
Deformable Object Animation Using Reduced Optimal Control

Jernej Barbič1 Marco da Silva1 Jovan Popović1;2;3

1Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

2Advanced Technology Labs, Adobe Systems Incorporated
3University of Washington

Abstract

Keyframe animation is a common technique to generate animations
of deformable characters and other soft bodies. With spline inter-
polation, however, it can be difficult to achieve secondary motion
effects such as plausible dynamics when there are thousands of de-
grees of freedom to animate. Physical methods can provide more
realism with less user effort, but it is challenging to apply them
to quickly create specific animations that closely follow prescribed
animator goals. We present a fast space-time optimization method
to author physically based deformable object simulations that con-
form to animator-specified keyframes. We demonstrate our method
with FEM deformable objects and mass-spring systems.

Our method minimizes an objective function that penalizes the sum
of keyframe deviations plus the deviation of the trajectory from
physics. With existing methods, such minimizations operate in
high dimensions, are slow, memory consuming, and prone to local
minima. We demonstrate that significant computational speedups
and robustness improvements can be achieved if the optimization
problem is properly solved in a low-dimensional space. Selecting
a low-dimensional space so that the intent of the animator is ac-
commodated, and that at the same time space-time optimization is
convergent and fast, is difficult. We present a method that generates
a quality low-dimensional space using the given keyframes. It is
then possible to find quality solutions to difficult space-time opti-
mization problems robustly and in a manner of minutes.

CR Categories: I.6.8 [Simulation and Modeling]: Types of Simulation—Animation,
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Physically based modeling, I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual Reality

Keywords: deformations, space-time, keyframes, control, model reduction

1 Introduction

Generating animations that satisfy the goals of the animator yet
look realistic is one of the key tasks in computer animation. In
this paper, we present a fast method to generate such animations
for solid 3D deformable objects such as large deformation Finite
Element Method (FEM) models and mass-spring systems (see Fig-
ure 1). With deformable objects, animators often specify their goals
by generating a set of keyframes to be met at a sparse set of points in
time. The deformable object trajectory is then commonly obtained
using spline interpolation. However, manipulating splines can be-
come tedious when hundreds or even thousands degrees of freedom

Figure 1: Fast authoring of animations with dynamics: This
soft-body dinosaur sequence consists of five walking steps, and
includes dynamic deformation effects due to inertia and impact
forces. Each step was generated by solving a space-time optimiza-
tion problem, involving 3 user-provided keyframes, and requiring
only 3 minutes total to solve due to a proper application of model
reduction to the control problem. Unreduced optimization took 1
hour for each step. The four images show output poses at times
corresponding to four consecutive keyframes (out of 11 total). For
comparison, the keyframe is shown in the top-left of each image.

are involved. Unless a large amount of manual work is invested in
generating dense keyframes, spline trajectories will lack deforma-
tion dynamics, mass inertia and other secondary motion effects.

Physically based simulation can provide realism with significantly
less animator effort. However, physically based animations do not
easily meet animator’s goals such as a set of keyframes because they
must obey the equations of motion in order to stay realistic. One
can meet a simplistic set of keyframes by tweaking initial anima-
tion poses and velocities (“shooting”). In order to follow a complex
keyframe sequence it is, however, inevitable to deviate from purely
physical trajectories. Deviation from physics can be defined as im-
balance in the equations of motion of the deformable object, and is
therefore equivalent to injecting (fictitious) control forces into the
physically based simulation. We present a method where these con-
trol forces are minimized, by solving an optimization problem with
an objective function that minimizes a weighted sum of keyframe
deviations and the amount of injected control.

Such space-time optimization problems are very common in com-
puter graphics, and many techniques exist to solve them. With
complex deformable systems, however, the existing methods are
slow, memory consuming and prone to local minima. Our paper
addresses two main challenges in applying space-time optimization



to 3D deformable solids. First, we increase optimization speed and
robustness by solving the optimization problem in a reduced space,
which greatly decreases the number of free parameters in the opti-
mization. We demonstrate how to generate a small, yet expressive,
low-dimensional space for the reduced optimization. This space
contains the keyframes, and is augmented with “tangent” deforma-
tions that naturally interpolate the keyframes, enabling quick and
stable convergence. The basis can be computed quickly and with-
out user intervention, and captures both global and local deforma-
tions present in the keyframes. Our basis can be computed both for
models with permanently constrained vertices, and for “free-flying”
models where no vertices are constrained (see Figure 2).

Second, while the keyframes can be created using any of the mesh
modeling methods, standard methods can create keyframes with
high internal strain energies, leading to poor space-time conver-
gence or suboptimal results. We introduce a physically based
keyframing tool that uses the same simulator that will later be used
to solve the space-time problem. This results in low strain energy
keyframes, suitable for space-time optimization. The keyframing
tool works by employing an interactive static solver. The user ap-
plies forces to the model and/or fixes desired model vertices, while
the system interactively computes static equilibria under the applied
forces and constraints, permitting the user to progressively shape
the object. We also present a method to create keyframes from a
given external triangle mesh animation. In this case, we use a pre-
processing optimization that fits a volumetric mesh deformation to
the input triangle mesh keyframes. Our optimization function com-
bines fit quality with a preference to low strain energy shapes.

Figure 2: Our method supports unconstrained models, as can
be seen in this fish animation. The four images show output poses
corresponding to the times of the first four keyframes. Keyframes
are shown in the top-right of each image.

2 Related work

In optimal control, one seeks minimal control forces for a physical
system to perform a certain task. Typically, these minimal forces
achieve the goal by cooperating with the natural dynamics of the
system. Because the resulting motions are only minimally per-
turbed from control-free trajectories, they often appear “natural”,
making them desirable in computer animation [Brotman and Ne-
travali 1988]. Computing optimal control requires solving a space-
time optimization problem. In computer animation, space-time op-
timization was pioneered by Witkin and Kass [1988]. Many re-

searchers have since improved the method (see [Fang and Pollard
2003] and [Safonova et al. 2004] for good surveys). Researchers
have improved user interaction and accelerated computation [Co-
hen 1992; Liu 1996; Grzeszczuk et al. 1998], or targeted specific
physical systems, such as human motion [Rose et al. 1996; Gleicher
1997; Popović and Witkin 1999; Fang and Pollard 2003; Safonova
et al. 2004; Sulejmanpasić and Popović 2005; Liu et al. 2005],
rigid-body simulations [Popović et al. 2003], and fluids. Treuille
et al. [2003] and McNamara et al. [2004] controlled fluids using
multiple shooting and the adjoint method, respectively.

Our paper presents a fast approximation scheme to solve optimal
control problems for deformable objects. In computer graphics,
there are many methods to simulate deformable objects, but there
are fewer papers that also control them. With complex meshes,
such control is generally slow and prone to local minima due to the
large number of deformable degrees of freedom. Deformable ob-
jects can be controlled using PD controllers [Kondo et al. 2005] or
spatially localized controllers [Jeon and Choi 2007], which are fast
and conceptually simple. The forces are, however, computed in-
stantaneously, without a longer planning horizon or incorporating
the system dynamics. In our work, we minimize the control forces,
which permits us to meet the keyframes more closely with less
force. Deformable object animations can also be created by prop-
erly interpolating static keyframes generated using interactive shape
deformation methods [Der et al. 2006; Huang et al. 2006; Adams
et al. 2008]. Our animations, however, follow physical equations
of motion, and therefore exhibit physically based dynamics, or de-
viate from it gracefully. Proper time-evolution of deformations and
secondary soft-body motion occur automatically in our framework.

Optimal control has been previously applied to particle systems and
cloth [Wojtan et al. 2006], by using the adjoint method, analogous
to how McNamara et. al [2004] controlled fluids. These previous
adjoint method applications simulated fluid or cloth in the full high-
dimensional space of fluid grid node velocities or model vertex de-
formations. In our paper, we also use the adjoint method, but we do
so in a quality low-dimensional space where the adjoint iterations
are orders of magnitude faster, yielding significantly shorter opti-
mization times and smaller memory footprints (Table 1, page 7).

Constrained Lagrangian solvers such as TRACKS [Bergou et al.
2007] can generate a detailed simulation by tracking a given in-
put coarse animation. For deformable solids, our method could
serve as a source of such coarse animations. While both our method
and TRACKS can generate dynamic simulations from a rudimen-
tary input, TRACKS has been designed for dense animation input,
whereas we assume sparse keyframes. TRACKS enforces the low
spatial frequency part of the motion with an exact constraint, which
avoids optimization (increasing method speed), but might require
high forces in the direction normal to the constraint. Our method
does not use a constraint, but weights keyframe enforcement against
control effort using an optimization. The trade-off is adjustable.
The reduced degrees of freedom can deviate from the guiding input
(the keyframes), as dictated by the natural dynamics.

Deformable simulations could also be generated by randomly sam-
pling forces in space-time [Chenney and Forsyth 2000], similar
to how Twigg and James [2007] were able to browse rigid object
animations. With deformable objects, however, there is a choice
of a force on every vertex at every timestep. This can quickly
lead to a dimensional explosion in the number of space-time force
samples, each of which will require an expensive full forward de-
formable simulation to evaluate. Given a space-time force sample,
our method computes the space-time force change which decreases
an objective function the most. This enables us to find optimal
space-time forces more quickly, akin to how a 1D function can be
minimized more quickly if derivative information is available.



Recently, Kass and Anderson [2008] demonstrated how standard
splines can be extended to easily keyframe a broad class of oscilla-
tory 1D curves. These curves were then used to drive modal defor-
mations of detailed meshes using pairs of complex-valued phase-
shifted modal shapes. Each modal pair either required tuning its
own spline, or the animator needed to tune phase shifts among
the different pairs. Our method also combines several deformation
modes to generate an animation, but it computes the modal cou-
pling automatically, for an arbitrary number of modes. For exam-
ple, this enables us to support large deformations, where the non-
linear forces couple the different modes in a non-obvious way that
would be difficult to hand-tune for animators.

In the solid mechanics community, reduction has been used to
forward-simulate nonlinear elastic models [Krysl et al. 2001], and
to control complex linear, small deformation elasticity (c.f. [Gildin
2006]). It has, however, not been previously employed to control
complex nonlinear 3D deformable objects undergoing large defor-
mations. In graphics, reduction has been applied to control the mo-
tion of a full-body human skeleton [Safonova et al. 2004], with a
basis obtained from a temporally dense motion capture database.
Reduction has also been employed to forward-simulate FEM de-
formable objects [Barbič and James 2005] and fluids [Treuille et al.
2006] at interactive rates. The reduction bases of [Barbič and James
2005] were, however, designed for (large) deformations around the
rest shape, as opposed to sparse keyframe input. While one could
combine, say, the linear modes and their derivatives computed at
every keyframe, the bases would quickly grow large in size, and
would not necessarily contain the degrees of freedom most impor-
tant for the optimization (Section 4.3). Given a pre-existing ani-
mation A, we previously demonstrated [Barbič and Popović 2008]
how to use reduction to expand A into a “tube” of animations cen-
tered around A; making it possible for a real-time simulation to
deviate from A due to, for example, user input. The tracking con-
troller required a temporally dense animation as input. In this work,
we show how to author entirely new animations from scratch, given
only a temporally sparse set of keyframes, enabling the following
complementary process: (1) create the keyframes, (2) generate the
animation A using reduced optimization (this paper), (3) use A to
construct a real-time tracking controller [Barbič and Popović 2008].

3 The reduced control problem

The input to our method is a set of unreduced keyframe deformation
vectors xq1; : : : ; xqK ; to be met at timesteps t1 < t2 < : : : < tK : We
use a fixed timestep size h; therefore ti D hki ; for some integers
k1 < k2 < : : : < kK : Time t D 0 corresponds to the beginning of
the animation. In our examples, initial conditions are specified by
the user, but they could easily also be subject to optimization.

Our method first uses the keyframes to construct a low-dimensional
space, tailored to the keyframes and typical deformations in be-
tween the keyframes (see Figure 3). Next, it projects the keyframes
to this low-dimensional space, obtaining reduced keyframes. The
output animation is then computed by solving a space-time opti-
mization problem in the low-dimensional space, using the adjoint
method and conjugate gradient optimization. We will now briefly
introduce reduced simulations, and then formulate the reduced op-
timization problem. In Section 4, we describe our method to gen-
erate the low-dimensional basis, and in Section 5, we explain how
we solve the resulting low-dimensional optimization problem.

3.1 Tutorial: Full and reduced simulation

Full simulations are simulations without reduction. Assuming lin-
ear control, we express deformable simulations as the following

(high-dimensional) second order system of ODEs:

Rq D F.q; Pq; t/ C Bu: (1)

Here, q 2 Rn is the state vector (n will typically be at least several
thousands), F.q; Pq; t/ 2 Rn is some (nonlinear) function specify-
ing the dynamics of the deformable object, B 2 Rn�m is a constant
control matrix, and u 2 Rm is the control vector. We demon-
strate our method using geometrically nonlinear FEM deformable
objects [Capell et al. 2002] and mass-spring systems (both support-
ing large deformations). The state vector q consists of displace-
ments of the vertices of a 3D volumetric mesh, with respect to some
fixed rest configuration.

Reduced simulations are obtained by projecting Equation 1 onto a
r-dimensional subspace, spanned by columns of some basis matrix
U 2 Rn�r (typically, r � 20 in our examples). We orthonormalize
our bases with respect to the mesh mass matrix (U TMU D I ). The
full state is approximated as q D Uz; where z 2 Rr is the reduced
state. The resulting low-dimensional system of ODEs

Rz D zF .z; Pz; t/ C zBw; for zF .z; Pz; t/ D U TF.Uz; U Pz; t/; (2)

approximates the high-dimensional system provided that the true
solution states q are well-captured by the chosen basis U . Here,
zB 2 Rr�s is a constant matrix, and w 2 Rs is the reduced control

vector (we use s D r in our work). With geometrically nonlinear
FEM deformable objects, there exists an efficient cubic polynomial
formula for zF .z; Pz; t/ [Barbič and James 2005], which we use to
accelerate space-time optimization with our FEM examples.

3.2 The objective function

Our goal is to generate animations where keyframes are met as
closely as possible, with the least amount of error in physics (in-
jected control forces). In an unreduced problem, one seeks control
forces u0; : : : ; uT �1 that minimize the objective function

E D
1

2

KX
iD1

�
q.ti / � xqi

�T
Qi

�
q.ti / � xqi

�
C

1

2

T �1X
iD0

uT
i Ri ui : (3)

Here, Qi and Ri are state error and control effort cost matrices,
respectively. Each state q.ti / implicitly depends on control vectors
u0; : : : ; ui�1: Therefore, E is a nonlinear function of the control
sequence fui gi : This sequence consists of T control vectors, each
of which is n-dimensional, causing minimization algorithms to be
slow, memory-consuming, and prone to local minima. Instead, we
perform an optimization in a low-dimensional space, spanned by
columns of the basis matrix U: We convert the keyframes to their
low-dimensional representations xzi D U TM xqi (the projection is
mass-weighted to support non-uniform meshes), and then minimize

zE D
1

2

KX
iD1

�
z.ti / � xzi

�T zQi .z.ti / � xzi / C
1

2

T �1X
iD0

wT
i

zRi wi ; (4)

under the dynamics of Equation 2. We typically set zQi to the iden-
tity matrix, which can be shown to penalize the total keyframe mass
deviation. One can also set some diagonal entries to zero, to only
penalize the error in a subset of the modes. For control cost, we
typically use a scalar multiple of the identity matrix. Minimizing
Equation 4 gives the reduced control fwi gi ; and the reduced ani-
mation fzi gi : Our output is the animation fUzi gi :

The keyframe constraints only appear as a term in the optimiza-
tion function of Equation 4, and are therefore met approximately,
weighted against control effort (soft keyframes). This is appealing



Figure 3: Overview: The animator provides the keys using a static solver (or they are fitted to external data using an optimization). Our
system then computes a reduced basis tailored to the keyframes, and then solves a space-time optimization problem in that basis.

because, by the nature of the artistic process, the animator’s input
is often not meant to be absolute, complete, or necessarily enforced
exactly. Sometimes, it might not even be physically well-formed.
However, in our examples we observed that (if desired) it is possi-
ble to meet the keyframes very closely, by setting the control cost
sufficiently low. Alternatively, exact keyframes could be enforced
by applying direct transcription to Equation 2, combined with a
constrained optimizer such as SNOPT (see [Safonova et al. 2004]).

4 Keyframes and basis selection

We now describe how we generate the keyframes and a low-
dimensional basis U for reduced optimization. Space-time opti-
mization is sensitive to how keyframes and the basis are selected.
With suboptimal choices, the optimizer fails to converge, or con-
verges to a visibly suboptimal solution. Selecting the keyframes
and a basis that are able to “harness” solid deformable object space-
time optimization is challenging and presents our key contribution.

4.1 Keyframes from a physically based modeler

Keyframes are static shapes. Therefore, an artist can generate them
using any of the many shape deformation techniques proposed in
computer graphics [Gain and Bechmann 2008], applied to a vol-
umetric simulation mesh. However, because a geometric method
might not be aware of the underlying physical model, shapes ob-
tained using purely geometric techniques do not always serve as
optimal keyframes for a physical simulation. For example, such
shapes could have large elastic strain energies, forcing the subse-
quent space-time optimization to exert a lot of unnatural effort to
reach the shapes in a dynamic simulation. Mezger [2008] recently
proposed a method that uses a FEM physically based simulation
for geometric modeling of static shapes. We adopt a similar ap-
proach for keyframe generation. We use one physical simulator
both for keyframe modeling and for subsequent space-time opti-
mization. This results in “natural” keyframe shapes with low elas-
tic strain energies, amenable to space-time optimization. Also, such
an approach simplifies implementation, as only a single simulator
is required. The keyframes are also very suitable for constructing a
quality low-dimensional optimization space (Section 4.3).

To keyframe, we use an unreduced static solver (Mezger [2008]
used plasticity flow). The user is presented with an interactive sys-
tem where they can select an arbitrary vertex (or set of vertices),
and apply forces to them, either with the mouse or a 3-DOF input
device (see Figure 3, left). The system interactively computes the
static configuration under the currently applied force loads, by solv-
ing the equation R.q/ D f; where R are the (non-linear) internal

elastic forces, f is the current global force load vector, and q is
the deformation. The nonlinear equation is solved using a Newton-
Raphson procedure, by repeatedly forming the tangent stiffness ma-
trix K D dR=dq: At any moment, the user can freeze the current
load, and continue adding other loads on top of it, essentially stack-
ing the loads. Also, the user can at any time pin the current position
of any vertex or a set of vertices. Such constraints can be imple-
mented by removing proper rows from K (Lagrange multipliers are
not necessary). The combination of pinning vertices and stacking
force loads permits the user to generate rich deformations. The
computational bottleneck of such a system are typically the evalua-
tion of internal forces and stiffness matrices (dominant with smaller
models), and sparse linear system solves (with large models). In our
system, we use a multi-threaded direct PARDISO solver, and multi-
threaded evaluation of internal forces and stiffness matrices, which
made our static solver interactive (> 3 fps) for all of our models.

4.2 Keyframes from an external triangle mesh modeler

Our method can also start with keyframes in the form of deforma-
tions of a triangle mesh, generated, say, using an external geometric
shape modeler. Given a triangle mesh keyframe sequence, we must
construct a sequence of volumetric mesh (the “cage”) deformations
(keyframes to our method) that reconstruct the triangle mesh defor-
mations as closely as possible. We compute each volumetric mesh
deformation u separately, by solving the optimization problem

u D arg min
yu

�
jjAyu � xujj2 C ˇ elastic strain energy.yu/

�
; (5)

where A is a large sparse matrix of barycentric weights giving the
deformations at the triangle mesh vertices, xu is the desired triangle
deformation, and ˇ controls the trade-off between matching the tri-
angle mesh deformation and minimizing elastic mechanical strain
energy. We initialize the optimization by setting the deformation
of every volumetric mesh vertex to the deformation of the nearest
(in the undeformed configuration) triangle mesh vertex. The elastic
strain energy term biases volumetric keyframes toward low strain
energy. It decreases or removes any irregularities in the triangle
mesh deformations, producing “physical” volumetric keyframes. It
also correctly positions any volumetric mesh elements that do not
contain any triangle mesh vertices. The 2-norm can be weighted
with the surface area belonging to each triangle mesh vertex.

4.3 Basis generation

Given the keyframes xq1; : : : ; xqK ; the most straightforward way to
generate a basis is to concatenate all keyframes into a basis, fol-
lowed by mass-Gramm-Schmidt orthonormalization. Such a basis



is able to express all linear interpolations of the keyframes. This
works well when keyframes are deformed little relative to one an-
other, but fails when they are separated by large deformations. In
such cases, linear interpolation can only express shapes that are vis-
ibly non-physical, such as volume-inflated shapes resulting from
the inability to properly interpolate rotations (see Figure 4, left).
Worse even, if such a basis is used for space-time optimization,
the control forces have to squeeze the object into these non-natural
shapes, which leads to very strong forces, locking, and conver-
gence problems. For these reasons, we augment our bases as fol-
lows. For every keyframe xqi ; one can evaluate the internal elastic
forces, R.xqi /; acting on the object in configuration xqi : A system in
configuration xqi is then in static equilibrium under external forces
fi D R.xqi /: For every ˛ 2 Œ0; 1�; one can define an external force
load f .˛/ D .1�˛/fi C f̨iC1; and then find the deformation q.˛/
which is the static equilibrium under f .˛/; i.e., R.q.˛// D f .˛/:
Note that, unless the stiffness matrix is close to a singularity, such
a deformation will exist and be unique. Also note that the non-
linear internal force function R will ensure that q.˛/ is a “good-
looking” deformation, different from a mere linear interpolation of
.1 � ˛/qi C ˛qiC1 (see Figure 4, left). For example, if fi D 0 and
fiC1 consists of a force F applied to a single vertex, then q.˛/ (for
˛ 2 Œ0; 1�) will be the static shape under a decreased load ˛F:

For each i; traversing ˛ 2 Œ0; 1� gives an arc in the high-dimensional
deformation space. The consecutive arcs are connected, forming a
curve in the deformation space (see Figure 4, right), which we call
the keyframe deformation curve. For geometrically nonlinear FEM
models and mass-spring networks, this curve is C 1 in between the
keyframes and C 0 at the keyframes. It contains “natural” defor-
mations for an animation specified by keyframes xq1; : : : ; xqK ; and
we use it to generate our motion basis U: We do so by comput-
ing tangent vectors dq=d˛ to the curve at the endpoints of each
arc. Tangent vectors T 0

i and T 1
i are defined to be the derivatives of

qi .˛/ at ˛ D 0 and ˛ D 1; and can be computed by differentiating
R.q.˛// D f .˛/ with respect to ˛ W

K.xqi /T
0
i D fiC1 � fi ; K.xqiC1/T 1

i D fiC1 � fi ; (6)

where K.q/ D dR=dq is the tangent stiffness matrix at q: We gen-
erate the basis by concatenating all keyframes and tangent vectors
into a basis, followed by mass-Gramm-Schmidt orthonormaliza-
tion. If the resulting basis is large (e.g., larger than 20), one can
optionally apply Principal Component Analysis (PCA) to the basis,
and retain a smaller number of dimensions. Although our basis is
small compared to the size of the system, it will capture any local
deformations in the keyframes, which will then appear in the opti-
mized dynamic simulation. This is in contrast to previous methods
of model reduction of solids [Barbič and James 2005] which typi-
cally simulated global deformations. We note that it can be shown
mathematically that the tangents are invariant with respect to pick-
ing a particular mesh rest shape (even under rest shape rotations).

Instead of using the tangents, a basis could be obtained by sam-
pling the q.˛/ curve for a sufficient number of ˛ values, using a
static solver. We opted for the tangents because the user then does
not have to specify the number of samples. The basis with tangents
performed well despite some very large gaps between keyframes
in our examples. With extreme keyframe gaps (for example, 180
degree twists), the user can either insert an extra keyframe, or com-
bine tangents with sampling.

Basis for unconstrained models: With unconstrained models,
the internal forces do not resist rigid translations and rotations,
causing the stiffness matrices K of Equation 6 to be singular. This
singularity, however, is only of dimension six in the undeformed
configuration (nullspace consists of translations and infinitesimal

Figure 4: Our basis captures the natural deformations connect-
ing the keyframes: Left: User sets a keyframe by pulling on the
end of a beam (force F ), using an interactive static solver. The
static equilibrium under an interpolated load (˛ D 0:4) is a natu-
ral shape, whereas a mere linear interpolation is severely distorted.
Right: Three consecutive arcs on the keyframe deformation curve.

rotations), and typically three-dimensional elsewhere (nullspace
consists of translations). Because K is symmetric, its nullspace
N is orthogonal to its range R: For unconstrained models, we de-
fine the keyframe deformation curve differentially, by defining its
derivative at ˛ as follows (solution to q0.˛/ is unique):

K.q.˛//q0.˛/ D projectionR.K.q.˛///.fiC1 � fi /; (7)

q0.˛/ ? N .K.q.˛///: (8)

In order to compute the tangents, we therefore project the right hand
sides of Equation 6 to R.K.xqi // and R.K.xqiC1//, and solve for
T 0

i and T 1
i using a sparse solver capable of handling moderate de-

generacies in the system matrix.

Basis enrichment: Because our subspace was constructed us-
ing keyframe data, it can provide the dynamics (including proper
frame timing) along the natural trajectories between consecutive
keyframes. In order to enrich the animations, the keyframe-tangent
basis UK can be extended by providing additional deformation ex-
amples. One option is to let the user provide these examples, by
interacting with the deformable model in a simulator, and record-
ing the resulting deformations. Alternatively, one can augment
the basis automatically, by computing some natural deformation
shapes of an object, such as the natural modes of vibration. In ei-
ther case, it is important to keep the original keyframe content in
the basis so that these crucial degrees of freedom are available to
space-time optimization. Given the additional deformation exam-
ples qA

1 ; : : : ; qA
N

; we first perform a mass-orthogonal projection to
remove any content already included in UK W

zqA
i D qA

i � UKU T
KMqA

i : (9)

We then apply mass-PCA [Barbič and James 2005] on zqA
1 ; : : : ; zqA

N
;

to obtain a basis UA; spanning the most significant dimensions (typ-
ically 10-20 in our examples) of the additional content. Finally, we
set the basis U to be a concatenation of UK and UA:

5 Minimizing the objective function

Objective functions such as ours (Equation 4) are very common in
computer graphics and their minimization has been addressed in



several papers. There are no closed form solutions for either lo-
cal or global minima. Only local minima can be found in practice,
and selection of a good initial guess is important. We optimize
the objective function using conjugate gradient optimization [Press
et al. 2007], where the gradients are computed using the adjoint
method [McNamara et al. 2004; Wojtan et al. 2006]. Unlike previ-
ous methods, however, our adjoint method operates in the reduced
space, enabling significantly faster iterations and convergence.

The adjoint method can be seen as a “black box”, which, given the
current control sequence fwi gi ; computes the value of the objec-
tive function and its gradient with respect to all components of the
sequence fwi gi : The adjoint method is standard; see Appendix A
for details of our implementation. The adjoint method in the re-
duced space is faster and less memory consuming than the adjoint
method in the full simulation space because large sparse linear sys-
tem solves are replaced with small dense linear systems. This ap-
plies both to forward simulations and to backward passes to com-
pute the gradient. We use implicit Newmark integration, and per-
form backward passes where the computed gradients are exact with
respect to our Newmark discretization scheme. This is different
from the gradient approximation of [Wojtan et al. 2006] where the
Hessian was avoided to ease implementation and increase speed.
In our examples, we found that computing exact gradients leads to
faster convergence, often to visibly better minima. Obtaining ex-
act gradients requires computing the Hessian (second derivative)
of the internal elastic forces. With reduced geometrically nonlin-
ear FEM, the Hessian can be computed by taking derivatives of the
second-order multivariate polynomials (entries of the reduced stiff-
ness matrix), which can be done symbolically during pre-process
(fast, a few milliseconds). With mass-spring systems, the spring
forces are simple expressions and the Hessian is easily manageable
with a short algebraic derivation. In both cases, we managed to
compute the Hessian equally fast or within the same order of mag-
nitude as computing internal forces and stiffness matrices.

Conjugate gradient optimization: The simplest strategy to (lo-
cally) minimize a scalar function with computable gradients is to al-
ways walk in the direction of the gradient (steepest descent). Much
like with iterative methods for linear systems, however, conver-
gence can be significantly accelerated by using the conjugate gradi-
ent (CG) optimization algorithm. After computing the gradient, CG
properly factors out the gradient directions explored during previ-
ous iterations, yielding an improved search direction d: It then per-
forms a 1D line search along d: We use a line search where only
function values are probed (as opposed to also derivatives); there-
fore, our line searches consist of a series of forward simulations.
This results in optimizations where there are more forward simula-
tions than backward gradient computation passes, typically with a
ratio of about 8:1. In our experiments, CG converged to the same
solution as steepest descent 5-40 times faster.

Initial guess: Often, we were able to initialize the optimization
with zero control and still find the very nonlinear solution to the
problem. In some cases, however, it helped if the initial guess was
reasonably close to a good solution. We used a PD controller to
initialize our method in such cases: at every moment of time, we
push the object to the linear interpolation of the two consecutive
keyframes, combined with a proper amount of damping. We note
that it is often difficult to match the keyframes with such a PD con-
troller, unless the controller is made very stiff. Optimized solutions,
however, use a minimized amount of injected control forces, all the
while meeting the keyframes very closely.

Timestep selection: The total physical time duration of our ani-
mations is hT; where h is the timestep length, and T is the number
of timesteps. The parameter h should be set such that the resulting
time-scale matches that of the underlying natural physical dynam-
ics. While the match only needs to be approximate, a good match
is important. Timesteps orders of magnitude too large might lead to
animations that “idle”, then shoot for a keyframe over the last few
frames, and values several orders of magnitude too small give ani-
mations that only move a small fraction toward the keyframe. The
animator can employ the following strategy to select a reasonable
timestep h; and then refine by trial and error as necessary. Given
keyframes xq0 and xq1; one can compute the natural vibration fre-
quency ! of the tangential vector T0; and set the timestep h so that
xq1 is reached at approximately 1=4 of the oscillation period:

!2
D

T T
0 K.xq0/T0

T T
0 MT0

; h D
�

2!
: (10)

In case of many keyframes, one can use the average value of h; or
vary the timestep along the animation.

6 Results

In our first example, we show a keyframed animation of a walking
dinosaur (Figure 1). Each step of this five-step sequence was gen-
erated in minutes. The dinosaur matches the keyframes, while un-
dergoing unscripted deformation dynamics. The basis was enriched
with 18 linear modes, computed with respect to both legs pinned to
the ground. The basis generation time in Table 1 includes 2 seconds
to compute the linear modes. Each walking step was a separate op-
timization. For each step, the support foot was constrained, and the
motion was computed by specifying two keyframes, one with the
swing leg fully lifted up and the other with the swing leg landed.
For the next step, we reversed the roles: the vertices on the landed
leg become fixed, while the other leg was unpinned and became the
swing leg. The final deformation position and velocity at the end of
a step were used as initial conditions for the next step.

Figure 5: Animated purple pansy: The first four columns give the
keyframes. The rightmost column outlines the figure“8” motion of
the main bloom (bird’s eye view), and the (quasi-)circular motion
of the secondary bloom. Keyframes 0,4,8 are identical.

We also animated a pansy flower, by manually positioning the
keyframes (using a static solver) so that the main bloom follows a
figure “8” (as seen from a bird’s eye perspective), and that the small
bloom performs a circular motion (see Figure 5). This example
demonstrates that our method can handle long animation sequences
with many (eight) keyframes. Such animations would be difficult to
generate through random external force sampling or trial-and-error



v elements T K r basis time forward pass backward pass total space-time memory
generate cubic poly. red. full red. full red. full red. full

dinosaur 1493 5249 120 2 25 5.5s 90s 0.036s 17s 0.066s 58s 84s 1 hour 94 KB 16 MB
flower 2713 7602 300 8 22 25s 106s 0.069s 56s 0.111s 208s 140s 24 hours 206 KB 75 MB

fish 885 3477 210 5 24 11.3s 54s 0.059s 18s 0.100s 60s 345s 3.3hours (F) 158 KB 17 MB
elephant 4736 19386 240 8 16 30s 245s 0.050s 194s 0.067s 516s 30s 17.5hours (F) 120 KB 104 MB
bridge 9244 31764 150 3 18 5.0s mass-spring 9 s 100s 34s 130s 50min failed (F) 84 KB 127 MB

Table 1: Optimization statistics: v=#vertices in tetrahedral mesh, T =#frames, K=#keyframes, r=basis dimension. F = converged to a
visibly suboptimal local minimum. Machine specs: Apple Mac Pro, 2 x 2.8 GHz Quad-Core Intel Xeon processor, 4 GB memory.

approaches. For example, we implemented a PD controller that
applies a force which (at any moment of time) guides the object
to a trajectory obtained by the Catmull-Rom spline interpolation
of the keyframes. We found the PD controller to be difficult and
slow to tune, as seeing the output under each set of PD parameters
requires one full simulation, typically exceeding the cost of our re-
duced pipeline already after one or two such samples. In addition
to providing the output animation, our method also provides control
which can be used to re-generate the motion in a simulator. There-
fore, we were able to use the output of our method as input to a
real-time tracking controller [Barbič and Popović 2008].

Figure 6: Bird’s eye view on
the trajectory of a top flower
vertex, computed using bases
with and without the tangents.

The keyframes form the core of
our bases, the tangents “fill up”
the gaps in between the sparse
keyframes, and the linear modes
or user data provide the dimen-
sions for the extra, unscripted,
dynamics. Without the tangents,
the simulation cannot bridge any
large keyframe gaps. The opti-
mization output is then limited to
small deformations, and appears
stiff (see Figure 6). This is es-
pecially pronounced with simu-
lations where nonlinearities are
essential, such as any simula-
tion where the elastic forces are
strong enough to prevent the ma-
terial from collapsing. If the ma-
terial is very soft, the control forces can simply squish the object
along a linear interpolation of the keyframes, in which case the
tangents are less important. With the keyframes and tangents, but
without the linear modes, there is less dynamics, and the simula-
tions more closely follow the keyframe deformation curves. Un-
like splines, however, the spacetime optimization will automatically
provide for a proper timing along the deformation curve. The static
basis might not be optimal for simulations with large kinetic ener-
gies where simulations could deviate very far from static solutions.
However, in the absence of any other information about the anima-
tion other than the keyframes, the static basis is a reasonable choice.

The fish example (Figure 2) demonstrates that our method can be
used for objects where no vertices are constrained. The basis was
enriched by the user pulling on the fins in an interactive simulation,
and recording the resulting deformations. Motion of fins other than
the tail was not keyframed, but occurs for “free”, as a part of the
natural system dynamics. In this example, a full optimization failed
to converge to a plausible solution after 3 hours of optimization.

The bridge example (Figure 7) uses a mass-spring system, where
there is no simple formula for reduced internal forces and stiffness
matrices, so their evaluation has to proceed according to Equation 2.
However, reduction is still beneficial both in time (about 10x in our
example) and memory because it avoids a large sparse linear sys-
tem solve both in the forward and backward adjoint passes. The

Figure 7: Our method supports mass-spring systems. We
keyframed a deformable animation of this elastic bridge.

memory footprint is reduced as one only needs to store the reduced
animation to perform each backward pass, and not the entire ani-
mation. The basis was enriched with 10 linear vibration modes.

Figure 8: Interpolation with dynamics: Our method can provide
a dense “dynamic interpolation” of the input sparse keyframes.
Top: the first four keyframes in our sequence. Bottom: an anima-
tion frame with our dynamic result shown in blue, and Catmull-Rom
spline interpolation of the input keyframes overlaid in yellow.

A static solver was used to generate the keyframes in all exam-
ples, except in the elephant example (Figure 8) where we tested
the procedure of fitting volumetric mesh keyframes to external tri-
angle mesh keyframes. We generated the triangle mesh keyframes
(42,321 vertices) using the skinning engine in Maya. It took about
1 minute to fit each volumetric keyframe, using strain energy op-
timization of Equation 5. Elastic strain energy computation was
multi-threaded (8 cores). This example uses a free-flying basis,
which was enriched with 10 linear vibration modes.

All our examples use tetrahedral meshes with an embedded trian-
gle mesh for rendering purposes. The bridge example uses tetrahe-
dral edges and vertices to form the mass-spring network. We op-



timized both reduced and full optimization to the best of our abil-
ities. Full optimization uses the multi-threaded direct PARDISO
solver to solve all sparse linear systems encountered by the opti-
mization, with the number of threads (typically 2 or 3) optimized
to maximize performance. Unreduced FEM internal force and stiff-
ness matrix evaluation was multi-threaded (8 cores). Mass-spring
force and stiffness matrix evaluation, however, are simpler and fast
and threading did not significantly improve our performance.

Table 1 gives statistics on our optimizations. In particular, it gives
a comparison to an unreduced adjoint optimization [Wojtan et al.
2006]. It can be seen that optimization with reduction is orders of
magnitude faster, and consumes less memory. This enables us to
generate longer sequences with several keyframes. In Table 1, we
reported the running times to produce the final result. In practice,
one can continuously visualize the output iterations of the conjugate
gradient solver, and can abort early (often within a matter of sec-
onds) if necessary. In Figure 9, we compare our method to Catmull-
Rom spline interpolation. It can be seen that spline interpolation
causes visible artifacts, especially when there are large rotations in
the deformation field between the two keyframes.

Figure 9: Spline interpolation causes loss of volume, whereas
our subspace produces more plausible shapes. The two middle
frames were sampled at the same instance of time. Similar artifacts
were observed with linear interpolation.

7 Conclusion

This paper introduced a method for physically based keyframe an-
imation of deformable models. The animator crafts keyframes in
an interactive physical simulator. Our method then automatically
constructs a reduced control basis using these keyframes and their
tangents. Optionally, the basis is augmented with natural modes
of the deformable model. The basis is then used to solve a reduced
space-time optimization problem with tens of controls per time step
instead of thousands. Building a reduced basis for the control of de-
formable models is not straightforward. Keyframes should be cre-
ated using simulation so that they are compatible with optimization.

Reducing the optimization basis decreases the amount of time
needed to optimize an animation. Furthermore, it increases robust-
ness as higher-dimensional optimizations often get stuck in undesir-
able local minima. With our examples, reduced optimization con-
verged in a couple of minutes, whereas full optimizations took sev-
eral hours and in many cases yielded inferior results. This speed in-
crease, while not interactive, makes optimization a more useful tool
as animators can quickly iterate on a particular motion sequence.

When designing long animations, it might make sense to break up
the problem into several consecutive windowed optimizations, each
of which operates on a few keyframes [Cohen 1992]. With a fixed
total number of frames T , there is almost no slowdown when using

dense keyframes. For future work, we would like to explore ap-
plications where the keyframes are as dense as at every simulation
step, for example, to add dynamics to pre-existing static animations.

Many characters have a natural skeletal structure, and could be an-
imated by controlling a rigid skeleton with a wrapped passive dy-
namic deformable skin [Capell et al. 2002]. Such methods will,
however, be less useful for deformable objects that lack a clearly
defined skeleton (e.g., bridge, flower). Also, complex skeletons
(typically around 15-20 DOFs in [Safonova et al. 2004]) might need
reduction to improve the speed and convergence of control, which
requires data, or insight about a specific skeleton. Our method com-
putes the reduced space automatically and in a manner of seconds,
using mesh geometry and keyframe input. It could be combined
with a skeleton method, to simultaneously control both the rigid
and deformable aspects of a multi-body dynamics simulation.

It is generally difficult to build optimal controllers for scenarios rich
with contact, due to the discontinuous and non-sticky nature of (po-
tentially unilateral) contact forces and their gradients. In our walk-
ing examples, however, we demonstrated how simulations with
contact can be generated nonetheless, by breaking up the motion
into several separate optimizations, each of which has a fixed bi-
lateral contact state. For future work, we would like to couple rigid
body motion of the character with deformation dynamics. In the
fish example, rigid body motion and deformations are decoupled,
and rigid body motion was scripted. While we focused on gener-
ating keyframed animations in this paper, proper coupling would
allow us to solve more general control problems, such as finding
the most efficient swimming patterns [Tu and Terzopoulos 1994].

Acknowledgements: This work was supported by grants from
the Singapore-MIT Gambit Game Lab, the National Science Foun-
dation (CCF-0810888), Adobe Systems, Pixar Animation Studios,
and software donations from Autodesk and Adobe Systems.

Appendix

A Adjoint method

Assuming fixed initial conditions, the entire sequence of deforma-
tions and velocities yqi D .qi ; Pqi / is uniquely determined by the
control sequence ui ; i D 0; : : : ; T � 1 (Equation 1). Therefore,
the objective function of Equation 3 is a function of the elements of
the control sequence fui gi : The adjoint method [McNamara et al.
2004; Wojtan et al. 2006] is an efficient algorithm to compute its
gradient. The algorithm can be applied both to full and reduced
simulation; with reduction, it operates with respect to the reduced
control sequence fwi gi and Equations 2 and 4. The algorithm pro-
ceeds backward from the last timestep, computing a sequence of
adjoint vectors ri :

ri D

� @fi

@yqi

�T
riC1 C

� @E

@yqi

�T
; rT D

� @E

@yqT

�T
; (11)

from which the gradient can be computed as

@E

@u
D

h
rT
1

@f0

@u0
C

@E

@u0
; : : : ; rT

T

@fT �1

@uT �1
C

@E

@uT �1

i
: (12)

Here, E is the objective function of Equation 3, and fi denotes the
function that maps yqi to yqiC1; i.e., yqiC1 D fi .yqi ; ui /: Function fi
incorporates F and B from Equation 1, and the particular numer-
ical integrator. With implicit integration, fi and @fi =@yqi cannot
be evaluated directly, but are computed by solving a linear system.
With implicit Newmark integration [Barbič and James 2005], we
found it convenient to expand yqi to also include Rqi :



References

ADAMS, B., OVSJANIKOV, M., WAND, M., SEIDEL, H.-P., AND
GUIBAS, L. J. 2008. Meshless modeling of deformable shapes
and their motion. In Symp. on Computer Animation (SCA), 77–
86.

BARBIČ, J., AND JAMES, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
on Graphics (SIGGRAPH 2005) 24, 3, 982–990.

BARBIČ, J., AND POPOVIĆ, J. 2008. Real-time control of phys-
ically based simulations using gentle forces. ACM Trans. on
Graphics (SIGGRAPH Asia 2008) 27, 5, 163:1–163:10.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: Toward directable thin shells. ACM Trans.
on Graphics (SIGGRAPH 2007) 26, 3, 50:1–50:10.

BROTMAN, L. S., AND NETRAVALI, A. N. 1988. Motion in-
terpolation by optimal control. In Computer Graphics (Proc. of
SIGGRAPH 88), vol. 22, 309–315.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3,
586–593.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible
solutions to multi-body constraint problems. In Proc. of ACM
SIGGRAPH 2000, 219–228.

COHEN, M. F. 1992. Interactive spacetime control for animation.
In Computer Graphics (Proc. of SIGGRAPH 92), vol. 26, 293–
302.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. In-
verse kinematics for reduced deformable models. ACM Trans.
on Graphics (SIGGRAPH 2006) 25, 3, 1174–1179.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis
of physically valid human motion. ACM Trans. on Graphics
(SIGGRAPH 2003) 22, 3, 417–426.

GAIN, J., AND BECHMANN, D. 2008. A survey of spatial defor-
mation from a user-centered perspective. ACM Trans. on Graph-
ics 27, 4, 1–21.

GILDIN, E. 2006. Model and controller reduction of large-scale
structures based on projection methods. PhD thesis, The Insti-
tute for Computational Engineering and Sciences, University of
Texas at Austin.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proc. ACM Symp. on Interactive 3D Graphics, 139–148.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998.
NeuroAnimator: Fast neural network emulation and control of
physics-based models. In Proc. of ACM SIGGRAPH 98, 9–20.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-
H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. on Graphics
(SIGGRAPH 2006) 25, 3, 1126–1134.

JEON, H., AND CHOI, M.-H. 2007. Interactive motion control of
deformable objects using localized optimal control. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2582–2587.

KASS, M., AND ANDERSON, J. 2008. Animating oscillatory mo-
tion with overlap: Wiggly splines. ACM Trans. on Graphics
(SIGGRAPH 2008) 27, 3, 28:1–28:8.

KONDO, R., KANAI, T., AND ICHI ANJYO, K. 2005. Directable
animation of elastic objects. In Symp. on Computer Animation
(SCA), 127–134.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional
model reduction in non-linear finite element dynamics of solids
and structures. Int. J. for Numerical Methods in Engineering 51,
479–504.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 1071–1081.

LIU, Z. 1996. Efficient animation techniques balancing both user
control and physical realism. PhD thesis, Department of Comp.
Science, Princeton University.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. ACM Trans. on
Graphics (SIGGRAPH 2004) 23, 3, 449–456.

MEZGER, J., THOMASZEWSKI, B., PABST, S., AND STRASSER,
W. 2008. Interactive physically-based shape editing. In Proc. of
the ACM symposium on Solid and physical modeling, 79–89.

POPOVIĆ, Z., AND WITKIN, A. P. 1999. Physically based motion
transformation. In Proc. of SIGGRAPH 99, 11–20.

POPOVIĆ, J., SEITZ, S. M., AND ERDMANN, M. 2003. Motion
sketching for control of rigid-body simulations. ACM Trans. on
Graphics 22, 4, 1034–1054.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLAN-
NERY, B. 2007. Numerical recipes: The art of scientific com-
puting, third ed. Cambridge University Press, Cambridge, UK.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M.
1996. Efficient generation of motion transitions using spacetime
constraints. In Proc. of ACM SIGGRAPH 96, 147–154.

SAFONOVA, A., HODGINS, J., AND POLLARD, N. 2004. Syn-
thesizing physically realistic human motion in low-dimensional,
behavior-specific spaces. ACM Trans. on Graphics (SIGGRAPH
2004) 23, 3, 514–521.

SULEJMANPASIĆ, A., AND POPOVIĆ, J. 2005. Adaptation of
performed ballistic motion. ACM Trans. on Graphics 24, 1, 165–
179.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. ACM Trans. on
Graphics (SIGGRAPH 2003) 22, 3, 716–723.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model reduc-
tion for real-time fluids. ACM Trans. on Graphics (SIGGRAPH
2006) 25, 3, 826–834.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: Physics,
locomotion, perception, behavior. In Proc. of ACM SIGGRAPH
94, 43–50.

TWIGG, C. D., AND JAMES, D. L. 2007. Many-worlds browsing
for control of multibody dynamics. ACM Trans. on Graphics
(SIGGRAPH 2007) 26, 3, 14:1–14:8.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In
Computer Graphics (Proc. of SIGGRAPH 88), vol. 22, 159–168.

WOJTAN, C., MUCHA, P. J., AND TURK, G. 2006. Keyframe
control of complex particle systems using the adjoint method. In
Symp. on Computer Animation (SCA), 15–23.


