Recall the definitions of approximate weights and weight schemes from the previous lecture.
This can be proved by considering critical points of the functional $U \mapsto \det(U)$ subject to the constraint $G(U) \leqslant s$, where
analogous to how we showed the existence of Lewis weights.
For a full-rank matrix $V$ with rows $v_1,\ldots,v_m \in \mathbb R^n$, define the $i$th leverage score of $V$ as \(\label{eq:ls-def} \sigma_i(V) \mathrel{\mathop:}=\langle v_i, (V^{\top} V)^{-1} v_i\rangle\,.\)
For a weight $w \in \mathbb R_{+}^m$ and \(i \in \{1,\ldots,m\}\), define \(\tau_i(w) \mathrel{\mathop:}=\frac{\sigma_i(W^{1/2} A)}{w_i} = \langle a_i, (A^{\top} W A)^{-1} a_i\rangle\,, \quad W \mathrel{\mathop:}=\mathrm{diag}(w_1,\ldots,w_m)\,,\) and denote $\tau(w) \mathrel{\mathop:}=(\tau_1(w),\ldots,\tau_m(w))$.
Fix a scale parameter $s > 0$ and define the iteration $\Lambda_s : \mathbb R_+^m \to \mathbb R_+^m$ by
Write $\theta^k \mathrel{\mathop:}=\theta \circ \cdots \circ \theta$ for the $k$-fold composition of $\theta$. In this case where $\varphi_i(z)=|z|^p$ and $1 \leqslant p \leqslant 2$, it is known, for $s = 1$, starting from any $w_0 \in \mathbb R_{+}^m$, the sequence \(\{\Lambda_1^k(w_0) : k \geqslant 1\}\) converges to the unique fixed point of $\varphi$, which are the corresponding $\ell_p$ Lewis weights.
Define now a metric $d$ on $\mathbb R_+^m$ by
We note the following characterization.
First, we observe that $\tau$ is $1$-Lipschitz on $(\mathbb R_+^m, d)$. In the next proof, $\preceq$ denotes the ordering of two real, symmetric matrices in the Loewner order, i.e., $A \preceq B$ if and only if $B-A$ is positive semi-definite.
Lemma: For any $w,w’ \in \mathbb R_{+}^m$, it holds that $d(\tau(w), \tau(w’)) \leqslant d(w,w’)$.
Proof: Denote $W = \mathrm{diag}(w), W’ = \mathrm{diag}(w’)$, and $\alpha \mathrel{\mathop:}=\exp(d(w,w’))$. Then $\alpha^{-1} W \preceq W’ \preceq \alpha W$, therefore $\alpha^{-1} A^\top W A \preceq A^\top W’ A \preceq \alpha A^\top W A$, and by monotonicity of the matrix inverse in the Loewner order, $\alpha^{-1} (A^\top W A)^{-1} \preceq (A^\top W’ A)^{-1} \preceq \alpha (A^\top W A)^{-1}$. This implies $d(\tau(w),\tau(w’)) \leqslant\log \alpha$, completing the proof.
Consider the map $\psi: \mathbb R_+^m \to \mathbb R_+^m$ whose $i$-th coordinate is defined as
Our assumptions on lower and upper-homogeneity give, for all $y_i \geqslant x_i$,
yielding, for \(C_1 \mathrel{\mathop:}=\max\{C, 1/c\}\),
Fix $s > 0$ and consider the mapping $\varphi: \mathbb R_+^m \to \mathbb R_+^m$ defined in \eqref{eq:phi-iter} Then for $u< 4$ and $\delta \mathrel{\mathop:}=\max \left(\left|\frac{\theta}{2}-1\right|, \left|\frac{u}{2}-1\right|\right) < 1$, in conjunction with \eqref{eq:psi-contract}, shows that
Applying this bound inductively, for any weight $w \in \mathbb R_{+}^m$ and $k \geqslant 1$, we have
Now define \(w^{(0)} \mathrel{\mathop:}=\varphi^{k}_{1}(1,\ldots,1)\,,\) where $k \geqslant 1$ is chosen large enough so that $d(w^{(0)}, \Lambda_{1}(w^{(0)})) \leqslant\frac{2 \log C_1}{1-\delta}$. From , one sees that $w^{(0)}$ is an $\alpha$-approximate weight at scale $1$ for $\alpha = C_1^{2/(1-\delta)}$.
Define inductively, for $j =1,2,\ldots$,
Note that
where the last inequality uses $\Lambda_{2s}(w) = 2 \Lambda_s(w)$ for all $w \in \mathbb R_+^m$.
Therefore, by induction, $d(\Lambda_{2^j}(w^{(j)}), w^{(j)}) \leqslant\frac{2 \log(C_1) + \log 2}{1-\delta}$ for all $j > 0$. To see that the family of weights \(\{ w^{(j)} : j \in \mathbb Z\}\) forms a weight scheme, note that
thus \(\{w^{(j)} : j \in \mathbb Z\}\) is an $\alpha$-approximate weight scheme for $\alpha = \frac{2 \log(2C_1)}{1-\delta}$, completing the proof.