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Abstract

We show that any embedding of the level & diamond graph of Newman and Rabi-
novich [6] into L,, 1 < p < 2, requires distortion at least \/k(p —1) +1. An imme-
diate corollary is that there exist arbitrarily large n-point sets X C L; such that any
D-embedding of X into ¢{ requires d > n®(1/D*)  This gives a simple proof of a recent
result of Brinkman and Charikar [2] which settles the long standing question of whether
there is an Ly analogue of the Johnson-Lindenstrauss dimension reduction lemma [4].

1 The diamond graphs, distortion, and dimension

We recall the definition of the diamond graphs {G}}32 , whose shortest path metrics are known
to be uniformly bi-lipschitz equivalent to a subset of Ly (see [3] for the L; embeddability of
general series-parallel graphs). The diamond graphs were used in [6] to obtain lower bounds
for the Euclidean distortion of planar graphs and similar arguments were previously used in a
different context by Laakso [5].

G consists of a single edge of length 1. G; is obtained from G;_; as follows. Given an
edge (u,v) € E(G;_1), it is replaced by a quadrilateral u,a,v,b with edge lengths 27% In
what follows, (u,v) is called an edge of level i — 1, and (a,b) is called the level i anti-edge
corresponding to (u,v). Our main result is a lower bound on the distortion necessary to embed
Gy into Ly, for 1 <p < 2.

Theorem 1.1. For every 1 < p < 2, any embedding of Gy, into L, incurs distortion at least
1+ (p—1)k.

The following corollary shows that the diamond graphs cannot be well-embedded into low-
dimensional ¢; spaces. In particular, an L; analogue of the Johnson-Lindenstrauss dimension
reduction lemma does not exist. The same graphs were used in [2] as an example which shows
the impossibility of dimension reduction in L;. Our proof is different and, unlike the linear
programming based argument appearing there, relies on geometric intuition. We proceed by
observing that a lower bound on the rate of decay of the distortion as p — 1 yields a lower
bound on the required dimension in /7.

Corollary 1.2. For every n € N, there exists an n-point subset X C Ly such that for every
D > 1, if X D-embeds into 6?, then d > n1/D?).
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Proof. Since ¢¢ is O(1)-isomorphic to ﬁg when p =1+ @ and Gy, is O(1)-equivalent to a

subset X C L, it follows that (/1 + & = O(D). Noting that k& = Q(logn) completes the
proof. O

2 Proof

The proof is based on the following inequality. The case p = 2 is the well known “short
diagonals lemma” which was central to the argument in [5, 6].

Lemma 2.1. Fiz 1 <p <2 and z,y,z,w € L,. Then,
ly = 215+ (p = Dlle —wlly <l = yl5 + lly = wl; + lw — 2|5 + ||z — 3.

Proof. For every a,b € Ly, ||a+ b2+ (p — 1)||a — b2 < 2(||al2 + ||b]|2). A simple proof of
this classical fact can be found, for example, in [1]. Now,

ly = 2l[5 + (0 = Dlly — 22 + 2[5 < 2lly — (|5 + 2[|x — 2|7

and
ly =zl + (p— Dy — 2w + 2[5 < 2|ly — w3 + 2[[w — 2|2

Averaging these two inequalities yields
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ly — 2z + 2]l + [ly w+2\|p§”x

ly— 2|2+ (p—1) 5

~ylp+lly —wlp+llw— =23+ 1z -zl

The required inequality follows by convexity. O

Lemma 2.2. Let A; denote the set of anti-edges at level i and let {s,t} = V(Gy), then for
1<p<2andany f: G — Ly,

k
1) = fF@I+ =1 Y f@—-fwlz< Y @)~ Wl

=1 (z,y)€A; (z,y)EE(Gy)

Proof. Let (a,b) be an edge of level i and (¢, d) its corresponding anti-edge. By Lemma 2.1,
1£(@) = SO+ (- DILF() — F@DIE < [1F(@) — SO+ LF®) — £+ () — fa)|2+
If(d) — f(b)|[2. Summing over all such edges and all i = 0,...,k — 1 yields the desired
result by noting that the terms ||f(z) — f(y)Hf7 corresponding to (x,y) € E(G;) cancel for
i=1,...k—1. O

The main theorem now follows easily.

Proof of Theorem 1.1. Let f : Gy — L, be a non-expansive D-embedding. Since |4;| = 4'~1
and the length of a level i anti-edge is 2'~¢, applying Lemma 2.2 yields H%j}lw <1. O
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