
Fréchet embeddings of negative type metrics

Sanjeev Arora∗ James R. Lee† Assaf Naor ‡

Abstract

We show that every n-point metric of negative type (in particular, every n-point
subset of L1) admits a Fréchet embedding into Euclidean space with distortion at
most O

(√
log n · log log n

)
, a result which is tight up to the O(log log n) factor, even

for Euclidean metrics. This strengthens our recent work on the Euclidean distortion
of metrics of negative into Euclidean space.

1 Introduction

Let (X, dX) and (Y,dY ) be finite metric spaces. Given an injection f : X ↪→ Y , the distortion
of f is defined as:

dist(f) B ‖f‖Lip · ‖f−1‖Lip = sup
x,y∈X
x6=y

dY (f(x), f(y))

dX(x, y)
· sup

x,y∈X
x6=y

dX(x, y)

dY (f(x), f(y))
.

The least distortion with which X may be embedded into Y is denoted by cY (X), i.e.

cY (X) B inf{dist(f) : f : X ↪→ Y }.
For p ≥ 1 we also use the notation cp(X) B cLp(X). The parameter c2(X) is called the
Euclidean distortion of X.

Bourgain’s fundamental embedding theorem [6] states that:

|X| = n =⇒ c2(X) = O(log n). (1)

But, Bourgain’s proof of (1) contains more information. A Fréchet embedding of (X, dX)
is a probability distribution µ over all non-empty subsets of X. If A is a random subset
distributed according to µ, then we associate, to every x ∈ X, the real-valued random
variable Fµ(x) = d(x,A).
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Thus, for every x, y ∈ X and every p > 0,

‖Fµ(x)− Fµ(y)‖p = (Eµ |dX(x,A)− dX(y, A)|p)1/p .

In [6] Bourgain constructs a Fréchet embedding µ such that for every x, y ∈ X,

‖Fµ(x)− Fµ(y)‖∞ ≤ dX(x, y) ≤ O(log n) · ‖Fµ(x)− Fµ(y)‖1. (2)

Observe that (2) implies (1), and that the left-hand inequality in (2) holds automatically,
since by the triangle inequality, the mapping Fµ is pointwise 1-Lipschitz. This fundamental
property of Bourgain’s embedding is crucial for certain applications—for example it is used
in the design of approximation algorithms for vertex separators [9]. From an analytic point
of view, the “mixed norm” inequality (2) is natural since it can be viewed as a (non-linear)
Dvoretzky-Rogers type embedding (see [8, 10]).

Unfortunately, it isn’t always possible to construct Fréchet embeddings. For example,
in [16] it is shown that if N is a 1/

√
d net on the unit d-dimensional Euclidean sphere, then

for every Fréchet embedding Fµ : N → L2(µ),

dist(Fµ) = Ω
(√

d
)

= Ω

(√
log |N |

log log |N |

)
.

Thus, we cannot expect to have a Fréchet embedding for any n-point Euclidean metric with
Euclidean distortion significantly better than

√
log n. In the context of metric Ramsey (non-

linear Dvoretzky) embeddings [5], it was shown in [4] that Fréchet embeddings cannot be used
to obtain the results of [5] (we refer to these papers for more details). In [17] it was shown
that any n-point weighted planar graph (equipped with the shortest-path metric) embeds
into L2 with distortion O

(√
log n

)
. The embedding of [17] is not a Fréchet embedding, and

it required significantly more work to prove in [13] that Fréchet embeddings exist with the
same distortion guarantee.

Recall that (X, dX) is said to be a metric space of negative type if the metric space
(X,

√
dX) embeds isometrically into Euclidean space. The space L1 has negative type,

and metrics of negative type also occur as relaxations of certain semidefinite programs (see
e.g. [11]). It is known [12] that there are metrics of negative type that require arbitrarily
large distortion in any embedding into L1. In [1] the present authors proved that if (X, dX)
is an n-point metric space of negative type then c2(X) = O

(√
log n · log log n

)
. This result

is optimal up to the iterated logarithm, and is used in [1] to obtain the best know approx-
imation algorithm for the Sparsest Cut problem with general demands (see the discussion
in [1] for background on this topic). On the other hand, the best known bound for Fréchet
embeddings of negative type metrics is O(log n)3/4 [7].

The embedding of [1] is not a Fréchet embedding. The argument of [1] is modular and
general, as it presents a gluing technique for certain ensembles of Lipschitz mappings. The
resulting “glued” mapping is not Fréchet, even if the original ensemble consists of Fréchet
embeddings. While this general gluing procedure is of independent interest, it is natural
to ask whether it is also possible to obtain a Fréchet embedding with the same distortion
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guarantee. In this paper we show that this is indeed the case, by proving the following
theorem

Theorem 1.1. Let (X, dX) be an n-point metric space of negative type. Then there exists a
probability measure µ over random subsets ∅ 6= A ⊆ X such that for every x, y ∈ X,

(
Eµ |d(x,A)− d(y, A)|2)1/2

= Ω

(
dX(x, y)√

log n · log log n

)
.

We remark that this bound is new even for the special case when X is an n-point submet-
ric of some Euclidean space. The proof of Theorem 1.1 is different, and substantially more
involved than the proof in [1]. We believe that it is worthwhile to establish that Fréchet
embeddings are achievable in this case. Such maps are interesting due to the algorithmic
and combinatorial applications of Fréchet embeddings in [9], in addition to the new struc-
tural information contained in Theorem 1.1. Moreover, the proof techniques used here are
different than in [1], and are independently interesting.

We end this introduction by stating some interesting open problems related to Fréchet
embeddings. Our result suggests (together with the results of [13]) that Fréchet embeddings
may be universal for large enough distortions. More precisely, we have the following question.

Question 1. Does every n-point metric space (X, dX) admits a Fréchet embedding into L2

with distortion O
(
max{c2(X),

√
log n})?

Observe that
√

log n is a natural barrier here due to the result of [16]. If this (speculative)
bound is indeed true, then it would yield a method of producing good Fréchet embeddings
from general embeddings (and it would show that Theorem 1.1 follows from [1]).

Finally, it is not known whether every n-point metric of negative type admits a Fréchet
embedding as in the statement of Theorem 1.1 with the 2-norm replaced by the 1-norm.

Question 2. Does every n-point metric space of negative type admit a Fréchet embedding
into L1 with distortion o(log n)?

If true, this would yield the best known approximation algorithm for the minimum-weight
vertex separator problem with general demands (see [9]). The best upper bound known to
hold is Bourgain’s bound of O(log n). This question is open even for the shortest-path metrics
of planar graphs, and its resolution has implications for the theory of vertex-capacitated flows
in such families.

2 Preliminaries

We recall the following definition from [1]. Let (X, d) be an n-point metric space.

Definition 2.1 (Random zero-sets). Given ∆, ζ > 0, and p ∈ (0, 1) we say that X admits a
random zero set at scale ∆ which is ζ-spreading with probability p if there is a distribution
µ over subsets Z ⊆ X such that for every x, y ∈ X with d(x, y) ≥ ∆,

µ

{
Z ⊆ X : y ∈ Z and d(x, Z) ≥ ∆

ζ

}
≥ p.
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We denote by ζ(X; p) the least ζ > 0 such that for every ∆ > 0, X admits a random zero
set at scale ∆ which is ζ-spreading with probability p. Finally, given k ≤ n we define

ζk(X; p) = max
Y⊆X
|Y |≤k

ζ(Y ; p).

As noted in [1], a concatenation of the results of [2], [14], and [7], shows that there exists
a universal constant p ∈ (0, 1) such that for every n-point metric space (X, d) of negative
type, ζ(X; p) = O

(√
log n

)
.

We now recall the related notion of padded decomposability. Given a partition P of X
and x ∈ X we denote by P (x) ∈ P the unique element of P to which x belongs. In what
follows we sometimes refer to P (x) as the cluster of x. Following [13] we define the modulus
of padded decomposability of X, denoted αX , as the least constant α > 0 such that for every
∆ > 0 there is a distribution ν over partitions of X with the following properties.

1. For all P ∈ supp(ν) and all C ∈ P we have that diam(C) < ∆.

2. For every x ∈ X we have that

ν{P : B(x, ∆/α) ⊆ P (x)} ≥ 1

2
.

As observed in [13], the results of [15, 3] imply that αX = O(log |X|), and this will be used
in our proof. Moreover, it is shown in [1] (motivated by an argument in [17]) that it is always
the case that ζ(X; 1/8) ≤ αX .

We conclude this section with the following elementary probabilistic lemma.

Lemma 2.2 (Sampling lemma). Suppose that k, n ∈ N, 1 ≤ k ≤ n. Let X be an n-point set

and let X̃k be chosen uniformly at random from all k-point subsets of X. Then

1. For every A ⊆ X, Pr[X̃k ∩ A = ∅] ≤ e−k|A|/n.

2. For every A,B ⊆ X such that A ∩B = ∅,
(a) Pr[X̃k ∩ A = ∅ | X̃k ∩B 6= ∅] ≤ Pr[X̃k−1 ∩ A = ∅] ≤ e(1−k)|A|/n

(b) Pr[X̃k ∩ A = ∅ | X̃k ∩B = ∅] ≤ e−k|A|/n.

Proof. The proof of (1) is an easy calculation. To prove 2(a), note that choosing X̃k uniformly

subject to X̃k∩B 6= ∅ is the same as first choosing z ∈ B uniformly at random, then choosing
a uniform k − 1 point subset S ⊆ X \ {z} and returning S ∪ {z}.
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3 Proof of Theorem 1.1

The main technical result of this paper is contained in the following lemma.

Lemma 3.1 (Enhanced descent). Let (X, d) be an n-point metric space and fix p ≤ 1/8, K ≥
2 and ζ ≥ ζK(X; p). For every m ∈ Z, define

Sm(K) =

{
x ∈ X :

∣∣B (
x, 2m+5αX

)∣∣ ≤ K

16
·
∣∣∣∣B

(
x,

2m−9

ζ

)∣∣∣∣
}

.

Then there exists a distribution σ over random subsets A ⊆ X such that for all m ∈ Z,
x ∈ Sm(K) and y ∈ X with d(x, y) ∈ [2m−1, 2m],

Eσ|d(x,A)− d(y, A)|2 ≥ p5

O(log n log log n)
· d(x, y)2

ζ2
· log

|B(x, 2m+5αX)|
|B(x, 2m+3/ζ)| . (3)

Before proving Lemma 3.1 we show how it implies Theorem 1.1. The argument below
actually yields more general results. For example if we assume that ζk(X; p) = O(log k)θ for
some p ∈ (0, 1/8), θ ≥ 1

2
and all k ≤ n then we achieve a Fréchet embedding which achieves

c2(X) = Op

(
(log n)θ

√
log αX log log n

)
= Op

(
(log n)θ log log n

)
,

where Op(·) may contain an implicit constant which depends only on p.

Proof of Lemma 3.1 =⇒ Theorem 1.1. As noted above, there exists a universal constant

p ∈ (0, 1) such that for every metric space (Y, d) of negative type, ζ(Y ; p) = O
(√

log |Y |
)
.

Combining this with Lemma 3.1 and the fact that αX = O(log n) we obtain the follow-
ing statement. There exists a constant C > 0 such that for every K ≥ 2 there exists a
distribution µK over random subsets AK ⊆ X satisfying the following condition. Define

S ′m(K) =

{
u ∈ X :

∣∣B (
u, 2m+5αX

)∣∣ ≤ K ·
∣∣∣∣B

(
u,

2m

C
√

log K

)∣∣∣∣
}

.

Then for all m ∈ Z, x ∈ S ′m(K) and y ∈ X such that d(x, y) ∈ [2m−1, 2m],

EµK
|d(x,AK)− d(y, AK)|2 ≥ d(x, y)2

C log K log n log log n
· log

|B(x, 2m+5αX)|
|B(x,C2m/

√
log K)| .

Observe that for every m ∈ Z, S ′m(n) = X. Hence, defining K0 = n and Kj+1 = K
1/C4

j , as
long as Kj ≥ 2, we obtain random subsets U0, U1, . . . , Uj ⊆ X (where Uj = AKj

) satisfying,
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for all x ∈ Sm(Kj) \ Sm(Kj+1) and y ∈ X such that d(x, y) ∈ [2m−1, 2m],

E |d(x, Uj)− d(y, Uj)|2 ≥ d(x, y)2

C log Kj log n log log n
· log

|B(x, 2m+5αX)|
|B(x,C2m/

√
log Kj)|

=
d(x, y)2

C log Kj log n log log n
· log

|B(x, 2m+5αX)|∣∣∣B
(
x,C2m/

√
log KC4

j+1

)∣∣∣

=
d(x, y)2

C log Kj log n log log n
· log

|B(x, 2m+5αX)|
|B(x, 2m/(C

√
log Kj+1))|

≥ d(x, y)2

C log Kj log n log log n
· log Kj+1 =

d(x, y)2

C5 log n log log n
.

This procedure ends after N steps, where N ≤ log log n
log C

. Every x ∈ Sm(KN) satisfies

|B(x, 2m+5αX)| ≤ 2C4|B(x, 2m+1/C)|.

By a result of [13] (for a simple proof, see [1, Claim 4.6]) there is a distribution over random
subsets UN+1 ⊆ X such that for every x, y ∈ Sm(KN),

E |d(x, UN+1)− d(y, UN+1)|2 ≥ d(x, y)2

O(log n)
.

Now consider the distribution µ over random subsets U ⊆ X, defined as follows. First,
pick a value j ∈ {0, 1, . . . , N + 1} uniformly at random, then choose a random subset from
the distribution of Uj. For every x, y ∈ X choose m ∈ Z such that d(x, y) ∈ [2m−1, 2m]. If
x, y ∈ Sm(KN) then

Eµ |d(x, U)− d(y, U)|2 ≥ E |d(x, UN+1)− d(y, UN+1)|2
N + 1

≥ d(x, y)2

O(N log n)
.

Otherwise, there is j ∈ {0, . . . , N − 1} such that x ∈ Sm(Kj) \ Sm(Kj+1), in which case

Eµ |d(x, U)− d(y, U)|2 ≥ E |d(x, Uj+1)− d(y, Uj+1)|2
N + 1

≥ d(x, y)2

O(N log n log log n)
.

Recalling that N = O(log log n) completes the proof.

3.1 Proof of Lemma 3.1: Enhanced descent

We begin with a simple definition.

Definition 3.2. For every x ∈ X and t > 0 define

κ(x, t) = max{κ ∈ Z : |B(x, 2κ)| < 2t}. (4)
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The following simple lemma says that the values of κ(·, ·) cannot change too rapidly
when moving between nearby points. This fact will be used several times in the ensuing
arguments, and played a similar role in [13].

Lemma 3.3 (Smoothness). For x ∈ X, let i ∈ Z and m, t ∈ Z+ be such that |B(x, 2i+m−1)| ≤
2t ≤ |B(x, 2i+m)|. Then every z ∈ X for which d(x, z) ≤ 2min{m,m+i−2} satisfies:

κ(z, t) ∈ {m + i− 3,m + i− 2, m + i− 1,m + i,m + i + 1}.
Proof. By definition,

|B(z, 2κ(z,t))| < 2t ≤ |B(x, 2κ(z,t)+1)|.
For the upper bound, we have

|B(x, 2κ(z,t) − 2m−s)| ≤ |B(z, 2κ(z,t))| < 2t ≤ |B(x, 2i+m)|,
implying that 2κ(z,t) − 2m−s < 2i+m, which yields 2κ(z,t) < 2m+1+i. For the lower bound, we
have

|B(x, 2κ(z,t)+1 + 2m−s)| ≥ |B(z, 2κ(z,t)+1)| ≥ 2t ≥ |B(x, 2m+i−1)|.
We conclude that 2κ(z,t)+1 + 2m−s ≥ 2m+i−1, which implies that 2κ(z,t)+1 ≥ 2m+i−2.

Notation. We introduce some notation which will be used in the forthcoming proofs. Write
α = αX , and for every j ∈ Z let Pj denote a random partition of X satisfying the following.

1. For all C ∈ Pj we have that diam(C) ≤ 2j+4α.

2. For every x ∈ X we have that ν{P : B(x, 2j+4) ⊆ Pj(x)} ≥ 1
2
.

We also fix p ∈ (0, 1/8) and for every k ≤ n let ζk = ζk(X; p). For S ⊆ X let Ψj(S)
denote a random zero set of S at scale 2j−3 which is ζ|S|-spreading with probability p. For

each C ⊆ X let C̃ be a uniformly random subset of C of size min{K, |C|}.
The Fréchet-type embeddings. The embeddings we produce will be of Fréchet-type,
i.e. every coordinate fi : X → R will be of the form fi(x) = d(x, U) for some U ⊆ X.
Let I = [− log2 ζK + 3, log2 α + 6] ∩ Z and J = {0, 1, . . . , dlog2 ne}. For each i ∈ I and
t ∈ J , we describe a distribution W i

t on sets. Our random embedding consists of mapping
x to f(x) = (d(x,W i

t ) : i ∈ I, t ∈ J). Such a mapping is clearly Lipschitz with constant√
|I| · |J | = O(

√
log n · log α) (here we use the fact that ζK ≤ α).

Let {σm}m∈Z be a sequence of random variables taking each of the values {0, 1, 2} with
probability 1

3
, which are independent of all the other random variables appearing in this

proof. (In general, the reader should assume that samplings from various distributions are
independent of one another.) We define the random subset W i

t as follows.

x ∈ W i
t ⇐⇒





x ∈ X if σκ(x,t)−i = 0,

x ∈ Ψκ(x,t)−i

(
˜Pκ(x,t)−i(x)

)
if σκ(x,t)−i = 1,

x ∈ ˜Pκ(x,t)−i(x) if σκ(x,t)−i = 2.
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For the rest of the proof, let m be any integer, fix x, y ∈ X such that d(x, y) ∈ [2m−1, 2m],
and assume that x ∈ Sm(K). Let si = log2 |B(x, 2i+m)|, with smin I and smax I correspond-
ing to the smallest and largest i ∈ I. The next claim follows from the “smoothness” of
Lemma 3.3.

Claim 3.4. For i ∈ I and all t ∈ Z ∩ [si−1, si], every w ∈ B(x, 2m/ζK) satisfies

m− 3 ≤ κ(w, t)− i ≤ m + 1.

Now we define

N(x) B |{(i, t) : i ∈ I, t ∈ [si−1, si] ∩ Z}| = |{t : t ∈ [smin I , smax I ] ∩ Z}|.

Observe that

N(x) ≥ log2

|B(x, 2m+5α)|
|B(x, 2m+3/ζK)| .

We are going to get a contribution to ||f(x)−f(y)||22 from the sets {W i
t } where t ∈ Z∩[si−1, si]

for some i ∈ I. The number of such pairs is N(x). Thus clearly we get the desired lower
bound (3) if we can prove that for these values of i and t, we have

E |d(x,W i
t )− d(y,W i

t )|2 ≥
( p

64

)5

· 22m

ζK

. (5)

To prove (5) we fix i ∈ I, t ∈ [si−1, si] ∩ Z and let

M = {m− 3,m− 2,m− 1,m,m + 1}

be the range of values from Claim 3.4.

3.1.1 Partitions and padding

For any j ∈ M we have that diam(Pj(x)) ≤ 2j+4α ≤ 2m+5α, so B(x, 2m+5α) ⊇ Pj(x). Since
x ∈ Sm(K), it follows that |Pj(x)| ≤ K

16
|B(x, 2m−9/ζK)|. Recall that for j ∈ M the random

partition Pj satisfies

Pr[d(x,X \ Pj(x)) ≥ 2m+1] ≥ Pr[d(x,X \ Pj(x) ≥ 2j+4] ≥ 1
2
.

Define the event
E j

pad = {d(x,X \ Pj(x)) ≥ 2m+1},
and let

Epad =
⋂
j∈M

E j
pad.

Note that, by independence, we have Pr[Epad] ≥ 2−5.
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Suppose that E j
pad occurs, then since d(x, y) ≤ 2m, we have y ∈ Pj(x), implying Pj(x) =

Py(x). Furthermore, since
B(x, 2m−9/ζK) ⊆ Pj(x),

when we sample down Pj(x) to P̃j(x), a set of size at most K, Lemma 2.2, part (1), ensures
that

Pr[P̃j(x) ∩B(x, 2m−9/ζK) = ∅] ≤ e−15.

To this end, we denote

E j
hit =

{
P̃j(x) ∩B(x, 2m−9/ζK) 6= ∅

}
,

and we define Ehit =
⋂

j∈M E j
hit. Since the events {E j

hit}j∈M are independent even after
conditioning on Epad, the preceding discussion yields the following lemma.

Lemma 3.5. Pr (Ehit ∩ Epad) ≥ 2−5(1− 5e−15) > 2−6.

3.1.2 Obtaining a separation

We introduce the following events which mark different “phases” of the embedding. For
` ∈ {1, 2}, let

Eσ
` = {σj = ` for all j ∈ M} .

Note that Pr[Eσ
` ] ≥ 3−5 for each ` ∈ {1, 2}. Now we study the distance from x to W i

t in
phase 1.

Claim 3.6. If Eσ
1 ∩ Epad occurs, then

d(x,W i
t ) ≥ min

{
2m

ζK

, min
j∈M

{
d(x, Ψj(P̃j(x)))

}}
. (6)

Proof. Fix a point w ∈ B(x, 2m/ζK), and let j = κ(w, t)−i. By Claim 3.4, j ∈ M , hence Epad

implies that w ∈ Pj(x). Since Eσ
1 occurs, we have w ∈ W i

t if and only if w ∈ Ψj(P̃j(x)).

If Epad ∩ Ehit occurs, then for each j ∈ M , there exists a point wj ∈ P̃j(x) such that
d(x,wj) ≤ 2m−9/ζK . So to get a lower bound on d(x,W i

t ), we can restrict our attention to
{wj}j∈M .

Claim 3.7. If Ehit ∩ Epad ∩ Eσ
1 occurs and

d
(
wj, Ψj

(
P̃j(x)

))
≥ ε

for every j ∈ M , then

d(x,W t
i ) ≥ min

{
2m

ζK

, ε− 2m−9

ζK

}
.
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Proof. For every j ∈ M ,

d
(
x, Ψj

(
P̃j(x)

))
≥ d

(
wj, Ψj

(
P̃j(x)

))
− d(x,wj) ≥ ε− 2m−9

ζK

.

Now apply Claim 3.6.

There are two types of points y ∈ X which occur in the argument that follows. As a warmup,
we first dispense with the easy type.

Type I: There exists z ∈ B(y, 2m−7/ζK) for which κ(z, t)− i 6∈ M.

Fix this z and let j′ = κ(z, t)−i. Assume that Ehit∩Epad∩Eσ
1 occurs, as well as the independent

event σj′ = 0. Note that using Lemma 3.5 along with independence, the probability of this
event is at least q = 2−6 · 3−5 · (1/3).

Now, applying the definition of ζK to the sets P̃j(x) = P̃j(wj) for j ∈ M , we conclude
that there is an event Ezero which occurs with probability at least p5, and such that for every
j ∈ M ,

d
(
wj, Ψj

(
P̃j(x)

))
≥ 2j−3

ζK

≥ 2m−6

ζK

.

Applying Claim 3.7 with ε = 2m−6/ζK , we conclude that, in this case,

d(x, W i
t ) ≥

5 · 2m−9

ζK

.

Since σj′ = 0, we have z ∈ W i
t , hence with probability at least q · p5 ≥ (p/16)5, we have

|d(x,W i
t )− d(y,W i

t )| ≥
5 · 2m−9

ζK

− d(y, z) ≥ 2m−9

ζK

.

This completes the analysis of Type I points.

3.1.3 A case analysis on the fate of y

We now analyze the complement of the set of Type I points.

Type II: For all z ∈ B(y, 2m−7/ζK), κ(z, t)− i ∈ M .

First, we define the following key event.

Eclose =

{
∃j ∈ M, ∃z ∈ P̃j(y) such that d(y, z) ≤ 2m−7

ζK

and κ(z, t)− i = j

}
. (7)

Also, let Efar = ¬Eclose.
These two events concern the distance of y to the various sample sets. Since we do not

make the assumption that y ∈ Sm(K), we cannot argue that a random sample point lands
near y with non-negligible probability, thus we must handle both possibilities Eclose and Efar.
This is the main purpose of the two phases, i.e. the events Eσ

` for ` ∈ {1, 2}. Thus the
proof now breaks down into two sub-cases corresponding to the occurrences of Eclose and Efar,
respectively.
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Claim 3.8 (The close case). Conditioned on the event Ehit∩Epad∩Eσ
1 ∩Eclose occurring, with

probability at least p5,

|d(x, W i
t )− d(y,W i

t )| ≥
2m−9

ζK

.

Proof. If the event Eclose∩Epad occurs, then there exists some j0 ∈ M and z ∈ P̃j0(x) = P̃j0(y)
such that d(y, z) ≤ 2m−7/ζK and κ(z, t)− 1 = j0. Additionally, if Epad ∩ Ehit occurs, then for

every j ∈ M there is wj ∈ P̃j(x) with d(wj, x) ≤ 2m−9/ζK . It follows that, for every j ∈ M ,

d(wj, z) ≥ d(x, y)− d(x,wj)− d(y, z) ≥ 2m−1 − 5 · 2m−9

ζK

≥ 2m−2 ≥ 2j−3.

Hence applying the definition of ζK to the sets P̃j(x) for j ∈ M , we conclude that there is
an event Ezero with probability at least p5, independent of Ehit, Epad, Eclose and Eσ

1 , such that

if the event Ehit∩Epad∩Eclose∩Eσ
1 ∩Ezero occurs then z ∈ Ψj0

(
P̃j0(y)

)
, and for every j ∈ M ,

d
(
wj, Ψj

(
P̃j(x)

))
≥ 2j−3

ζK

≥ 2m−6

ζK

.

Applying Claim 3.7, it follows that d(x,W i
t ) ≥ 5·2m−9

ζK
. Furthermore, since z ∈ Ψj0

(
P̃j0(y)

)

and Eσ
1 occurs, we have σj0 = 1, hence z ∈ W i

t . It follows that

|d(x,W i
t )− d(y,W i

t )| ≥
5 · 2m−9

ζK

− d(y, z) ≥ 2m−9

ζK

,

completing the proof.

We now analyze the probability of the previous event.

Lemma 3.9. Pr[Ehit ∩ Epad ∩ Eσ
1 | Eclose] ≥ 2−6 · 3−5.

Proof. Since

Pr[Ehit ∩ Epad ∩ Eσ
1 | Eclose] = 3−5 · Pr[Ehit ∩ Epad | Eclose] = 2−5 · 3−5 · Pr[Ehit | Epad, Eclose],

we need only argue that Pr[Ehit | Epad, Eclose] ≥ 1
2
. But this follows by applying Lemma 2.2,

part 2(a), to the sets X = Pj(x), A = B(x, 2m−9/ζK), B = B(y, 2m−7/ζK), and concluding
that

Pr[¬E j
hit | Epad, Eclose] ≤ e(1−15K)/K ≤ e−14.

Thus Pr[Ehit | Epad, Eclose] ≥ 1− 5e−14 ≥ 1
2
.

Now we proceed to analyze the case when Efar occurs. By Claim 3.4, every w ∈
B(x, 2m−9/ζK) satisfies κ(w, t) − i ∈ M . By the pigeonhole principle, some j∗ ∈ M must
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occur as the value of κ(w, t)−i in at least a 1
5
th of them. Together with the growth condition

implied by x ∈ Sm(K), we conclude that

∣∣{w ∈ B(x, 2m−9/ζK) : κ(w, t)− i = j∗}
∣∣ ≥ 16

5K
|B(x, 2m+5α)| ≥ 3

K
|B(x, 2m+5α)|.

Define the event E∗hit to be

{∃w ∈ P̃j∗(x) ∩B(x, 2m−9/ζK) with κ(w, t)− i = j∗},
and observe that by Lemma 2.2, part (1), Pr[E∗hit] ≥ 1− e−3.

Claim 3.10 (The far case). If Epad ∩ Efar ∩ Eσ
2 ∩ E∗hit occurs, then

|d(x, W i
t )− d(y,W i

t )| ≥
2m−9

ζK

.

Proof. Assume that the event Epad∩Efar∩Eσ
2 ∩E∗hit occurs, and let w ∈ P̃j∗(x)∩B(x, 2m−9/ζK)

be the point guaranteed by E∗hit. Since σj = 2, we have w ∈ W i
t , so that d(x,W i

t ) ≤ 2m−9/ζK .
On the other hand, we claim that d(y, W i

t ) ≥ 2m−7/ζK . Indeed, first note that Epad implies
that for all j ∈ M , d(y, X \ Pj(y)) ≥ 2m. Suppose that z ∈ W i

t and d(y, z) ≤ 2m−7/ζK .
Let j′ = κ(z, t) − i. In this case, we have j′ ∈ M , hence σj′ = 2, and this implies that

z ∈ P̃j′(z) = P̃j′(y). But in this case, Efar implies that d(y, z) > 2m−7/ζK , yielding a
contradiction. It follows that

|d(x,W i
t )− d(y,W i

t )| ≥
2m−7

ζK

− 2m−9

ζK

≥ 2m−9

ζK

.

Lemma 3.11. Pr[Epad ∩ Eσ
2 ∩ E∗hit | Efar] ≥ 2−5 · 3−5 · (1− e−3).

Proof.

Pr[Epad ∩ Eσ
2 ∩ E∗hit | Efar] = 3−5 · 2−5 · Pr[E∗hit | Efar, Epad] ≥ Pr[E∗hit | Epad] ≥ 3−5 · 2−5 · (1− e−3).

The penultimate inequality follows from the fact that conditioning on Efar cannot decrease
the probability of E∗hit, as in Lemma 2.2, part 2(b).

To finish with the analysis of the Type II points, we apply Claim 3.8 together with
Lemma 3.9 and Claim 3.10 with Lemma 3.11 to conclude that

E|d(x,W i
t )− d(y, W i

t )|2 ≥ (Pr[Egood ∩ Eclose ∩ Eσ
1 ∩ Ezero] + Pr[Epad ∩ Efar ∩ Eσ

2 ∩ E∗hit])
22m−18

ζ2
K

= (Pr[Eclose] Pr[Egood ∩ Eσ
1 ∩ Ezero | Eclose] + Pr[Efar] Pr[Epad ∩ Eσ

2 ∩ E∗hit | Efar])
22m−18

ζ2
K

≥ 1
2
min{2−6 · 3−5 · p5, 2−5 · 3−5 · (1− e−3)}22m−18

ζ2
K

≥
( p

64

)5 22m

ζ2
K

.
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Since we have proved that (3) holds for both Type I points and Type II points, the proof is
complete.
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