A feedback quenched repressilator produces Turing pattern with one diffuser
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Introduction

Objective: To design a synthetic gene network that

generates spatio-temporal patterning. We propose a new
design using the repressilator and a quenching feedback

loop.

Reaction-Diffusion Equation: % = f(¢) + DV,

subject to zero-flux boundary condition.

Diffusion-Driven Instability: Stability of steady state*
In reaction system does not imply stability of reaction-
diffusion system.

Conditions for Turing Pattern
Formation

Here ;. is the eigenvalue of Laplacian for wave number
and.J = 8—£\C:C* IS a linearization matrix.

1. Essential structural property for Turing phenomenon is
an unstable subsystem.

2. This subsystem must be stabilized by the rest of the
system so thaf is stable.

3. The diffusion matrixD must be such thaf + \.D is
unstable for some wave number> 1.

Activator-Inhibitor Models

Canonical example proposed by Turing:

X: activator
Y : inhibitor

These have proven to be notoriously difficult to engineer!

New Quenched Oscillator
Network
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Oscillator circuit now serves as the unstable subsystem.

. oscillator loop
Blue: quenching loop

Advantages:.
e Can leverage existing biological oscillators
e No diffusible species in the oscillator
e Do not have to worry about saturation regions

Toy Model

Use to show plausibility of Turing phenomenon:
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Oscillator loop {1, x9, x3) and quenching loopxg, x4)

e Quenching loop must have smaller phase lag than the
oscillator loop in order to stabilize the system

Toy Model Analysis

Jacobian linearization at steady statéer;, 7o, 3, T4):
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Turing Condition #1: Oscillator loop is unstable
e Instability requiresB = bybobs > 8

Turing Condition #2: Overall systenv is stable
edetN — J) = A+ DA+ 1)? + B + cacs (A + 1)]
e Stability requires” = cyc5 > (B — 8)/2

Turing Condition #3: Diffusion destabilizes some system
modes

e Check stability of/ + \. D

e For a 1-D spatial domaift = [0, L], Ay = —(k%)~.

e Only x4 diffuses, saD = diag{0, 0,0, d4}.

® det(A —J — D)= A+ D[AN+13+B+CA+1)] — \pdy[(A+1)° + B]

Note that if4k* such that/ + A\« D is unstable, the +
AL D is unstablerk > k*

e 1 a min wave number (or max wavelength) for
Instability

Toy Model Results

Parameters. p = 3, v; = 18, v9 = 18, v3 = 9, v4 = 9,
vs = 0.45, a = 0.1
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(A) For k = 2 andd, = 6, unstable mode grows.
(B) Fork = 1 andd, = 6, stable mode decays.
(C) Fork = 2 andd, = 0, all cells stabilize.

Proposed Synthetic

Implementation
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. oscillator loop molecule
. oscillator loop gene
Blue: quenching loop molecule
. quenching loop gene

This implementation based on the repressilator (Elowitz),
but other oscillators possible.

Analysis follows same methodology. Model and param-
eter values not shown. Continuous, deterministic simula-
tions show similar behavior to that of the toy model.
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Stochastic Simulations

e Realistic parameters put many species concentrationgin
stochastic region.

e Better for testing experimental plausibllity.

We use theStochastic Simulation Compiler (SSC) de-
veloped at MIT (http://web.mit.edu/irc/ssc/).

e Allows for spatially heterogeneous systems.

e Claims to have an advantage in runtime as combinatotgl
complexity scales up.

Stochastic Results

Used a stochastic reaction set designed to match our P@E
model. We generated the following plots using a phys
cally possible parameter set.
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Presence of patterning quantified using discrete cosine
transform (DCT).

Patterning emerges spontaneously over time due to noige.

Future Work

e Experimental implementation: While our parameter
set is physically possible, exact parts that match are bt
all currently known. As more biological parts are cha
acterized or created, parts are likely to be found thit
match our chosen parameter values.

e Other network topologies. The repressilator is known
to be difficult to implement, but worked well as a thec
retical starting point. We will try different oscillators
(Hasty’s), quenching loops, and diffusible molecules.



