CSE 599Q: Intro to Quantum Computation

Instructor (me):James R. LeeTA:Kasper LindbergCourse info:https://homes.cs.washington.edu/~jrl/cse599Q/

CSE 599Q: Intro to Quantum Computation

Bell's theorem a

CSE 599Q: Intro to Quantum Computing

- Autumn 2022 T Th 11:30am-12:50pm in ARC 160 Instructor: James R. Lee Office hours: TBA
- Teaching assistant(s):
 Kasper Lindberg (TBD)

Course email list [archives]

Class discussion: CSE 599Q EdStem Course evaluation: 100% Homework

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Reference material:

- Quantum Computer Science: An Introduction (Mermin)
- Quantum Computation and Quantum Information (Nielsen and Chuang)

Related content:

- Quantum computing (Bacon, UW)
- Quantum computation and quantum information (O'Donnell, CMU)
 A CS theory take
- Qubits, quantum mechanics, and computers (Berkeley) More emphasis on the physics perspective
- Quantum computing for the determined (Nielsen, youtube)
 Basics of QC in digestable video snippets
- Quantum algorithms (Childs, UMD)
- Quantum algorithms beyond Shor and Grover
- Quantum complexity theory (Aaronson, MIT)
- Quantum information science (Harrow, MIT)
- Has quantum error-correcting codes
- Umesh Vazirani video lectures
- Biggest ideas in the universe (Sean Carroll)

Course description:

An introduction to the field of quantum computing from the perspective of computer science theory.

Quantum computing leverages the revolutionary potential of computers that exploit the parallelism of the quantum mechanical laws of the universe. Topics covered include:

- The axioms of quantum mechanics
- Quantum cryptography (quantum money, quantum key distribution)
- Quantum algorithms (Grover search, Shor's algorithm)
- Quantum information theory (mixed states, measurements, and quantum channels)
- Quantum state tomography (learning and distinguishing quantum states)
- Quantum complexity theory
- Quantum error correction
- Quantum "supremacy"

Prerequisites: A background in undergraduate level linear algebra, probability theory, and CS theory.

Lectures

· Sep 29: Computing with parallel universes

		$ \psi\rangle$
ation Wed. Jan 26		
wee, San 20 and the EPR paradox. Suggested reading: NBC 2.6	The GRE gene can be derived at these. These as these archives are fitted at a distribution of the set of the GRE gene can be derived with the $x, y \in \{0, 1\}$ and set is a to the ord y to the GRE gene can be derived at $B(Q)$, and the set $x \in D(Q)$. The set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ and the set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ and the set $x \in D(Q)$ and the set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$ and the set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$ are set $x \in D(Q)$. The set $x \in D(Q)$ are set $x \in D(Q)$	
	Den if Alice and Bob have shared random bits, they cannot achieve better than 75%, indeed, let $\mathbf{r} - \mathbf{r}_1 \mathbf{r}_2 \dots \mathbf{r}_m$ be a taking of random bits, then for every fixed choice of \mathbf{r} , we have $\mathbb{P}_{\mathbf{r}_0}[A_r(\mathbf{x}) = B_r(\mathbf{y})] \leq 3/4$. So this still holds where we arrange over the random string \mathbf{r} .	
	• It turns out that if Alice and Dob share an EPR pair $ \psi\rangle = \frac{1}{\sqrt{2}}(00\rangle + 11\rangle)$, then they can do strictly better than just by using shared randomness: They can achieve success probability $(z = x^2, z^2, z^2) = 1$	
	$\left(\cos\frac{\pi}{8}\right)^2 = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.853\cdots$.	
	The protocol is as follows: Access	
	 x = 0: Alice measures her qubit in the { 0⟩, 1} basis and outputs a bit according to her measurement; 	
	$ 0\rangle \rightarrow A = 0$, $ 1\rangle \rightarrow A = 1$.	
	(1) \mapsto $A = 1$. • $x = 1$: Alice measures her qubit in the $\{ +\rangle, -\rangle\}$ basis and outputs a bit according to her measurement:	
	$ +\rangle \mapsto A = 0$,	
	$ -\rangle \mapsto A = 1$.	
	- $y=0$: Bob measures his qubit in the basis $\{ a_0\rangle, a_1\rangle\}$ and outputs $B=0$ or $B=1,$ respectively.	
	$ a_k\rangle = \left(\cos \frac{\pi}{8}\right) 0\rangle + \left(\sin \frac{\pi}{8}\right) 1\rangle$, $ a_1\rangle = \left(-\sin \frac{\pi}{8}\right) 0\rangle + \left(\cos \frac{\pi}{8}\right) 1\rangle$.	
	Equivalently, this is the standard basis rotated by $\pi/8$. • $y = 1$: 80b measures his qubit is the basis { $ bq_{ij}, b_{1}\rangle$ } and outputs $B = 0$ or $B = 1$, respectively.	
	• $y = z$, the matrix is due to be seen $(1/m_f, 1/m_f)$ if an explore $D = 0$ or $x = z = z$, respectively, $ b_0\rangle = \left(\cos \frac{\pi}{8}\right) 0\rangle - \left(\sin \frac{\pi}{8}\right) 1\rangle$,	
	$ r_{01} - (\cos \frac{\pi}{8}) r_{0} - (\sin \frac{\pi}{8}) r_{1} + (\cos \frac{\pi}{8}) r_$	
	Equivalently, this is the standard basis rotated by $-\pi/8$.	
	• For example, let's analyze the success probability in the case $x = y = 0$. Since $x \wedge y = 0$, we need $A \neq B$, i.e., we need the measurement outcomes $ 0\rangle$, $ a_0\rangle$ or $ 1\rangle$, $ a_1\rangle$.	
	With probability 1/2, Alice measures $ 0\rangle$ and Bob's qubit collapses to the state $ 0\rangle$. Then the probability he measures $ a_0\rangle$ is $ \langle a_0 0\rangle ^2 = (\cos \frac{\pi}{4})^2$.	
	With probability 1/2, Alce measures [1] and folds qubit collapses to the state [1]. Then the probability be measures $ a_1\rangle$ is $ \langle a_1 1\rangle ^2 = (\cos \frac{\pi}{3})^2$. Hence the event success probability is $ \cos \frac{\pi}{3} ^2$.	
	Hence the overal saccess processing in (cos g) ² . • As an exercise, you should by repeating the analysis from lecture for the other three cases. For the case where $x = 1$, it helps to verify first that the EPR pair can equivalently be written as	
	$ \psi\rangle=\frac{1}{\sqrt{2}}(++\rangle+ \rangle).$	
	+ In the early 1985s, superiments acheised 84%.	
	In and early 1994s experiments advertised exacts In 2014, it was verified at large scales (1.5km).	
	- The famous Tsirelson inequality shows that no quantum strategy can do better than $(\cos \frac{\pi}{4})^2.$	
	Some philosophical discussion around the EPR paradax and Bell's theorem	
	Related videos:	
	The DHBH Game (O'Domeli): corresponding lecture notes DHBI (inequality (Vazime))	

Course description:

An introduction to the field of quantum computing from the perspective of computer science theory. Quantum computing leverages the revolutionary potential of computers that exploit the parallelism of the quantum mechanical laws of the universe. Topics covered include:

- The axioms of quantum mechanics
- Quantum cryptography (quantum money, quantum key distribution)
- Quantum algorithms (Grover search, Shor's algorithm)
- Quantum information theory (mixed states, measurements, and quantum channels)
- Quantum state tomography (learning and distinguishing quantum states)
- Quantum complexity theory
- Quantum error correction
- Quantum "supremacy"

Prerequisites: A background in undergraduate level <u>linear algebra</u>, <u>probability theory</u>, and <u>CS theory</u>.

"Quantum computing is... nothing less than a distinctively new way of harnessing nature... it will be the first technology that allows useful tasks to be performed in collaboration between parallel universes."

"When a quantum factorization engine is factorizing a 250-digit number, the number of interfering universes will be of the order of 10^{500} . This staggeringly large number is the reason why Shor's algorithm makes factorization tractable. I said [earlier in the book] that the algorithm requires only a few thousand [or maybe a million] operations. I meant, of course, a few thousand parallel operations in each universe that contributes to the answer. All those computations are performed in parallel, in different universes, and share their results through interference."

Quotes from David Deutsch (cofounder of quantum computing)

quantum computation

Math \cap CS \cap Physics

quantum mechanics arose from observations

hacking the universe

Foundations of quantum mechanics: 1900–1925

Quantum computation: 1980+ (Benioff, Feynman, Manin, Deutsch, ...)

all aboard the hype train

