
Breaking the Bento Box: Accelerating Visual
Momentum in Data-flow Analysis

James Yoo
Department of Computer Science

University of British Columbia
Vancouver, British Columbia

yoo@cs.ubc.ca

Gail C. Murphy
Department of Computer Science

University of British Columbia
Vancouver, British Columbia

murphy@cs.ubc.ca

Abstract—The bento-box user interface and tool integra-
tion paradigm dominates integrated development environments
(IDEs). In this paradigm, tools project different information
about a system in disjoint panes (boxes) of a window while
integrating updates between them as needed. Although popular
and functional, the bento-box paradigm has its drawbacks;
previous research has shown that expert developers experience
disorientation as they work in these environments. In this paper,
we explore how context can be preserved for developers within
the bento-box paradigm by introducing and experimenting with
a tool named ReachHover. This tool supports the answering
of common data-flow reachability questions, which have been
previously shown to be difficult for developers to answer. To
ensure ReachHover supported practical reachability questions of
interest to developers, we conducted, and report on, a formative
survey of 72 practicing developers about the type and frequency
of reachability questions they encounter in their work. We then
conducted, and report on, a controlled user study in which 20
practicing developers used ReachHover, finding that participants
who used ReachHover answered questions involving visiting
multiple files more correctly than those who used standard
tooling, and that those developers better maintained context
while determining their answers. These findings demonstrate the
potential of introducing context-preserving user interfaces for
tools within the standard bento-box paradigm of development
environments, opening up new avenues for improved tool ex-
pression and adoption.

Index Terms—Software Evolution, Software Tools, Developer
Productivity, Program Comprehension, Empirical Study

I. INTRODUCTION

Today’s popular integrated software development environ-
ments (IDEs) use a bento-box paradigm for displaying infor-
mation and integrating tools [1]. In this paradigm, separate
boxes tiled within a window are used to display various
information about software artifacts; tools project information
into tiles and coordinate updates between the tiles as appropri-
ate. This bento-box paradigm enables tool-builders to rapidly
extend and augment capabilities within an IDE. However, the
bento-box paradigm has its drawbacks: tools can be difficult
to locate [2], [3] and developers have been shown to display
disorientation and thrashing [4].

Alternative approaches have been proposed to mitigate dis-
orientation. DeLine and Rowan, who introduced the bento-box
term, suggested enhancing IDEs with a code canvas [1], which
coalesces the multiple views of information usually present

in an IDE into an infinite zoomable surface. This approach
mostly eschews the compartmentalized interface design found
in bento-box styled IDEs. Other approaches are more gradual,
focusing on enhancing the bento-box paradigm in IDEs to
better support developers. For example, Smith et. al proposed
Flower [5], a tool that adds additional annotations [6] through
code highlights in a bento-box editor to simplify following
control- and data-flow though a program. In this approach,
navigation is simplified, but the flow of information must
be followed across separate bento-box tiles (or tabs). Flower
provided modest improvements to developers on a complex
navigation task.

In this paper, we explore a middle ground between these
two ends of the spectrum investigating how a context-
preserving user interface can be incorporated into the bento-
box paradigm. We define a context-preserving user-interface
as one in which new information needed by a developer is
provided in the context of the information they are currently
viewing and from which they have requested the new infor-
mation. We hypothesize that such an interface can decrease
disorientation and increase the visual momentum experienced
by developers when accessing information that cuts across the
bento-box display of information.

A common task that is known to induce disorientation in
software developers is the asking and answering of reacha-
bility questions [7], [8]. Reachability questions are frequently
asked by developers; a large-scale study of professional soft-
ware developers found that they were often investigated more
than nine times a day [8]. Reachability questions can be
answered by developers by tracing the flow of information
through a program; this information flow can be accessed in
a bento-box IDE by viewing the results of a control- or data-
flow analysis. Unfortunately, in a bento-box interface, working
through control- or data-flow analysis results means jumping
frequently between editor locations and files, and swapping
between views in different panes within the IDE; actions that
are known to induce disorientation and low visual momen-
tum [4]. To explore the efficacy of our context-preserving user-
interface, we apply it to the problem of asking and answering
reachability questions.

We explore a context-preserving user interface for reach-
ability questions through the introduction of a new tool



Fig. 1. Using ReachHover to investigate an upstream reachability question. Hovering over the method argument model (1) results in the ReachHover tooltip
(2). Clicking on the question “How was model created?” presents the results of a backward data-flow analysis in the context of the original code under
inspection with a preview of relevant code (3). This workflow occurs entirely in the same window and location in which the original investigation is launched.

called ReachHover. At points of code at which a reachability
question applies, ReachHover presents applicable reachability
questions. For example, hovering on the model variable in
Figure 1 presents a reachability question about how the object
associated with the variable is created. In response to selecting
the question, ReachHover presents a tree-view of an upstream
data-flow analysis. This tree-view is in the context of the code
from which the question was asked. For each node in the tree,
it is possible to view the code related to a tree node in the
bottom pop-up window within the editor. This display allows
the developer to remain rooted in the context of the code in
which the question was asked. ReachHover is implemented as
an open-source plugin for the IntelliJ IDE [9].

To focus ReachHover on reachability questions important
to developers, we pose the following research question:

RQ1 What are the reachability questions that are frequently
encountered in practice by developers?

We investigated this research question by conducting a forma-
tive study with 72 practicing software developers. We found
that developers frequently ask questions regarding how data
might be formed and modified in a program and thusfocused
ReachHover on answering these data-flow reachability ques-
tions.

We pose two further research questions to evaluate whether
ReachHover helps developers answer data-flow reachability
questions:

RQ2 Are developers able to answer reachability questions
more correctly with ReachHover?

RQ3 Does ReachHover make it easier to answer reacha-
bility questions?

To investigate these research questions, we performed a con-
trolled experiment in which 20 practicing developers answered
two reachability questions on a moderately-sized system that

compared the use of ReachHover and the built-in data-flow
analysis support in an IDE. We found that developers more
correctly answered data-flow reachability questions involving
multiple files with ReachHover than with built-in bento-
box style IDE data-flow analysis support. We also found
that developers switched between and within files less often
with ReachHover, demonstrating that the context-preserving
nature of ReachHover is helpful. Developers also indicated
a preference for ReachHover over built-in bento-box-style
tooling. This evidence supports our hypothesis that providing
direct support for asking and answering data-flow reachability
questions in the context of the original code under inspection
enables developers to answer them more correctly and easily.
This tooling shows that context-preserving user interfaces can
be added within the bento box paradigm of IDEs, opening up
new possibilities for the introduction and adoption of tools.

We make the following contributions in this paper:

• We report on the results of a survey of 72 practicing
software developers about the type and frequency of
reachability questions. We conducted this survey to en-
sure our investigations focused on questions of interest
to practicing software developers.

• We introduce ReachHover, a novel tool with a context-
preserving user interface.

• We demonstrate that ReachHover, which provides a de-
veloper direct access to access context-specific ques-
tions and in-situ provisioning of information, can be
built within a common IDE platform, showing that a
developer’s user experience can be significantly improved
without radical platform or user-interface changes.

• We show that ReachHover’s context-preserving user in-
terface increases visual momentum for developers.

We have made the source code of ReachHover [9], the



dataset of the formative study [10], and the dataset of the
user study [11] available for public access.

II. RELATED WORK

Most widely-used integrated development environments
(IDEs) (e.g., IntelliJ IDEA [12], Visual Studio [13], and
Eclipse [14]) present a similar interface to developers known
as the bento-box style [1]: a large tile for viewing and
editing source code, a tile displaying a file-tree, and a number
of smaller tiles that enable users to interact with built-in
tools. We discuss approaches that have been considered for
changing the style of interfaces presented to developers in
such environments and discuss tools previously suggested
for the specific questions we explore in this paper, namely,
reachability questions.

A. Interfaces for Development Environments

The predominant bento-box style for development environ-
ments has allowed developers to work with very large code
bases and for new tools to be seamlessly integrated into an
environment. However, the bento-box style is also known to
have several drawbacks, including being disorienting [1], [4]
and causing a loss of visual momentum for developers [4].

Various approaches have been investigated to address these
issues. Some approaches call for a major change to the inter-
face of development environments. For example, researchers
have considered how virtual reality might be used to ease
software engineering tasks [15]. While virtual reality shows
promise to help with the live coding of virtual experiences, its
use in practice remains in its infancy.

Other approaches have considered breaking out of the bento-
box concept via a 2D representation of code. For example,
DeLine and Rowan introduced the concept of a code canvas
that displayed information about a software project within
an infinitely-zoomable 2D single surface [1]. This style of
interface was integrated into Visual Studio for the purposes of
debugging, known as the Debugger Canvas, which was found
valuable by industrial developers for complex debugging sce-
narios [16]. Various researchers have refined the code canvas
approach. For example, Henley et al. report on a refinement of
the code canvas approach, called Patchworks, which supports
a 3x2 grid of patches in which code fragments can be placed
that are embedded in a ribbon of infinite potential patches [17].
As another example, Adeli et al. introduce Synectic, which
adds an ability to record annotations between spatially ar-
ranged code fragments on a canvas [18]. Experimentation with
both Patchworks and Synectic show advantages for spatially-
based code displays over existing bento-box interfaces. A
disadvantage of these approaches is a need for developers
to learn a new approach that is substantially different than
the bento-box IDE which is familiar to them. The learning
curve associated with these interfaces might explain the lack
of adoption despite being built into Visual Studio, a major
development platform. Unlike the code canvas approaches
(e.g., [17]–[19]), ReachHover does not aim to totally replace
the familiar compartmentalization of tooling within an IDE.

Instead, we designed the interface of ReachHover to augment
and work within existing IDE interfaces familiar to developers,
while presenting information directly within the context of
code under investigation.

Other researchers have considered how to augment the
existing bento-box style to overcome some of the style’s
drawbacks. Sulír et al. describe a taxonomy of annotations
that can be made to a source code editor and classify 103
articles (tools) according to that classification [20]. In sup-
porting access to statically-analyzed control- and data-flow
information from the code within the editor for the purposes
of navigation, our tool ReachHover is most similar to Smith
et. al’s Flower tool [5]. Relative to a given variable or method
selection in the source code editor, Flower highlights visible
items on screen that are related via control- or data-flow to that
selection and provides hyper-links to items in the flow that are
off-screen. Navigating to an off-screen item causes the same
replacement of the information in the editor as is the case for
the traditional bento-box style. Our tool, ReachHover, seeks to
provide additional context for the developer to reduce potential
disorientation by displaying the control- or data-flow results
within the source code editor, taking a fluid approach similar to
that described by Desmond et al. [21]. ReachHover’s context-
preserving user interface also makes it easier for a developer to
access the results of the appropriate static-analysis by directly
presenting the questions a developer may have about data-flow.
ReachHover’s mechanism of presenting questions is inspired
by the dialogue-based approach of the Whyline [22], [23].

This paper goes beyond existing work in demonstrating that
the integration of both asking and answering direct questions
about data-flow within a source code editor is possible and
that in doing so, the burden of disorientation can be reduced
and visual momentum increased for software developers.

B. Tools for Reachability Questions

To the best of our knowledge, there are only two tools that
have proposed to specifically support reachability questions.
The first is REACHER [24], which allows a developer to
request “upstream” or “downstream” analysis of control-flow
paths from a method selected by a developer. The results
of such a developer request are displayed in a separate
call-graph visualization displayed within an editor pane. A
user study of REACHER found that participants who used
REACHER answered control-flow reachability questions more
successfully and faster than participants who used standard
tools [24]. However, the same study that presented REACHER
also showed that participants still spent a significant amount
of time foraging for code to verify their answers [24]. This
foraging requires context shifts from the call-graph view to
other code views. With ReachHover, we consider reachability
questions pertaining to the data-flow, rather than control-
flow and present an alternative interface that aims to aid
developers in maintaining their context while investigating and
understanding their code.

The second specific tool supporting reachability questions is
Get Me Here [25]. This tool re-frames reachability questions



into constraint satisfaction problems that are dispatched with
an SMT-based static analysis. Two queries are supported:
1) the eponymous “Get Me Here” query, which provides a
single execution trace that leads to a point of interest, and 2)
the “multiple-waypoint” query, which enables developers to
investigate an arbitrary number of points within an execution
trace. We are not aware of any user study of Get Me Here
beyond whether it is able to correctly generate an execution
trace given a series of benchmark programs With ReachHover,
we aim to investigate what developers need to effectively use
the results presented by a tool [25].

III. SURVEY

To support our investigation of the usability of a new user in-
terface for reachability questions, we target reachability ques-
tions often asked by developers (RQ1). We thus conducted
a survey [10] about the frequency of reachability questions
asked by developers during their day-to-day workflows.

A. Design
Our survey consisted of five demographic questions fol-

lowed by nine questions about the frequency of occurrence of
different reachability questions. Table I lists the reachability
questions; the questions are ranked based on survey results
with the first column indicating the order of questions in the
survey. For each of these questions, participants were asked
to rank how often they asked the reachability question in
their daily work on a 5-point Likert scale that ranged from
“I never ask myself this question” to “I often ask myself this
question.” Eight of these questions were accompanied by a
small code excerpt that served to frame the question in a
concrete development scenario to ensure participants had a
common understanding of the question. Figure 2 demonstrates
a question posed to participants with a code excerpt. The
remaining question (Q9 in Table I) was contextualized by a
short paragraph describing a development scenario as it did
not lend itself well to a small code excerpt.

The reachability questions in the survey were informed
by existing literature for reachability questions [8], hard-to-
answer questions about code that developers ask [7], and the
previous industrial development experience of the authors. The
third column in Table I categorizes each question in terms
of LaToza and Myers’ framework [8]. A find-type question
requires developers to look through a number of program paths
for a value or point of interest, while a compare-type question
requires developers to compare two program paths. As seen in
this column, both types of reachability questions are present,
with the majority of questions being of the find-type.

B. Recruitment
A total of 72 participants took the survey. Participants were

recruited via Twitter and email from the authors’ professional
networks. A wide range of experience was captured, with 56%
of participants reporting between 0 to 5 years of professional
experience, and 44% reporting 5 or more years of professional
experience. The 72 complete responses were collected from a
total of 108 started surveys, yielding a completion rate of 67%.

Fig. 2. A sample question that was included in our survey on developer
reachability questions. This questions includes a description of a scenario and
a code excerpt that serves to contextualize the reachability question being
described to a participant.

C. Results

Table I provides a view of the results in terms of the
mean scores assigned to each question by participants. The
highest-ranking question (Q2) represents situations where a
developer adds a feature or refactors code, and then wants to
ensure that no defects are introduced as part of the process.
This reachability question is a compare-type question where
developers might compare program traces before and after the
addition of changes. The other two compare-type questions
(i.e., Q7 and Q6) were ranked substantially lower. The second
highest-ranked question relates to the control-flow of a pro-
gram, specifically between two locations in code. This type of
question is supported by the existing REACHER tool.

The remaining questions are all data-flow related. Q1 (i.e.,
“Where does a value come from, and how is it formed?”)
can be formulated as a backward reachability question, where
a data-flow trace is generated backward from the value of
interest. Q5 (i.e., “Given some data, which parts of it are
modified downstream?”) can be formulated as a forward
reachability question starting from a value of interest through
data-flow traces in which the value might be modified.

Q8 relates to how the value of data might affect its path
through a program (control-flow), or how it is affected by dy-
namic dispatch (which implementation of a method is called).
Q4 is similar to Q5 in that it represents a “downstream”
reachability question, but our participants appeared to be less
interested in how data might be accessed rather than modified.
Finally, like Q1, Q3 also asks about the origin of data, but
constrains the possible question to the initialization of a class.

In comparison to the previous study on reachability ques-



TABLE I
SURVEY QUESTIONS AND SCORES ORDERED BY MEAN

Order Question Type Mean (x̄) SD (σ)
Q2 Did I introduce any unwanted changes in the new version of this code? compare 4.12 1.10
Q9 What does the control-flow look like between two locations in code? find 4.08 1.23
Q1 Where does a value come from, and how is it formed? find 4.03 1.05
Q5 Given some data, which parts of it are modified downstream? find 3.76 1.22
Q8 Given some part of a program that depends on a value, which parts of it are executed or reachable? find 3.59 1.33

Q7
Given two subtypes and their implementations of a common method, how do
they handle data differently?

compare 3.51 1.41

Q6 Is deleting what appears to be unused code going to break anything? compare 3.34 1.53
Q4 Given some data, which parts of it are accessed downstream? find 3.24 1.26
Q3 How is an instance of this class created/initialized? find 2.95 1.34

tions by LaToza and Myers [8], our subjects reported asking
data-flow related reachability questions at a higher frequency.

RQ1 Summary

Developers often encounter reachability questions that
are related to the data-flow of a program during
their work. This result extends the understanding of
reachability questions beyond existing work.

IV. REACHHOVER

To study a context-preserving user interface for data-flow
analysis, we built ReachHover, which provides direct sup-
port for both asking and answering reachability questions.
In designing direct support for asking reachability questions,
we were inspired by the Whyline [22], which augments
support for debugging programs directly via “why” and “why
not” questions about the program’s observable behaviour. In
designing direct support for answering reachability questions,
we sought to provide answers in the context of the code in
which the question is being asked. By maintaining this context,
we believe the developer can be more rooted in the original
context of where they began their exploration, and mitigate
the disorientation developers may experience when they thrash
between multiple views that display information relevant to
their task [4].

We describe how a developer invokes a reachability question
and how the results are displayed before briefly describing
ReachHover’s implementation, including the reachability ques-
tions it currently supports.

A. Invocation Mechanism

Work in information search and retrieval systems has pro-
vided empirical evidence that cursor hovering is a useful proxy
for determining a user’s focus or interest in a user interface
component (e.g., [26], [27]). We build on these results, choos-
ing to provide a developer access to reachability questions via
a hover tooltip. Figure 1 demonstrates this workflow. When a
user hovers over an applicable code entity, such as a variable,
a tooltip (labelled 2 in the figure) appears.

The ReachHover tooltip consists of two components. The
top component presents the option to start the exploration of
either a backward or forward reachability question, in the form
of a button that reads “How was x created?” or “How is x
modified?” when x is a method argument or local variable,
respectively. The bottom component enables the developer
to access the standard documentation and type information
that is usually presented on hover by the IDE in which
ReachHover is implemented. Directly presenting applicable
reachability questions removes the need for developers to
manually translate a question at hand to investigation of a
data-flow analysis.

B. Result Visualization
ReachHover presents the result of a reachability question

directly next to the location where it was invoked (Figure 1).
The result window is composed of two main components. The
top component is a standard tree-view of the backward or for-
ward data-flow analysis results for the question; these results
come directly from the data-flow analysis built into the host
IDE. Above the tree-view is a selector that enables developers
to scope the results of an analysis to a file, directory, or an
entire project. The bottom component is a preview editor that
highlights the line of code selected in the tree-view component
within its original context (e.g., if the selected element is on
line 13 of a file, the preview editor might display lines 10 to
16). The bottom of the preview editor displays the file and
the package location of the element that is being previewed.
The preview editor provides the same features provided by the
main IntelliJ editor, including highlighting, hover inspections,
scrolling, and the ability to invoke another ReachHover anal-
ysis, but does not allow live-editing. A developer may tune
the amount of additional context presented by ReachHover by
resizing the window, which might also be moved anywhere
within the main editor. ReachHover’s direct presentation of
results in a sub-window enables developers to maintain their
context within the original file. Since each element in the
tree-view is presented within-context in the preview editor,
ReachHover preserves the original context of each element.
This effectively surfaces data that is available but hidden from
users, as IntelliJ does not open a preview window by default.



Direct presentation of results and invocation mechanisms help
to make tacit knowledge about data-flow analyses explicit [28].

C. Reachability Questions Supported

For experimentation purposes, ReachHover currently sup-
ports two data-flow related reachability questions. We selected
these questions based on the results of the survey.

The most highly rated reachability question in our survey
(Table I) involved changes between different versions of
programs (Q2). In the LaToza and Myers framework, this is
a compare-type question. We consider such questions to be
of higher difficulty and potentially better answered using a
dynamic trace. We return to the question of how to support
compare reachability questions in Section VI. As a result, we
chose to initially focus on find-type questions. The second
most highly rated reachability question is a control-flow based
question. Since REACHER targets control-flow, we decided to
focus on Q1 and Q5, each of which are data-flow related.

D. Implementation

ReachHover is implemented in the Kotlin programming
language [29] for the IntelliJ IDEA Platform. To identify
points of interest for invoking a data-flow analysis, Reach-
Hover polls a developer’s cursor location within a file. Code
elements detected under a cursor are parsed into an generic
unified abstract syntax tree (AST) representation exposed
by the IntelliJ IDEA Platform. ReachHover uses the AST
representation to validate whether it can support reachability
questions on the code element (i.e., a method argument or a
local variable declaration).

Once a valid code element is found, and after a developer
selects a reachability question, ReachHover dispatches a call
to a platform-specific service that provides the correct data-
flow slicer for a given programming language. ReachHover
then uses the provided slicer to obtain the data-flow slices it
requires to present its results to the developer. Unlike the built-
in data-flow tooling in IntelliJ IDEA, ReachHover enables
developers to quickly re-scope (e.g., to a file, directory or
projects as in Figure 1) the results of an analysis in-place
without having to re-invoke the tool entirely, meaning, they
do not have to re-start the entire analysis workflow from
scratch. ReachHover is currently able to be used on systems
implemented in Java and Kotlin.

V. EVALUATION OF REACHHOVER

ReachHover [9] aims to make it easier for developers to
answer upstream and downstream reachability questions using
data-flow information from a context-preserving user interface.
We conducted a controlled user study [11] to investigate two
research questions about this aim:

RQ2 Are developers able to answer reachability questions
correctly with ReachHover?

RQ3 Does ReachHover make it easier to answer reacha-
bility questions?

The study compared the use of ReachHover with the built-
in data-flow analysis capabilities of the IntelliJ IDEA IDE.

We selected IntelliJ as our control tool as it provides data-
flow analysis within a bento-box user interface. Each study
participant was asked to complete two tasks where each task
involved either a forward and a backward reachability ques-
tion involving data-flow for a medium-sized software system
implemented in a statically-typed language. The order of tasks
and order of tools—ReachHover or IntelliJ—was randomized
across participants. At the end of the study, participants were
asked to report on their experiences using a combination of
free-form responses and ranking questions.

A. Recruitment

20 individuals participated in the study. These participants
had a wide range of years of professional software devel-
opment experience: 25% of participants had up to 2 years
of professional software development experience; 50% had
two to five years of experience; and the remaining 25%
had at least 5 years of experience. 90% of our participants
reported that they currently use a statically-typed programming
language (e.g., Java, Scala, Go) in their professional work. The
remaining 10% reported using a statically-typed language for
professional work within the last five years.

B. Tasks

We used the Apache NetBeans [30] project as a target
system for the tasks in the study. NetBeans is an open-source
IDE comprising approximately 900,000 lines of Java code. We
designed tasks that represented both backward and forward
data-flow related reachability questions (i.e., “How was ...”
and “How is ...”). The information needed to answer the
reachability question for one task was localized to a single
file (i.e., intra-file); the question for the other task required
consideration of many files (i.e., inter-file).

The first task, the tdocument task, posed a forward reachability
question within a single 1,035 line file. Participants were
asked: “How is findReplaceResult modified?”, where
findReplaceResult is a variable that can hold an object
containing data related to the find-and-replace operation in the
NetBeans IDE. Participants were asked to invoke ReachHover
or IntelliJ and report the number of times a null check for the
variable findReplaceResult appeared along with their
locations in code downstream of a particular starting point.
Additionally, they were also asked to provide the methods
where it might have been used, (i.e., calling methods on it,
using it in an expression), and the methods where its value is
not used at all (i.e., passthrough methods). Participants were
asked these questions to make specific the reachability concept
of ‘using a value.’

The second, tbookmark task, posed a backward inter-file reach-
ability question. Specifically, participants were asked: “How
was bookmark created?”, where bookmark is a method
argument that represents a user-defined bookmark within a
file in the NetBeans IDE. Participants were asked to invoke
ReachHover or IntelliJ and to provide the number of times
a call to the bookmark constructor appeared, the unique
locations in code where it might have been invoked, the names



of the methods where the value of bookmark might have
been used before being passed as a method argument, and the
locations where bookmark or any related objects might have
been assigned a value. These specific questions were asked
to clarify the reachability concept of creating and assigning a
value.

C. Method

A study session consisted of asking a participant to perform
the tdocument and tbookmark tasks in a certain order and with a
certain tool. Table II outlines the four treatments used, namely
TA through TD. For example, TA had a participant first perform
the tbookmark task with ReachHover followed by tdocument with
IntelliJ’s built-in data-flow analysis. The order of tasks and
tools were swapped to mitigate the effects of transfer learning.

Participants undertook the study on their own time remotely.
Each participant was shown a short video before each task that
demonstrated the features of either ReachHover or the built-in
data-flow analysis tooling of IntelliJ IDEA. After completing
the tasks, participants were asked to report on their experiences
with ReachHover and how it compared to tools they would
have used otherwise to complete the tasks. We assigned each
participant to a treatment randomly, with the only constraint
being to have an equal number of participants per treatment
as much as possible. We collected usage metrics (e.g., mouse
click events, editor interactions) within the IntelliJ IDEA IDE
during the task. All logs remained on-device until participants
were asked to upload them at the end of the study, at which
the following questions were presented:

1) “Did you find any difference using ReachHover or
IntelliJ for the tasks in this study?”

2) “Any other thoughts or comments?”
Ultimately, the number of participants in each treatment was
not perfectly balanced, due to factors such as attrition or
incorrect logs being uploaded by participants.

TABLE II
EXPERIMENTAL SETUP FOR REACHHOVER USER STUDY.

Treatment Task Ordering Tool Participants

TA
tbookmark
tdocument

ReachHover
Built-in data-flow 6

TB
tbookmark
tdocument

Built-in data-flow
ReachHover 5

TC
tdocument
tbookmark

ReachHover
Built-in data-flow 5

TD
tdocument
tbookmark

Built-in data-flow
ReachHover 4

D. Data Analysis

We use a variety of different methods to analyze the data
collected from experimental sessions.

Correctness. We defined a correctness score (S) to quantify
how participants performed on each task.

S = ANScorrect − ANSincorrect (1)

The terms of Equation 1 are as follows:

• ANScorrect is the number of correct answers; and
• ANSincorrect is the number of incorrect answers.
For example, incorrect answers might be lines of code or

methods that do not appear in the data-flow trace or lines of
code or methods that do appear, but are not related to the value
of interest.

Visual Momentum. Research has shown that developers
can become disoriented when user interfaces lack visual
momentum, a qualitative measure of a users’ ability to extract
information across changing displays [4]. A display that is
low in visual momentum might induce developers to thrash
between files to collect information necessary for a task [4].
To examine the visual momentum experienced with the built-
in IDE tool and ReachHover, we consider a measure of editor
cursor jumps. A cursor jump is recorded when a developer
moves their cursor from one location in a file to another
location, either within the same file or another open file. Editor
cursor jumps in the main editor can affect the context (i.e.,
cursor highlighting, lines of code presented, viewport) within
the editor. We measure cursor jump events in the main editor as
a coarse-grained proxy for the amount of information-seeking
and context-shifting a developer is encountering.

Editor cursor jumps in the preview editor are recorded when
a developer moves the cursor to a different location within
a file open in the preview editor. Unlike main editor cursor
jumps, preview editor cursor jumps do not affect the context
of the main editor or any open files, and constrain the changing
information in the bounds of the preview editor. Preview editor
cursor jumps indicate that the developer might be looking at a
different line in the same preview editor. We measure cursor
jump events in the preview editor as a proxy to help determine
whether a developer is actively using ReachHover’s preview
editor to obtain information related to their task.

Experience. To investigate comments that participants made
about experiences with the different tools, a researcher unaf-
filiated with the development of ReachHover and the study
conducted a separate card sort [31] on the qualitative answers
to each of the two questions asked at the end of the study.

E. Results

For tooling to be useful, it must help developers answer
questions correctly, thus RQ2 considers the correctness of
participants’ answers with different task and tool combina-
tions. Table III reports the average correctness score for each
combination. From this table, we can see participants had
a much higher average correctness score for tbookmark with
ReachHover (4.1) than with the built-in data-flow tools of
the IDE (0.8). We observed a significant difference in the
correctness scores for this task (Mann-Whitney U = 6; n =
10; p = 0.04; α = 0.05) There was less of a difference
observed for tdocument.

Figure 3 and Figure 4 provide a more in-depth look into
how participants fared with each tool on tbookmark and tdocument,
respectively. For tbookmark, we observe that participants using
ReachHover provided a higher median of correct answers



TABLE III
A COMPARISON OF THE AVERAGE CORRECTNESS SCORES FOR EACH TASK

AND TOOL COMBINATION.

Tool Task Average Correctness Score (S)
ReachHover tbookmark 4.1
Built-in data-flow tbookmark 0.8
ReachHover tdocument 4.6
Built-in data-flow tdocument 4.1

(x̃ = 4.5) than participants who used the built-in data-flow
analysis tooling (x̃ = 4). A larger difference was observed
in the median number of incorrect answers, with participants
using ReachHover providing a smaller number (x̃ = 0) of
incorrect answers compared to participants who used the built-
in data-flow analysis (x̃ = 1.5). In tdocument, there was no
difference in the number of correct answers provided by
participants who used ReachHover (x̃ = 6) or the built-in data-
flow tooling (x̃ = 6). However, we observe that the median
number of incorrect responses from participants who used
ReachHover (x̃ = 0) was smaller than the median number of
incorrect responses from participants who used built-in data-
flow tooling (x̃ = 0.5).

Fig. 3. A comparison between ReachHover and the standard data-flow
analysis capabilities of IntelliJ IDEA in terms of correct and incorrect answers
given to tbookmark.

Fig. 4. A comparison between ReachHover and the standard data-flow
analysis capabilities of IntelliJ IDEA in terms of correct and incorrect answers
given to tdocument.

RQ2 Summary

ReachHover enabled participants to answer an inter-
file data-flow reachability question more accurately
compared to participants using the built-in data-
analysis support in an IDE.

We also investigate whether ReachHover eases the answer-
ing of data-flow reachability questions (RQ3). We consider
both quantitative data from logs about the behaviour of
participants and the qualitative answers they provided to a
comparative question about the two tools.

We hypothesize that fewer main editor cursor jumps enables
higher visual momentum for participants, making it easier to
answer the question at hand. Figure 5 presents the weighted
average of main editor cursor jumps recorded per tool in each
task of our study. For both tasks, there are fewer weighted
average main editor cursor jumps when ReachHover is used
than with built-in data-flow analysis support. For tdocument,
the intra-file question, this difference is statistically significant
(Mann-Whitney U = 6; n = 10; p = 0.001; α = 0.05).

Fig. 5. Weighted averages of the number of main editor cursor jumps for
ReachHover and standard built-in dataflow tooling in tbookmark and tdocument.

We also measured the number of jumps in the preview editor
for each task when ReachHover was used. We observed a
weighted average of 58.7 jumps for tbookmark and 89.2 jumps
for tdocument. The higher number of preview editor junps with
ReachHover suggests that our participants used the preview
editor that is part of the tool to locate relevant information.

Whether or not a tool is easy to use also requires considering
how developers perceive and experience the tool. Table IV
reports a summary of the codings of participant responses to
the question about any differences noticed by the participant
between the two tools used. Nineteen of the twenty participants
responded to the question; each participant is coded as one
response in Table IV.

Thirteen of the participants (65%) expressed positive com-
ments towards ReachHover. Five (25%) expressed that Reach-
Hover was easier to use:

“ReachHover felt less cluttered and made the task
easier” - P18

Three participants remarked that ReachHover was more
usable than IntelliJ, both for asking and answering reachability
questions:



TABLE IV
CODES IDENTIFIED DURING A CARD SORT OF PARTICIPANT RESPONSES TO

THE QUESTION “DID YOU FIND ANY DIFFERENCE USING REACHHOVER
OR INTELLIJ FOR THE TASKS IN THE STUDY?”

Code Description Count

Prefers IntelliJ User prefers IntellJ’s built-in
data-flow analysis tooling 2

No Perceived Difference

User did not find a difference
between ReachHover and
IntelliJ’s built-in data-flow
analysis tooling

4

Easier or Simpler

User found ReachHover easier
and/or simpler to use than
IntelliJ’s data-flow analysis
tooling

5

Context-preserving
User found ReachHover preserved
more of their working
context during a task

5

Usable
User found ReachHover more
usable than IntelliJ’s built-in
data-flow analysis tooling

3

“ReachHover was easier to call as it didn’t require
navigating menus.” - P9

“I find having ReachHover’s separate floating win-
dow with a view into where the related line of code
is, is more usable than IntelliJ’s data-flow analysis
feature. - P10

Five of the participant responses (25%) help confirm what
we observed from analyzing editor jumps. These participants
noted that ReachHover helped to maintain their working
context:

“I preferred that I could look at the matches in the
same modal window without affecting the open file”
- P19

“I felt like I did not lose the context using Reach-
Hover compared to IntelliJ. I felt they showed me
the same content, but ReachHover was easier to use
(maybe beause [sic] I didnt [sic] lose the context)”
- P15

A smaller number of participants (6 or 30%) did not
note any positive difference for ReachHover. Four participants
(20%) did not report a perceived difference between Reach-
Hover and IntelliJ, while two (10%) expressed a preference
for IntelliJ’s data-flow analysis tooling.

RQ3 Summary

A lower average of context-shifting main editor in-
teractions was observed when ReachHover was used
compared to built-in IDE support, providing evidence
for ReachHover’s efficacy as a context-preserving in-
terface. Additionally, the majority of our participants
found ReachHover to be easier or simpler to use, more
usable, and helpful in preserving and maintaining their
context during tasks.

VI. DISCUSSION

We have demonstrated that the context-preserving user
interface provided by ReachHover can make answering certain
data-flow reachability questions easier for developers. In this
section, we discuss other tasks performed within in IDEs that
might benefit from context-preserving interfaces and demon-
strate how ReachHover may be extended to support other kinds
of reachability questions.

A. Augmenting Tasks with Context-Preserving Interfaces

Many built-in IDE tools present interfaces adhering to the
bento-box paradigm, such as a terminal or command-line pane,
or a file tree represented by a vertical pane at the side of an IDE
window. For these tools, developers generally do not require
context beyond what is already presented in the panes (e.g.,
terminal commands and their output, file names in file trees).

However, for tasks that require developers to consider a
large amount of information and context, such as investigating
an object hierarchy or finding the usages of a code structure, a
context-preserving interface may be helpful in preventing the
developer from having to swap and thrash between views.

For example, when a developer is investigating an object
hierarchy, they might want to compare an abstract method
implementation across subtypes. They might achieve this by
manually opening a number of classes in disjoint views
inspecting the method of interest. In this case, a developer
would still have to swap between files and views while mar-
shalling information across them. With a context-preserving
user interface, the need for a developer to actively manage
views is diminished; a developer might instead begin their
investigation in one subtype’s implementation of the method
in the main editor, while an inline view displays another
subtype’s implementation of the method, perhaps while high-
lighting common structures between the two.

Developers perform searches in IDEs to locate the usages
of an API, a variable, or a class. In this task, developers often
begin from a single structure of interest and explore multiple
locations where the structure is referenced, often swapping
between different editor locations and views. Without the help
of a context-preserving user interface, developers must retain
relevant information from the start of their exploration across
any number of locations. This might be especially problematic
when critical information (e.g., a pre- or post-condition of the
structure under investigation) is not recalled by the developer.
With a context-preserving user interface, a developer may be
able to begin a search, collect relevant information across a
number of locations, and take action all from a single location.
This mitigates the need for the developer to constantly jump
between locations and views, reducing the possibility that they
become disoriented.

These examples illustrate that a context-preserving user
interface could be used for other tools and integrated within a
bento-box IDE paradigm.



B. Asking and Answering Additional Reachability Questions
ReachHover enables developers to directly ask and answer

two specific data-flow reachability questions that invoke cre-
ation and modification of data throughout a program. Reach-
Hover could be extended to other questions that developers
reported asking in the survey we conducted. For example, to
answer Q8 (“Which paths in a program are executed given
a certain value?”), we might pose a question such as “When
is this path executed?” via a tooltip when a developer hovers
over the branches of a conditional statement. In this case, we
may exploit run-time to provide a developer with a record of
relevant variables and their values when a branch is executed.
To answer, Q7 (“Given two subtypes and their implementation
of a given method, how do they handle data differently?”) we
may pose the question “How does this method modify data for
each subtype?” when a developer inspects the top-level method
declaration in the supertype. A developer might then be asked
to select two subtypes for which the implementations of the
method may be compared. The answer to this question might
be expressed in the form of a diff of execution traces for each
method that highlights similarities and differences in how they
mutate or access data. This provides a possible starting point
for how additional compare-type questions might be supported
by ReachHover.

To answer Q6 (“Is deleting what appears to be unused
code going to break anything?”), ReachHover might pose the
question (“Is deleting this going to break anything?”) when a
developer highlights a block of code during a refactoring task.
In this case, ReachHover might compute a diff of an execution
trace of the relevant subset of the program before and after the
block of code is deleted, and present it to the developer should
they chose to explore further.

More generally, to answer questions that involve dynamic
run-time information, ReachHover could be extended to collect
execution traces in the background during the execution of
a test suite. To avoid the overhead that might be associated
with storing execution traces for multiple test suite executions,
ReachHover might execute a test suite on-demand (i.e., when
a developer actually invokes ReachHover) and collect only
the execution traces relevant to the subset of the program
under investigation. In cases where test suite execution is not
feasible, dynamic slicing [32] might be a viable alternative.

VII. THREATS TO VALIDITY

A. Formative Study
Construct Validity. The selection of questions in the survey

might not be completely representative of the data-flow related
reachability questions that developers encounter in practice.
To mitigate this threat, we included reachability questions
that were found to be asked by developers in the field (e.g.,
[8], [33]), in addition to the questions we encountered during
our work as software developers. Additionally, the use of
a subjective ranking scale in our study for the reachability
questions we posed to the participants presents another threat.
Individuals might have different perceptions of what it means
to ask a question “rarely” or “frequently.”

Internal Validity. The internal validity of our findings may
be impacted by differing understandings by participants of
what a question asked. To mitigate this threat, we provided
code excerpts and descriptions to clarify the meaning of ques-
tions. Finally, the external validity of the results is impacted
by the size of our respondent pool; these respondents were all
practicing software developers.

B. Experimental Study

External Validity. Of our 20 participants, a majority (15)
reported not being aware of IntelliJ’s or any other IDE’s
data-flow analysis feature. Of the five who were aware of
this feature, only two reported using these features on a
regular basis. This suggests that our results might not be
generalizable to populations who might already be familiar
with data-flow analysis tooling. Although the reported years
of experience was varied among our participants in both the
formative study and the experimental study, we are not able to
concretely infer their subjective experiences, knowledge, and
other personal factors. Consequently, further investigation is
required to determine whether our results may be applicable
to a general population of software developers.

Internal Validity. We conducted the user study entirely re-
motely. This provided flexibility to our participants in that they
were able to participate whenever it was most convenient for
them. However, this made it difficult for us to directly observe
our participants during the study, and impeded our ability
to investigate questions or “think-aloud” comments posed by
participants on-the-fly. We introduced another threat by using
a system with which our participants may be unfamiliar.
Developers might be more successful in completing the tasks
we posed in a system that they are familiar with, regardless of
whether they used ReachHover or built-in data-flow analysis
tooling. We presented two reachability questions within two
tasks in our user study. It is likely that developers encounter
more types of reachability questions than can be reasonably
captured in our user study within a limited period of time.
We attempted to minimize this threat by using the results
from our survey that investigated the most popular reachability
developers ask in practice.

VIII. SUMMARY

The bento-box user interface paradigm dominates the land-
scape of integrated development environments [1]. Although
popular for compartmentalizing tools within an IDE and the
information they present, the bento-box paradigm presents
challenges in and is prone to inducing disorientation in de-
velopers as they swap and thrash between editor views during
program comprehension and navigation tasks [4]. In this paper,
we introduced ReachHover, an open-source tool embedded
with a context-preserving user interface that developers may
use to explore the results of data-flow analyses. Through a
survey of 72 practicing software developers, we identified a
ranking of how frequently developers encountered a set of
nine reachability questions, discovering that many of them
related to the data-flow paths in a program. This guided our



implementation of ReachHover, which focuses on enabling
developers to ask “How is ...” and “How was ...” questions
about the creation or usage of data in a program. In a con-
trolled user study that compared ReachHover and its context-
preserving user interface against a bento-box style data-flow
analysis tool built into an IDE, we found that ReachHover
enabled participants in the study to answer an inter-file data-
flow related reachability question more accurately and an
intra-file question as accurately as the built-in IDE data-
flow analysis support. Participants using ReachHover provided
these answers with less context-shifting than with the built-in
IDE support, a benefit commented upon by participants. The
ReachHover tool demonstrates how an alternative, context-
preserving user interface paradigm for integrated development
environments might reduce disorientation and accelerate visual
momentum for developers without the need for radical changes
to the popular bento-box paradigm.

IX. ACKNOWLEDGEMENTS

We thank the participants of the formative study and the
user study presented in this paper. Additionally, we thank Reid
Holmes and Caroline Lemieux for their feedback on early
drafts of this work and the anonymous reviewers for their
detailed feedback and comments. We gratefully acknowledge
the support of Canada’s NSERC granting agency for helping
to fund part of this work (RGPIN-2022-03139).

REFERENCES

[1] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, 2010.

[2] P. Viriyakattiyaporn and G. C. Murphy, “Challenges in the user interface
design of an ide tool recommender,” in 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering, 2009.

[3] L. Findlater, J. McGrenere, and D. Modjeska, “Evaluation of a role-
based approach for customizing a complex development environment,”
in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, ser. CHI ’08, 2008.

[4] B. de Alwis and G. Murphy, “Using visual momentum to explain
disorientation in the Eclipse IDE,” in Visual Languages and Human-
Centric Computing (VL/HCC’06), 2006, pp. 51–54.

[5] J. Smith, C. Brown, and E. Murphy-Hill, “Flower: Navigating program
flow in the ide,” in 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2017.

[6] M. Sulír, M. Bačíková, S. Chodarev, and J. Porubän, “Visual augmen-
tation of source code editors: A systematic mapping study,” Journal of
Visual Languages Computing, vol. 49, 2018.

[7] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools,
2010.

[8] ——, “Developers ask reachability questions,” in Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering,
2010, p. 185–194.

[9] J. Yoo and G. Murphy, “ReachHover plugin source code,” https://doi.
org/10.5281/zenodo.7038701.

[10] ——, “ReachHover formative study dataset,” https://doi.org/10.5281/
zenodo.7006242.

[11] ——, “ReachHover user study dataset,” https://doi.org/10.5281/zenodo.
7008262.

[12] JetBrains s.r.o., “IntelliJ IDEA - the leading Java and Kotlin IDE,” https:
//www.jetbrains.com/idea/, 2023, [Online; accessed 12-Apr-2023].

[13] Microsoft Corp., “Visual Studio: IDE and code editor for software de-
velopers and teams,” https://visualstudio.microsoft.com, 2023, [Online;
accessed 12-Apr-2023].

[14] Eclipse Foundation, “Eclipse Desktop & Web IDEs,” https://www.
eclipse.org/ide/, 2023, [Online; accessed 12-Apr-2023].

[15] A. Elliott, B. Peiris, and C. Parnin, “Virtual reality in software engi-
neering: Affordances, applications, and challenges,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, 2015.

[16] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger Canvas: Industrial experience with the Code Bubbles paradigm,”
in Proceedings of the 34th International Conference on Software Engi-
neering, 2012, p. 1064–1073.

[17] A. Z. Henley and S. D. Fleming, “The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’14, 2014.

[18] M. Adeli, N. Nelson, S. Chattopadhyay, H. Coffey, A. Henley, and
A. Sarma, “Supporting code comprehension via annotations: Right
information at the right time and place,” in 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2020.

[19] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles: A working
set-based interface for code understanding and maintenance,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2010, p. 2503–2512.

[20] M. Sulír, M. Bačíková, S. Chodarev, and J. Porubän, “Visual augmen-
tation of source code editors: A systematic mapping study,” Journal of
Visual Languages &amp Computing, dec 2018.

[21] M. Desmond, M.-A. Storey, and C. Exton, “Fluid source code views,”
in 14th IEEE International Conference on Program Comprehension
(ICPC’06), 2006.

[22] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior,” in Proceedings
of the 30th International Conference on Software Engineering, 2008, p.
301–310.

[23] ——, “Finding causes of program output with the Java Whyline,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2009, p. 1569–1578.

[24] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2011, pp. 117–124.

[25] M. Barnett, R. DeLIne, A. Lal, and S. Qadeer, “Get Me Here:
Using verification tools to answer developer questions,” Microsoft
Research, Tech. Rep. MSR-TR-2014-10, February 2014. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
get-me-here-using-verification-tools-to-answer-developer-questions/

[26] Q. Guo and E. Agichtein, “Ready to buy or just browsing? detecting
web searcher goals from interaction data,” in Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2010, p. 130–137.

[27] J. Huang, R. W. White, G. Buscher, and K. Wang, “Improving searcher
models using mouse cursor activity,” in Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, 2012, p. 195–204.

[28] A. Nadeem, “Human-centered approach to static-analysis-driven devel-
oper tools,” Commun. ACM, vol. 65, no. 3, p. 38–45, feb 2022.

[29] Kotlin Foundation, “Kotlin Programming Language,” https://kotlinlang.
org, 2022, [Online; accessed 30-Aug-2022].

[30] Apache Software Foundation, “Apache Netbeans,” https://netbeans.
apache.org/community/index.html, 2022, [Online; accessed ‘21-August-
2022].

[31] A. L. Strauss and J. M. Corbin, Basics of qualitative research: techniques
and procedures for developing grounded theory, 1998.

[32] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, 1990, p. 246–256.

[33] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools,
2010.


