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Abstract

Recall the classical hypothesis testing setting with two sets of probability distributions P and Q.
One receives either n i.i.d. samples from a distribution p ∈ P or from a distribution q ∈ Q and wants to
decide from which set the points were sampled. It is known that the optimal exponential rate at which
errors decrease can be achieved by a simple maximum-likelihood ratio test which does not depend on p
or q, but only on the sets P and Q.

We consider an adaptive generalization of this model where the choice of p ∈ P and q ∈ Q can
change in each sample in some way that depends arbitrarily on the previous samples. In other words, in
the kth round, an adversary, having observed all the previous samples in rounds 1, . . . , k − 1, chooses
pk ∈ P and qk ∈ Q, with the goal of confusing the hypothesis test. We prove that even in this case, the
optimal exponential error rate can be achieved by a simple maximum-likelihood test that depends only
on P and Q.

We then show that the adversarial model has applications in hypothesis testing for quantum states
using restricted measurements. For example, it can be used to study the problem of distinguishing
entangled states from the set of all separable states using only measurements that can be implemented
with local operations and classical communication (LOCC). The basic idea is that in our setup, the
deleterious effects of entanglement can be simulated by an adaptive classical adversary.

We prove a quantum Stein’s Lemma in this setting: In many circumstances, the optimal hypothesis
testing rate is equal to an appropriate notion of quantum relative entropy between two states. In particular,
our arguments yield an alternate proof of Li and Winter’s recent strengthening of strong subadditivity
for von Neumann entropy.

Keywords: Hypothesis testing, quantum information theory, quantum Stein’s Lemma, subadditivity, von
Neumann entropy

I. INTRODUCTION

Asymmetric hypothesis testing is the problem of distinguishing between two sources where one wants
to minimize the rate of false positives (type-1 error) subject to a constraint on the rate of false negatives
(type-2 error). In the case of n i.i.d. samples from a classical or quantum source, a central result is the
Chernoff-Stein Lemma [13], [31], [46] which states that for any constant bound on the type-2 error, the
optimal type-1 error decreases at an exponential rate whose exponent is given by the classical (respectively,
quantum) relative entropy. Similar results hold even when we generalize the problem so that the sources
are described by an unknown parameter and one needs to design a test that works for any choice of the
parameter [32].

Part of this work appeared in the Proceedings of the 5th conference on Innovations in Theoretical Computer Science (ITCS
2014).

Caltech
MIT
University of Washington



First main result: Adversarial hypothesis testing. In the first part of this paper (Section II), we
generalize this problem further to allow the parameter to vary adaptively from sample to sample. Since we
will allow the parameter to depend arbitrarily on previous samples, this can be thought of as adversarial
hypothesis testing. That is, we wish to devise a test that can distinguish between samples from two
different sets even against an adversary that can choose the distribution in each round based on which
samples have previously been observed.

There are some simple cases where it is not hard to see that this additional power cannot help the
adversary. For example, suppose we are given a coin with heads probability p and wish to distinguish
between the cases where p ∈ [0, 1/3] and where p ∈ [2/3, 1]. It is straightforward to show that this general
problem is no harder than simply distinguishing a 1/3-biased coin from a 2/3-biased coin; equivalently,
the adversary gains no advantage from the ability to be adaptive. On the other hand, distinguishing
between the two settings p ∈ {1/3, 2/3} and p = 1/2 is clearly impossible, as the adversary can simply
choose with probability 1/2 to flip the 1/3-biased coin, and with probability 1/2 to flip the 2/3-biased
coin. The resulting distribution of samples is indistinguishable from the one arising from p = 1/2. This
stresses the role of convexity since even a non-adaptive adversary can simulate a convex combination of
distributions by choosing randomly among them.

We will prove in Theorem 2 that this property is sufficient to characterize the optimal error rate
for asymmetric hypothesis testing against an adaptive adversary. Specifically, if the two sources vary
over convex sets of probability distributions, then the problem is no harder than in the i.i.d. case. Our
Theorem 7 also establishes a version of this claim for symmetric hypothesis testing. These two results
can be thought of as adversarial versions of the classic Chernoff-Stein Lemma and Chernoff’s Theorem,
respectively. Results in this direction were previously established for arbitrarily varying sources [19]
which can be viewed as a special case of a non-adaptive adversary.

Quantum hypothesis testing, entanglement, and additivity. One of our main applications for our
adversarial Chernoff-Stein Lemma is in quantum hypothesis testing, when the states to be distinguished
need not be i.i.d. Indeed, a recurrent challenge in quantum information theory is that even apparently
i.i.d. problems can involve complicated entangled states (meaning that they cannot be written as a convex
combination of independent states). For example, the quantum capacity of an i.i.d channel requires
maximizing over all n-component inputs, and in general it is known that achieving the capacity requires
using states that are entangled across channel uses [16], [26]. This phenomenon in quantum information
theory—where information-theoretic quantities for n copies of a system are not simply n times the
one-copy quantity—is known generally as the “additivity” problem.

A similar additivity problem arises in quantum hypothesis testing when we wish to distinguish many
copies of a fixed state against a family of states that include non-i.i.d. states. One important example is
the relative entropy of entanglement ER, which is a method of quantifying the entanglement in a state
ρ as the minimum of its relative entropy with respect to any separable (i.e. non-entangled) state. Here,
ρ is a multipartite state (e.g., shared between systems A,B,C) and separability refers to this partition.
However, to establish the asymptotic hypothesis testing rate of ρ against separable states, we need to
compare n copies of ρ against states that are separable with respect to our original partition, but not
necessarily across the different copies. In our example, ρ⊗n lives on systems A1, B1, C1, . . . , An, Bn, Cn
and we need to compare against states that are separable across the A1 . . . An : B1 . . . , Bn : C1 . . . Cn
partition, but possibly entangled within the A1, . . . , An systems (and the B1, . . . , Bn and C1, . . . , Cn
systems). Indeed, such entanglement across copies is known to be necessary to compute the relative
entropy of entanglement, since examples exist [56] where ER(ρ⊗ ρ) < 2ER(ρ).

Second main result: Restricted measurements. A further difficulty arises in the quantum setting when
we consider restricted families of measurements, such as those arising from locality restrictions. Here, too,
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the optimal measurement can be entangled across copies. Moreover, since the hypothesis testing problem
involves maximizing distinguishability over allowable measurements and minimizing over states, it is
possible for entanglement to either increase or decrease the rate.

One particularly relevant example for our work involves distinguishing many copies of a state ρ
against a general separable state, using measurements from a class (such as 1-LOCC, defined below)
which preserves the set of separable states. This distinguishability scenario was studied extensively in
[48], [11], [40], [10]. Though it may initially seem to be an obscure question, it has found applications to
understanding the quantum conditional mutual information [11], to channel coding [42], and to classical
algorithms for separability testing [12] and the small-set expansion problem [2].

The main result of Section III provides quantum versions of the Chernoff-Stein Lemma and Chernoff’s
theorem for restricted measurements. The main idea is that the deleterious effects of entanglement in this
setting are no worse than what could be achieved by an adaptive adversary. Thus quantum analogues
follow as a corollary of our classical results. One application of these results is an alternate proof of the
improved strong subadditivity inequality of Li and Winter [40].

Adaptive measurements. The main results in our paper show that certain variants of hypothesis testing
are no more difficult than the original problem. Namely, in the classical case, we can allow an adversary
to adaptively change the distribution without decreasing the hypothesis testing exponent, and in the
quantum case, we can allow entangled states (under some conditions) while again achieving the same
performance. A natural complementary question is whether hypothesis testing rates can be improved
by allowing the distinguisher a broader family of tests. For example, classically one could consider the
problem of distinguishing between two channels (stochastic maps) instead of between two probability
distributions, and allowing the distinguisher to adaptively change the inputs to those channels. In the
quantum setting, one might consider the problem of distinguishing ρ⊗n from σ⊗n using entangled and/or
adaptive measurements.

This sort of adaptivity often does not help. When distinguishing two classical channels, there is
essentially no advantage to using varying inputs [29]. On the other hand, in the quantum case, when given
n copies of a state, entangled measurements across the n copies can improve the hypothesis-testing rate
(see (55) and the surrounding discussion). However, if measurements are forced to be separable across
the n copies, then adaptivity is again of no help [29] (see also [28, Section 3.5]). Thus the results in
[29], [28] concern quite a different model (adaptivity of the tester and not of the adversary), and are thus
incomparable to ours. Note that we also consider a different notion of separability, corresponding to cuts
of the form A1 . . . An : B1 . . . Bn instead of A1B1 : A2B2 : · · · : AnBn.

II. HYPOTHESIS TESTING AGAINST AN ADAPTIVE ADVERSARY

A. Asymmetric hypothesis testing

Fix two distributions p and q over a finite domain Ω. Given i.i.d. samples X1, X2, . . . , Xn from a
distribution r ∈ {p, q}, the goal is to design a test which distinguishes the two possibilities based on
the sample. The classical Chernoff-Stein Lemma characterizes the optimal exponential rate of error decay
achievable in the one-sided error setting.

Consider any acceptance region An ⊆ Ωn and the corresponding error probabilities αn = pn(Acn) and
βn = qn(An), where we use Sc to denote the complement of a set S. Then for 0 < ε < 1, define

βεn := min
An⊆Ωn

αn<ε

βn ,

and denote the optimal error exponent

Eε(p, q) := lim
n→∞

− log βεn
n

.
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The following well-known lemma characterizes Eε in terms of the relative entropy (see, e.g., Theorem
11.8.3 of [15]).

Lemma 1 (Chernoff-Stein Lemma). Consider any two distributions p and q over a finite domain Ω. Then
Eε(p, q) = D(p ‖ q) for any ε ∈ (0, 1).

Here, D(p ‖ q) is the relative entropy, given by

D(p ‖ q) :=
∑
x∈Ω

p(x) log
p(x)

q(x)
,

and we take D(p ‖ q) :=∞ when there is an x ∈ Ω such that p(x) 6= 0 but q(x) = 0.

The adaptive setting. Suppose now that P,Q ⊆ RΩ are closed, convex sets of probability distributions.
An adaptive P -strategy p̂ is a collection of functions {p̂k : Ωk−1 → P : k = 1, 2, . . .}. Let A(P ) denote
the set of all adaptive P -strategies. For x ∈ Ωn, we denote

p̂(x) :=

n∏
k=1

p̂k(x1, . . . , xk−1)(xk) .

As before, let An ⊆ Ωn be an acceptance region, but now we define

αn := sup
p̂∈A(P )

p̂(Acn) ,

and
βεn := min

An⊆Ωn

αn<ε

sup
q̂∈A(Q)

q̂(An) .

Foor ε ∈ (0, 1), we denote the adversarial one-sided error exponent by

Eεadv(P,Q) := lim
n→∞

− log βεn
n

.

Observe that for single distributions p, q ∈ RΩ, we have Eεadv({p}, {q}) = Eε(p, q).

Theorem 2 (Adversarial Chernoff-Stein). Let Ω be a finite domain. For any closed, convex sets of
probability distributions P,Q ⊆ RΩ and for any ε ∈ (0, 1), we have

Eεadv(P,Q) = min
p∈P,q∈Q

D(p ‖ q). (1)

Thus in the asymptotic regime, adversarial adaptive hypothesis testing is no harder than the i.i.d. setting.
Indeed, when the distributions in P have full support, the hypothesis test used is a simple Neyman-Pearson
test for p, q minimizing the RHS of (1). This result was previously known in the non-adaptive case, where
it is sometimes referred to as composite hypothesis testing [38].

Proof of Theorem 2. We may assume that P and Q are compact; the general case can be reduced to
this one by considering exhaustions of P and Q by compact convex sets. Let p∗ ∈ P and q∗ ∈ Q be
minimizers of D(p ‖ q) as p and q vary over P and Q, respectively. Since P and Q are compact and
D(p ‖ q) is lower semi-continuous, such p∗, q∗ exist.

By considering non-adaptive strategies that simply play p∗ and q∗ in each coordinate, one sees that

Eεadv(P,Q) ≤ Eεadv({p∗}, {q∗}) = Eε(p∗, q∗) = D(p∗ ‖ q∗), (2)

where the last equality is Lemma 1. Thus we need only prove that

Eεadv(P,Q) ≥ D(p∗ ‖ q∗). (3)
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Note that if D(p∗ ‖ q∗) = 0, then (3) holds vacuously, thus we may assume that P,Q are disjoint.
We will establish that (3) holds under the assumption

supp(p) = supp(q) = Ω ∀p ∈ P, q ∈ Q. (4)

For any distribution p over Ω, write pθ := (1 − θ)p + θ 1Ω

|Ω| , and denote Pθ := (1 − θ)P + θ 1Ω

|Ω| and
Qθ := (1−θ)Q+θ 1Ω

|Ω| . Since P and Q are disjoint compact convex sets, Pθ and Qθ are disjoint compact
convex sets for θ > 0 sufficiently small. At the end of the argument, we will prove the following lemma.

Lemma 3. For every pair of compact convex sets P,Q ⊆ RΩ and ε ∈ (0, 1), it holds that

Eεadv(P,Q) ≥ lim
θ→0
Eεadv(Pθ, Qθ).

Thus having established (3) under the assumption (4), we can conclude that it holds for general compact
convex P and Q by writing

Eεadv(P,Q) ≥ lim
θ→0
Eεadv(Pθ, Qθ) ≥ lim

θ→0
D(p∗θ ‖ q∗θ) ≥ D(p∗ ‖ q∗),

where {p∗θ, q∗θ} is a sequence of minimizers for {D(pθ ‖ qθ) : pθ ∈ Pθ, qθ ∈ Qθ}, and the latter inequality
follows from lower semi-continuity of (p, q) 7→ D(p ‖ q).

So let us now assume (4). For n ∈ N and δ > 0, define an acceptance region

An,δ =

{
x ∈ Ωn : log

p∗(x1)p∗(x2) · · · p∗(xn)

q∗(x1)q∗(x2) · · · q∗(xn)
≥ n(D(p∗ ‖ q∗)− δ)

}
.

Our first goal is to argue that for every δ > 0, we have

lim
n→∞

inf
p̂∈A(P )

p̂(An,δ) = 1. (5)

We will then show that for any adaptive Q-strategy q̂, we have

q̂(An,δ) ≤ e−n(D(p∗ ‖ q∗)−δ) . (6)

Once these are proved, letting δ → 0 yields the desired claim.
Toward proving (5), observe that, for every δ > 0, limn→∞(p∗)n(An,δ) = 1 by the law of large

numbers. The following lemma will allow us to show that the same is true for p̂ ∈ A(P ).

Lemma 4. If (4) holds, then for any p ∈ P ,∑
x∈Ω

p(x) log
p∗(x)

q∗(x)
≥
∑
x∈Ω

p∗(x) log
p∗(x)

q∗(x)
.

Proof. By Theorem 11.6.1 in [15], we have

D(p ‖ q∗) ≥ D(p ‖ p∗) +D(p∗ ‖ q∗) .

Observing that D(p ‖ q∗) − D(p ‖ p∗) =
∑

x∈Ω p(x) log p∗(x)
q∗(x) , we see that this is precisely the desired

inequality.

Now, for x ∈ Ω, define L(x) := log p∗(x)
q∗(x) . Note that (4) implies

m = m(p∗, q∗) := max {|L(x)| : x ∈ Ω} <∞. (7)

Moreover, Lemma 4 yields

Ep[L(x)] ≥ Ep∗ [L(x)] = D(p∗ ‖ q∗), ∀p ∈ P. (8)
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Let p̂ ∈ A(P ) denote some adaptive P -strategy. Consider a sequence of random variables {Xk}
distributed according to p̂ (i.e., Xk is sampled according to the measure p̂k(X1, X2, . . . , Xk−1) ∈ P ),
and the corresponding martingale difference sequence

Dk := L(Xk)− E[L(Xk) | X1, . . . , Xk−1] .

(Recall that the defining property of a martingale difference sequence is that E[|Dk|] is finite and
E[Dk | X1, . . . , Xk−1] = 0 for any X1, . . . , Xk−1.) Since the differences are uniformly bounded (cf.
(7)), orthogonality of martingale difference sequences yields

E

(
n∑
k=1

Dk

)2

=

n∑
k=1

E[D2
k] ≤ 4m2n .

Chebyshev’s inequality then implies that for any δ > 0,

P

(
n∑
k=1

Dk ≥ −εn

)
≥ 1− 4m2

δ2

1

n
. (9)

On the other hand, (8) implies that for each k, one has E[L(Xk) | X1, . . . , Xk−1] ≥ D(p∗ ‖ q∗).
Combining this with (9) yields

p̂(An,δ) = P

(
n∑
k=1

L(Xk) ≥ n(D(p∗ ‖ q∗)− δ)

)
≥ P

(
n∑
k=1

Dk ≥ −δn

)
≥ 1− 4m2

δ2

1

n
. (10)

Noting that the latter expression goes to 1 as n → ∞ (uniformly in p̂) confirms (5). We now turn to
verifying (6).

Lemma 5. For any q ∈ Q, we have ∑
x∈Ω

q(x)
p∗(x)

q∗(x)
≤ 1 .

Proof. For λ ∈ [0, 1], write qλ = λq + (1 − λ)q∗. Since q∗ is the minimizer of D(p∗ ‖ q) for q in the
convex set Q, we know that the derivative of D(p∗ ‖ qλ) at λ = 0 is non-negative.

Calculate
d

dλ
D(p∗ ‖ qλ) =

∑
x∈Ω

p∗(x)
d

dλ
log

p∗(x)

qλ(x)

= −
∑
x∈Ω

p∗(x)
d

dλ
log

(
λq(x) + (1− λ)q∗(x)

p∗(x)

)
= −

∑
x∈Ω

p∗(x)
q(x)− q∗(x)

λq(x) + (1− λ)q∗(x)
.

Using the fact that the derivative is non-negative at λ = 0 yields∑
x∈Ω

p∗(x)q∗(x)

q∗(x)
≥
∑
x∈Ω

p∗(x)q(x)

q∗(x)
,

but the left-hand side is equal to 1, yielding the desired result.

With the preceding lemma in hand, we finish the proof of (6). Fix some adaptive Q-strategy q̂. By
Markov’s inequality,

q̂(An,δ) ≤ e−n(D(p∗ ‖ q∗)−δ) Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
. (11)
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We now use the fact that, by Lemma 5, the sequence of likelihood ratios
∏n
i=1

p∗(xi)
q∗(xi)

is a supermartingale
with respect to q̂. (Recall that a sequence X1, X2, . . . is a supermartingale if E[Xn|X1, . . . , Xn−1] ≤ Xn−1

for all choices of n and X1, . . . , Xn−1.) In particular,

Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
= Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)
Eq̂n(x1,x2,...,xn−1)

p∗(x)

q∗(x)

]
≤ Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)

]
≤ · · ·
≤ 1, (12)

where in the second line we have applied Lemma 5 to the distribution q̂n(x1, x2, . . . , xn−1) ∈ Q, and
then we have continued by induction. Combining this with (11) completes our verification of (6) and
hence our proof of the theorem.

The proof of the theorem then follows from Lemma 3.

Proof of Lemma 3. Let (p∗θ, q
∗
θ) ∈ Pθ × Qθ be a pair minimizing D(pθ ‖ qθ) over (pθ, qθ) ∈ Pθ × Qθ.

Note that D(p∗θ ‖ q∗θ) <∞ for θ > 0.
For any δ > 0, define the acceptance region

Aθn,δ :=

{
x ∈ Ωn : log

p∗θ(x1)p∗θ(x2) · · · p∗θ(xn)

q∗θ(x1)q∗θ(x2) · · · q∗θ(xn)
≥ n (D(p∗θ ‖ q∗θ)− δ)

}
.

Let p̂ and q̂ denote an adaptive P -strategy and Q-strategy, respectively, and define adaptive Pθ and
Qθ-strategies by

(p̂θ)k(x1, . . . , xk−1) = (p̂k(x1, . . . , xk−1))θ

(q̂θ)k(x1, . . . , xk−1) = (q̂k(x1, . . . , xk−1))θ.

Then from the super martingale property (12),

1 ≥ Eq̂θ

[
n∏
i=1

p∗θ(xi)

q∗θ(xi)

]
= Eq̂θ

[
E(q̂θ)n(x1,...,xn−1)

[
p∗θ(xn)

q∗θ(xn)

] n−1∏
i=1

p∗θ(xi)

q∗θ(xi)

]

≥ (1− θ)Eq̂θ

[
Eq̂n(x1,...,xn−1)

[
p∗θ(xn)

q∗θ(xn)

] n−1∏
i=1

p∗θ(xi)

q∗θ(xi)

]
≥ · · ·

≥ (1− θ)nEq̂

[
n∏
i=1

p∗θ(xi)

q∗θ(xi)

]
≥ (1− θ)nen(D(p∗θ ‖ q∗θ )−δ)q̂(Aθn,δ). (13)

Moreover, we have

p̂(Aθn,δ) ≥ (1− θ)np̂θ(Aθn,δ)
≥ p̂θ(Aθn,δ)− θn

≥ 1−
4m(p∗θ, q

∗
θ)

2

δ2

1

n
− θn, with m(·, ·) defined in (7)

≥ 1− 4 log2(1/θ)

δ2

1

n
− θn, since m(p∗θ, q

∗
θ) ≤ log(1/θ)
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This bound approaches 1 as long as θ decreases at an appropriate rate with n, say by taking θ = 1/n2.
As a result,

lim
n→∞

inf
p̂∈A(P )

p̂
(
A

1/n2

n,δ

)
= 1.

Combining this with (13) shows that along the sequence of acceptance regions {A1/n2

n,δ }, we have

Eεadv(P,Q) ≥ lim
n→∞

(
D(p∗1/n2 ‖ q∗1/n2)− δ + log(1− n−2)

)
≥ lim

n→∞

(
Eεadv(P1/n2 , Q1/n2)− δ

)
,

where the second inequality follows from (2). Now taking δ → 0 completes the proof.

B. Chernoff information and symmetric hypothesis testing

Suppose again that we have two distributions p and q over a finite domain Ω. We also have n i.i.d. sam-
ples X1, X2, . . . , Xn from a distribution r ∈ {p, q}, and a Bayesian hypothesis: The samples come from p
with probability πp and from q with probability πq. Consider a test Tn ⊆ Ωn. If (X1, X2, . . . , Xn) ∈ Tn,
we declare that the sample came from p.

Our goal is to minimize the expected error

δn(Tn) := πp p
n(T cn) + πq q

n(Tn) .

In this case, the best achievable error exponent is

γ(p, q) := lim
n→∞

− 1

n
min
Tn⊆Ωn

log δn(Tn) .

Observe that the constants πp and πq do not affect γ(p, q).
For λ ∈ (0, 1), let us define

Γλ(p, q) := − log
∑

x∈Ω,p(x)q(x)>0

p(x)λq(x)1−λ ,

and
Γ∗(p, q) := sup

λ∈(0,1)
Γλ(p, q) . (14)

We have the following characterization due to Chernoff (see, e.g., Theorem 11.9.1 of [15]).

Theorem 6. For any distributions p and q on Ω, one has

γ(p, q) = Γ∗(p, q) .

Moreover, if supp(p) = supp(q)1, then one has

γ(p, q) = Γ∗(p, q) = D(r ‖ p) = D(r ‖ q) ,

where r is the distribution given by

r(x) :=
p(x)λ(p,q)q(x)1−λ(p,q)∑
y∈Ω p(y)λ(p,q)q(y)1−λ(p,q)

,

and λ(p, q) is the unique value of λ ∈ (0, 1) achieving the supremum in (14).

1The statement of Theorem 11.9.1 in [15] does not include the condition that supp(p) = supp(q), but as was pointed out to
us by an anonymous referee, there are examples where the theorem is false without this assumption.
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We will prove a corresponding theorem in the adaptive setting. To this end consider again two closed,
convex sets of distributions P,Q ⊆ RΩ. Define the adversarial two-sided error exponent

γadv(P,Q) := lim
n→∞

− 1

n
min
Tn⊆Ωn

max
p̂,q̂

log (p̂(T cn) + q̂(Tn))

where the maximum is over all adaptive P -strategies p̂ and adaptive Q-strategies q̂.

Theorem 7 (Adversarial Chernoff’s Theorem). For any finite domain Ω and closed, convex sets of
distributions P,Q ⊆ RΩ, we have

γadv(P,Q) = min
p∈P,q∈Q

Γ∗(p, q) . (15)

Proof. We may assume that P and Q are compact; the general case can be reduced to this one by
considering exhaustions of P and Q by compact convex sets. Assume P and Q are disjoint, since
otherwise γadv(P,Q) = minp∈P,q∈Q Γ∗(p, q) = 0. Let p∗ ∈ P, q∗ ∈ Q be some pair that minimizes
Γ∗(p, q) over p ∈ P, q ∈ Q. First, we have

γadv(P,Q) ≤ γadv({p∗}, {q∗}) = γ(p∗, q∗) = Γ∗(p∗, q∗) ,

where the latter equality is given by Theorem 6. Thus we are left to prove γadv(P,Q) ≥ Γ∗(p∗, q∗).

Let us first assume that supp(p) = supp(q) = Ω for all p ∈ P and q ∈ Q. After the argument, we
will reduce the general case to this one. Consider p 6= q. Define Fp,q : [0, 1]→ R by

Fp,q(λ) :=
∑
x∈Ω

p(x)λq(x)1−λ ,

and calculate

F ′p,q(λ) =
∑
x∈Ω

p(x)λq(x)1−λ log
p(x)

q(x)
,

F ′′p,q(λ) =
∑
x∈Ω

p(x)λq(x)1−λ
(

log
p(x)

q(x)

)2

.

Since p 6= q, F ′′p,q(λ) > 0 for all λ ∈ (0, 1). Since additionally supp(p) = supp(q),

F ′p,q(0) = D(p ‖ q) > 0

F ′p,q(1) = −D(q ‖ p) < 0 .

We conclude that Fp,q(λ) is minimized at a unique value λ ∈ (0, 1). Denote this value by λ(p, q) and
observe that Γ∗(p, q) = Γλ(p,q)(p, q). Let λ∗ := λ(p∗, q∗).

Define now

Tn :=

{
x ∈ Ωn :

n∏
i=1

p∗(xi) ≥
n∏
i=1

q∗(xi)

}
.

Fix also an adaptive P -strategy p̂ and an adaptive Q-strategy q̂. We will show that

Γ∗(p∗, q∗) ≤ lim
n→∞

− log(p̂(T cn) + q̂(Tn))

n
. (16)

We will need to employ the following easy variant of the “envelope theorem.”

Lemma 8. Consider a differentiable function f : [0, 1]2 → R. Define V (t) = infλ∈[0,1] f(λ, t) and
suppose that for every t ∈ [0, 1], there is a unique λ∗(t) ∈ (0, 1) such that V (t) = f(λ∗(t), t). If λ∗ is
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differentiable at t ∈ [0, 1], then V ′(t) = f2(λ∗(t), t) where f2 is the partial derivative of f with respect
to its second argument.

Proof. Let f1 denote the partial derivative of f with respect to its first argument. Writing V (t) =
f(λ∗(t), t) and applying the chain rule yields

V ′(t) = f2(λ∗(t), t) + f1(λ∗(t), t)
d

dt
λ∗(t).

The second term is zero because f1(λ∗(t), t) = 0 by optimality of λ∗(t).

Remark 9. Observe that if f(λ, t) has ∂2

∂λ2 f(λ, t) > 0 for some t ∈ [0, 1], then λ∗(t) is the unique
solution of ∂

∂λf(λ, t) = 0 and is differentiable by the implicit function theorem. Note that the assumptions
of Lemma 8 can be relaxed considerably; see, e.g., [43, Ch. 3].

This allows us to prove the following.

Lemma 10. For any distribution q ∈ Q, one has∑
x∈Ω

q(x)
p∗(x)λ

∗

q∗(x)λ∗
≤
∑
x∈Ω

q∗(x)
p∗(x)λ

∗

q∗(x)λ∗
.

Proof. For t ∈ [0, 1], define a distribution qt := tq + (1 − t)q∗ ∈ Q. Moreover, define a function
f : [0, 1]2 → R by

f(λ, t) := Fp∗,qt(λ) .

As we have already observed, for every fixed value of t ∈ [0, 1], it holds that λ(p∗, qt) ∈ (0, 1) is the
unique minimizer of f(λ, t).

Let f2 be the partial derivative of f in its second argument; then one computes:

f2(λ, t) =
∑
x∈Ω

(q(x)− q∗(x))(1− λ)qt(x)−λp∗(x)λ .

If we let V (t) = minλ∈(0,1) f(λ, t), then optimality of q∗ implies V ′(0) ≤ 0. But now Lemma 8 (in
conjunction with Remark 9) yields

0 ≥ V ′(0) = f2(λ∗, 0)

=
∑
x∈Ω

(q(x)− q∗(x))(1− λ∗)q∗(x)−λ
∗
p∗(x)λ

∗
.

Rearranging yields the desired claim.

The preceding lemma shows that the sequence
∏n
i=1

p∗(xi)λ
∗

q∗(xi)λ
∗ is a supermartingale with respect to q̂.

Thus we can write

Eq̂

[
n∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]
= Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗ Eq̂n(x1,...,xn−1)

p∗(xn)λ
∗

q∗(xn)λ∗

]

≤ e−Γ∗(p∗,q∗)Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]
≤ · · ·
≤ e−nΓ∗(p∗,q∗) , (17)

where in the second line we have used Lemma 10 along with the fact that q = q̂n(x1, . . . , xn−1) ∈ Q,
and then we have continued by induction.
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By Markov’s inequality, this implies q̂(Tn) ≤ e−nΓ∗(p∗,q∗). By the symmetry of the preceding argument
with respect to P and Q, the same bound of p̂(T cn) ≤ e−nΓ∗(p∗,q∗) holds for p̂. Combining these yields
γadv(P,Q) ≥ Γ∗(p∗, q∗), completing the proof.

General P and Q. Let us recall from Section II-A the notation pθ for p ∈ Ω, and the sets Pθ and Qθ.

Lemma 11. For any θ > 0 sufficiently small, it holds that

γadv(P,Q) ≥ γadv(Pθ, Qθ)− θ .

Lemma 12. It holds that

lim inf
θ→0

min
(p,q)∈P×Q

Γ∗(pθ, qθ) ≥ min
(p,q)∈P×Q

Γ∗(p, q) .

Let us first use them to complete the proof of our desired result for general P and Q using the result
for Pθ and Qθ. Employ Lemma 11 and then Lemma 12 to write:

γadv(P,Q) ≥ lim inf
ε→0

γadv(Pθ, Qθ) = lim inf
θ→0

min
(p,q)∈P×Q

Γ∗(pθ, qθ) ≥ min
(p,q)∈P×Q

Γ∗(p, q) .

This concludes the proof of Theorem 7, modulo the proofs of Lemmas 11 and 12.

Proof of Lemma 11. Let (p∗θ, q
∗
θ) ∈ Pθ × Qθ be a pair minimizing Γ∗(pθ, qθ) over (pθ, qθ) ∈ Pθ × Qθ,

and let λ∗ denote their optimal exponent. Define the test

Tn(p∗θ, q
∗
θ) := {x ∈ Ωn : p∗θ(x1) · · · p∗θ(xn) ≥ q∗θ(x1) · · · q∗θ(xn)} .

Let q̂ denote an adaptive Q-strategy. We define an adaptive Qθ-strategy q̂θ by

(q̂θ)k(x1, . . . , xk−1) = (q̂k(x1, . . . , xk−1))θ.

Then we have:

exp (−nΓ∗(p∗θ, q
∗
θ)) ≥ Eq̂θ

[
n∏
i=1

p∗θ(xi)
λ∗

q∗θ(xi)
λ∗

]
= Eq̂θ

[
E(q̂θ)n(x1,...,xn−1)

[
p∗θ(xn)λ

∗

q∗θ(xn)λ∗

] n−1∏
i=1

p∗θ(xi)
λ∗

q∗θ(xi)
λ∗

]
,

where the first inequality uses the supermartingale inequality (17). Moreover, for every (x1, . . . , xn−1) ∈
Ωn−1,

E(q̂θ)n(x1,...,xn−1)

[
p∗θ(xn)λ

∗

q∗θ(xn)λ∗

]
≥ (1− θ)Eq̂n(x1,...,xn−1)

[
p∗θ(xn)λ

∗

q∗θ(xn)λ∗

]
,

thus continuing inductively yields

exp (−nΓ∗(p∗θ, q
∗
θ)) ≥ Eq̂θ

[
n∏
i=1

p∗θ(xi)
λ∗

q∗θ(xi)
λ∗

]

≥ (1− θ)n Eq̂

[
n∏
i=1

p∗θ(xi)
λ∗

q∗θ(xi)
λ∗

]
≥ (1− θ)nq̂ ({(x1, . . . , xn) ∈ Ωn : p∗θ(x1) · · · p∗θ(xn) ≥ q∗θ(x1) · · · q∗θ(xn)})
= (1− θ)n q̂ (Tn(p∗θ, q

∗
θ)) .

Doing the symmetric analysis with an adaptive P -strategy yields

Γ∗(p∗θ, q
∗
θ) ≤ θ −

1

n
max
p̂,q̂

[
log

(
q̂(Tn(p∗θ, q

∗
θ)) + p̂(T cn(p∗θ, q

∗
θ))

2

)]
,
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and then taking the limit as n→∞ gives

γadv(Pθ, Qθ) = Γ∗(q∗θ , p
∗
θ) ≤ γadv(P,Q) + θ .

Proof of Lemma 12. Let {(pn, qn) ∈ P × Q : n = 1, 2, . . .} denote a sequence of distributions, and
consider a sequence {θn} with θn → 0 as n → ∞. Since P × Q is compact, we may pass to a
subsequence where (pn, qn) converges. Let (p̄, q̄) ∈ P × Q be the limit. Note that (p̄, q̄) is also a limit
of the sequence {(pnθn , q

n
θn

)}.
Observe now that Γ∗(p, q) is a supremum of continuous functions, and thus (p, q) 7→ Γ∗(p, q) is lower

semi-continuous. This implies that

lim
n→∞

Γ∗(pnθn , q
n
θn) ≥ Γ∗(p̄, q̄) ,

completing the proof.

III. DISTINGUISHING QUANTUM STATES WITH RESTRICTED MEASUREMENTS

A central problem in quantum information is to distinguish between a pair of quantum states ρ and σ.
As usual, there is a tradeoff between errors of type 1 and 2, i.e., mistaking ρ for σ and vice versa. The
quantum Neyman-Pearson lemma states that the optimal tradeoff curve between errors of type 1 and 2
is achieved by choosing

M = {θρ− σ ≥ 0},

for some θ ≥ 0, where {X ≥ 0} denotes the projector onto the eigenvectors of X with nonnegative
eigenvalue. The estimation strategy is then to perform the measurement {M, I − M} and guess ρ
upon obtaining the outcome corresponding to POVM element M or σ upon obtaining the outcome
corresponding to I −M.

Remark on terminology: We briefly introduce some notation here, and additional background and
definitions for the reader unfamiliar with quantum information theory can be found in Appendix A. The
finite domain Ω from Section II is replaced with V = Cd with the standard Euclidean inner product,
and we denote the set of density operators on V by D(V ). Let L(V ) denote linear operators on V and
let E(V ) = {M ∈ L(V ) : 0 ≤ M ≤ I} be the space of POVM elements. A measurement M =
(M1,M2, . . .) is a collection of POVM elements that sum to I , and M(ρ) = (tr(M1ρ), trM2ρ), . . .)
refers to the probability distribution of measurement outcomes resulting from applying M to ρ. For
our purposes we will consider both two-outcome measurements and measurements with finitely many
nonzero POVM elements. Call these sets E2(V ) and EN(V ) respectively. For E2(V ), the measurement
{M, I −M} is of course determined by the first POVM element M and so where it is not ambiguous
we will use M to refer to the measurement. Further background on quantum states and measurements
can be found in the appendix.

One well-known case of state distinguishability is when ρ and σ have prior probabilities p and 1− p,
respectively, and we wish to minimize the total probability of error. In this case the optimal measurement
M is given by M = {pρ− (1− p)σ ≥ 0}, and the probability of error is 1−‖pρ−(1−p)σ‖1

2 , where ‖ · ‖1
denotes the Schatten 1-norm. (Here M corresponds to guessing “ρ” and I −M to guessing “σ”.) The
familiar trace distance 1

2‖ρ− σ‖1 corresponds to the case p = 1/2.

We modify this basic problem of state distinguishability in three (simultaneous) ways:
1) We consider only measurements M from some restricted class M ⊆ E2(V ).
2) We allow ρ, σ to be drawn adversarially from some sets R,S, respectively. (This means that an

adversary chooses ρ, σ in each round with knowledge of all previous measurement outcomes.)
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3) We consider the asymptotic limit in which M,R, S are replaced by families M = (M1,M2, . . .),R =
(R1, R2, . . .),S = (S1, S2, . . .) with Mn, Rn, Sn describing measurements and states on V ⊗n. Our
goal is then, for each n, to find a measurement M∈Mn that will effectively distinguish any state
ρ ∈ Rn from any state σ ∈ Sn.

These changes render the problem a good deal more abstract, and introduce a large number of new
parameters. Thus, it may be helpful to keep in mind a prototypical example that was one of the motivations
for this work. For some fixed bipartite state ρ over A ⊗ B, let Rn be the singleton set {ρ⊗n}, and let
Sn := Sep(A⊗n : B⊗n). This corresponds to studying the asymptotic distinguishability of many copies
of ρ from a separable state on the same number of systems. For this special case, we introduce the
notation

ρ := ({ρ}, {ρ⊗2}, . . .) (18)

Sep(A : B) := (Sep(A : B), Sep(A⊗2 : B⊗2), . . .). (19)

Where the context is understood, we will often omit the reference to A,B and simply write Sep or
Sep. Finally, we will consider a restricted class of measurements M, such as the class of 1-LOCC
measurements (as discussed in [48], [11], [40], [10]).

A. Background on restricted quantum measurements

We begin by introducing notation, describing known results on restricted-measurement distinguishabil-
ity, and presenting a few small new results to help clean up the landscape. In Section III-B, we describe
our restricted-measurement version of the quantum Stein’s Lemma, and in Section III-C we give an
application to quantum conditional mutual information.

1) Quantum Stein’s Lemma: If ρ, σ are density matrices on a space V , then the relative entropy of ρ
with respect to σ is

D(ρ ‖σ) := tr (ρ(log ρ− log σ)) . (20)

If ker(σ) * ker(ρ), we take D(ρ ‖σ) :=∞.
Following the classical case, we define an acceptance operatorMn ∈ E(V ⊗n) (analogous to the accep-

tance region Tn), with corresponding error probabilities αn = tr ((I −Mn)ρ⊗n) and βn := tr (Mnσ⊗n).
Again we can define βεn := min{βn : αn < ε} and

E(ρ, σ) := lim
ε→0

lim
n→∞

− log βεn
n

(21)

Hiai and Petz [31] proved the following quantum analogue of Lemma 1:

D(ρ ‖σ) = E(ρ, σ). (22)

See also [6], [39] for elegant and elementary proofs. The “strong converse” of (22) was proved by Ogawa
and Nagaoka [46], and can be thought of as showing that (22) holds when the limit of ε→ 0 in (21) is
replaced by any fixed ε ∈ (0, 1).

2) Asymptotic composite hypothesis testing: An important generalization of hypothesis testing is when
ρ and σ are chosen from sets R,S ⊆ D(V ), respectively, and we need to design our test with knowledge
only of R and S. This problem is known as composite hypothesis testing and is closely related to the
classical Sanov’s theorem.

One case of particular interest to quantum information is when ρ ∈ D(A ⊗ B) and S is the set of
separable states on A ⊗ B, i.e., S = Sep(A : B). The quantity D(ρ ‖ Sep) := D(ρ ‖ Sep(A : B)) is
known as the relative entropy of entanglement [55] and has been widely studied as an entanglement
measure (see, e.g., Table I in [11]); note that it is usually written as ER(ρ).
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One challenge in working with the relative entropy of entanglement is that D(ρ⊗n ‖ Sep) will not in
general be equal to n ·D(ρ ‖ Sep), reflecting the fact that Sep(A⊗n : B⊗n) is larger than the convex hull
of {σ1 ⊗ · · · ⊗ σn : σ1, . . . , σn ∈ Sep(A : B)}. Intuitively, Sep(A⊗n : B⊗n) can be thought of as the set
of states on the 2n systems A1 . . . AnB1 . . . Bn which are separable across the A1 . . . An : B1 . . . Bn cut,
but may be entangled arbitrarily among the A systems and among the B systems. This is an example of
the quantum-information phenomenon known as the additivity problem (see, e.g., [58], [52]).

Definition 1. Let R = (R1, R2, . . .), S = (S1, S2, . . .), with Rn, Sn ⊆ D(V ⊗n). Then the asymptotic
relative entropy of R with respect to S is

D(R ‖S) := lim
n→∞

inf
ρ∈Rn
σ∈Sn

D(ρ ‖σ)

n
. (23)

We further define

αn(M) := sup
ρ∈Rn

tr ((I −M)ρ) (24)

βn(M) := sup
σ∈Sn

tr (Mσ) (25)

βεn := inf{βn(M) : αn(M) < ε} (26)

E(R,S) := lim
ε→0

lim
n→∞

− log βεn
n

(27)

In Eqs. (24) and (25), we have M ∈ E(V ) and in (26) there is an implicit dependence on Rn, Sn.
Note that the limits of Eq. (23) (resp. Eq. (27)) may not exist, in which case we leave D(R ‖S) (resp.
E(R,S)) undefined. See [7] for a discussion of replacing the lim with lim inf or lim sup.

An important special case of Eq. (23) is the regularized relative entropy of entanglement [54], which
is defined to be limn→∞

1
nD(ρ⊗n ‖ Sep), and is normally denoted E∞R (ρ). In our notation this quantity

is given by
D(ρ ‖ Sep). (28)

An important result about composite quantum hypothesis testing is that error exponent minρ∈R1 D(ρ‖σ)
can be achieved by a test that depends only on R1 and σ [5], [27]. In terms of Definition 1, this can be
expressed as

D(R ‖S) = E(R,S), (29)

whenever R,S are of the form Rn = {ρ⊗n : ρ ∈ R1} and Sn = {σ⊗n}, for some set R1 and some state
σ. We call results of the form (29) “quantum Stein’s Lemmas,” because, like the classical Chernoff-Stein
Lemma, they give an equality between a relative entropy and an error exponent for hypothesis testing.

A quantum Stein’s Lemma has also been proven in the case when R = ρ for a fixed state ρ and S
is a family of sets. In this case, (29) is proved in [8] in the case where S is a self-consistent family of
states, defined as follows.

Definition 2 ([8]). S = (S1, S2, . . .) is a self-consistent family of states if
1) Each Sn is convex and closed.
2) There exists a full-rank state σ such that each Sn contains σ⊗n.
3) For each σ ∈ Sn, trn σ ∈ Sn−1.
4) If σn ∈ Sn, σm ∈ Sm then σn ⊗ σm ∈ Sn+m.
5) Sn is closed under permutation.

Some important cases of self-consistent families of states are Sep (defined in Section III-A1), PPT
(defined in Appendix A, although it will not be used in this paper) and σ for any full-rank state σ.
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3) Hypothesis testing with restricted measurements: We now introduce the problem of quantum
hypothesis testing with restricted measurements. The full set of [two-outcome] measurements on V ⊗n

(i.e. E2(V ⊗n)) consists of all {M, I −M} where 0 ≤ M ≤ I . However, it is often useful to consider
smaller classes of measurements, such as those that two parties can perform with local operations and
classical communication (LOCC). When considering restricted classes of measurements, our objective
might be to minimize the probability of error (subject to the usual tradeoff between type I and type II
errors), or it might be to maximize the classical relative entropy of the output distributions. In the former
case we will use measurements in E2(V ) and in the latter we will use measurements in EN(V ).

Definition 3. Let R = (R1, R2, . . .), S = (S1, S2, . . .), with Rn, Sn ⊆ D(V ⊗n), and M = (M1,M2, . . .),
with Mn ⊆ EN(V ⊗n). Then the asymptotic relative entropy of R with respect to S under measurements
M is

DM(R ‖S) := lim
n→∞

DMn(Rn ‖Sn) (30a)

DMn(Rn ‖Sn) := sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

D(M (ρ) ‖M (σ))

n
. (30b)

For M∈ E(V ⊗n), we further define

αn(M) := sup
ρ∈Rn

tr ((I −M)ρ) (31)

βn(M) := sup
σ∈Sn

tr (Mσ) . (32)

Now we restrict Mn to two-outcome measurements and useM as a shorthand for {M, I−M} to define

βεn(M) := inf
M∈Mn∩E2(V ⊗n)

{βn(M) : α(M) < ε} (33)

EM(R,S) := lim
ε→0

lim
n→∞

− log βεn
n

(34)

As before, the quantities (30) and (34) are left undefined when the corresponding limit does not exist.

Following our notation for families of states, we use boldface (e.g. M) to denote families of measure-
ments. In particular, we define SEP(A : B) to denote separable measurements on A : B (i.e. M where
every POVM element has the form

∑
iXi⊗Yi with Xi, Yi ≥ 0) and denote the corresponding family by

SEP(A : B) = (SEP(A : B), SEP(A⊗2 : B⊗2), . . .).

Again we will often write SEP or SEP where the systems A,B are clear from context. Note that
Sep(A : B) and SEP(A : B) both refer to sets of matrices that can be written as

∑
iXi ⊗ Yi with

Xi, Yi ≥ 0; the difference is that Sep refers to density matrices (i.e. matrices with trace one) and SEP
to measurements made up from POVM elements (i.e. matrices with operator norm ≤ 1).

Another important class of measurements is ALLn, which is simply the set of all valid quantum
measurements on n systems: i.e. ALLn = EN(V ⊗n). The corresponding family is denoted ALL. Some
useful structural facts about DALLn are proved in [4].

One further definition we will need (following [48], but with different notation) is the idea of a
compatible pair.

Definition 4. If M is a collection of measurements and S is a collection of states, we say that (M,S) are
a compatible pair if (a) S is closed under permutations of the systems and under convex combinations, and
(b) applying a measurement in M to a state in S and conditioning on any outcome leaves a residual state
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that is still in S. More concretely for positive integers n, k, for ρn+k ∈ Sn+k, for Mk = (Mk
j )j=1,2,... ∈

Mk, and for j a positive integer, define

ω̃n = trn+1,...,n+k[ρn+k(In ⊗Mj
k)],

and (assuming that tr ω̃n 6= 0) we define

ωn =
ω̃n

tr ω̃n
.

(Here the permutation symmetry of S means that we can assume for convenience that Mk acts on the
last k systems.) If (M,S) is a compatible pair then for any choice of n, k, j, ρn+k,Mk, either tr ω̃n = 0
or ωn ∈ Sn.

The main example of compatible pair which motivates our work is (SEP,Sep). We could also consider
(LOCC,Sep), or (M,Sep) where M is any other subset of SEP. Compatible pairs also arise from
resource theories, in which there is typically a family of free quantum operations and free quantum
states, with the property that the free operations preserve the set of free quantum states. In some cases,
these can be defined by starting with the set of operations (e.g. LOCC operations which yield the set
of separable states) or the set of states (e.g. thermal states of some fixed Hamiltonians). We will be
interested in a slightly different setting in which quantum operations are replaced by measurements.
Besides (M,Sep) with M ⊂ Sep other examples of compatible pairs are:
• Symmetry constraints. For each n, fix a group Gn of unitaries acting on V ⊗n. These should be

compatible in the sense that Gn ⊗ I ⊆ Gn+1 and π(Gn) = Gn for any permutation π of the n
systems. If Sn is the set of all states that commute with Gn and Mn is any subset of the measurements
that commute with Gn, then S = (Sn)n≥1 and M = (Mn)n≥1 are compatible pairs. This has been
studied in the context of the resource theory of asymmetry [24].

• In quantum optics we can take S to be the convex hull of Gaussian quantum states and M the
measurements that can be implemented with Gaussian quantum operations [37].

• Let S be the set of stabilizer states and M the set of Pauli measurements. The famous Gottesman-
Knill theorem [23] includes the fact that S is closed under measurements from M.

For each of these compatible pairs, if we consider S to be set of free states then the relative entropy
D(ρ ‖S) can be viewed as a cost of the state ρ, with a meaning made more precise in [33], [9].

We will need some more mild regularity conditions on the classes of measurements we consider.

Definition 5. M = (M1,M2, . . .) is a self-consistent family of measurements if
• For any k, l and any Mk ∈Mk,Ml ∈M l, we have Mk ⊗Ml ∈Mk+l and Mk ⊗ Il ∈Mk+l.
• Mn is closed under permutations of the n systems.
• Mn is closed under finite labelled mixtures. In other words, if {M(i)}i are a collection of measure-

ments in Mn where M(i) has POVM elements {M(i)
j }j and {pi}i is a probability distribution then

the measurement with POVM elements {piM(i)
j }i,j is in Mn.

This last condition on measurements needs a little more explanation. First, the measurement outcomes
are labelled by pairs of integers, so we need to relax our definition of EN(V ) and allow measurements
indexed by any finite set. Second, observe that the property of closure under finite labelled mixtures
is implied by the following natural two conditions: (1) that Mn is convex, and (2) that Mn is closed
under relabeling of outcomes, i.e. if (M1,M2, . . .) ∈ Mn and π : N 7→ N is an injective map then
(Mπ(1),Mπ(2), . . .) ∈Mn. These in turn (along with the other self-consistency properties) are satisfied
by all the examples of families of measurements mentioned in this paper.

Our main results (in Sections III-B and III-D) involve compatible pairs with self-consistent families of
measurements, and we also discuss previously known results about compatible pairs in Section III-A5.
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4) Relations between distinguishability measures: Finally, we state some known and new results that
relate the different versions of D,E,DM, EM. The following statement is a consequence of the minimax
theorem.

Lemma 13. Let R, S ⊆ D(V ) be closed and convex, while M ⊂ EN(V ) is closed under finite labelled
mixtures (as defined in Definition 5). Then

sup
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)) = min
ρ∈R
σ∈S

sup
M∈M

D(M (ρ) ‖M (σ)) (35)

Note that the LHS is trivially ≤ the RHS, and that the RHS is the form of restricted-measurement
distinguishability introduced by Piani [48].

Our Lemma will rely on a minimax theorem that is similar to the minimax theorems of Kneser, Fan
and Sion from the 1950s [51] but which needs to handle the possibility that the relative entropy can be
infinite.

Lemma 14 (Thm 5.2 of [20]). Let X be a compact and convex subset of a Hausdorff topological
vector space and let Y be a convex subset of a linear space. Let f : X × Y → R ∪ {+∞} be lower
semi-continuous on X for fixed y ∈ Y , convex in x and concave in y. Then

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y). (36)

Proof of Lemma 13. We will take our set X to be R×S with an element x representing a pair of density
matrices (ρ, σ). Let P(M) denote the set of probability distributions over M with countable support and
define Y = P(M). We can now define

f((ρ, σ), µ) := EM∼µD(M (ρ) ‖M (σ)). (37)

Clearly f is affine, and hence concave, in µ. For fixed M (and thus fixed µ), the relative entropy is
known to be convex and lower semicontinuous [49], [18]. Thus we meet the conditions of Lemma 14.
Note also that the lower semicontinuity of f and the compactness of R × S guarantees that the min is
achieved. Lemma 14 then implies that

min
ρ∈R
σ∈S

sup
µ∈P(M)

f((ρ, σ), µ) ≤ sup
µ∈P(M)

min
ρ∈R
σ∈S

f((ρ, σ), µ) (38)

(In fact it establishes an equality but we write ≤ to emphasize the direction that we are trying to prove.)
Eq. (38) is close to what we want but has P(M) in place of M . Since P(M) includes distributions

which assign probability 1 to a particular measurement, we have

min
ρ∈R
σ∈S

sup
M∈M

D(M (ρ) ‖M (σ)) ≤ min
ρ∈R
σ∈S

sup
µ∈P(M)

f((ρ, σ), µ). (39)

Upper bounding the sup over P(M) in terms of a sup over M is less trivial, and will need to use the
fact that M is closed under countable labeled mixtures. Fix ρ, σ, µ and suppose that µ assigns probability
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pi to M(i) for i = 1, 2, . . .. Let {M(i)
j }j=1,2,... be the POVM elements of M(i). Then we will define the

measurement M with POVM elements {piM(i)
j }i,j , and by our hypothesis, M∈M . Then

f((ρ, σ), µ) =
∑
i

piD(M(i)(ρ) ‖M(i)(σ)) (40a)

=
∑
i,j

pi tr[M(i)
j ρ](log tr[M(i)

j ρ]− log tr[M(i)
j σ]) (40b)

=
∑
i,j

tr[piM(i)
j ρ](log tr[piM(i)

j ρ]− log tr[piM(i)
j σ]) (40c)

= D(M(ρ) ‖M(σ)) (40d)

We can take the minimum over ρ, σ to obtain

min
ρ∈R
σ∈S

f((ρ, σ), µ) ≤ min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)), (41)

where M depends on µ. Next we can take the sup over µ to obtain

sup
µ∈P(M)

min
ρ∈R
σ∈S

f((ρ, σ), µ) ≤ sup
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)). (42)

Finally combining the inequalities (39), (38) and (42) implies the proof of the lemma.

We remark that some versions of the minimax theorem (i.e. Thm 4.2 of [51]) require only a weaker
form of concavity in which for any p ∈ [0, 1] and any x ∈ X, y1, y2 ∈ Y , there exist y0 ∈ Y such that
f(x, y0) ≥ pf(x, y1) + (1− p)f(x, y2). In other words, y0 does not have to be py1 + (1− p)y2 but could
be an arbitrary point and indeed Y does not even have to be a linear space. This would perfectly fit our
approach of taking labelled mixtures of measurements. However, since our theorem needs to handle the
possibility that D(· ‖ ·) =∞, we cannot directly use Thm 4.2 of [51].

Known facts: The following relations between the quantities have been derived previously.

E(ρ,σ) = D(ρ ‖σ) quantum Stein’s Lemma [31] (43)

D({ρ} ‖S1) ≥ D(ρ ‖S) for S satisfying property (4) of Definition 2 (44)

D(R ‖S) ≥ DM(R ‖S) from monotonicity of relative entropy (45)

E(ρ,S) = D(ρ ‖S) for S a self-consistent family (Definition 2)[8] (46)

We can, in fact, relate DALL, D,E for any ρ and any closed convex S using

DALL(ρ ‖S)
(68)

≥ E(ρ,S)
(46)
= D(ρ ‖S)

(45)

≥ DALL(ρ ‖S) (47)

The main goal of the second half of this paper is to extend these results as far as possible to DM and
EM.
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5) Superadditivity: When we consider families of states and measurements, it is not a priori clear
whether the distinguishability per system should increase or decrease with the number of systems. We
say that a quantity f(ρ) is subadditive if f(ρXY ) ≤ f(ρX) + f(ρY ) (e.g., entropy) and superadditive if
f(ρXY ) ≥ f(ρX) + f(ρY ) (e.g., most entanglement measures). A function f is weakly subadditive
f(ρ⊗n) ≤ nf(ρ) and is weakly superadditive if f(ρ⊗n) ≥ nf(ρ)). If a function is both (weakly)
subadditive and superadditive then we say it is (weakly) additive.

One of the main results known so far about relative entropy with restricted measurements is due to
Piani [48], who used these measures to prove a superadditivity inequality:

D(ρXY ‖S2) ≥ DM(ρX ‖S1) +D(ρY ‖S1) for compatible (M, S) [48] (48)

D(ρ ‖S) ≥ DM(ρ ‖S1) as a corollary of (48) [48] (49)

In fact, Piani’s result can easily be improved to show that DM(R ‖S) is superadditive whenever
(M,R) and (M,S) are compatible pairs, or in fact when R satisfies a milder condition.

Lemma 15. Let (M,S) be a compatible pair with M a self-consistent family. Let R be a family of
states that is closed under partial trace, i.e. satisfying trj R

n ⊆ Rn−1 for each 1 ≤ j ≤ n. Then for all
ρXY ∈ D(V ⊗k ⊗ V ⊗l), if we identify X with V ⊗k and Y with V ⊗l, we have

DMk+l(ρXY ‖Sk+l) ≥ DMk(ρX ‖Sk) +DM l(ρY ‖Sl). (50)

Moreover,
DM(R ‖S) = lim

n→∞

1

n
DMn

(Rn ‖Sn) = sup
n

1

n
DMn

(Rn ‖Sn). (51)

Proof. The argument is a direct adaptation of the proof of Theorem 1 in [48].
Let MX ∈ Mk,MY ∈ M l be arbitrary. Define an orthonormal basis |1〉 , |2〉 , . . . corresponding to

the outcomes 1, 2, . . . of MX . Define pi(ρX) = tr(MX
i ρX) = (MX(ρ))i and ρiY = trX [(MX

i ⊗
IY )ρXY ]/pi(ρX). Choose σXY ∈ Sk+l and define pi(σX) and σiY analogously. Then

D
(
(MX ⊗MY )(ρXY ) ‖ (MX ⊗MY )(σXY )

)
= D

∑
i≥1

pi(ρX) |i〉 〈i| ⊗MY (ρiY ) ‖
∑
i≥1

pi(σX) |i〉 〈i| ⊗MY (σiY )

 (52a)

= D
(
MX(ρX) ‖MX(σX)

)
+
∑
i≥1

pi(ρX)D
(
MY (ρiY ) ‖MY (σiY )

)
(52b)

≥ D
(
MX(ρX) ‖MX(σX)

)
+D

∑
i≥1

pi(ρX)MY (ρiY ) ‖
∑
i≥1

pi(ρX)MY (σiY )

 (52c)

= D
(
MX(ρX) ‖MX(σX)

)
+D

MY (ρY ) ‖MY

∑
i≥1

pi(ρX)σiY

 , (52d)

≥ inf
σ̃X∈Sk

D
(
MX(ρX) ‖MX(σ̃X)

)
+ inf
σ̃Y ∈Sl

D
(
MY (ρY ) ‖MY (σ̃Y )

)
(52e)

where (52a) follows from Proposition 1 of [48], (52b) from direct calculation, (52c) from joint convexity
of relative entropy, and (52d) from linearity of the measurement. (In Piani’s proof in [48] the analogues
of the third and fourth lines were Lemma 1 and Property 2 of Proposition 1 respectively.)

We now take the infimum over σXY and then the supremum over MX ,MY , yielding (50). If we
instead take the infimum over σXY and ρXY before taking the supremum over MX ,MY , then we find
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that DMk+l(Rk+l ‖Sk+l) ≥ DMk(Rk ‖Sk) + DM l(Rl ‖Sl). In other words, if f(n) = DMn
(Rn ‖Sn)

then f is superadditive (i.e. f(k + l) ≥ f(k) + f(l)). This implies (51).

The preceding lemma says that DM(ρ ‖S) is a superadditive function of ρ for compatible pairs (M,S).
The compatibility requirement here is essential. The pair (ALL,Sep) is not compatible, and D(· ‖ Sep)
is known to be strictly subadditive (i.e. not superadditive) in some cases [56]. This does not directly yield
an example of strict subadditivity for DALL(· ‖ Sep) but can be modified to do so. The example in [56]
is the antisymmetric Werner state ρ = I−SWAP

d(d−1) ∈ D(Cd ⊗ Cd). In [56], it is proved that

D(ρ‖ Sep(Cd : Cd)) = 1 and D(ρ⊗ ρ‖ Sep(Cd2

: Cd2

)) = 1 +O(1/d), (53)

showing that D(· ‖ Sep) can be strictly subadditive. Observe that if we measure ρ with the two outcome
measurement { I±SWAP

2 } and label the outcomes +/- then we will always obtain the outcome - while for
any σ ∈ Sep we have Pr[−] ≤ 1/2. Thus DALL(ρ‖ Sep(Cd : Cd)) ≥ 1 (and in fact equality holds). On
the other hand, monotonicity of relative entropy implies that

DALL(ρ⊗ ρ‖ Sep(Cd2

: Cd2

)) ≤ D(ρ⊗ ρ‖ Sep(Cd2

: Cd2

)) = 1 +O(1/d). (54)

Thus we have an example where DALL(·‖Sep) is strictly subadditive.
On the other hand, DM(· ‖S) can be strictly superadditive (i.e., not subadditive). Let us consider the

simple situation in which Rn = {ρ⊗n} and Sn = {σ⊗n}. It is a consequence of the quantum Stein’s
Lemma (22) (see also [27]) that

D(ρ ‖σ) = lim
n→∞

1

n
DALL(ρ⊗n ‖σ⊗n).

Thus, any example in which
max
M∈ALL

D(M(ρ) ‖M(σ)) < D(ρ ‖σ) (55)

will yield an example in which DM(· ‖S) is strictly superadditive. In fact, Proposition 5 of [4] (build-
ing upon Lemma 1 of [47]) states that (55) holds whenever D(ρ ‖σ) is finite and ρσ 6= σρ. Thus
superadditivity is a generic property of DM(· ‖ ·).

B. A quantum Stein’s Lemma for restricted measurements

Theorem 16 (Quantum Stein’s Lemma for restricted measurements). For any compatible pairs (M,R)
and (M,S) with M a self-consistent family and R,S closed,

DM(R ‖S) = EM(R,S) . (56)

Proof. For any positive integer k, suppose 0 ≤ Ek < 1
kDMk(Rk ‖Sk). (If DMk(Rk ‖Sk) =∞ then this

means that Ek is an arbitrary nonnegative number.) The supremum over measurements in the definition
of DMk(Rk ‖Sk) means that there exists Mk ∈Mk such that

1

k
D(Mk(Rk) ‖Mk(Sk)) > Ek.

Define P :=Mk(Rk) and Q :=Mk(Sk). Then

1

k
D(p ‖ q) > Ek ∀p ∈ P, q ∈ Q. (57)

Given a state ρ ∈ D(V ⊗nk), we apply Mk to each block of k systems, obtaining outcomes x1, . . . , xn.
Then since (M,R) and (M,S) are compatible pairs, the distribution of each xi, conditioned on any
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possible value of x1, . . . , xi−1, is an element of P (if ρ ∈ Rnk) or Q (if ρ ∈ Snk). Thus, according to
Theorem 2, there is a sequence of acceptance regions that achieves the rate Ek. Thus for any ε ∈ (0, 1),

lim inf
n→∞

− 1

nk
log βεnk ≥ Ek (58)

Given a state in Rnk+l or Snk+l for l < k we can discard l systems and obtain a state in in Rnk or
Snk, using the fact that R,S are closed under partial trace. Thus we can drop the k-dependence from
the LHS of (58) to obtain

lim inf
n→∞

− 1

n
log βεn ≥ Ek. (59)

Since this holds for any k, we can take the lim sup over k to find

lim inf
n→∞

− 1

n
log βεn ≥ lim sup

k→∞

1

k
DMk(Rk ‖Sk) = DM(R ‖S). (60)

This last equality is due to Lemma 15.
The reverse inequality can be obtained by the following standard argument which we adapt from [31].

See also footnote 11 of [11] where roughly the same result was stated and attributed to [31], [46]. We
include a proof here for completeness and because previous work did not technically show the same
results.

For a positive integer n and ε > 0, let M := (M, I − M) ∈ Mn be a measurement such that
tr[Mρ] > 1− ε. Then for any ρ ∈ Rn, σ ∈ Sn,

sup
M′∈Mn

D(M′(ρ) ‖M′(σ)) ≥D(M(ρ)‖M(σ)) (61)

= tr[Mρ] log tr[Mρ]− tr[Mρ] log tr[Mσ] (62)

+ tr[(I −M)ρ] log tr[(I −M)ρ]− tr[(I −M)ρ] log tr[(I −M)σ]
(63)

≥− h2(tr[Mρ])− tr[Mρ] log tr[Mσ] (64)

≥− 1− (1− ε) log tr[Mσ] (65)

Here we define h2(p) = − log(p)− log(1− p) and take log to be base 2. Rearranging yields

− log tr[Mσ] ≤
1 + supM′∈Mn

D(M′(ρ) ‖M′(σ))

1− ε
. (66)

To relate this to βεn(M) we take the inf over ρ ∈ Rn, σ ∈ Sn and then the sup overM∈Mn∩E2(V ⊗n)
satisfying αn(M) < ε. This implies that

− βεn(M) ≤
1 + infρ∈Rn,σ∈Sn supM′∈Mn

D(M′(ρ) ‖M′(σ))

1− ε
. (67)

We can now use Lemma 13 to exchange the inf and sup. Finally we can divide by n and take the lim sup
in n to obtain

lim sup
n→∞

− 1

n
βεn ≤

1

1− ε
lim sup
n→∞

1

n
DMn

(Rn ‖Sn) (68)

Combining (60) and (68) and taking ε→ 0 we finally establish that

EM(R,S) = DM(R ‖S). (69)
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This is analogous to the result in [8], which established E(ρ,S) = DALL(ρ ‖S) for self-consistent
sets of states S, but incomparable because in general (ALL,S) will not be a compatible pair.

While this shows that the optimal hypothesis testing rate for this restricted-measurement setting does
indeed reduce to a relative entropy, it may be difficult to compute DM because of the regularization
(i.e. limn→∞) and optimization over measurements in (30). However, in some special cases, it is known
how to carry out this optimization; e.g. [30] computes the relative entropy of a pure entangled state with
respect to the maximally mixed state under various restricted classes of measurements.

C. Stronger Subadditivity of Quantum Entropy

We now present an application of Theorem 16 to a strengthening of the celebrated strong subadditivity
inequality of Lieb and Ruskai for the quantum entropy [41], which can be written as

I(A : B | C)ρ ≥ 0 (70)

where

I(A : B | C)ρ := H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ

:= H(ρAC) +H(ρBC)−H(ρABC)−H(ρC)

denotes the conditional mutual information of a state ρABC . In what follows we will often omit the
subscript ρ when the state is understood. See Appendix A for additional discussion.

In [11], the following lower bound was shown for any state ρABC :

I(A : B | C) ≥ DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C)) (71)

Moreover the following inequality was shown

DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C)) ≥ E1-LOCC(ρ,Sep(A : B)), (72)

with 1-LOCC the class of all measurements that can be implemented by quantum local operations and
classical communication from Bob to Alice (see Appendix A for the precise definition). This implies
that the conditional mutual information is lower bounded by E1-LOCC(ρ,Sep(A : B)). (Ref. [11] actually
stated a weaker result in terms of the 1-LOCC (trace) distance, but their proof essentially contains (72)
as an intermediate step. In reading [11], [40] beware that they use the symbols D and E with meanings
reversed from our conventions.)

In [40] the following apparent strengthening of (72) was obtained:

DALL(ρABC ‖ Sep(A : BC)) ≥ DALL(ρAC ‖ Sep(A : C)) +D1-LOCC(ρAB ‖ Sep(A : B)) , (73)

which implies
I(A : B | C) ≥ D1-LOCC(ρAB ‖ Sep(A : B)) . (74)

At the time of [40] it was known only that D1-LOCC ≥ E1-LOCC (see discussion in the proof of Theorem 16)
and so (73) was believed to be stronger than (72). Theorem 16 shows that (73) is equivalent to (72) and
so it can be used in conjunction with [11] to give an alternative proof of (74). This possibility was already
discussed in [11]; see the discussion surrounding Eq. (43) of that paper.
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D. Symmetric hypothesis testing with restricted measurements

Our main result on symmetric hypothesis testing against an adaptive adversary (Theorem 7) makes
it natural to conjecture a corresponding result for symmetric quantum hypothesis testing. For quantum
states ρ, σ, define

Γ∗(ρ, σ) := max
0≤λ≤1

Γλ(ρ, σ) := max
0≤λ≤1

− log tr(ρλσ1−λ) (75)

Γ∗M(R,S) := lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

Γ∗(M (ρ) ‖M (σ))

n
(76)

γM(R,S) := lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

− 1

n
log tr(Mσ + (I −M)ρ) (77)

A quantum analogue of Chernoff’s Theorem was proven in [45], [1] and in our notation can be
expressed as

γALL(ρ,σ) = Γ∗(ρ, σ).

With restricted measurements, we might ask whether an analogue of Theorem 16 holds.

Conjecture 17. If (M,R) and (M,S) are compatible pairs, then

γM(R,S) = Γ∗M(R,S).

A plausible route to proving the conjecture is to use the strategy of the proof of Theorem 16, replacing
the adversarial Chernoff-Stein Lemma with the adversarial Chernoff’s Theorem (Theorem 7)). However,
there are several limits and sup/inf steps and we have not verified that these compose in the required
ways.

E. Open questions

Having established a quantum Stein’s Lemma for restricted measurements, we would like to know if
a strong converse can also be proven, or more generally if we can calculate the error exponent for the
type-2 error when the type-1 error is required to be < ε for some fixed ε ∈ (0, 1). The difficulty is that
DM(· ‖S) > DM1(· ‖S1) in general, and we would need to control the rate of convergence as a function
of n in the lim used to define DM(· ‖S).

Like many information-theoretic quantities, D(ρ ‖ Sep) and DM(ρ ‖ Sep) (for various natural choices
of M) are operationally interesting, but are hard in practice to compute. We would like to know the
complexity of estimating them (which is a variant of the usual question about the hardness of testing
separability, cf. [25], [12]) and whether good relaxations exist (cf. [3]).

Finally, a major application of restricted-measurement distinguishability is to the related questions of
k-extendable states2, tripartite states with low conditional mutual information (i.e. “approximate Markov
states”, cf. [34]), and the quality of approximations achieved by the sum-of-squares hierarchy (cf. [2]).
A few of the more prominent open questions here are:
• If I(A : B | E)ρ is small then it was recently discovered [22], [53] that an “approximate recovery”

map T : E → E ⊗B exists such that (id⊗T )ρAE ≈ ρABE in the sense of (among other measures)
the measured relative entropy, i.e.

DALL(ρABE ‖ (id⊗T )ρAE) ≤ I(A : B | E)ρ. (78)

2A bipartite state ρAB is said to be k-extendable if there exists a state ρ̃AB1...Bk such that ρ̃ABi = ρAB for each i. The
idea of k-extendability was introduced in [50], [17], where it was proved that for any fixed dimension of A and/or B, the set
of k-extendable states approaches the set of separable states. However, the rate of convergence is an open question.
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Ref. [21] found that we cannot replace the DALL(· ‖ ·) on the LHS with the ordinary quantum relative
entropy D(· ‖ ·). Their result leaves open the question of what relationship beween minT D(ρABE ‖ (id⊗T )ρAE)
and I(A : B | E) is possible. Can we simply multiply I(A : B | E) by some constant, or can these
quantities differ by an amount that grows with dimensions? We do not even know whether the ratio
between these quantities could be arbitrarily large in fixed dimensions.

• How large can DM(ρ ‖ Sep) be when ρ is k-extendable and M is the class of separable mea-
surements? Sharp bounds are known [12] when M = 1-LOCC, and if they could be extended to
separable measurements it would have implications for quantum Merlin-Arthur games with multiple
Merlins [25] as well as for classical optimization algorithms.

• The ability of semidefinite programming hierarchies to estimate small-set expansion can be under-
stood in terms of a restricted-measurement distinguishability problem [2]. A major open question is
whether small-set expansion on graphs of size n can be well-approximated by O(log n) levels of
these hierarchies, which would imply a quasipolynomial-time algorithm for the problem. Can tools
from quantum information shed further light here?

APPENDIX

This appendix contains a very brief review of the quantum formalism and notation used in this paper.
For a much more detailed introduction to quantum information theory, see [57], or for an overview of
the field of quantum computing and quantum information more generally see [44], [36].

Density matrices. The quantum analogue of a probability distribution over [d] = {1, . . . , d} is called a
density matrix, or simply a state. Density matrices must be positive semi-definite and have trace one. These
conditions are analogous to the requirement that probabilities must be nonnegative and normalized; indeed
diagonal density matrices correspond exactly to probability distributions. If A is a finite-dimensional
Hilbert space, then define D(A) to be the set of density matrices on A, meaning the set of operators
on A that are positive semi-definite and have trace one. Let L(A,B) denote the set of bounded linear
operators from A to B, and let L(A) := L(A,A).

Tensor product. To describe composite quantum systems, we use the tensor product. The tensor product
of a vector x ∈ Cd1 and a vector y ∈ Cd2 is denoted x ⊗ y and has entries that run over all xi1yi2 for
i1 ∈ [d1], i2 ∈ [d2]. Similarly, if X and Y are matrices, then their tensor product X ⊗ Y has matrix
elements (X ⊗ Y )(i1,i2),(j1,j2) = Xi1,j1Yi2,j2 . For vector spaces A,B, we let A ⊗ B denote the span of
{a ⊗ b : a ∈ A, b ∈ B}. Note that Cd1 ⊗ Cd2 ∼= Cd1d2 . Finally, in each case we use the tensor power
notation X⊗n to stand for

n times︷ ︸︸ ︷
X ⊗X ⊗ · · · ⊗X .

Product and separable states. The tensor product is used to combine quantum states in the same way
that independent classical probability distributions are combined to form a joint distribution. Indeed, if
p, q are probability distributions of independent random variables, then p⊗q denotes the joint distribution.
Similarly, if ρ and σ are density matrices, then ρ⊗ σ denotes the state of a system that is in a so-called
product state. The convex hull of the set of product states is called the set of separable states. We write
Sep(A : B) to indicate the split along which we demand that the states be separable, e.g.

Sep(A : B) = conv{α⊗ β : α ∈ D(A), β ∈ D(β)}. (79)

Although the set Sep(A : B) is convex, it is not easy to work with. For example, computational hardness
results are known for the weak membership problem. Instead, it is sometimes more convenient to consider
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the relaxation PPT, which denotes the set of states with Positive Partial Transpose. The partial transpose
operator Γ (meant to resemble the right half of the T that usually denotes transpose) acts linearly on
L(A ⊗ B) by mapping X ⊗ Y to X ⊗ Y T ; equivalently we can write it as idA⊗TB , where idA is the
identity operator on L(A) and TB is the transpose operator on L(B). We define PPT(A : B) = {ρ ∈
D(A⊗B) : ρΓ ∈ D(A : B)}. This set is easier to work with because it has a semidefinite-programming
characterization. Moreover, it is straightforward to show that Sep(A : B) ⊂ PPT(A : B). However, in
general this inclusion is strict, and as the dimensions of A,B grow large, PPT can be an arbitrarily bad
approximation for Sep [3].

Partial trace. Another concept from probability theory that we will need to generalize is the idea of a
marginal distribution. Say we have a density matrix ρAB ∈ D(A ⊗ B). The subscript emphasizes the
systems which ρ describes, which are analogous to the random variables corresponding to a probability
distribution. To obtain the state on only the A system, we apply the partial trace operator trB := idA⊗ trB
to ρAB . The action of the partial trace is often denoted by writing only the subscripts, as in

ρA := trB ρAB and ρB := trA ρAB. (80)

(This notation generalizes; e.g. if ρ ∈ D(A ⊗ B ⊗ C), then ρB = trAC ρABC = trA trC ρABC , etc.)
Concretely, (ρA)i,i′ =

∑
j(ρAB)(i,j),(i′,j) and (ρB)j,j′ =

∑
i(ρAB)(i,j),(i,j′). We see that if ρ is diagonal

then this coincides with the idea of a marginal distribution from classical probability theory.

Measurements. Although technically all of physics is described by quantum mechanics, it is often
convenient to make a distinction between quantum information, which is often carried in very small
systems such as single atoms or single photons, and classical information, which is carried in macroscopic
systems, such as a bit in a classical RAM. The bridge from quantum state to probability distribution is
given by a measurement (also sometimes called a POVM, for Positive-Operator-Valued Measure), which
formally is a collection of matrices (POVM elements) M = (M1, . . . ,Mk) satisfying Mi ≥ 0 for each
i (meaning each Mi is positive semi-definite) and M1 + · · · +Mk = I . Performing the measurement
M on state ρ yields outcome i with probability tr[ρMi]. Thus we can interpretM as a linear map from
L(V ) to Rk, with the psd and normalization conditions serving to guarantee thatM maps D(V ) to valid
probability distributions.

Measurements on multipartite states. For our purposes, we will consider a quantum state to be destroyed
after it is measured. However, if we have a quantum state on multiple systems, such as A⊗B, and we
measure only system A, then we will still have a quantum state on system B. In this case, the probability
of obtaining outcome i is P[i] = tr[MiρA] and the residual state in this case is

trA[(Mi ⊗ I)ρAB]

P[i]
. (81)

Since
∑

iMi = I , we can verify that if we average over all measurement outcomes, then system B is
left in the state ρB , independent of the choice of measurement. This is an important feature of quantum
mechanics; despite the possibility of entanglement, there is no way for Alice (who controls system A)
to signal to Bob (who controls system B) through her choice of measurement.

Restricted classes of measurements. Consider a bipartite system A ⊗ B, with systems A,B held by
Alice and Bob respectively. Performing a general measurement on A⊗B may require that Alice and Bob
exchange quantum messages, so it is often more practical for them to consider only measurements that
they can perform using Local Operations and Classical Communication (LOCC). Although such restricted
measurements were initially introduced to model these practical restrictions, they have since arisen in
settings such as [11], [40] for completely different reasons. The class LOCC is difficult to work with and
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is cumbersome to even properly define—see [14] for a discussion—so we will often work with various
restrictions or relaxations of it. A restriction which is interesting in its own right is the class 1-LOCC,
which corresponds to Alice performing a measurement locally and sending the outcome to Bob. We say
that M ∈ 1-LOCC if M = {Mi,j} with Mi,j = Xi ⊗ Yi,j , each Xi, Yi,j ≥ 0,

∑
iXi = I and for each

i,
∑

j Yi,j = I . On the other hand, a useful relaxation is the set SEP, for which each Mi should have
the formMi =

∑
j Xi,j⊗Yi,j with each Xi,j , Yi,j ≥ 0. An even further relaxation is PPT for which we

demand only that each MΓ
i ≥ 0 (apart from the usual conditions that

∑
iMi = I and each Mi ≥ 0).

Finally we use ALL to denote the set of all measurements. Summarizing, we have

1-LOCC ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL.

In each case, we consider measurements with any finite number of outcomes, so these classes are
technically not compact.

Entanglement swapping. An important concept in our work (building on [48]) is that of compatible
pairs of families of measurements and states. We say that a POVM element Mi is compatible with a
family of states S if for each n and each ρ ∈ Sn, applying Mi to the first system leaves a residual state
(defined by (81)) that is in Sn−1. A family of measurements M is compatible with S if each POVM
element of each measurement in M is compatible with S. If S = Sep, then 1-LOCC, LOCC,SEP are all
compatible with S. If S = PPT then the set of compatible measurements includes PPT. However, it
is easy to construct examples of incompatible pairs. Let |1〉 , . . . , |d〉 be an orthonormal basis of column
vectors for Cd and define |Ψ〉 = 1

d

∑
i,j∈[d] |i〉⊗ |j〉⊗ |i〉⊗ |j〉. Observe that Ψ has entanglement between

systems 1:3 and systems 2:4, but is product across the 13:24 cut. Now consider a measurement acting
on systems 12. One can calculate that

tr12[(Mi ⊗ I) |Ψ〉 〈Ψ|] =
MT

i

d
. (82)

Thus, if MT
i is proportional to an entangled state, then the measurement can create entanglement on

the previous unentangled states 3,4 that were not measured. This phenomenon—in which we start with
A1 : A2 and B1 : B2 entanglement, measure A1B1 and end with A2 : B2 entanglement—is called
entanglement swapping [35] and is one of the main new difficulties encountered in attempting to perform
hypothesis testing with respect to classes such as Sep.

Entropy. The classical (Shannon) entropy of a distribution p is given by H(p) = −
∑

i pi log(pi). The
quantum analogue is called the von Neumann entropy, and is given by H(ρ) = − tr[ρ log ρ]. Observe
that H(ρ) is the Shannon entropy of the eigenvalues of ρ, and coincides with the Shannon entropy when
we consider probability distributions to be diagonal density matrices. If ρABC is a multipartite state,
then we let H(A)ρ := H(ρA), H(AB)ρ = H(ρAB), etc. When ρ is understood, we may write simply
H(A), H(AB), . . .. Analogous to the classical mutual information, conditional entropy, etc. we can define

H(A | B) := H(AB)−H(B) (83)

I(A : B) := H(A) +H(B)−H(AB) (84)

I(A : B | C) := H(AC) +H(BC)−H(ABC)−H(C), (85)

in each case with an implicit dependence on some state ρ. Finally, the quantum relative entropy is
D(ρ ‖σ) := tr[ρ(log ρ− log σ)]. Many of these quantities behave similarly to their classical analogues,
but a number of new subtleties emerge; see Chapter 11 of [57] or Chapter 11 of [44] for more information.
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