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Abstract distortion in terms of certain fundamental properties & th
metric (X, d).
The doubling constanbf a metric spacg X, d) is the The general case is well-understood. Bourgain [4]

smallest value\ such that every ball ik can be covered by  showed that every:-point metric embeds intd.,, with
A balls of half the radius. Thdoubling dimensiorof X is O(logn) distortion for any fixedp; it is shown in [25] that
then defined adim(X) = log, A. A metric (or sequence of this bound is tight, for alp < 2, for the shortest path met-
metrics) is calleddoubling precisely when its doubling di-  ric on constant-degree expander graphs. This was later ex-
mension is bounded. This is a robust class of metric spacedended in [26], showing a tight upper bound@{l‘j%) for
which contains many families of metrics that occur in ap- anyL, space.
plied settings. In light of this, a significant amount of effort has been
We give tight bounds for embedding doubling metrics made to understand the distortion achievable for restticte
into (low-dimensional) normed spaces. We consider bothclasses of metric spaces. So far, the restrictions consid-
general doubling metrics, as well as more restricted fami- ered have been mostly topological. Fby embeddings,
lies such as those arising from trees, from graphs excludingthis is due partly to the intimate connection with multi-
a fixed minor, and from snowflaked metrics. Our techniqguescommodity flows and approximations for the sparsest cut,
include decomposition theorems for doubling metrics, and see e.g. [25, 3, 12].lt is not too difficult to see that ev-
an analysis of a fractal in the plane due to Laakso [20]. Fi- ery tree metric embeds isometrically info. Matowsek
nally, we discuss some applications and point out a central [27] showed that every tree embeds idtp with distortion
open question regarding dimensionality reductiorLin O((loglog n)min(%v%)) and that this bound is tight for all
p > 1. Rao [32] showed that every planar graph embeds
into Lo, with distortionO(+/log 1), and this in fact holds for
1 Introduction any family which excludes a fixed minor. A matching lower
_ ) o _ ) bound, yielded by a family of series-parallel metrics was
A basic goal in the study o_f finite metric spaces is to approx- given in [29] (see also [19, 21]). Gupta et al. [12] show that
imate some class of metric spaces by another more S|mpIeK4_free (series-parallel) ani, 5-free (outerplanar) graphs
or tractable class. Apart from being beautiful objects of emped intar, | with constant distortion.
study lying at the intersection of analysis, combinatqrics Here, we consider restrictions not on the topology of the
and geometry, the ideas and techniques generated in thi?netric, but on its geometry. More specifically, we exam-
f?eld have led to a number of powerful algorithmic applica- jne how the “volume growth” of a metric affects its embed-
tions (see, e.g. [14, 24, 28]). dability into L, spaces. The notion of growth that we use is
We consider embeddings of finite metric spaces o e|l-studied, and is very similar to a notion of Assouad [2],
spaces. Given a metricX, d), the goal is to find a map  see also [13]. Our definition is technically slightly diféert
f: X — Lysuchthat|f(x)—f(y)l|,is close tai(z,y) for  from Assouad’s, but the flavor is left unaltered; in particu-
all z,y € X. The worst-case factor by which distances are |5y, the notion of bounded growth is equivalent under either
expanded or contracted is called titistortion of the map framework.
f. In general, our goal is to find bounds on the achievable 4, 5 metric( X, d), let A be the smallest value such that
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this notion more thoroughly in Section 1.3. In Section 4, we devise a number of embeddings, some
Not only are doubling metrics interesting objects in their which rely heavily on the clustering of Section 3. First,
own right, but they are also of practical concern. Growth we give a Bourgain-style embedding which shows that ev-
restrictions are very natural and are thought to occur in ery general doubling metricX, d) embeds intd,, with dis-
real-world phenomena such as peer-to-peer networks (segortion O((log n)mi“(%a%)) for anyp € [1,00). Instead of
e.g. [30]) and data analysis (e.g., when the input data re-forming coordinates by taking the distance to arbitrary-sub
sides on a low-dimensional manifold, cf. [34]). In fact, sets ofX, we instead use only subsets of appropriately sized
various algorithms can be tailored to run efficiently on cer- netsin X (see Section 1.2 for the definition of a net). Using
tain classes of growth-restricted metrics, as demonstrate this embedding, along with another application of the local

in [8, 31, 16, 17]. The metrics considered there are eitherjemma, we show that every doubling metric can be embed-
equivalent to or a subclass of those metrics which are dou-geq with1 -+ ¢ distortion intoﬁgo(log ") See Section 6 for an

bling; see Section 1.3. application to distance labeling schemes.

. Unfortunately, although fairly simple, the distortion of
1.1 Results and techniques this Bourgain-style embedding degrades badly (exponen-
We are concerned with the broad roles of “volume” and tially) with dim(X). Based on the clustering of Section
“structure” in determining the embeddability of a met- 3, and an embedding technique of Rao [32], we show that
ric. For instance, in Section 2, we show that every dou- everyn-point metric(X, d) embeds intd,, with distortion
bling tree metric admits a constant distortion embedding at most o

into (5" (i.e., constant dimensional, space) for any o (dim(X) : (logn)mm(i’g))-

p € [1,00]. This exhibits a very natural class of met- . ) ) i

ric spaces which embed inta with O(1) distortion, but This provides a smooth upper bound on the distortion of
not isometrically. As discussed before, some tree met. 9eneral metrics in terms of their dimension. In the case
; ; : ; ; b f Euclidean embeddings, for instance, it beats Bourgain’s
rics requireQ)(+/log log n) distortion to embed intd, [5], 0 P '

while we prove that some doubling metrics require distor- 98n€ral upper bound as longdisa(X) = o(v/logn).

tion Q(yTogn) (see Section 5). Thus it is precisely the N [2].itis proved thatif( X, ) |sa_douEI|n_g metric, then
synthesis of these two properties that yields an enormoud©’ @0Y0 < a < 1, (X, d") embeds intd; with distortion
improvement in embeddability. D, wherek and D depend only on the doubling dimension

That these metrics can be embedded using 6(y) of X. Here,(X,d") is the metric with all distances raised

dimensions is perhaps even more surprising (see the dist© the powera (this is called ssnowflakedversion of.X).

cussion in Section 2), and as we will soon see, proves aUnfortunater, the dependence bfand D on dim(.X) is

special case of a conjecture of Assouad. Our ernbeddingexponennal. In Section 4, using a slight twist on the above

makes use of a novel partitioning algorithm for doubling embedding technique, we give an algorithmic version of

trees. The partition is described conveniently by a cofprin Assouad's proof, qnd drastically improve .the dependence
of the edges. Our algorithm either finds a good coloring or of k andD to near-linear Assouad also conjectured that the

a submetric which is a counterexample to the doubling as_above_ result hO'F’S ceven when = 1. Although Semmes
sumption. To achieve an embedding ii2¢1) dimensions, [33] disproved this conjecture, we have shown that it holds
we must reuse colors. We do this by defining a notion of ad- whenever(.X, d) is a doubling tree metric.

jacency between paths, and arguing that the resulting graph In Secti_on 5, we exhib.it a family of S(.aries-.parallel dou-
(whose vertices are paths) has bounded chromatic number Pling metrics which require)(y/log n) distortion to em-
In Section 3, we construct low-diameter decompositions bed intof,, which shows that the upper bound of Section 4

for general metrics whose parameters depend smoothly o

s tight. This family is based on the construction of a frac-
the doubling dimension. Such decompositions are the maintal due to Laakso [20]. (It was brought to our attention that

tool in many embedding results, as well as a number of & similar analysis was obtained independently in [21], but

other applications. To construct these decompositions, WeWIthOUt an explicit dependence an In addition, the proof

adapt a probabilistic technique of [7]. For applications of tech.nlques. are su.btly different.) i .

the decomposition later in the paper, it is important that th - inally, in Section 6, we mention some algorithmic ap-

probability space that we sample from be very compactly lecatl_ons ofour_results, and pomtoutaverymtngum@qp _
defined (e.g., of siz&(1) for the case of doubling metrics). duestion regarding the roles of volume and structure in di-
For this purpose, we use some ideas from [18], in conjunc- Mensionality reduction in Euclidean spaces.

tion with Lovasz Local Lemma, in order to exploit certain T
locality properties of our decomposition. Our use of the lo- 1.2 Preliminaries

cal lemma here, and elsewhere in the paper, can be madélere are some definitions used in the paper; the books by
algorithmic using standard techniques. Deza and Laurent [9] and by Heinonen [13] give more de-



tails on metric spaces. LeK, dx) and(Y, dy ) be twomet- by only a factor of2.

ric spaces,and consider an injective mgp: X — Y. We The seminal paper of Assouad [2] showed that this no-
define tion attains several natural properties (see also [13, G]). 1
dx (a,b) For instance, it can be shown thdin(R*) = ©(k) when
contraction(f) = sup ——F—, R* is endowed with the, norm. It follows that the upper
avex dy(f(a), f(b)) boundO(k) applies to any subset &*. For a finite met-
. _ dy (f(a), f(b)) ric space, clearlylim(X) < log |X|. The next proposition
expansion(f) - = ;;}lepx dx(a,b) will be key. Its proof follows by applying the definition sev-
eral times to obtain a cover with balls of sufficiently small
Thedistortionof f is defined bydist(f) = expansion(f) - radius, and then arguing that each net point is covered by a

contraction(f) = || f||Lip - ||/ ||Lip. The distortion with  distinct ball.

which X embeds intd” is the infimum ofdist(f) over all

injective mapsf : X — Y. Proposition 1.1. Let (X, d) be a metric with doubling con-
As usual, we define,(X) as the least distortion with ~ stantX. If all pairwise distances i” C X are at leastr

which X embeds into somé, space. LeG = (V,E) be  (€.9.Y is anr-net of X), then for any point: € X and

a simple undirected graph with non-negative edge lengths.radiust > r we havgB(x,t) N Y| < Allog 3],

The edge lengths ofi¥ induce a natural metridg (u, v)

given by the length of a shortest path betweeandv in The counting measure.Karger and Ruhl [16] considered

G. a notion of dimension that relies on the counting measure
If we have two mapg; : X — Yj andf; : X — Y5, we (in finite metric spaces): LekK be the smallest constant

define theidirect sumf; ¢ f, asthemapf : X — Y7 xY; such that B(z,2r)| < K|B(z,r)|forallz € X, r > 0.

given by f(z) = (f1(z), f2(x)). This extends naturally to  (Strictly speaking, the requirement in their definition was

a direct sum of more than two functions. enforced only whenB(z,r)| was at least some threshold
We define theaspect ratioof (X,d) to be the ratio of  ng. We ignore this for simplicity, but most of our tech-

the largest distance to the smallestin Forz € X and niques are local and allow for such restrictions.) Through-

r > 0, we define theopen ball of radius- aboutx to be out, we refer taK as theKR-constanbf X and define the

B(z,r)={y € X : d(z,y) <r}. KR-dimensiorof X asdimggr(X) = logy, K. The next
Finally, we say that a subsét of X is an e-net if proposition shows that bounded KR-dimension is a more

it satisfies (1) For every,y € Y,d(z,y) > € and (2) stringent requirement than bounded doubling dimensiasn. It

X C Uyey B(y, €). Such nets always exist for amy> 0. proof is relatively simple and is omitted from this version.

For finite metrics, they can be constructed greedily. For ar- However, bounded KR-dimension means that the counting
bitrary metrics, proof of their existence is an easy applica measure is doubling, and thus this proposition is no more

tion of Zorn’s lemma. than an instantiation of a well-known basic result: If a met-
) . . ric space(X, d) has a doubling measure then the metric is
1.3 Notions of dimension and volume doubling. (See e.g. [13] for a thorough treatment of dou-

Here we consider some notions meant to capture the “vol-bling measures.)
ume growth” of arbitrary metric spaces and discuss relation
between them.

Doubling dimension. An alternative definition for the dou-

bling constant considers diameter (of subsets) insteaalof r The converse, however, is not true; there are metrics
dius (of balls); that is, the doubling constant of a metric with bounded Assouad dimension whose KR-dimension is
space( X, d) is as the smallest such that every subset of Q(log |X|). For example, take an integer grid in the Eu-
X of diameter2r can be covered by at moatsubsets of  clidean plane, and consider only the origin and the points
diameter at most. Again, the doubling dimension of is in the annulus:/2 < ||z|| < n. This reflects certain frail-
then defined adim(X) = log, A\. The main advantage of ties in the definition of KR-dimension: Evendimgg (X)

this definition is that for any submetric C X, we have is bounded, this does not necessarily hold for submetrics
dim(Y) < dim(X). In what follows, we will find it easier ~ of X. Furthermore, the annulus itself has a bounded KR-
to work with balls rather than arbitrary sets. Thus we will dimension, but this property is not maintained when even
use the definition given earlier (i.e., every ballXhcan be one point (the origin) is added.

covered by\ balls of half the radius). It is easy to see that | oca| density. Finally, there is another natural notion of
moving between the two definitions affects the dimension volume, which has been used widely in the study of the

Proposition 1.2. For any finite metric(X, d), dim(X) <

1We are concerned mostly with finite metrics, but most of our tesul P@ndwidth of graphs [10]. Given ?mweighte(:bonneded
extend to arbitrary metric spaces via standard compactngssants. graphG = (V, E), the local density of7, denoteds3(G),



is the smallest valugs such that|B(v,r)| < gr for all Algorithm BOUNDED-DISTORTION:
v € V,r > 0. Itis easy to see that sincg is unweighted  (Initially all the edges are uncolored.)

and connected,B(v,r)| > r, hence|B(v,2r)| < 283r < 1. setk = [log, diam(T')] andYy = 0.
26| B(v, )|, which implies thatlim(G) < 4 dimgg (G) < 2.fori=1,...,kdo
4(log B(G) + 1). 3. setr; =2"%andlety; O Y;_; ber;-netof T
4. for everyy € Y; \ Y;_; (in an arbitrary orderjlo
2  Trees 5. color all the uncolored edges i, with a new color

In this section we prove Assouad’s conjecture for trees, Figure 2.1. Edge-coloring the tree T

showing that every doubling tree can be embedded with

constant distortiorinto constant dimensional, space for ) o

everyp € [1, 0], where both constants depend only on the IS ana-good coloringof T if x is proper, and for every ver-
doubling constant of the tree. Not many families of metrics 1€Xv € V' and every ancestar of v, the path fromu to

are known to have such powerful embeddings, and it may? in 7' contains a monqchromatlc portion of length at least
be surprising that two seemingly orthogonal constrairgs ar @ * d(u,v). The following lemma is standard, and thus a
needed for such a result. However, as mentioned in the in-Proof is omitted (see, for instance, [27]).

troduction, a constant distortion Euclidean embedding can | ..o 51 et — (V, E) be a rooted tree with non-
not be achieved if either of the constraints is dropped. Fur'negative edge lengths. if has ana-good coloring then
thermore, the tree requirement cannot be relaxed either, (T) < 2 forall p € [1, o]
topologically (i.e., to graphs excluding a fixed minor) or ” - T

graph-theoretically (i.e., to bounded treewidth graphs), We now define a certain class of “bad comb” metrics,
even series-parallel graphs might requirg,/Iog ) distor- ~ and then show that doubling metrics do not have submet-
tion in any Euclidean embedding (see Section 5). rics which are arbitrarily bad combs. #combis a metric

The fact that these results can be extended to constaninduced by an edge-weighted tréehaving the following
dimension is even more surprising, especially since recentproperties: It has a distinguished vertezalled thecenter
results of Brinkman and Charikar [6] (see also a short proof and k& edge-disjoint simple pathg;, ..., p; called hairs.
of [23], which even generalizes to the metrics exhibited in For a constany, the comb is called-badif for some value
Section 5 [22]) show extremely strong lower bounds on the I > max; d(c, p;), the length of every hair is in the interval
dimension required to embed simple series-parallel graphs/Z,,yL). We omit the proof of the next lemma, as it follows
into /. easily from Proposition 1.1.

On a high level, our embeddings consist of two steps. )

Without loss of generality, we can assume that the tree is-€Mma 2.2. A 27-bad k-comb (X, d) has doubling con-

: . tant\y > k1/(v+3),
rooted at some vertex. The first step partitions the edges of° X
the tree into monotone paths _(|.e., those Iylng on some rqot- It thus suffices to exhibit good colorings for tree metrics
leaf path), a process conveniently described by a coloring,, . .

) 4 “which exclude bad combs.

of the tree edges. In the second step we identify the vari-
ous colors with distinct unit-length vectors, and map each Theorem 2.3. Let0 < o < 1/60. Then every tree metric
vertexv to the sum of the vectors corresponding to the col- has either ana-good coloring or a submetric which is a
ors of the edges along the path from the root td/Ve first 4-bad (1/40c)-comb.
exhibit a simple constant distortion (but high-dimensipna .
embedding in Section 2.1; we then show how to reduce the ~We prove here the unweighted case of Theorem 2.3; the

dimensionality in Section 2.2. weighted case is more involved and thus deferred to the full
version. (Notice that subdividing edges might increase the
2.1 Constant distortion embeddings doubling constant; consider for instancerateaf star with

edge lengthgi fori =1,...,n.)
LetT = (V, E) be a tree rooted at with (positive) edge
lengths? : E — R*; by scaling, we can assume that all Proof of unweighted casd.et P, be the set of edges in the
edge have at least unit length. Leétenote the metric in-  path from the root to: in the treeT’, and letP,, be the
duced onl’. An edge-coloringof T" with colors fromC is edges on the path betweemndy. We proceed by showing
simply a mapy : £ — C. Since we have a rooted tree, an algorithm that finds an-good coloring, unless the tree
the ancestor-descendant relationship is well-defined: Nowmetric has al-bad (1/40«)-comb. The algorithm is given
amonotone pathn 7' is the simple path between a vertex in Figure 2.1.
and one of its descendants. We call an edge-colgiager Algorithm BOUNDED-DISTORTIONClearly colors every
if each color-class forms a monotone pathiZ/inFinally, x edge exactly once and thus defines an edge-colgfinvge



claim x is proper. Indeed, the algorithm maintains the in-

Theorem 2.4. Every doubling tree metri@ hasc,(T) =

variant that the colored edges form a connected subtree ofD(1).

T containing the root. It follows that the edges colored in
any single execution of step 4 form a monotone path. Since
we use a new color each time around, the claim follows.

Now assume that is nota-good. Then there exist ver-
ticesu, v with « an ancestor of andD = d(u, v) = |Pyy|
with the following property: ifu = wq,wy,...,wp = v
are thecolor-transition vertices onP.,,,,, i.e., the subpath
Puw; w4, 1S @ maximal monochromatic segment for egch
thend(w;, w;j4+1) < aD for all j. For eachw;, consider
the execution of Step 5 in whidh,,,_, ,,; fallsin P, and is
colored, and ley; denote the vertey at this point in time.
(See Figure 2.2.)

v = w

Figure 2.2. An «-bad coloring.

Let m be such thaD/4 < r,, < D/2. We now claim
that for anyj, if d(v,w;) > D/2 theny; € Y,,. Indeed,
Y., is anr,, < D/2 net, henceB(v, D/2) must contain a
net pointy’ € Y,,. Furthermore, this net point must be a
descendant ofv; in T'. It follows that all the edges in the
pathP,. are colored by the timg’ is considered as a net
point. Since that path contails,; _,.,,, we know thaty; is
considered no later thayi, and thug; € Y,,,.

Finally, consider all the vertices); with d(u,w;) <
D/10. We just proved that all the correspondipg are
in Y,,; sinceY,, is anry,-net, d(y;,yj+1) > Tm >
D/4. This implies that eitherd(w;,y;) > D/10 or
d(wjt1,y;41) > D/10, as otherwise we would contra-
dict the triangle inequalityd(y;,yj+1) < d(yj,w;) +
d(wj, wjt1) + d(wjt+1,y5+1). We can now obtain the
comb: for eacly, at least one oP,,,,, andP,,,, ., IS
a hair of length at leasb/10. (Since the edges are unit-
weighted, we can cut off the paths to a length of exactly

D/10). These hairs are edge-disjoint because they are col-

ored differently, and the total number of hairs is at least
120 _3) > 1| ettingu be the center of the comb, we
haved(u,w;) < D/10 for each haifw,,y;), so we indeed

obtained al-bad(1/40a)-comb. (For unit-weight trees we

actually get a.01-bad comb.) O

Proof. Let A = A be the doubling constant of the met-
ric T. Settingy = 2 in Lemma 2.2, the tred” does not
contain a4-bad A\%-comb. Leta = 1/40\%; since\ > 2,

the parametet is bounded above by/60, and hence The-
orem 2.3 implies thaf” has ana-good coloring. Finally,
applying Lemma 2.1 gives us an embedding with distortion
cp(T) < 80XS. O

2.2 Bounding the dimension (frugal coloring)

The algorithm of Section 2.1 gave us a constant distortion
embedding int?,, spaces; however, it used up to a linear
number of dimensions. In this section, we reduce this dras-
tically by embedding into aonstannumber of dimensions.

Theorem 2.5. Every doubling tree metric embeds into
@?(U with O(1) distortion for everyp € [1, oo].

The proof again proceeds by edge-coloring the Tree
(V, E), this time withO(1) colors; of course, the coloring
can no longer be proper, and we will have to reanalyze the
embedding. We will still make use of the ideas given in
Lemmas 2.1 and 2.3. In particular, we edge-color the tree
using only colors from a sef of |C| = A°(°e) colors;
essentially, we apply algorithfBounded-Distortion with
an unbounded number of temporary colors (not frén
and at the end of each iteration we replace the temporary
colors by colors fron€. We prove here the unweighted case
and defer the extension to weighted trees to the full version

Proof of unweighted casdzor a pathp, let ¢(p) be the
length ofp. A coloringx : V — C will be called a-
reasonabldf, for every pairu,v € V with z = Ica(u, v),
there exists a colar € C such that the following holds: If
P, is the set of paths betweenandw which are colored,
and?pP, is the same fop, then

S pep, £(P) = X ep, Up)| > - d(u,v).

It is straightforward that applying the embedding of
Lemma 2.1 to arw-reasonable coloring df' with & col-

ors yields an embedding df into E’; with distortion at
mosta. (In fact, the dimension can be reduced further to
O(% log k) by using vectorss; that are near-orthogonal;
the details are omitted from this version of the paper.) Thus
it suffices to show thdl” has am-reasonable coloring.

We now color the edges ofl" using algorithm
BOUNDED-D&D given in Figure 2.2. Let\ be the dou-
bling constant off’, and seta = 1/40\° as in Theorem
2.4. LetC be a set ofC| = \3108(68/2) — \O(logA) cojors,

To complete the proof of Theorem 2.5 it suffices to show
that this algorithm produces avy2-reasonable coloring
of T using only colors fromC. To this end, Lemma 2.7



below shows that the algorithm can be implemented with
these few colors, and Lemma 2.8 proves that the coloring
the algorithm produces is/4-reasonable. O

We will make use of the following proposition.

Proposition 2.6. Along any root-leaf path, the edges that
are colored in iterationi have total length at mo&r;. In
particular, £(p) < 2r; for every pattp € P;.

Proof of Proposition 2.6 We can assume > 1; the claim
is trivial for ¢ = 1 since2r; > diam(T"). For a leafv, let
S; » be the subset of edges alohgthat are actually colored
in iterations. Consider the edger, y) of S; ,, farthest from
the root, withy € Y; \ Y;_;. Sincey ¢ Y;_4, there exists
y € Y;_1 with d(y,y’) < r;_1 = 2r;, and furthermore,
Siw C Py \ Py. It follows thats; , is contained in the
path betweeny andlca(y, y’), and thus its length is at most

d(y,lca(y,y")) < d(y,y’) < 2r;. O

Lemma 2.7. Step9 of algorithm Bounded-D&D can be
done greedily withC| = A310a(68/a)

Proof of Lemma 2.7The proof idea is very simple: For
each pattp € P;, it suffices to show that the number of
paths that aradjacentto p and were permanently colored
beforep is less thanC| — 1, and hence we can colpgreed-
ily. We will, in fact, show something slightly stronger: We
show that the number of pathpé € P} with p < p’ is at
most|C| — 1. Letz € p be its endpoint farther from the root.
Letp’ € PF be adjacent tp, and lety’ € p’ N'Y; be the net
point that causegd’ to be colored (in some iteration no later
thanz). We now split the pathg’ into two types.
Type L:4(p’) < Ir,. In this case,y’ is close to
z; quantitatively,d(z,y') < {4(p) + d(p,p’) + £(p") <
2r; + B + Ly, < 347, Hence each such paghcorre-
sponds to a distinct point’ € B(z, %ri). But ¢’ belongs
to ther;-netY;, so Proposition 1.1 implies that the number
of such pointsy’, and hence the number of paths is at
mostA/leg68/a1 <« |C|/2.
Type 2: {(p') > %rq These pathg’ form hairs of
length at Ieastlalri in a comb centered at (Since we are

Proof of Lemma 2.8Let u,v € V with z Ica(u,v),
and assume without loss of generality that d(z,u) >
3d(u,v). Recall thaty = 1/40A% < 1/60; hence Theorem
2.4 guarantees a monochromatic pathf length at leastvt
betweenr andu. We will show that the lengths of all the
paths between: andv with color x(p) add up to at most
at/2, which immediately implies that is «/4-reasonable,
as desired.

Consider any maximal monochromatic pathbetween
xz andv with x(p) = x(p'), and leti’ be the iteration in
which p’ is colored. We claim that > ig + 2 whereig is
the maximum index such that,;, > at. (We may assume
thatat > 1 and thusr;, < af < 2r;,.) Assuming this
claim, let us prove the lemma. For every such valu¢ of
Proposition 2.6 implies that the corresponding pathsave
total length at mos2r;,; now summing over all values >
10 + 2 shows that the total length of paths having col¢p)
isatmosty ;. ; 4o 2ri < Arigys =1, /2 < at/2.

It remains to prove the claim. Assume for contradiction
thati’ < ip + 2. We now have two cases, depending on the
iteration: at whichp was colored. The first case is when
i’ <i,andhence’ € P;. Clearly,d(p,p’) < d(u,v) < 2t,
and Proposition 2.6 implies that < 2r;; putting the two
together givesi(p,p’) < %ri. Hencep, p’ are adjacent at
iterationi and cannot have the same color, which contra-
dicts the assumption that(p) = x(p’). The second case
is wherei < ¢ < iy + 2, in which casep € P;. A simi-
lar argument applies; sineép,p’) < 2t < 4r; < 8y,
we have thap, p’ are adjacent at iteratiofi, giving us the
desired contradiction. O

3 Clustering

In this section, we give decomposition theorems (for gen-
eral metrics) whose performance behaves smoothly in terms
of their doubling dimension, yielding greatly improved re-
sults when the dimension is bounded.

3.1 The padded decomposition

First, we describe a useful low-diameter decomposition for
metric spaces. Under other guises, such decompositions
are the main tool in many embeddings, and have numerous

in a unit-weighted tree, we can truncate these paths to 9eliher applications

the correct length.) The distance of each hair from the cen-
terz is d(z,p') < U(p) + d(p,p') < 2r; + Epr; < Lp,.
Lemma 2.2 implies thatX cannot have al.01-bad \3-
comb, and thus the number of such hairs (and thus the num
ber of pathg/) is less tham\* < |C|/4.
Hence the total number of pathps € P;* that are adja-

cent to any single patp € P; is less tharg|C| < |C| — 1,

and we can extend the coloringo O

Lemma 2.8. AlgorithmBounded-D&D computes amv/4-
reasonable coloring.

For a metric spacéX,d) and a subsef C X, let
diam(.S) denote the diameter of the submetric induced on
S. Let P be a collection of all the partitions of. Given a

partition P € P andz € X, define
wp(x) = sup{t : 3C € P with B(z,t) C C}.

Definition 3.1. An (r,¢)-padded probabilistic decomposi-
tion of a metric(X, d) is a distributiony overP satisfying:

1. Bounded diameterdiam(C) < r for every clusteiC
in every partitionP in the support of.



Algorithm BouNDED-D&D: (Initially all the edges are uncolored.)

1. setk = [log, diam(7T")] andYy = 0.
2.fori=1,...,kdo
setr; = 28— and letY; D Y;_; ber;-net of T..

let P; be the set of temporarily colored paths.

©oNU AW

for every pointy € Y; \ Y;_1 (in an arbitrary orderjlo
temporarily color all the uncolored edgeship with a single new color.

let P* = P; U {all paths colored with a color frorf}.
remark pathsp;,ps € P} areadjacentwrittenp; < po, if d(p1,p2) <
recolor the (temporarily colored) pathsiwith colors fromC

16

Eri.

such thaty(p1) # x(p2) for all p1, p2 € P} with p; < po.

Figure 2.3. Frugal edge-coloring of the tree T

2. Padding:Pr,[rp(z) > er] > i forall z € X.

Such decompositions have been given earlier for general, _

metrics, wherd /e = O(log |X|). We show that such de-
compositions exist where depends only on the doubling

and the latter quantity is at mo&t dim(X). Finally, note
that whenB(x, t) is not cut, we haverp(xz) > t. Setting
we see thaPr[rp(z) > t] > 1 as desired.

4r
64 dimc (X))’
O

dimension ofX. The probabilistic technique we use isin- 3 2 | ocality and dimension

spired by the analysis of [7].

Theorem 3.2. Let (X, d) be a finite metric space. Then
for everyr > 0 there exists arr, =)-padded probabilistic
decomposition oX with 1/ < 64 dim(X).

Proof. For ease of notation, we construc{4, ¢)-padded
decomposition. LefV be anr-net of X. Let o be a ran-
dom permutation oV, and choose a radius uniformly at
random from(r, 2r]. For eachy € N, define a cluster

Cy={z€ X :2€B(y,R) ando(y) < o(2)
forall z € N withz € B(z,R)}.

Clearly,diam(Cy) < 4r. Finally, letP = {C}},cn and
note it is a partition ofX becauséV is anr-net andR > r.

Now fix a pointz € X and somet € [0,r]. Let
W = B(z,2r +t) N N, and note thatn = || < 84im(7T)
by Proposition 1.1. Arrange the points, ..., w,, € Win
order of increasing distance from and let/;, be the inter-
val [d(x,wy) —t, d(z, wy)+t]. Let us say thaB(x, t) is cut
by a clusterC,,, if Cy,, N B(z,t) # 0 but B(z,t) ¢ Cy, .
Finally, write & for the event thatv is the minimal ele-
ment inW (according tar) for which Cy,, N B(z,t) # 0
andC,, cutsB(z,t). Then,

Z Pr[gk]
k=1

m

= Y Pr[Re L] Prl&k| R € ]
k=1

Pr[B(z,t)iscul <

IA
|

Decompositions like that given by Theorem 3.2 have seen
numerous applications in recent years. Often, one wants
a small distribution, i.e. a multi-set ofi partitionsD =

[Py, ..., Py] such that the uniform distribution d satis-

fies condition (2) of Definition 3.1.

Usually, this is accomplished by choosimg= ©(logn)
independent partitions according to a Chernoff bound
then yields the desired result. Here, we show that=
O(dim(X)logdim(X)) partitions suffice. The idea is to
use the Lo@sz Local Lemma along with some ideas bor-
rowed from [18] to exploit the locality of the padded de-
composition.

Theorem 3.3. For a metric space(X,d), let 1/e =
512 dim(X). Then for anyr > 0, there exists a multi-set
D =[P,...,Pn] ofm = O(dim(X)log dim(X)) parti-
tions such that

1. ForeveryC € |J;*, P;, diam(C) < r.

2. If pis the uniform distribution o then for allz € X,

P;r[ﬂp(:n) >er] >

N =

Proof of Theorem 3.3Let » > 0 be fixed and leju be as

in Theorem 3.2 (note that depends om). Let Py, ..., P,

be partitions ofX chosen according tp (for somem to

be chosen later). Far € X, letY, be the number of’;

for whichwp, (z) < 2er. The probability of the latter event
is at most% according to the analysis of Theorem 3.2, and
thusEY, < . Finally, let&;" be the event that, > 5 =
4EY,. A standard Chernoff bound (see e.g. [1]) shows that
Pr[£™] < (9/10)™.



Claim 3.4. If N is aner-netinX thenPr [/\yeN ﬁ} > 0. By adapting the analysis of the above proof we can prove
the following theorem. In order to reduce the dimension to
Notice that the above claim suffices to prove the Theo- O(logn), we bound the distortion among points in certain
rem. Indeed, ifrp(y) > 2¢r for everyy € N, then by the  nets using the Ldasz Local Lemma, and deduce from that

triangle inequalityrp () > er foreveryz € X. a bound on the distortion among all points. The- ¢ dis-

In proving the claim, we will require the following sym-  tortion is achieved by suitably modifying various constant
metric form of the Loasz Local Lemma (see, e.g., [1]). in the proof.
Lemma 3.5 (Lovasz Local Lemma). Let 4,,..., A, be

Theorem 4.2. For any fixede > 0, every doubling metric

events in an arbitrary probability space. Suppose that each (1 + ¢)-embeds intg2os ™|

A; is mutually independent of all but at maesother events
Aj, and suppose thar[4;]) < pforall 1 < i < n. If ; : ;
ep(d + 1) < 1 thenPr[A% 3] > 0. 4.2 Embeddings via clustering
) , ) In this section, we obtain embeddings that degrade grace-

We now claim that€j" is mutually independent of all - ¢1y with the doubling dimension; these are based on the
eventsE,? for which d(y,y’) > 4r. To see this, note that  4ecomposition theorems of Section 3. The next theorem
every cluster formed undgr (according to Theorem 3.2) ;se5 an embedding technique due to Rao [32]. Our analysis
has diameter at most thus no such cl_uster can simultane- requires considerably more effort since we must keep tight
ously cutB(y,r) and B(y', r); the claimed independence  .,nyrol on the dimension of our embedding (this improves
follows. the dimension of the host space by a factofélog n), say,

It follows that we can upper bound the number of 4 qoubling metrics, and is essential for Section 4.2.1).
events that are non-mutually independent&gf by d =

|B(y,4r) N N| < dim(X)°dim(X) (by Proposition 1.1).  Theorem 4.3. For any metric(X, d) and anyp € [1, o),
Now if Pr[&"] < ﬁ, then the local lemma implies
Claim 3.4. But this is easily accomplished by choosing p(X)=0 (dim(X) : (logn)min(%’%)) :
somem = O(dim(X) log dim(X)). O
. ) Proof (outline). Let (X, d) be an arbitrary metric and fix a

4 Upper bounds for doubling metrics  valuer > 0. We discuss the cage= 2; the proof for other

. . . values ofp is similar. We produce amap, : X — R* with
4.1 Bourgain-style embeddings via nets k — O(dim(X) log dim(X)) as follows. LetP;,..., Py,
Here, we give a simple proof that doubling metrics em- be the multi-set of decompositions guaranteed by Theorem
bed into Euclidean space with(/logn) distortion. This 3.3. Fixsome € {1,...,m}, and for every clustef’ € P;,
is based on Bourgain’s proof for general metrics, with the choose a valuegn(C) € {—1,+1} uniformly at random.
added twist that we take distances from subsetsei§ Following Rao [32] (see also [28, Ch. 15]), define the map
rather than subsets of the entire metric. A full proof is de- ¢; : X — R by

ferred to the full version.
pi(z) = Y sgn(C) - d(z, X \ C).

Theorem 4.1. For any n-point doubling metric(X, d), Gep,

the distortion required to embed into ¢ is ca(X)
O(vlogn). Finally, setd, = —-p1 @ - & ¢y

Proof (sketch).The idea of the embedding is as follows., _ L€te beasinTheorem 3.3, ¥, be ang;-net, and set

For every scale®, k € Z, we construct a mapy : X — £» Sy = {{z,y} € N? : d(x,y) > r}. For {x’%} € Sy,
given by oi () = /1721 (d(z, A)) acy,, whereYj, is let Ex}.y be the event thaf®,.(z) — @,.(y)]| < ger. The
the set of all subsets of som&-net in X. The final map following lemma is deferred to the full version.

is basically the normalized direct sum of all such maps, -
i.e. ©,2-3"¢ly, | though standard considerations must be -emMma 4.4. Pr [/\{m,y}esr 5179] > 0. In other words,
made to achieve a distortion which depends onlyxaand ~ there exists a mapb, such that for all{z,y} € S,
not the aspect ratio of . O 1@, (z) — @ (y)|| > ger.

It turns out that the dependence of the distortion on  For anyi € Z, let ®() = &, and setb = @;c; 0.
dim(X) in the above theorem is exponential, and its worst- O
case performance is much worse than Bourgdii(kg n)
bound. We will remedy this in the next section, using the  The proof that® satisfies the statement of Theorem 4.3
decomposition theorems of Section 3. appears in the full version.



4.2.1 Assouad’s Theorem

Recall that for0 < o < 1, (X, d*) is the metric that arises
from a metric( X, d) by raising all distances to the power

In his seminal paper [2], Assouad proved the following (per-
haps surprising) result: For any doubling metric, and every
fixed0 < a < 1, there exist constants and D (depend-
ing only on the doubling constant df) such that( X, d*)
embeds intds with distortion at mosD.

Although Assouad’s proof is easily converted to an al-
gorithm, the parameteris and D grow exponentially with
dim(X). We present an algorithmic version based on the
formation of coordinates in Section 4.2 and a trick of As-
souad [2] to avoid interaction between scales. The vatues
andD that we achieve are both nearly lineardim(X).

Theorem 4.5. Let (X, d) be an arbitrary metric, and fix
avalue0 < a < 1. Then there exist values
O(dim(X)logdim(X)) and D = O(dim(X)) such that
(X,d*) can be embedded int§ with distortion at mosD.

We now show the construction of the embedding. A
proof is deferred to the full version. Let = m(«), choose
{e1,...,en} to be an orthonormal basis Bf"™*, and extend
it to an infinite periodic sequende; };cz. Now simply de-
fine® : X — R* by

O(z) =Y 2400 (z) @ ;.

1EL
5 Lower bounds on distortion

In this section we show that the dependencenoim the

By summing appropriately weighted versions of this in-
equality over all six-point subsets corresponding to “egpi
of G4, it is possible to obtain a simple Poinéanequality
which immediately yields the desired lower bound.

Figure 5.4. The lower bound graphs.

6 Discussion

Applications. We briefly mention several algorithmic ap-
plications of our results, deferring details to the final-ver
sion. Using the decomposition theorems in Section 3, we
can show that doubling metrics adngit, v/log n)-volume
respecting embeddings for &] doubling metrics can also

upper bounds of Theorems 4.1 and 4.3 is necessary. In factpe embedded into distributions dbublingtrees (HSTs of

the next theorem shows that for Euclidean embeddings (

2) of doubling metrics, the aforementioned upper bounds
are existentially tight. (It extends easily to a tight lower
bound for any fixegh > 2.)

Theorem 5.1. There exists a family of metriqs7y, d)
which are uniformly doubling and series-parallel, suchttha

c2(Gg) = Q(y/1log |Gkl).

We now describe the metri¢&:y, di.); they are shortest
path metrics on weighted series-parallel graghgconsists
of a single edge of weight 1G, 1 is obtained fromGy
by replacing every edge ifu,v) in G with the six-edge
configuration shown in Figure 5.4. The weight of each new
edge ist~*. Itis easy to see thdts}, di) is a submetric of
(Gry1,drs1).

In[19, 20], it is shown that a similar family of metrics is
uniformly doubling (see [21] for a very simple proof). The
lower bound follows from an appropriate Poinganequal-
ity whose basis is the following geometric fact: For any six
pointss, t,a,b, c,d € Lo, we have

[Is =t +1[b = dlI* < 4(|[a — s[[* + [le — t]*)
+2(lla = bl + [|b—cl[* + [|e — d||* + [|d — al[*).

bounded degree) with distortiab(log n), and they embed
into the line with constant average distortion. These tssul
can be used to improve approximation algorithms and on-
line algorithms for doubling metrics.

The approximation ratio of the minimum bandwidth (lin-
ear ordering) problem can be improved using our results to
O(log? n) for doubling trees an@® (log® n) for general dou-
bling graphs, improving over the general casedygn
and+/log logn factors respectively. Furthermore, our tree
coloring in conjunction with a modification of [11] show
that the bandwidth of a graph with local dengitys at most
O(B"? log? n).

Distance-labeling®f graphs assign labels to vertices so
that the distance between two vertices can be computed (ap-
proximately) from their labels alone. For simplicity, ass
that all pairwise distances are integers and are bounded by
A. Theorem 4.2 can then be used to give labels for dou-
bling metrics withO(log nlog A) bits, allowing to approx-
imate the distances within@ + ¢) factor. This has an ex-
ponential dependence @t (X ), which can be improved
to O(dim(X) log A logn (2)4im(X)) bits per label for any
0 < e < 1, using techniques from Section 3.

Finally, the techniques of Section 3 can be used to exhibit



an O(dim(T"))-approximation for the 0-extension problem [15] W. B. Johnson and J. Lindenstrauss. Extensions of hifisenap-
where(T, d) is the metric on terminals.

Dimensionality reduction. In previous sections, we stud-
ied the distortion of general metrics in terms of their dou-
bling dimension. Here, let us consider afpoint setX C

¢z with dim(X)

O(1). The Johnson-Lindenstrauss flat-

tening lemma [15] tells us that there isla+ ¢ embedding

of X into 520(6‘210%”). We pose the following intriguing
guestion which was asked independently in [21].

Question 1. Can every doubling submetric éf be O(1)-
embedded intey "2

(16]

(17]

(18]

(29]

It can be shown that no linear projection can achieve [20]
such a result (as in [15]), but there are a number reasons to
believe that its resolution might be positive; these are dis [21]
cussed in the full version.
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