos", "type": "ordinal", "range": "height",
 "domain": {"field": "position"}
 }],
 "marks": [{ "name": "bars", "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0},
 "fill": {"scale": "color", "field": "position"}}
 }},
 { "type": "text", "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": -5},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "fill": {"value": "white"},
 "align": {"value": "right"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

Figure C.4: The Vega specification, output visualization, and simplified data flow graph for a
grouped bar chart. The code is highlighted to match the corresponding elements in the data flow
graph visualization, and thus help visualize the relationship between the two components. Note:
only the figure was shown during the interview; this caption was added here to explain the content.

203

Appendix D

EVALUATION RESOURCES:
VISUAL DEBUGGING TECHNIQUES FOR VEGA

Section 6.2 describes our evaluation of the visual debugging techniques for Vega. This ap-

pendix includes the resources used to conduct the evaluation including: (1) the evaluation

survey questions (Section D.1) and (2) the evaluation reference sheet (Section D.2).

D.1 Evaluation Post-Task Survey and Exit Survey

Participants completed three evaluation tasks: (1) debugging the data transformations on an

interactive index chart, (2) debugging panning on a scatterplot, and (3) debugging brushing

on a scatterplot. The task protocol is described in more detail in Section 6.2. Participants

completed a post-task survey (Section D.1.2) after each task to identify candidate lines from

the specification as the source of the error and to rate the visual debugging techniques. At the

end of the evaluation, participants completed a set of exit survey questions (Section D.1.3).

D.1.1 Introductory Information: Debugging Vega

For this study you will use a new debugging environment to identify errors in three interactive

Vega visualizations. You will first be given an introduction to the debugging environment

and a Vega specification during which time you are free to ask any questions. For each of the

debugging tasks, you will be told what the desired functionality should be. You will then:

1. Test the interactions and identify the bug.

2. Identify one (or more) lines of the specification that you believe contributes to the bug.

3. Explain your reasoning.

4. Rate the debugging strategies available.

Click continue to see the questions for the first task.

204

D.1.2 Post-Task Survey Questions

1. Identify a line number of the (unmodified) specification that contributes to the bug.
This can be your best guess answer.

2. Explain the reasoning for your answer above. To help answer this question, consider
answering some of the following questions: (1) what is the bug, (2) why do you think
the bug occurs, (3) how did you reach this conclusion?

3. How useful was the debugging environment for identifying the source of the bug?
On a scale from 1 (“Distracting”) to 5 (“Essential”) for the nine debugging envi-
ronment features: overview, replay, timeline, dependencies, tooltip, annotations, data
table, change summary, and specification (see Appendix D.2).

4. In what ways, if any, could the debugging environment have better helped you identify
the source of the bug?

D.1.3 Exit Survey Questions

1. Rank the usefulness of each feature in developing interactive visualizations in Vega.
On a scale from 1 (“Unhelpful”) to 8 (“Essential”) for the eight debugging environment
features: overview, replay, timeline, dependencies, tooltip, annotations, data table, and
change summary (see Appendix D.2).

2. What feature would you remove, if any? Why would you remove this feature?

3. What feature would you like to add, if any? Please explain your addition.

4. (Optional) Please share any additional impressions or comments.

Demographic Information:Demographic Information: Remember, all of the demographic information gathered here

will be reported anonymously so will not be used to identify you.

5. Name

6. Email: What email would you like the amazon gift card sent to?

7. Age

8. Gender

205

9. Department

10. Level: year and/or position (e.g., 2nd year PhD Student)

11. Please describe your familiarity with Vega, if any, prior to this user study.

12. (Optional) Please share any additional information that you think may be relevant to
this study, if any.

D.2 Evaluation Reference Sheet

For the user evaluation described in Section 6.2, participants were provided with a reference

sheet of the visual debugging techniques available in Vega. Participants also received a brief

tutorial prior to the evaluation task. The reference sheet is included in Figure D.1.

Data Table:
selecting the data tab
shows the data table.

tabs at the top exist
for each user-defined
data set in the spec.

histograms show the
distribution of value in

at the current time.

Change Summary: (only with data tab)
the line charts show how the distribution of
values in each property (id, _id) changes
over time.

or click the square of interest.

Timeline:
squares show user defined signals over time

Overview:
bar height shows # signals changed in pulse

Specification:
user defined code for visualization

Dependencies:
highlights the signal & value on
which used to define the signal at
mouseover (dark gray)

Replay Indicator:
record: interact with the vis. which updates timeline

replay: display past state and tooltip

Arrow keys move
cursor

through timeline.

Cursor:
the current point in the
timeline. the most recent
value for a given signal is
shown in light green and the
value is displayed in the
rightmost column.

Annotations:
Signals corresponding to a point are
drawn on the visualization.

The current point is bordered in white
and colored based on:
dark (past) > red (current) > white (future)

Tooltip: (only during replay)
information about the
underlying visualization state

Figure D.1: A reference sheet describing the visual debugging techniques and interactions available
in Vega. The reference sheet could be used at any point during the user evaluation (see Section 6.2).

206

Appendix E

EVALUATION RESOURCES:
AUGMENTING CODE WITH IN SITU VISUALIZATIONS

Section 7.3 describes our evaluation of the code augmentations for program understanding

in Vega. This appendix includes the resources used to conduct the evaluation including:

(1) the screening survey for potential participants (Section E.1); (2) the evaluation scripts

for both conditions (Section E.2); (3) the instruction sheet for the evaluation (Section E.3);

(4) the instruction sheet introducing the in situ visualizations (Section E.4); (5) the program

understanding questions for the training task (Section E.5); (6) the program understanding

questions for the evaluation tasks (Section E.6); and (7) the exit survey (Section E.7).

E.1 Evaluation Screening Survey

Are you curious about the interplay between code and program output? Are you interested

in how new program understanding tools can make it easier to learn a new programming

language? If so, we would like to invite you to participate in a research study on how program

visualizations in code can influence program understanding. We are looking for individuals

to complete a 90 minute session on the University of Washington campus between Sept. 11th

and Sept. 15th. In this study, you will be asked to review two programs and answer program

understanding questions about the behavior of the code. You will receive a $20 Amazon gift

card as a thank you for your participation. If you are interested in participating in this study,

please complete the following survey questions to determine if you are eligible. This screening

survey should take about 5 minutes. To participate in the study, you must be at least 18

years of age and must have prior programming experience. Participants will be excluded from

participating in this study if they have previously participated in a Vega study on debugging

207

interactive visualizations. Participation in this study is voluntary and any identifying infor-

mation gathered during this study will be kept confidential. If you have any questions about

this study, please contact <<Interviewer Name>> by email at <<Interviewer Email>> or

by phone at <<Interviewer Phone Number>>.

Eligibility Information:Eligibility Information:

1. Name

2. Email: At what email can we contact you to finish scheduling this study?

3. Are you at least 18 years of age, or older?

4. Please indicate whether you have had programming experience from the following
sources: computer science classes, personal programming projects, software engineering
internships, software engineering jobs, research internships, full-time research positions,
other. Indicate yes/no for each potential source.

5. Please briefly describe your prior programming experience.

6. How frequently do you use the following programming languages: Python, Java,
JavaScript, C or C++, Lisp or Racket, Ruby, SQL, Vega, other. Ratings provided
for each language as one of: never, rarely, occasionally, regularly.

7. If you answered “Other” above, what other programming languages are you most
familiar with?

8. Please describe your prior experience with Vega, if any. Vega is a declarative language
for creating, saving, and sharing interactive visualization designs. Please note that no
prior experience with Vega is required for this study.

9. Please select all times during which you would be available to participate in the study.
If eligible, you will be contacted to finalize a time slot for the study. Please note that
the study is expected to take about 90 minutes. [Aside: Respondents were asked to fill
out a day/time grid of potential study session slots.]

10. Would you like to be contacted if additional time slots are added outside this window?

11. (Optional) Please include any comments or questions you have regarding this screening
survey or the research study. You are also welcome to email <<Interviewer Name>>

(<<Interviewer Email>>) with any questions.

208

E.2 Evaluation Script

Participants completed two tasks, one in each of two conditions: baseline and visualization.

We counterbalanced the conditions across participants, such that some participants started

with the baseline condition whereas other participants started with the visualization condi-

tion. In this section, we included the two scripts that were used depending on which condition

participants were placed in first. Only one script was used per participant and outlines the

behavior for both of the evaluation tasks (e.g., the entire evaluation period). Notice that the

scripts generally include the same content, but in a different order based on the condition.

E.2.1 Evaluation Script for the Baseline Condition

Thank you for agreeing to participate in this study on visualizing program behavior. Partic-

ipation is voluntary and you may leave at any time. Before we start, I would like to check if

it is okay for me to record the screen/audio for this study session? Please take a chance now

to look over this consent form.

[Aside: Turn on audio/screen recording. Collect signed consent form.]

For this study, you will be presented with a training task and two study tasks in which you

will answer program understanding questions about Vega programs. You are welcome to ask

any questions while reviewing the instructions and completing the training task, however, I

will be unable to answer any questions once the study tasks have begun. I want to make it

clear right away that we’re evaluating the system, not you. Please answer all questions to

the best of your ability. Feel free to think aloud or explain your answers in writing as much

as you would like for any question. Here is a piece of scratch paper you may use for taking

any notes you would like during the tasks. At this point, please take a chance to review this

instruction sheet for an introduction to Vega.

[Aside: Give the participant the instruction sheet (see Section E.3).]

209

Now I will give you a set of training questions in our system so you can familiarize yourself

with the task setup. On the left is the Vega code and the right is the output Vega visualization.

The bottom right shows the task instruction and questions. You may interact with the

Vega visualization at any point while answering the task questions. We encourage you to

thoroughly explore all the possible states or settings of the visualization. Once you have

reviewed the instructions, feel free to begin the training at any time.

[Aside: Let the participant complete the training task (see Section E.5).]

Here is the first task. Feel free to ask any questions before you begin and remember that

I cannot answer any questions once you start the task. Please review the instructions and

begin whenever you’re ready.

[Aside: Let the participant complete the first task.]

For the second task, the Vega code will be annotated with code visualizations of the program

behavior. Here is a brief introduction to the code visualizations. Please take a moment to

review this information; you may once again experiment with the demo task to see the code

visualizations at work. Feel free to ask any questions at this time and let me know when you

are ready to continue to the second task.

[Aside: Give the participant the instruction sheet (see Section E.4) and demo.]

Here is the second task; once you have reviewed the instructions, feel free to begin the task.

[Aside: Let the participant complete the second task.]

You have now completed all the tasks. Here is a final survey about your experience with the

code visualizations and environment.

[Aside: Give the participant the exit survey (see Section E.7).]

210

E.2.2 Evaluation Script for the Visualization Condition

Thank you for agreeing to participate in this study on visualizing program behavior. Partic-

ipation is voluntary and you may leave at any time. Before we start, I would like to check if

it is okay for me to record the screen/audio for this study session? Please take a chance now

to look over this consent form.

[Aside: Turn on audio/screen recording. Collect signed consent form.]

For this study, you will be presented with a training task and two study tasks in which you

will answer program understanding questions about Vega programs. You are welcome to ask

any questions while reviewing the instructions and completing the training task, however, I

will be unable to answer any questions once the study tasks have begun. I want to make it

clear right away that we’re evaluating the system, not you. Please answer all questions to

the best of your ability. Feel free to think aloud or explain your answers in writing as much

as you would like for any question. Here is a piece of scratch paper you may use for taking

any notes you would like during the tasks. At this point, please take a chance to review this

instruction sheet for an introduction to Vega.

[Aside: Give the participant the instruction sheet (see Section E.3).]

Now I will give you a set of training questions in our system so you can familiarize yourself

with the task setup. On the left is the Vega code and the right is the output Vega visualization.

The bottom right shows the task instruction and questions. You may interact with the

Vega visualization at any point while answering the task questions. We encourage you to

thoroughly explore all the possible states or settings of the visualization. Once you have

reviewed the instructions, feel free to begin the training at any time.

[Aside: Let the participant complete the training task (see Section E.5).]

For the first task, the Vega code will be annotated with code visualizations of the program

behavior. Here is a brief introduction to the code visualizations. Please take a moment to

211

review this information; you may once again experiment with the demo task to see the code

visualizations at work. Feel free to ask any questions at this time and let me know when you

are ready to continue to the first task.

[Aside: Give the participant the instruction sheet (see Section E.4) and demo.]

Here is the first task. Feel free to ask any questions before you begin and remember that

I cannot answer any questions once you start. Please review the instructions and begin

whenever youre ready.

[Aside: Let the participant complete the first task.]

For the second task, the Vega code will not include the code visualizations you just saw.

Once you have reviewed the instructions, feel free to begin at any time.

[Aside: Let the participant complete the second task.]

You have now completed all the tasks. Here is a final survey about your experience with the

code visualizations and environment.

[Aside: Give the participant the exit survey (see Section E.7).]

E.3 Evaluation Instruction Sheet

For this study, you will be shown a set of visualizations written in the language Vega. A

Vega specification defines an interactive visualization in a JSON format. Vega provides basic

building blocks for a wide variety of visualization designs: data loading and transforma-

tion, scales, axes, and graphical marks such as rectangles, lines, plotting symbols, etc.

Interaction techniques can be specified using reactive signals that dynamically modify a

visualization in response to input event streams. To create a visualization in Vega, you start

with a dataset like the one shown in Figure E.1c. You can then write a Vega specification that

defines scales, axes, and marks based on the data. The following specification (Figure E.1a)

creates a bar chart visualization (Figure E.1b).

212

{
 "data": [{
 "name": "table",
 "values": [
 {"category": "A", "amount": 28}, {"category": "B", "amount": 55},
 {"category": "C", "amount": 43}, {"category": "D", "amount": 91},
 {"category": "E", "amount": 81}, {"category": "F", "amount": 53},
 {"category": "G", "amount": 19}, {"category": "H", "amount": 87},
 {"category": "I", "amount": -13}
],
 "transform": [{ "type": "filter", "expr": "datum.amount > 0" }]
 }],

 "signals": [
 {
 "name": "tooltip", "value": {},
 "on": [
 {"events": "rect:mouseover", "update": "datum"},
 {"events": "rect:mouseout", "update": "{}"}
]
 },
 {
 "name": "tooltip_text",
 "update": "tooltip.amount ? 'value: ' + tooltip.amount : ''"
 }
],

 "scales": [
 {
 "name": "xscale", "type": "band",
 "domain": {"data": "table", "field": "category"}, "range": "width"
 },
 {
 "name": "yscale",
 "domain": {"data": "table", "field": "amount"}, "range": "height"
 }
],

 "axes": [
 { "orient": "bottom", "scale": "xscale" },
 { "orient": "left", "scale": "yscale" }
],

 "marks": [
 {
 "type": "rect", "from": {"data":"table"},
 "encode": {
 "enter": {
 "x": {"scale": "xscale", "field": "category"},
 "width": {"scale": "xscale", "band": 1},
 "y": {"scale": "yscale", "field": "amount"},
 "y2": {"scale": "yscale", "value": 0}
 },
 "update": { "fill": {"value": "steelblue"} },
 "hover": { "fill": {"value": "red"} }
 }
 },
 {
 "type": "text",
 "encode": {
 "enter": { ... },
 "update": {
 "x": {"scale": "xscale", "signal": "tooltip.category", "band": 0.5},
 "y": {"scale": "yscale", "signal": "tooltip.amount", "offset": -2},
 "text": {"signal": "tooltip_text"}
 }
 }
 }
]
}

data

scales

axes

marks

signals

category amount
A 28
B 55
C 43
D 91
E 81
F 53
G 19
H 87
I -13

(a) Vega code (b) Output visualization

(c) Input data table

Figure E.1: The Vega example used for training in the evaluation of the code augmentations
includes (a) the annotated Vega code for (b) a bar chart visualization based on (c) a small set of
input data. This example illustrates the relevant Vega visualization components described in the
training and the behavior of data transformations. Note: only the figure was included in the original
evaluation materials; this caption was added here to explain the content and rationale.

213

A Vega specification can have multiple datasets defined under “data.” Each dataset is a

set of values that can have multiple data fields, which are referenced by a named “field.”

In this example there is one dataset (“table”), which has two data fields (“category” and

“amount”). Dataset definitions can also define transforms that can modify the values in

the dataset. For example, this visualization includes a “filter” transformation to only include

values (“datum”) from the dataset that have an “amount” greater than zero.

Scales are functions that can map data values (e.g., “category” name) to visual properties

of the marks (e.g., “x” position). You can define axes to visualize the scales. This Vega

specification includes two axes, one for the category label on the “bottom” and one to

indicate the height of each bar on the “left.”

Marks define the visual encoding for the visualization. This Vega visualization defines a

bar chart by creating a “rect” mark for each element in the dataset. Visual properties of

the “rect” mark can be parameterized by data fields (identified as a named “field”) from

the dataset. For example, the “x” position of the bar is parameterized by the “category”

field of the “table” dataset to determine the placement of the bar within the chart. For this

encoding, the field value is first passed through the corresponding scale (e.g., “xscale”).

You can introduce interactivity into a visualization by defining “signals” that are dynamic

variables that are updated by interaction events on the visualization and can drive interactive

updates of the visual encoding. For example, the following signal definition can be added

to the specification to capture hover events on the bars. Signals can either update directly

in response to interaction events (e.g., mouseover or click) or can experience downstream

changes when updating in response to other signals.

Here are a few notable features of the code environment and important keywords. Please feel

free to refer to this fact sheet at any point during the tasks for useful reminders.

214

Figure E.2: We augmented the online Vega editor to display a tooltip showing the signal value or
summary information about the values of a data field (e.g., the min, max, and mean). The tooltip
reflects the general behavior found in existing debugging environments [9]. Note: only the figure
was included in the original evaluation materials; this caption was added to explain the content.

Keywords:Keywords:

Specification: The Vega code in JSON format.

Signals: Dynamic variables derived from interaction events.

Data field: The values within a dataset identified by the column (“field”) name.

Mark: A graphical element of the visualization (e.g., rectangles, lines, text, etc.).

Visual property: The appearance of a mark (e.g., position, size, color, etc.).

Visual encoding: The mapping from data fields to the visual properties of marks in the
visualization (e.g., amount → y position).

Direct updates: Updates to a signal, dataset, or visual property that occur directly in
response to an interaction event.

Downstream changes: Updates to a signal, data, or visual property that occur in response
to other updates to the specification (but not directly in response to an interaction event).

Code Environment:Code Environment:

Search: You can search the Vega code with command-F while the code pane is live.

Parse: You can reset the visualization to the default state by clicking “Parse.”

Tooltips: You can view the current value of a signal by hovering over the signal name. You
can view information about data fields (e.g., the min/max/mean) by hovering over the data
field name as shown in Figure E.2.

215

A histogram showing the distribution of values for that data field. The
bin ranges are optimized for the current state of the visualization and
may change while interacting with the Vega visualization. Interaction:
Mousing over a bar shows the bin range and the count.

The exact value of the signal at the current point or summary
information about the data field.

Whether or not the signal value has changed between the previous and
current state of the visualization. Interaction: Mousing over the indicator
shows the value or change.

The signal value for the 15 previous time steps. Interaction: Mousing
over the line shows the value of the signal at that point. Holding shift
while doing so shows the value for all signals.

Whether or not the signal value has changed for the 15 previous time
steps (green: change, magenta: no change). Interaction: Mousing over a
tick shows the value of the signal at that point. Holding shift while doing
so shows the value for all signals.

value

indicator

line

histogram

tick

change:
no change:

Figure E.3: For the user evaluation, we selected a subset of in situ visualizations to include
(see Section 7.2). To help evaluation participants interpret these (potentially new) visualization
designs, we included the descriptions seen in this figure. Note: only the figure was included in the
original evaluation materials; this caption was added here to explain the content and rationale.

E.4 Evaluation Instruction Sheet for the In Situ Visualizations

Code visualizations appear for two types of Vega tokens (signals and data fields) while

interacting with the output. Figure E.3 includes a brief description of the code visualizations

you may see. Mousing over the code visualization provides extra information such as the value

of the signal (line/tick) or the number of values for that range in the dataset (histogram).

E.5 Evaluation Training Tasks

This Vega program creates a basic bar chart. Mousing over the bars shows a tooltip with

the bar value. For this task you will be asked a series of questions about the behavior of

the code. Please answer the questions as quickly and completely as possible. Once you have

submitted an answer, you will not be able to change it; if at some point you feel that one of

your previous answers was wrong, please provide your new answer along with an explanation

in the text box for the current question in addition to your answer for the current question.

216

You are free to interact with the Vega visualization and code visualizations as much as you

would like for each question, but you cannot change the code itself. You may collapse parts of

the code using the buttons in the margin. You can reset the visualization to the initial state

by clicking “Parse.” You are welcome to ask any questions about the task or programming

environment at this point. You may continue to ask questions during the training questions.

However, we cannot answer any questions once the study task has begun.

Press “Start” when you are ready to begin the task. Please take this opportunity to thor-

oughly explore all possible states or settings of the visualization. When you feel you have suffi-

ciently explored the visualization and are ready to continue to the next step, press “Submit.”

1. What is the name of the primary dataset being visualized?

2. What are the visual encodings of the visualization (e.g., the mapping from data fields
to visual properties of the marks)? For each answer, please include the name of the data
field, the dataset it came from, and the visual field it encodes (e.g., the “field name”
field from the “example” dataset encodes the point “size”).

3. What is the primary mark type of the visualization?

4. Which signals update while interacting with the visualization?
If no signals update, respond “None.”

5. Which signals update in response to mouseover events directly?
Your response may overlap with your previous answer.

6. Which datasets update while interacting with the visualization?
If no datasets update, respond “None.”

7. Which datasets never update during interaction?

E.6 Task-Specific Program Understanding Questions

During the evaluation, participants repeated the same set of questions once for the baseline

and once for the visualization condition, each time with a different Vega visualization task.

There were four possible visualization tasks (though each participant only completed two of

217

them during the study session). The full methodology is described in Section 7.3. For task

specific questions, we inserted the following text to customize the template.

TaskTask DescriptionDescription InteractionInteraction

Population “a population chart showing the number of individuals in each
age bracket for both women and men. Dragging the slider
shows data for different years.”

“slider”

Index “an index chart that shows stock information. The lines for
each stock are normalized relative to the interactive cursor.”

“mousemove”

Scatterplot “a scatterplot of points. You can pan the visible region by
dragging the background.”

“drag”

Overview “an overview+detail visualization. Selecting a region in the
smaller visualization zooms the larger region to show that
range in more detail. You may also drag the selected region.”

“drag”

E.6.1 Program Understanding Question Template

This Vega program creates <<task description>>.

Please answer the questions as quickly and completely as possible. Once you have submitted

an answer, you will not be able to change it; if at some point you feel that one of your

previous answers was wrong, please provide your new answer along with an explanation in

the text box for the current question in addition to your answer for the current question.

You are free to interact with the Vega visualization and code visualizations as much as you

would like for each question, but you cannot change the code itself. You may collapse parts of

the code using the buttons in the margin. You can reset the visualization to the initial state

by clicking “Parse.” You are welcome to ask any questions about the task or programming

environment now. However, we cannot answer any questions once the study task has begun.

Press “Start” when you are ready to begin this task. Please take this opportunity to thor-

oughly explore all possible states or settings of the visualization. When you are ready to

continue to the next step, press “Submit.”

218

1. What is the name of the primary dataset being visualized?

2. What are the visual encodings of the visualization (e.g., the mapping from data fields
to visual properties of the marks)? For each answer, please include the name of the data
field, the dataset it came from, and the visual field it encodes (e.g., the “field name”
field from the “example” dataset encodes the point “size”).

3. What is the primary mark type of the visualization?

4. For the mark type identified in Q3, how many marks are created for this visualization?
If you would like to change your previous answer, please write your new answer and
an explanation in the text box in addition to your answer to the current question.

5. Which signals update while interacting with the visualization?
If no signals update, respond “None.”

6. Which signals update in response to <<task interaction>> events directly?
Your response may overlap with your previous answer.

7. Which signals never update during interaction?

8. For each signal identified in Q5, how is it used throughout the code? If you would like
to change your previous answer, please write your new answer and an explanation in
the text box in addition to your answer to the current question.

9. Which signal is used most frequently to parameterize the data transformations and
visual encodings?

10. For the signal identified in Q9, what is the range of values (e.g., min and max) for
that signal? If you would like to change your previous answer, please write your new
answer and an explanation in the text box in addition to your answer to the current
question.

11. Which datasets update while interacting with the visualization?
If no datasets update, respond “None.”

12. Which datasets update directly in response to the signals from Q5? Your response may
overlap with your previous answer. If you would like to change your previous answer,
please write your new answer and an explanation in the text box in addition to your
answer to the current question.

13. Which datasets never update during interaction?

219

14. For each dataset identified in Q11, what data fields are used to parameterize the code?
For each response, please include the dataset name, field name, and how the data field
is used in your answer. If you would like to change your previous answer, please write
your new answer and an explanation in the text box in addition to your answer to
the current question.

15. Which data field is used most frequently throughout the code to parameterize the
visual encodings? Please also include the dataset from which this field is taken.

16. For the data field identified in Q15, what is the range of values (e.g., min and max
value) for that field? If you would like to change your previous answer, please write
your new answer and an explanation in the text box in addition to your answer to
the current question.

17. Which data field exhibits the largest changes during interaction? Please also include
the dataset from which this field is taken. If no data fields exhibit changes during in-
teraction, respond “None.”

18. Does the visualization exhibit any unexpected behaviors during interaction?

(a) If no, submit the form.

(b) If yes, continue to following questions.

19. Please describe the unexpected behavior exhibited by the visualization.

20. How did you become aware of this unexpected behavior?

21. Which signals and or data fields give rise to this unexpected behavior? Please explain
your answer and include the dataset from which the data field is taken.

22. Which signals and or data fields exhibit or are impacted by this unexpected behavior?
Please explain your answer and include the dataset from which the data field is taken.

E.7 Evaluation Exit Survey

You have now completed all the tasks for this study. Please complete the following survey

about your experience with the programming environment and code visualizations.

1. How quickly were you able to answer the task questions? On a scale from 1 (“Quicker
with unedited code”) to 7 (“Quicker with code visualizations”).

220

2. How accurate were you at answering the task questions? On a scale from 1 (“More
accurate with unedited code”) to 7 (“More accurate with code visualizations”).

3. (Optional) Please share any other thoughts about your experience with the program-
ming environment and code visualizations.

Code Visualizations:Code Visualizations:

During this study you saw a couple different types of code visualizations: line, tick, and

histogram. Please describe your experience with the various code visualizations.

4. How helpful was each visualization type for completing the tasks? On a scale from 1
(“Not helpful”) to 5 (“Extremely helpful”), for each of the five visualizations.

5. How interpretable was each visualization type for completing the tasks? On a scale
from 1 (“Not interpretable”) to 5 (“Extremely interpretable”), for each of the five
visualization types.

6. How intrusive was each visualization type while completing the tasks? On a scale from
1 (“Not intrusive”) to 5 (“Extremely intrusive”), for each of the five visualization types.

7. (Optional) Please share any other thoughts about your experience with the code visu-
alizations.

Demographic Information:Demographic Information:

8. Name

9. Email: What email would you like your gift card sent to?

10. Age

11. Gender

12. Organizational Affiliation: If your answer is the UW, please include your departmental
affiliation as well.

13. Position: School year and/or position (e.g., 2nd year PhD student, faculty, etc.)

14. (Optional) Please share any additional information or comments that you think may
be relevant to this study.

221

Appendix F

INTERVIEW RESOURCES:
RESPONSIVE VISUALIZATION DESIGN PRACTICES

For the formative interviews about journalists’ responsive visualization design practices (see

Section 8.2), we used a common interview question template (Section F.1), which was cus-

tomized prior to each interview to ask specific questions about past articles that the journalist

had worked on (Section F.1.1). These customizations aimed to highlight particular respon-

sive techniques that might not otherwise arise during conversation. During the interviews

themselves, we asked additional follow-up questions based on the flow of conversation. The

basic interview template is included in the following section; customizations are shown in

blue. After the interviews, we reviewed the conversations to extract common themes and

challenges described by the journalists, the results of which are described in Section 8.2.

F.1 Formative Interview Script Template

Thank you for agreeing to talk to me. As I mentioned in my email, we are interested in your

development process for responsive visualizations that adapt to different devices.

1. To start out, how often and in what ways do you collaborate with others while working
on an article and developing the visualizations?

2. Can you walk me through your general workflow when developing a visualization?

3. What tools or techniques are you using to produce the visualization? What tools are
you using for prototyping, data exploration, or producing the original design?

4. Can you describe how you iterate on visualization designs? Do you often develop al-
ternative designs and how do you decide between them?

222

5. For our earlier analysis, we were looking at your article <<article title>> from
<<organization>>. Can you walk me through the visualizations in this article and
describe your design rationale with respect to the responsive techniques used?

a. <<see article specific questions below>>

6. We were also looking at your article <<article title>>. Can you walk me through
some of the visualizations in this article and describe your rationale?

a. <<see article specific questions below>>

7. When working on visualizations in general, how often and why do you decide not to
make the visualization responsive?

8. Which device do you prioritize or design for in your usual workflow (if any)?

9. What is your process for producing a responsive visualization? How does the design
of responsive visualizations fit into your general workflow and at what point in the
process do you consider the responsive aspects of the design?

10. Are you designing multiple versions or producing a single adaptive version?

11. How often do you consider changing what data is included in the mobile alternative
(for example, by filtering or aggregating the underlying data)?

12. Can you think of any other examples of projects you’ve worked on in which you’ve
used interesting responsive techniques that you might want to share with us?

13. Thinking more broadly, how important do you think it is for visualizations to be re-
sponsive to different devices? In particular, how important do you think it is to produce
radically different versions for different devices?

14. What are the major challenges that you’ve faced when trying to design responsive
visualizations?

15. How might your workflow be improved to support the development of more responsive
visualization designs?

16. At this point, those are all of the questions I had prepared. Do you have any questions
for me or final thoughts about responsive visualization design?

223

F.1.1 Customized Article Specific Questions

For each interview, we also came up with some questions specific to the article that we

wanted to discuss; these questions aimed to thoroughly explore some of the responsive design

decisions in the article. Here are some examples of the questions we asked.

1. How did you decide which annotations to include on the chart at various points?

2. Why did you decide to remove these annotations from the mobile version?

3. How did you decide on which details to remove and which to keep?

4. How did you come up with the original design and how did you decide what simplifi-
cations to make?

5. Can you discuss the different interaction techniques exhibited by the desktop and
mobile versions?

6. For the visualization <<visualization title>>, you use somewhat different binning
schemes between the desktop and mobile versions. How did you decide on the bin
ranges and what impact do you think that has on this visualization?

224

Appendix G

RESPONSIVE VISUALIZATION CORPUS BIBLIOGRAPHY

To identify the types of responsive visualization techniques used in online news articles, we

conducted a survey of 53 articles from twelve news organizations. To produce this corpus,

we surveyed best-of lists for visualization designs and the visualization galleries for partic-

ular sources of interest. For more information on our analysis, procedure, and results, see

Section 8.3.1. The list of selected articles for this corpus is included here:

[1] Gregor Aisch. 2014. The Clubs That Connect the World Cup. The New York Times
(2014). https://nyti.ms/2nCtGXG

[2] Gregor Aisch and Karen Yourish. 2015. Connecting the Dots Behind the 2016
Presidential Candidates. The New York Times (2015). https://nyti.ms/2ykNIYP

[3] Susanne Barton and Hannah Recht. 2018. The Massive Prize Luring Miners to the
Stars. Bloomberg (2018).
https://www.bloomberg.com/graphics/2018-asteroid-mining/

[4] David Batty, Caelainn Barr, and Pamela Duncan. 2018. What Lies Beneath: The
Subterranean Secrets of London’s Super-Rich. The Guardian (2018).
https://www.theguardian.com/money/2018/may/07/

going-underground-the-subterranean-secrets-of-londons-super-rich

[5] Gurman Bhatia. 2018. India’s Premium Price of Petrol. Reuters Graphics (2018).
https://fingfx.thomsonreuters.com/gfx/rngs/INDIA-ELECTION-FUEL/

010080DM0SB/index.html

[6] Gurman Bhatia and Manas Sharma. 2019. The Figures Behind the Faces. Reuters
Graphics (2019). https://graphics.reuters.com/
INDIA-ELECTION-CRIMINAL-CANDIDATES/0100925031T/index.html

[7] Seth Blanchard and Reuben Fischer-Baum. 2018. One of the World Cup’s Best Goals
was Even Crazier Than You Thought. The Washington Post (2018).
https://wapo.st/2Nu5yk9?tid=ss_tw

https://nyti.ms/2nCtGXG
https://nyti.ms/2ykNIYP
https://www.bloomberg.com/graphics/2018-asteroid-mining/
https://www.theguardian.com/money/2018/may/07/going-underground-the-subterranean-secrets-of-londons-super-rich
https://www.theguardian.com/money/2018/may/07/going-underground-the-subterranean-secrets-of-londons-super-rich
https://fingfx.thomsonreuters.com/gfx/rngs/INDIA-ELECTION-FUEL/010080DM0SB/index.html
https://fingfx.thomsonreuters.com/gfx/rngs/INDIA-ELECTION-FUEL/010080DM0SB/index.html
https://graphics.reuters.com/INDIA-ELECTION-CRIMINAL-CANDIDATES/0100925031T/index.html
https://graphics.reuters.com/INDIA-ELECTION-CRIMINAL-CANDIDATES/0100925031T/index.html
https://wapo.st/2Nu5yk9?tid=ss_tw

225

[8] Jay Boice and Rachael Dottle. 2018. 2018 March Madness Predictions.
FiveThirtyEight (2018).
https://projects.fivethirtyeight.com/2018-march-madness-predictions/

[9] Larry Buchanan and Karen Yourish. 2018. From Criminal Convictions to Ethical
Lapses: The Range of Misconduct in Trump’s Orbit. The New York Times (2018).
https://nyti.ms/2N3WGVj

[10] Weiyi Cai. 2018. War of Words. Reuters Graphics (2018).
http://fingfx.thomsonreuters.com/gfx/rngs/NORTHKOREA-USA-KIM-TRUMP/

010070JM16P/index.html

[11] Manuel Canales and Sean Mcnaughton. 2019. See Which Countries Fund the Most
Scientific Research. National Geographic (2019). https://www.nationalgeographic.
com/magazine/2019/05/data-show-why-china-science-research-is-booming/

[12] Pia Catton and Gus Wezerek. 2018. Nearly Half The Kentucky Derby Field Is Racing
Against A Half-Brother. FiveThirtyEight (2018). https://53eig.ht/2HOJSQH

[13] Sahil Chinoy. 2018. The Places in the U.S. Where Disaster Strikes Again and Again.
The New York Times (2018). https://nyti.ms/2GJjoe4

[14] Sahil Chinoy and Jessia Ma. 2019. How Every Member Got to Congress. The New
York Times (2019). https://www.nytimes.com/interactive/2019/01/26/opinion/
sunday/paths-to-congress.html

[15] Matt Daniels. 2019. The Largest Vocabulary In Hip Hop. The Pudding (2019).
https://pudding.cool/projects/vocabulary/

[16] Fathom Information Design. 2014. What the World Eats. National Geographic (2014).
https://www.nationalgeographic.com/what-the-world-eats/

[17] Anna Flagg. 2017. The Opposite of Sanctuary. The Marshall Project (2017).
https://www.themarshallproject.org/2017/02/20/the-opposite-of-sanctuary

[18] Anna Flagg. 2018. The Myth of the Criminal Immigrant. The Marshall Project
(2018). https://www.themarshallproject.org/2018/03/30/
the-myth-of-the-criminal-immigrant?ref=hp-1-112

[19] Walter Frick. 2016. The Decline of Yahoo in Its Own Words. Harvard Business Review
(2016). https://hbr.org/2016/06/the-decline-of-yahoo-in-its-own-words

https://projects.fivethirtyeight.com/2018-march-madness-predictions/
https://nyti.ms/2N3WGVj
http://fingfx.thomsonreuters.com/gfx/rngs/NORTHKOREA-USA-KIM-TRUMP/010070JM16P/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/NORTHKOREA-USA-KIM-TRUMP/010070JM16P/index.html
https://www.nationalgeographic.com/magazine/2019/05/data-show-why-china-science-research-is-booming/
https://www.nationalgeographic.com/magazine/2019/05/data-show-why-china-science-research-is-booming/
https://53eig.ht/2HOJSQH
https://nyti.ms/2GJjoe4
https://www.nytimes.com/interactive/2019/01/26/opinion/sunday/paths-to-congress.html
https://www.nytimes.com/interactive/2019/01/26/opinion/sunday/paths-to-congress.html
https://pudding.cool/projects/vocabulary/
https://www.nationalgeographic.com/what-the-world-eats/
https://www.themarshallproject.org/2017/02/20/the-opposite-of-sanctuary
https://www.themarshallproject.org/2018/03/30/the-myth-of-the-criminal-immigrant?ref=hp-1-112
https://www.themarshallproject.org/2018/03/30/the-myth-of-the-criminal-immigrant?ref=hp-1-112
https://hbr.org/2016/06/the-decline-of-yahoo-in-its-own-words

226

[20] Russell Goldenberg. 2018. The World Through the Eyes of the US. The Pudding
(2018). https://pudding.cool/2018/12/countries/

[21] Russell Goldenberg and Amber Thomas. 2019. How Many High School Stars Make It
in the NBA? The Pudding (2019). https://pudding.cool/2019/03/hype/

[22] Kirk Goldsberry. 2019. How Mapping Shots In The NBA Changed It Forever.
FiveThirtyEight (2019). https://53eig.ht/2PF20gE

[23] Jackie Gu. 2018. Women Lose Out to Men Even Before They Graduate From College.
Bloomberg (2018). https://www.bloomberg.com/graphics/
2018-women-professional-inequality-college/

[24] Eelke Heemskerk. APRIL 21, 2016. How Corporate Boards Connect, in Charts.
Harvard Business Review (APRIL 21, 2016).
https://hbr.org/2016/04/how-corporate-boards-connect-in-charts

[25] Walt Hickey and Gus Wezerek. 2016. The Definitive Analysis Of ‘Love Actually,’ The
Greatest Christmas Movie Of Our Time. FiveThirtyEight (2016).
http://53eig.ht/2he9BVh

[26] Josh Holder. 2018. How the NHS Winter Beds Crisis is Hitting Patient Care. The
Guardian (2018). https://www.theguardian.com/society/ng-interactive/2018/
jan/11/how-the-nhs-winter-beds-crisis-is-hitting-patient-care

[27] Josh Holder and Alex Hern. 2018. Bezos’s Empire: How Amazon Became the World’s
Most Valuable Retailer. The Guardian (2018).
https://www.theguardian.com/technology/ng-interactive/2018/apr/24/

bezoss-empire-how-amazon-became-the-worlds-biggest-retailer

[28] Josh Katz, Kevin Quealy, and Margot Sanger-Katz. 2019. Would ‘Medicare for All’
Save Billions or Cost Billions? The New York Times (2019).
https://nyti.ms/2UFGVaV

[29] Ella Koeze and Neil Paine. 2019. The Story of the NBA Regular Season in 9 Charts.
FiveThirtyEight (2019). https://53eig.ht/2KHkkqL

[30] Niko Kommenda, Caelainn Barr, and Josh Holder. 2018. Gender Pay Gap: What We
Learned and How To Fix It. The Guardian (2018).
https://www.theguardian.com/news/ng-interactive/2018/apr/05/

women-are-paid-less-than-men-heres-how-to-fix-it

https://pudding.cool/2018/12/countries/
https://pudding.cool/2019/03/hype/
https://53eig.ht/2PF20gE
https://www.bloomberg.com/graphics/2018-women-professional-inequality-college/
https://www.bloomberg.com/graphics/2018-women-professional-inequality-college/
https://hbr.org/2016/04/how-corporate-boards-connect-in-charts
http://53eig.ht/2he9BVh
https://www.theguardian.com/society/ng-interactive/2018/jan/11/how-the-nhs-winter-beds-crisis-is-hitting-patient-care
https://www.theguardian.com/society/ng-interactive/2018/jan/11/how-the-nhs-winter-beds-crisis-is-hitting-patient-care
https://www.theguardian.com/technology/ng-interactive/2018/apr/24/bezoss-empire-how-amazon-became-the-worlds-biggest-retailer
https://www.theguardian.com/technology/ng-interactive/2018/apr/24/bezoss-empire-how-amazon-became-the-worlds-biggest-retailer
https://nyti.ms/2UFGVaV
https://53eig.ht/2KHkkqL
https://www.theguardian.com/news/ng-interactive/2018/apr/05/women-are-paid-less-than-men-heres-how-to-fix-it
https://www.theguardian.com/news/ng-interactive/2018/apr/05/women-are-paid-less-than-men-heres-how-to-fix-it

227

[31] Daniel Lathrop and Anna Flagg. 2017. Killings of Black Men by Whites are Far More
Likely to be Ruled “Justifiable”. The Marshall Project (2017).
https://www.themarshallproject.org/2017/08/14/

killings-of-black-men-by-whites-are-far-more-likely-to-be-ruled-justifiable

[32] Lauren Leatherby and Paul Murray. 2019. A Staggering Number of Candidates Are
Running for U.S. President. Bloomberg (2019). https://www.bloomberg.com/
graphics/democratic-party-candidates-running-2020-election/

[33] Denise Lu and Karen Yourish. 2019. The Turnover at the Top of the Trump
Administration. The New York Times (2019). https://nyti.ms/2FQ0KBq

[34] Yolanda Martinez. 2018. Sending Even More Immigrants to Prison. The Marshall
Project (2018). https://www.themarshallproject.org/2018/05/20/
sending-even-more-immigrants-to-prison

[35] Dave Merrill and Lauren Leatherby. 2018. Here’s How America Uses Its Land.
Bloomberg (2018). https://www.bloomberg.com/graphics/2018-us-land-use/

[36] Alicia Parlapiano and Jugal K. Patel. 2018. With Kennedy’s Retirement, the Supreme
Court Loses Its Center. The New York Times (2018). https://nyti.ms/2IyGAwh

[37] Adam Pearce and Dorothy Gambrell. 2016. This Chart Shows Who Marries CEOs,
Doctors, Chefs and Janitors. Bloomberg (2016).
https://www.bloomberg.com/graphics/2016-who-marries-whom/

[38] Adam Pearce and Joe Ward. 2018. LeBron James Is Carrying the Cavaliers in a
Historic Way. The New York Times (2018). https://nyti.ms/2JojZ70

[39] Oliver Roeder. 2019. The Man Who Solved ‘Jeopardy!’. FiveThirtyEight (2019).
https://53eig.ht/2UzjXxS

[40] Simon Scarr and Marco Hernandez. 2019. A Network of Extremism Expands. Reuters
Graphics (2019). https:
//graphics.reuters.com/SRI%20LANKA-BLASTS-PLOTTER/010091W52YP/index.html

[41] NPR Staff. 2015. The Urban Neighborhood Wal-Mart: A Blessing Or A Curse? NPR
(2015). https://n.pr/1IP5XF2

[42] Ashlyn Still and Howard Schneider. 2018. Looking for Workers. Reuters Graphics
(2018). http://fingfx.thomsonreuters.com/gfx/rngs/USA-ECONOMY-JOBS/
010062VB4V2/index.html

https://www.themarshallproject.org/2017/08/14/killings-of-black-men-by-whites-are-far-more-likely-to-be-ruled-justifiable
https://www.themarshallproject.org/2017/08/14/killings-of-black-men-by-whites-are-far-more-likely-to-be-ruled-justifiable
https://www.bloomberg.com/graphics/democratic-party-candidates-running-2020-election/
https://www.bloomberg.com/graphics/democratic-party-candidates-running-2020-election/
https://nyti.ms/2FQ0KBq
https://www.themarshallproject.org/2018/05/20/sending-even-more-immigrants-to-prison
https://www.themarshallproject.org/2018/05/20/sending-even-more-immigrants-to-prison
https://www.bloomberg.com/graphics/2018-us-land-use/
https://nyti.ms/2IyGAwh
https://www.bloomberg.com/graphics/2016-who-marries-whom/
https://nyti.ms/2JojZ70
https://53eig.ht/2UzjXxS
https://graphics.reuters.com/SRI%20LANKA-BLASTS-PLOTTER/010091W52YP/index.html
https://graphics.reuters.com/SRI%20LANKA-BLASTS-PLOTTER/010091W52YP/index.html
https://n.pr/1IP5XF2
http://fingfx.thomsonreuters.com/gfx/rngs/USA-ECONOMY-JOBS/010062VB4V2/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-ECONOMY-JOBS/010062VB4V2/index.html

228

[43] Jessica Taylor, Katie Park, Tyler Fisher, and Alyson Hurt. 2017. Health Care Plan
Championed By Trump Hurts Counties That Voted For Him. NPR (2017).
https://n.pr/2n1am5O

[44] The Data Team. 2018. The Global Slump in Press Freedom. The Economist (2018).
https://www.economist.com/graphic-detail/2018/07/23/

the-global-slump-in-press-freedom

[45] Amber Thomas. 2019. Sing My Name. The Pudding (2019).
https://pudding.cool/2019/05/names-in-songs/

[46] Amelia Thomson-DeVeaux and Gus Wezerek. 2019. Here’s Why The Anti-Abortion
Movement Is Escalating. FiveThirtyEight (2019). https://53eig.ht/2WVfYh0

[47] Jason Treat and Anna Scalamogna. 2014. We’ll Have What They’re Having. National
Geographic (2014).
https://www.nationalgeographic.com/foodfeatures/diet-similarity/

[48] Cory Turner, Jennifer Guerra, Sam Zeff, Kate Mcgee, Aaron Schrank, Jenny Brundin,
Rob Manning, Ana Tintocalis, and Paul Boger. 2016a. Is There A Better Way To Pay
For America’s Schools? NPR (2016). https://n.pr/1SPMXfA

[49] Cory Turner, Reema Khrais, Tim Lloyd, AlexANDra Olgin, Laura Isensee, Becky
Vevea, and Dan Carsen. 2016b. Why America’s Schools Have A Money Problem. NPR
(2016). https://n.pr/1p1NMag

[50] Nicole Washington, Jason Treat, John Kondis, and NG Staff. 2016. See Where Access
to Clean Water Is Getting Better–and Worse. National Geographic (2016).
https://www.nationalgeographic.com/clean-water-access-around-the-world/

[51] Alex Webb and Chloe Whiteaker. 2016. Technology and Car Companies Are More
Intertwined Than Ever. Bloomberg (2016).
https://www.bloomberg.com/graphics/2016-merging-tech-and-cars/

[52] Jin Wu, Weiyi Cai, and Simon Scarr. 2018. Oil Spilled at Sea: Putting the Sanchi
Disaster Into Perspective. Reuters Graphics (2018).
https://graphics.reuters.com/OIL-SPILLS/010060SL1GQ/index.html

[53] Steven Yaccino, Jeremy Scott Diamond, and Mira Rojanasakul. 2015. This is Who
Republican Presidential Contenders Follow on Twitter. Bloomberg (2015).
https://www.bloomberg.com/politics/graphics/

2015-who-republican-candidates-follow/

https://n.pr/2n1am5O
https://www.economist.com/graphic-detail/2018/07/23/the-global-slump-in-press-freedom
https://www.economist.com/graphic-detail/2018/07/23/the-global-slump-in-press-freedom
https://pudding.cool/2019/05/names-in-songs/
https://53eig.ht/2WVfYh0
https://www.nationalgeographic.com/foodfeatures/diet-similarity/
https://n.pr/1SPMXfA
https://n.pr/1p1NMag
https://www.nationalgeographic.com/clean-water-access-around-the-world/
https://www.bloomberg.com/graphics/2016-merging-tech-and-cars/
https://graphics.reuters.com/OIL-SPILLS/010060SL1GQ/index.html
https://www.bloomberg.com/politics/graphics/2015-who-republican-candidates-follow/
https://www.bloomberg.com/politics/graphics/2015-who-republican-candidates-follow/

229

Appendix H

RESPONSIVE VISUALIZATION EXAMPLES

To better understand the responsive techniques used in news articles, we performed an open-

coding process to analyze the techniques for 231 visualizations from 53 news articles. The

results of this analysis are described in Section 8.3.1. In this section we provide some examples

of the codes generated during the analysis process. We also show the reproductions produced

using our responsive visualization system for seven visualization examples (Section 8.4).

H.1 “Total Cost of Major Natural Disasters”

This visualization is from the New York Times article “The Places in the U.S. Where Dis-

aster Strikes Again and Again” [G13]. This visualization is a static, annotated bar chart

that adapts the visualization size and annotations to different device contexts. In particular,

this visualization exhibits a number of interesting changes between the desktop and mobile

versions, primarily around the annotation strategy and title placement. To better under-

stand the responsive techniques used, we performed an open-coding process of the changes

between the desktop and mobile versions of the visualization. The codes we generated for

this visualization are included in Figure H.8a. Using our responsive visualization system, we

recreate and extend this visualization to include five device-specific designs (Figure H.1): a

desktop visualization (1024 x 612px), a portrait phone visualization (375 x 325px), a land-

scape phone visualization (585 x 325px), a thumbnail (240 x 120px), and a square thumb-

nail (100 x 100px). A video walkthrough of this example is available on YouTube at the

following link: https://youtu.be/wIvh6UBfMW0. This example is discussed in Section 8.4.1.

https://youtu.be/wIvh6UBfMW0

230

desktop

portrait landscape
square

thumbnail

Figure H.1: Five visualizations created using our responsive visualization system based on the
visualization “Total Cost of Major Natural Disasters” from the New York Times [G13]. The square
thumbnail was submitted as part of the publication of this work at CHI 2020 [84].

231

desktop

la
nd

sc
ap

e

portrait

thumbnail

Figure H.2: Four visualizations created using our responsive visualization system based on the
visualization “Incidents at Sea” from Reuters Graphics [G52].

H.2 “Incidents at Sea”

This visualization is from the Reuters article “Oil spilled at sea: Putting the Sanchi disaster

into perspective” [G52]. This visualization is a static, annotated symbol map that adapts the

visualization size and annotations to different device contexts. This article includes a map

visualization that reduces the number of text annotations, rescales the text, and updates the

size encoding and legend between different device-specific visualizations. To better under-

stand the responsive techniques used, we performed an open-coding process of the changes

between the desktop and mobile versions of the visualization. The codes we generated for

232

this visualization are included in Figure H.8b. Using our responsive visualization system,

we produce a map with similar annotations to the one from Reuters Graphics [G52], but

also demonstrate other responsive techniques (e.g., rotating the map for the portrait ori-

entation). We produce four designs (Figure H.2): a desktop visualization (825 x 585px), a

portrait phone visualization (325 x 585px), a landscape phone visualization (585 x 325px),

and a thumbnail (240 x 120px). The desktop visualization approximates the one from Reuters

Graphics [G52], using data from ITOPF [98], which includes the top 20 major spills through

2018; as such, some of the data points from the Reuters graphic are not included in this

recreation. We rotate the map to better use the space of the portrait orientation. However,

we maintain the rotation of the labels to ensure legibility of the text. For this example, the

landscape version is very similar to the desktop version, but with a much tighter margin on

the map content; however, the map still shows all the same data. Since the original article

focuses on comparing to the Sanchi disaster, we designed the thumbnail to focus on this piece

of data with a hint of the larger context. A video walkthrough of this example is available

on YouTube at the following link: https://youtu.be/GwnyMg9QnyM. The walkthrough and

rationale for this example is further discussed in Section 8.4.2.

H.3 “In close decisions, Kennedy voted in the majority...”

This visualization is from the New York Times article “With Kennedy’s Retirement, the

Supreme Court Loses Its Center” [G36]. This visualization includes two drastically different

designs (a horizontal dot plot and a vertical bar chart) depending on the device context. Both

visualizations are static. To better understand the responsive techniques used, we performed

an open-coding process of the changes between the desktop and mobile versions of the visual-

ization. The codes we generated for this visualization are included in Figure H.8c. Using our

responsive visualization system, we recreate and extend this visualization to include three

device-specific designs (Figure H.3): a desktop visualization (810 x 418px), a portrait phone

visualization (325 x 585px), and a thumbnail (240 x 120px). For the desktop visualization,

the New York Times uses a dot plot visualization to show the percent of times each justice

https://youtu.be/GwnyMg9QnyM

233

desktop

portrait thumbnail
Figure H.3: Three designs created using our responsive visualization system from a New York Times
visualization: “In close decisions, Kennedy voted in the majority 76 percent of the time” [G36].

votes in the majority. For the desktop visualization, the main difference in our recreation is

that we are missing the yellow background to highlight the text for Kennedy. The landscape

visualization exhibits a drastic change on mobile, in which the dot plot changes to a bar

chart; the underlying data for each visualization is the same. For the thumbnail, we use the

desktop visualization as a base, and update the title for the smaller space; we also reduce

the number of labels. A video walkthrough of this example is available on YouTube at the

following link: https://youtu.be/zQn1URMLSJU. This example is discussed in Section 8.4.3.

H.4 “Percentage of the population without access to improved water”

This visualization is from the National Geographic article “See Where Access to Clean Wa-

ter Is Getting Better – and Worse” [G50]. This visualization is an interactive combination

line chart and scatterplot showing the different countries and regions of interest; in the

mobile version, only the regions are shown. Both versions of the visualization support in-

teraction via a dropdown. To better understand the responsive techniques used, we per-

formed an open-coding process of the changes between the desktop and mobile versions of

https://youtu.be/zQn1URMLSJU

234

desktopportrait

thumbnail
Figure H.4: Three designs created using our responsive visualization system based on a National
Geographic visualization: “Percentage of the population without access to improved water” [G50].

the visualization. The codes we generated for this visualization are included in Figure H.8d.

Using our responsive visualization system, we recreate and extend this visualization to in-

clude three device-specific designs (Figure H.4): a desktop visualization (1024 x 812px), a

portrait phone visualization (375 x 812px), and a thumbnail (240 x 120px). For our recre-

ations, we reduce the number of data points to limit the impact on the performance of our

system and the visualization rendering. This example is particularly exciting because it is

interactive; for the screenshots shown here, we select the “World Average” from the drop-

down. A video walkthrough of this example is available on YouTube at the following link:

https://youtu.be/2qs3--pYn-o. This example is further discussed in Section 8.4.4.

https://youtu.be/2qs3--pYn-o

235

landscape portrait

thumbnail
desktop

Figure H.5: Four designs created using our responsive visualization system based on a Reuters
Graphics visualization: “Activity at the time of spill” [G52].

H.5 “Activity at the time of spill”

This visualization is from the Reuters Graphics article “Oil spilled at sea: Putting the Sanchi

disaster into perspective” [G52]. This visualization is a static, annotated stacked bar chart

that adapts the visualization size and annotations to different device contexts. To better

understand the responsive techniques used, we performed an open-coding process of the

changes between the desktop and mobile versions of the visualization. The codes we gener-

ated for this visualization are included in Figure H.8e. This example is particularly interesting

because the different versions change the binning scheme for the visualized data to show be-

tween four and six categories. Using our responsive visualization system, we recreate and

extend this visualization to include four device-specific designs (Figure H.5): a desktop vi-

sualization (1024 x 150px), a landscape phone visualization (585 x 150px), a portrait phone

visualization (375 x 150px), and a thumbnail (240 x 120px).

236

po
rtr
ai
t

desktop

thumbnail

Figure H.6: Three designs created using our responsive visualization system based on a Harvard
Business Review visualization: “Was Yahoo Late to Mobile?” [G19].

H.6 “Was Yahoo Late to Mobile?”

This visualization is from the Harvard Business Review article “The Decline of Yahoo in

Its Own Words” [G19]. This visualization includes two drastically different designs (a line

chart and a heatmap) depending on the device context. Both visualizations are static and

both are annotated with the same information. The codes generated during the open-coding

process are included in Figure H.8g. Using our responsive visualization system, we recreate

and extend this visualization to include three device-specific designs (Figure H.6): a desktop

visualization (1024 x 400px), a portrait phone visualization (275 x 875px), and a thumb-

nail (240 x 120px). The desktop visualization uses a multi-series line chart with annotations

that fits well on standard screen sizes. The phone visualization uses a heatmap to better fit

the portrait orientation, but also requires users to scroll to see all of the visualization content.

237

de
sk
to
p

portrait

thumbnail

Figure H.7: Three designs created using our responsive visualization system based on an example
from ChartAccent [159] and Vega-Lite [176].

H.7 “Beijing Air Quality Index (PM2.5)”

This visualization is based on data from ChartAccent [159] showing the Beijing Air Quality

Index (PM2.5) of December 2014. The provided sample data was used for a Vega-Lite [176]

example to show a simple layered bar chart visualization. Note that this example was not

included in the original responsive visualization corpus. Therefore, the codes shown here

(Figure H.8f) only correspond to our reproduced example and are not included as part of the

counts in the original paper, as described in Section 8.3.1. Using our responsive visualization

system, we recreate and extend this visualization to include three designs (Figure H.7):

a desktop visualization (825 x 585px), a portrait phone visualization (332 x 310px), and

a thumbnail (240 x 120px). The desktop version is based on a sample visualization from

ChartAccent [159], which shows an annotated line chart of PM2.5 values in December 2014;

this recreation uses the smaller dataset from the Vega-Lite visualization. The portrait phone

visualization is a recreation of one of the Vega-Lite [176] examples: an bar chart of PM2.5

values, with annotated hazardous air levels. The thumbnail combines features of the other

two visualizations to show a line chart and annotate the threshold for hazardous values.

238

Code Action Component

reposition title text

shorten annotations

remove annotation details

shorten axis year labels

reposition

modify

modify

modify

title

labels

labels

axis labels

Code Action Component

no changes no changes view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

reduce bar width resize marks

width compressed

align axis labels

remove wrap title text

y axis gridline changes

resize

reposition

reposition

resize

view

axis labels

title

gridlines

remove y axis ticks remove axis ticks

Total Cost of Major Natural Disasters

Code Action Component

scale visualization smaller

remove some text annotations

change size encoding

reduce legend marks

resize

remove

resize

modify

view

labels

marks

legend

Code Action Component

scale visualization smaller resize view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

Incidents at Sea

Code Action Component

change mark encoding

label mark percentage

remove percentage axis

swap encoding axes

modify

add

remove

reposition

marks

labels

axis

marks

Code Action Component

no changes no changes view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

In close decisions, Kennedy voted in the majority...

Code Action Component

wrap title text

remove circle marks

reduce line marks

remove circle size legend

reposition

remove

remove

remove

title

marks

marks

legend

Code Action Component

disabled remove view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

add color legend add legend

change grid type

compress width

remove some axis labels

add gridlines

reposition

resize

remove

add

view

view

axis labels

gridlines

remove animation

remove rural/urban widget

reduce dropdown options

remove

remove

modify

interaction

interaction

interaction

disabled remove interaction

Percentage of the population without access to...

Code Action Component

compress width

compress height

change mark type

remove region highlights

resize

resize

modify

remove

view

view

marks

marks

Desktop vs. Mobile (Portrait)

remove region labels remove labels

remove title

reposition axis title

add gridlines

add bar highlight

remove

reposition

add

add

title

axis title

gridlines

marks

add threshold mark add marks

add threshold annotation add labels

Beijing Air Quality Index (PM2.5)

Code Action Component

compress width

reposition text annotations

simplify binning

resize

reposition

modify

view

labels

data

Code Action Component

compress width resize view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

overlap annotation text reposition labels

Activity at the time of spill

Code Action Component

change visualization design

wrap subtitle text

modify color encoding

swap axes

modify

reposition

modify

reposition

view

title

marks

marks

Code Action Component

change visualization design modify view

Desktop vs. Mobile (Portrait)

Desktop vs. Mobile (Landscape)

reposition text annotations reposition labels

remove axis ticks

remove count axis

add count labels

add company axis

remove

remove

add

add

axis ticks

axis

labels

axis

wrap subtitle text reposition title

modify color encoding modify marks

swap axes reposition marks

reposition text annotations reposition labels

remove axis ticks

remove count axis

add count labels

add company axis

remove

remove

add

add

axis ticks

axis

labels

axis

Was Yahoo Late to Mobile?

(a) (b) (c)

(d)

(e)

(g)

(f)

Figure H.8: The responsive visualization codes for each visualization described in this section,
for both the portrait and landscape orientation of the phone. (a) “Total Cost of Major Natural
Disasters” from the New York Times [G13]. (b) “Incidents at Sea” from Reuters Graphics [G52].
(c) “In close decisions, Kennedy voted in the majority 76 percent of the time” from the New York
Times [G36]. (d) “Percentage of the population without access to improved water” from National
Geographic [G50]. (e) “Activity at the time of spill” from Reuters Graphics [G52]. (f) “Was Yahoo
Late to Mobile?” from the Harvard Business Review [G19]. (g) “Beijing Air Quality Index (PM2.5),”
based on examples from ChartAccent [159] and Vega-Lite [176].

	List of Figures
	Introduction
	 Thesis Statement
	 Challenge 1: Raise the level of abstraction to reflect user expertise.
	 Challenge 2: Communicate system behavior as actionable information.
	 Challenge 3: Support the tasks that matter most to the user.
	Thesis Contributions
	Thesis Outline
	Prior Publications and Authorship

	Background and Related Work
	Visualization Design Systems
	Graph Visualization Techniques
	Visualizations to Facilitate Program Understanding and Debugging
	Text and Environment Augmentation with Visualizations
	Empirical Studies of Programmers and Program Understanding
	Declarative Programming Languages and Debugging
	Domain-Specific Programming Languages
	Discussion and Applicability of Related Work

	Understanding the Program Behavior of Constraint Systems
	Related Work: Constraint Programming Systems
	Formative Interviews: Utilizing and Understanding Constraints
	Limitations and Future Work
	Summary of Contributions

	Authoring and Reusing Domain-Specific Graph Layouts with SetCoLa
	Related Work: Domain-Specific Graph Visualization
	Design of SetCoLa: A Set-Based Constraint Layout for Graphs
	Evaluation: Real-World Examples Reproduced in SetCoLa
	Limitations and Future Work
	Summary of Contributions

	Program Understanding in Vega: A Declarative Visualization Grammar
	Related Work: Functional Reactive Programming
	Background and Terminology for the Vega Visualization Grammar
	Visualizing the Vega Runtime Behavior as a Data Flow Graph
	Formative Interviews: Understanding Declarative Visualization Design
	Summary of Contributions

	Visual Debugging Techniques for Reactive Data Visualization
	Design of Visual Debugging Techniques for Program Understanding
	Evaluation: Debugging Faulty Visualizations
	Limitations and Future Work
	Summary of Contributions

	Augmenting Code with In Situ Visualizations
	Design Space of Code-Embedded Visualizations
	Implementation of Code Augmentations for the Online Vega Editor
	Evaluation: Understanding Program Behavior of Vega
	Limitations and Future Work
	Summary of Contributions

	Authoring and Reusing Responsive Visualization Designs
	Related Work: Responsive Web Design and Mobile Visualization
	Formative Interviews: Responsive Visualization Design Practices
	Techniques for Flexible Responsive Visualization Design
	Evaluation: Reproducing Real-World Responsive Visualizations
	Limitations and Future Work
	Summary of Contributions

	Conclusion
	Summary of Contributions
	Discussion and Reflections on Three Core Dissertation Challenges
	 Challenge 1: Raise the level of abstraction to reflect user expertise.
	 Challenge 2: Communicate system behavior as actionable information.
	 Challenge 3: Support the tasks that matter most to the user.
	Future Research Directions
	Concluding Remarks

	Bibliography
	Interview Resources: Understanding the Behavior of Constraint Systems
	Formative Interview Screening Survey
	Formative Interview Script Template

	Historical Debugging Approach for Vegausing the JavaScript Console
	Interview Resources: Visualizing Vega's Behavior as a Data Flow Graph
	Formative Interview Script Template
	Data Flow Example Visualizations

	Evaluation Resources: Visual Debugging Techniques for Vega
	Evaluation Post-Task Survey and Exit Survey
	Evaluation Reference Sheet

	Evaluation Resources: Augmenting Code with In Situ Visualizations
	Evaluation Screening Survey
	Evaluation Script
	Evaluation Instruction Sheet
	Evaluation Instruction Sheet for the In Situ Visualizations
	Evaluation Training Tasks
	Task-Specific Program Understanding Questions
	Evaluation Exit Survey

	Interview Resources: Responsive Visualization Design Practices
	Formative Interview Script Template

	Responsive Visualization Corpus Bibliography
	Responsive Visualization Examples
	``Total Cost of Major Natural Disasters''
	``Incidents at Sea''
	``In close decisions, Kennedy voted in the majority...''
	``Percentage of the population without access to improved water''
	``Activity at the time of spill''
	``Was Yahoo Late to Mobile?''
	``Beijing Air Quality Index (PM2.5)''

