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Abstract

Suppose that {Gn} is a sequence of finite graphs such that each Gn is the tangency graph of a
sphere packing in Rd . Let ρn be a uniformly random vertex of Gn and suppose that (G, ρ) is the
distributional limit of {(Gn , ρn)} in the sense of Benjamini and Schramm. Then the conformal
growth exponent of (G, ρ) is at most d. In other words, there exists a unimodular “unit volume”
weighting of the graph metric on (G, ρ) such that the volume growth of balls in the weighted
path metric is bounded by a polynomial of degree d. This assertion generalizes to limits of
graphs that can be “quasi-packed” in an Ahlfors d-regular metric measure space.

It implies that, under moment conditions on the degree of the root ρ, the almost sure spectral
dimension of G is at most d. This fact was known previously only for graphs packed in R2

(planar graphs), and the case d > 2 eluded approaches based on extremal length. In the process
of bounding the spectral dimension, we establish that the spectral measure of (G, ρ) is dominated
by a variant of the d-dimensional Weyl law.
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1 Introduction

The theory of random planar graphs has been an active area of study in the last twenty years (see,
e.g., [Ben10]), inspired partially by the connection to two-dimensional quantum gravity [ADJ97].
As noted by Benjamini and Curien [BC11], an analogous theory in higher dimensions has proved
elusive, in part based on the difficulty of enumeration for higher-dimenisonal simplicial complexes
(see [BZ11] and the references therein).

To address this discrepancy, the authors of [BC11] explored the extension of analytic and
probabilistic methods based on potential theory. A graph G is said to be sphere-packed in Rd if G is
the tangency graph of a collection of interior-disjoint spheres in Rd . Benjamini and Curien proved
that if a family of finite graphs can be sphere-packed in Rd with spheres of bounded aspect ratio
(so that the ratio of the radii of tangent spheres is O(1)), then a distributional limit of such graphs is
d-parabolic.

Roughly speaking, d-parabolicity means that the `d extremal length from a fixed vertex to
∞ is infinite, where the `d extremal length is a natural analog Cannon’s vertex extremal length
[Can94] (the case d � 2); see also [Duf62] and Section 1.3. It is well-known that the special case
of 2-parabolicity carries strong probabilistic significance; for instance, for graphs with uniformly
bounded degrees, 2-parabolicity is equivalent to recurrence of the randomwalk (see [Duf62, DS84]).
For d > 2, the theory of `d extremal length seems somewhat less powerful, and is not known to
yield such control on the random walk.

In this work, we study a related notion that one might refer to as the “extremal growth rate .”
For graphs that can be sphere-packed in Rd , we show that it is possible to construct metrics that
uniformize their underlying geometry so that the counting measure has d-dimensional volume
growth. Employing the results of [Lee17], one does obtain substantial probabilistic consequences,
including d-dimensional lower bounds on the diagonal heat kernel (see Theorem 1.6 below).
Moreover, our results hold in considerable generality; they require no assumption on the ratio of
radii of adjacent balls in the packing, and they extend to graphs that can be “quasi-packed” in an
Ahlfors regular metric measure space, as we now describe.

Quasi-packings and the spectral dimension. Consider a metric space (X, dist). A τ-quasi-ball in
X is a Borel set S ⊆ X that is sandwiched between two closed balls: B(x , r) ⊆ S ⊆ B(x , τr) for
some x ∈ X, r > 0. Let Bτ denote the collection of τ-quasi-balls in X. Say that a graph G is
(τ,M)-quasi-packed in (X, dist) if there is a mapping Φ : V(G)→ Bτ that satisfies:

1. Quasi-tangency:

{u , v} ∈ E(G) �⇒ dist(Φ(u),Φ(v)) 6 τmin {diam(Φ(u)), diam(Φ(v))} . (1.1)

2. Quasi-multiplicity: For every x ∈ X and r > 0:

#
{
v ∈ V(G) : B(x , r) ∩Φ(v) , ∅ and diam(Φ(v)) > τr

}
6 M . (1.2)

Say that a graph G quasi-packs in (X, dist) if G is (τ,M)-quasi-packed in (X, dist) for some numbers
M, τ > 1. A family {Gn} of graphs uniformly quasi-packs in (X, dist) if there are M, τ > 1 such that
each Gn is (τ,M)-quasi-packed in (X, dist). Of course, the collection {Φ(v) : v ∈ V(G)} is only a
genuine packing for M � 1. We now state a representative theorem.

Theorem 1.1. Consider a sequence of random rooted finite graphs {(Gn , ρn)} with ρn ∈ V(Gn) chosen
uniformly at random. Suppose the family {Gn} has uniformly bounded degrees and is uniformly quasi-packed
in an Ahlfors d-regular metric measure space. If (G, ρ) is the distributional limit of this sequence, then
almost surely dimsp(G) 6 d. Moreover, if d � 2, then G is almost surely recurrent.
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Here, “distributional limit” refers to convergence in the Benjamini-Schramm sense (i.e., in the
weak local topology): {(Gn , ρn)} → (G, ρ) means that the laws of neighborhoods of ρn in Gn
converge to the law of neigborhoods of ρ in G, where neighborhoods are considered up to rooted
isomorphism. See Section 1.6 for precise definitions.

And we use dimsp to denote the upper spectral dimension:

dimsp(G) :� lim sup
n→∞

−2 log pG
2n(v , v)

log n
,

where pG
t (v , v) � �[Xt � v | X0 � v] and {Xt} is the standard random walk on G. (The value does

not depend on the choice of v ∈ V(G).)
Remark 1.2 (Coarse packings). It is not hard to check that if two metric spaces X and Y are
bi-Lipschitz equivalent, then G quasi-packs in X if and only if G quasi-packs in Y, making the
notion a bi-Lipschitz invariant. More generally, it is a quasisymmetric invariant when X is uniformly
perfect. See Section 2.2.

To relate quasi-packings to more standard notions, it is helpful to consider a simpler set of
assumptions. Say that a graph G coarsely packs in X if there are numbers M, τ > 1 and a map
Φ : V(G)→ B1 so that (1.1) is satisfied, as well as

#{v ∈ V(G) : x ∈ Φ(v)} 6 M ∀x ∈ X . (1.3)

Note that this is simply (1.2) for r � 0 and B1 is precisely the collection of closed balls in X. If
(X, dist) is an Ahlfors d-regular length space (cf. Section 1.7) and G coarsely packs in X, then it
quasi-packs in X. This is proved in Section 2.1.

This implies that if G is the tangency graph of interior-disjoint spheres in Rd , then it is
automatically (τ,M)-quasi-packed in Rd for some M, τ > 1 depending only on d. For a non-
Euclidean example, consider that the same is true of the tangency graphs of interior-disjoint balls in
the Heisenberg groups equipped with their Carnot-Carathéodory metrics. See Section 2.1 for a
detailed discussion. In general, the reader will suffer no great conceptual loss by thinking only of
classical sphere packings in Rd .

1.1 Discrete conformal metrics on sphere-packed graphs

Consider a locally finite, connected graph G. A conformal metric (or conformal weight) on G is a map
ω : V(G)→ R+. This endows G with a graph distance as follows: Give to every edge {u , v} ∈ E(G)
a length lenω({u , v}) :� 1

2 (ω(u) + ω(v)). This prescribes to every path γ � {v0 , v1 , v2 , . . .} in G the
induced length

lenω(γ) :�
∑
k>0

lenω({vk , vk+1}) .

Now for u , v ∈ V(G), one defines the path metric distω(u , v) as the infimum of the lengths of all u-v
paths in G. Denote the closed ball

Bω(x , R) :�
�

y ∈ V(G) : distω(x , y) 6 R
	
.

We can now state a special case of our main technical theorem; the connection to distributional
limits and random walks is discussed subsequently.

Theorem 1.3. For every d ,M, τ > 1 and every Ahlfors d-regular metric measure spaceX there is a constant
C such that the following holds. If G � (V, E) is a finite graph that is (τ,M)-quasi-packed in X, then there is
a conformal metric ω : V → R+ that satisfies

1
|V |

∑
x∈V

ω(x)d
� 1 ,
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and such that
max

x∈V(G)
|Bω(x , R)| 6 CRd(log R)2 ∀R > 1 .

The method of proof is based partially on a celebrated lemma of Benjamini and Schramm [BS01].
They show that if {Gn} is a sequence of finite planar triangulations with uniformly bounded degrees
and {Gn} converges to a distributional limit (G, ρ), then almost surely any circle packing of G has
at most one accumulation point in the plane. An analogous result holds for graphs sphere-packed
in Rd when d > 2 [BC11].

We argue that, in a quantative sense, as long as the accumulation points remain separated, one
can construct a multi-scale reweighting of the spheres in the packing, endowing the graph with a
metric that reflects its d-dimensional structure with respect to the underlying counting measure.
This is carried out in Section 3.

1.2 Conformal growth exponents

If (G, ρ) is random rooted graph, then a conformal metric on (G, ρ) is a random triple (G′, ω, ρ′)with
ω : V(G)→ R+ such that (G, ρ) and (G′, ρ′) have the same law. We say that the conformal weight is
normalized if �

�
ω(ρ)2�

� 1. One thinks of such a metric ω : V(G)→ R+ as deforming the geometry
of the underlying graph subject to a bound on the total “area.” As shown in [Lee17], normalized
conformal metrics with nice geometric properties form a powerful tool in understanding the spectral
geometry of (G, ρ).

In the present work, we consider unimodular random graphs (see Section 1.6); such graphs arise
naturally as distributional limits of finite random rooted graphs {(Gn , ρn)} where ρn ∈ V(Gn) is
chosen uniformly at random. We will consider only unimodular conformal metrics ω on (G, ρ); in
other words, the setting where (G, ω, ρ) is unimodular as a marked network in the sense of [AL07].

Conformal growth exponents. Consider a unimodular random graph (G, ρ). In [Lee17], we
defined the upper and lower conformal growth exponents of (G, ρ), respectively, by

dimcg(G, ρ) :� inf
ω

lim sup
R→∞

log ‖#Bω(ρ, R)‖L∞

log R
, (1.4)

dimcg(G, ρ) :� inf
ω

lim inf
R→∞

log ‖#Bω(ρ, R)‖L∞

log R
, (1.5)

where the infimum is over all normalized unimodular conformal metrics on (G, ρ), and we use
‖X‖L∞ to denote the essential supremum of a random variable X, and #S to denote the cardinality
of a set S.

When dimcg(G, ρ) � dimcg(G, ρ), define the conformal growth exponent by

dimcg(G, ρ) :� dimcg(G, ρ) � dimcg(G, ρ) .
Note that the quantities dimcg , dimcg , dimcg are functions of the law of (G, ρ); they are not defined
on (fixed) rooted graphs.

The conformal growth exponent bears a philosophical resemblance to Pansu’s notion of conformal
dimension [Pan89]. The relationship between sphere packings in R2 and conformal mappings is
classical and well-understood. For an emerging more general theory, we refer to Pansu’s recent
work [Pan16] which explores in detail the relationship between sphere packings and the theory of
large-scale conformal maps.

Lq conformal growth rate. Let us define a generalization: If (G, ω, ρ) is a unimodular random
conformal graph, we denote

‖ω‖Lq :�
�
�ω(ρ)q�1/q

.
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Say that ω is Lq-normalized if ‖ω‖Lq � 1.
Define the analogous Lq quantities: dimq

cg , dimq
cg , dimq

cg where now the infima in (1.4) and (1.5)
are over all Lq-normalized conformal metrics on (G, ρ). Observe that, by monotonicity of Lq norms,
we have

q 6 q′ �⇒ dimq
cg(G, ρ) 6 dimq′

cg(G, ρ) .
The next theorem constitutes the main new technical theorem presented here. We use⇒ to

denote convergence in the distributional sense; see Section 1.6.

Theorem 1.4. For any d > 2, the following holds. If (G, ρ) is the distributional limit of finite graphs that
are uniformly quasi-packed in an Ahlfors d-regular metric measure space, then there is an Ld-normalized
unimodular conformal metric ω : V(G)→ R+ such that almost surely, for all R > 1,

�
Bω(ρ, R)� 6 O(Rd(log R)2) . (1.6)

In particular, dimcg(G, ρ) 6 d.

The last assertion follows from dimcg(G, ρ) � dim2
cg(G, ρ) 6 dimd

cg(G, ρ). If X is Ahlfors
d-regular with d < 2, the conclusion dimcg(G, ρ) 6 2 still holds; see Section 3. We remark that some
(log R)O(1) factor is necessary even for the case of planar graphs; see [Lee17, §2].

A primary motivation for Theorem 1.4 is that such metrics can be used to obtain estimates
on the heat kernel and spectral measure of G. For a locally finite, connected graph G, denote the
discrete-time heat kernel

pG
T (x , y) :� �[XT � y | X0 � x], x , y ∈ V(G) ,

where {Xn} is the standard random walk on G and T ∈ �. We recall the spectral dimension of G:

dimsp(G) :� lim
n→∞

−2 log pG
2n(x , x)

log n
,

whenever the limit exists. If the limit does exist, then it is the same for all x ∈ V(G).
Say that a real-valued random variable X has negligible tails if its tails decay faster than any

inverse polynomial:

lim
n→∞

log n
|log�[|X | > n]| � 0 , (1.7)

where we take log(0) � −∞ in the preceding definition (in the case that X is essentially bounded).
The next theorem is from [Lee17]; it asserts that if dimcg(G, ρ) 6 d, then almost surely G admits
d-dimensional lower bounds on the diagonal heat kernel:

pG
2n(ρ, ρ) > n−d/2−o(1) as n →∞ .

Theorem 1.5. Suppose that (G, ρ) is a unimodular random graph such that degG(ρ) has negligible tails.
Then almost surely:

dimsp(G) 6 dimcg(G, ρ) .
In particular, if there is a number d such that almost surely dimsp(G) � d, then d 6 dimcg(G, ρ).

In certain situations, one can give stronger estimates. Indeed, when the conformal growth rate
has only a polylogarithmic correction as in (1.6), one obtains stronger results (see [Lee17, §4.2]).
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Theorem 1.6. Suppose (G, ρ) is the distributional limit of finite graphs that are uniformly quasi-packed in
an Ahlfors d-regular metric measure space X, and that degG(ρ) has exponential tails in the sense that

�[degG(ρ) > k] 6 e−ck

for some c > 0. Then there is a constant C > 1 such that for n sufficiently large,

�

[
pG

2n(ρ, ρ) >
n−d∗/2

(log n)C

]
> 1 − 1

log n
,

where d∗ � max(d , 2).

1.3 Gauged conformal growth and d-parabolicity

Consider a locally-finite connected graph G � (V, E). Let Γ denote a collection of simple paths in G.
The `d-vertex extremal length of Γ is defined by

VELd(Γ) :� sup
ω

inf
γ∈Γ

lenω(γ)
‖ω‖`d(V)

,

where the infimum is over all conformal metrics on G, and ‖ω‖`d(V) :�
�∑

v∈V ω(v)d�1/d .
Fix a vertex v0 ∈ V and let ΓG(v0) denote the set of infinite simple paths in G emenating from

v0. One says that G is d-parabolic if VELd(ΓG(v0)) � ∞ (see [HS95, BS13]). One can check that this
definition does not depend on the choice of v0 ∈ V .

There are unimodular random graphs (G, ρ) where G is almost surely d-parabolic, but
dimd

cg(G, ρ) > dimcg(G, ρ) � ∞, and other examples where dimcg(G, ρ) � d > 2 but G is al-
most surely not d-parabolic; see Section 3.3.

Gauged growth. On the other hand, there is a common strengthening of the conditions. Say that
(G, ρ) has (C, R, d)-growth if there is an Ld-normalized conformal metric ω : V(G)→ R+ such that

‖#Bω(ρ, R)‖L∞ 6 CRd . (1.8)

Say that (G, ρ) has gauged d-dimensional conformal growth if there is a constant C > 1 such that (G, ρ)
has (C, R, d)-growth for all R > 0. A sequence {(Gn , ρn)} has uniform gauged d-dimensional conformal
growth if there is a constant C > 1 such that (Gn , ρn) has (C, R, d)-growth for all R > 0 and n > 1.

It is straightforward to see that if (G, ρ) has gauged d-dimensional growth, then dimd
cg(G, ρ) 6 d:

For each k > 1, let ωk denote an Ld-normalized conformal metric on (G, ρ) satisfying (1.8) and
define

ω̂ :� *.
,

6
π2

∑
k>1

ωd
k

k2
+/
-

1/d

.

(By unimodularity of the triple (G, ω̂, ρ), it holds that almost surely supx∈V(G) ω̂(x) < ∞; see
Section 1.6).

Establishing d-parabolicity is somewhat more involved; the d � 2 case of the following theorem
is [Lee17, Thm. 2.1]. The general case is proved in Section 3.3.1.

Theorem 1.7. For every d > 1, the following holds. If (G, ρ) is a unimodular random graph such that
degG(ρ) is essentially bounded and (G, ρ) has gauged d-dimensional conformal growth, then G is almost
surely d-parabolic.

In order to establish Theorem 1.4, we prove the following stronger statement in Section 3.
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Theorem 1.8. For any d > 1, the following holds. If (G, ρ) is the distributional limit of finite graphs
that are uniformly quasi-packed in an Ahlfors d-regular metric measure space, then (G, ρ) has gauged
max(d , 2)-dimensional conformal growth.

Note that for the special case of planar graphs, the conjunction of Theorem 1.7 and Theorem 1.8
recovers the Benjamini-Schramm recurrence theorem [BS01] (that every distributional limit of finite
planar graphs with uniformly bounded degrees is almost surely 2-parabolic).

1.4 The spectral measure of d-dimensional graphs

In order to obtain estimates like Theorem 1.5 and Theorem 1.6, it is clear that one needs to control
the moments of the spectral measure at the root. Indeed, if (G, ρ) is a random rooted graph, then
one can define the spectral measure µ :� �[µρG], there µv

G is the unique probability measure on R

such that for all integers T > 1:

degG(v)
∫

θT dµv
G(θ) � 〈1v , PT

G1v〉`2(G) .

Here, PG is the randomwalk operator on G and `2(G) is the Hilbert space of functions f : V(G)→ R

with 〈 f , 1〉`2(G) :�
∑

x∈V(G) degG(x) f (x)1(x). (See, e.g., [Lee17, §4.4.1] and [BSV17, §1.4–1.5].) Note
that µ is almost surely supported on [−1, 1].

In this formulation, one has: For all integers T > 1,

�
�
pG

2T(ρ, ρ)
�
�

∫
θ2T dµ(θ) ,

hence an elementary calculation shows that for every d > 1 and T > 1:

1
4µ

�[1 − 1
2T , 1]

�
6 �

�
pG

2T(ρ, ρ)
�
6 T−d

+ µ
( [

1 − d log T
2T , 1

] )
.

Almost sure (quenched) lower bounds on pG
2T as in Theorem 1.5 are substantially more difficult to

establish than lower bounds on �[pG
2T(ρ, ρ)], but annealed estimates are already interesting, and

one can draw a parallel to more classical settings.

The Weyl bound in Rd . Consider a bounded domain Ω ⊆ Rd , and let λ1 6 λ2 6 · · · be the
corresponding Neumann eigenvalues. Let NΩ(λ) :� #{k : λk 6 λ} denote the eigenvalue counting
function. In 1912, addressing a conjecture of Lorentz, Weyl determined [Wey12] the first-order
asymptotics of NΩ(λ) as λ →∞:

NΩ(λ) ∼ cd vol(Ω)λd/2 ,

where cd is some constant depending only on the dimension.
In addressing a question of S. T. Yau on the spectrum of the Laplacian on orientable surfaces,

Korevaar [Kor93] showed that if Ω is a subdomain of a complete d-dimensional Riemannian
manifold (M, 10) with nonnegative Ricci curvature, and (M, ϕ10) is a finite-volume conformal
metric, then

NΩ(λ) > Cd vol(Ω, ϕ10)λd/2 , (1.9)
where Cd is a constant depending only on the dimension d.

Analogous results can be obtained for distributional limits of finite graphs that are sphere-packed
Rd . Let ν denote the law of a random rooted graph (G, ρ) and define d̄ν : [0, 1]→ R+ by

d̄ν(ε) :� sup
�
�[degG(ρ) | E] : �(E) > ε	

,

where the supremum is over all measurable sets E with �(E) > ε.
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Theorem 1.9. Consider d > 1 and an Ahlfors d-regular metric measure space X. Suppose (G, ρ) is a
distributional limit of finite graphs that are uniformly quasi-packed in X. Then there is a number c > 0 such
that the following holds. Let ν denote the law of (G, ρ), and let µ denote the corresponding spectral measure.
For all ε > 0:

µ([1 − ε, 1]) > c
(log(1/ε))−2

d̄ν(ε)
εd/2 . (1.10)

The asymptotic dependence on ε is tight up to the (log(1/ε))−2 factor; see Remark 1.11.

The Laplacian spectrum of finite tangency graphs. Theorem 1.9 follows readily from an analogous
result for finite graphs. Let G � (V, E) denote a finite connected graph with n � |V |. Let
{1 − λk(G) : k � 0, 1, . . . , n − 1} be the eigenvalues of the random walk operator on G, where

0 � λ0(G) 6 λ1(G) 6 · · · 6 λn−1(G) .
Define the corresponding counting function:

NG(λ) :� #{k > 0 : λk(G) 6 λ} .
Define also

∆G(k) :� max
S⊆V :|S|6k

∑
x∈S

degG(x) ,

where degG(x) denotes the degree of a vertex x ∈ V . Note, in particular, that ∆G(1) is the maximum
degree in G.

Denote d̄G(ε) :� ∆G(εn)
εn . In [KLPT11], addressing a conjecture of Spielman and Teng [ST07], it is

shown that there is a constant c > 0 such that if G is a planar graph, then for all λ ∈ [0, 1],
NG(λ) > c

∆G(1)λn . (1.11)

In [Lee17], the author improves this bound to

NG(λ) > c
d̄G(λ)

λn , (1.12)

where c > 0 is some other constant.
While the utility of this improvement is not immediately apparent in the finite setting, one

should observe that (1.11) yields no information for a distributional limit (G, ρ) in which there
is no uniform bound on degG(ρ), whereas (1.12) yields (1.10) in the case d � 2 (and without the
log(1/ε)−2 correction factor). Moreover, the correct quantitative dependence is essential to a spectral
argument proving that the uniform infinite planar triangulation is almost surely recurrent [Lee17];
this fact was first established by Gurel-Gurevich and Nachmias [GN13] using effective resistance
estimates. In Section 3.4, we use Theorem 1.3 to establish an analogous lower bound to (1.9) for
graphs sphere-packed in Rd (and their generalizations).

Theorem 1.10 (Weyl bound for quasi-packed finite graphs). For every d , τ,M > 1 and every Ahlfors
d-regular metric measure space X, there is a number c > 0 such that the following holds. If G is an n-vertex
graph that is (τ,M)-quasi-packed in X, then for all λ ∈ [0, 1],

NG(λ) > c
d̄G(λ)

(
log e

λ

)−2
nλd/2 .

Remark 1.11. Up to the factor of (log(e/λ))2, this bound is tight for a d-dimensional box
{1, 2, . . . , n1/d}d considered as a subgraph of the integer lattice Zd . Whether the (log(1/λ))2
factor can be removed from the bound is an interesting open question.
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1.5 Preliminaries

We use the notations R+ � [0,∞) and Z+ � Z ∩R+.
All graphs appearing in this paper are undirected and locally finite and without loops or

multiple edges. If G is such a graph, we use V(G) and E(G) to denote the vertex and edge set
of G, respectively. If S ⊆ V(G), we use G[S] for the induced subgraph on S. For A, B ⊆ V(G),
we write EG(A, B) for the set of edges with one endpoint in A and the other in B. We write distG
for the unweighted path metric on V(G), and BG(x , r) � {y ∈ V(G) : distG(x , y) 6 r} to denote
the closed r-ball around x ∈ V(G). Also let degG(x) denote the degree of a vertex x ∈ V(G), and
dmax(G) � supx∈V(G) degG(x).

Write G1 � G2 to denote that G1 and G2 are isomorphic as graphs. If (G1 , ρ1) and (G2 , ρ2) are
rooted graphs, we write (G1 , ρ1) �ρ (G2 , ρ2) to denote the existence of a rooted isomorphism.

1.6 Unimodular random graphs and distributional limits

We begin with a discussion of unimodular random graphs and distributional limits. One may
consult the extensive reference of Aldous and Lyons [AL07]. The paper [BS01] offers a concise
introduction to distributional limits of finite planar graphs. We briefly review some relevant points.

Let G denote the set of isomorphism classes of connected, locally finite graphs; let G• denote
the set of rooted isomorphism classes of rooted, connected, locally finite graphs. Define a metric on
G• as follows: dloc

�(G1 , ρ1), (G2 , ρ2)� � 1/(1 + α), where

α � sup
�
r > 0 : BG1(ρ1 , r) �ρ BG2(ρ2 , r)	 .

(G• , dloc) is a separable, complete metric space. For probability measures {µn}, µ on G•, write
{µn}⇒ µ when µn converges weakly to µ with respect to dloc. If {(Gn , ρn)}⇒ (G, ρ), we say that
(G, ρ) is the distributional limit of the sequence {(Gn , ρn)}.
The Mass-Transport Principle. Let G•• denote the set of doubly-rooted isomorphism classes of
doubly-rooted, connected, locally finite graphs. A probability measure µ on G• is unimodular if it
obeys the followingMass-Transport Principle: For all Borel-measurable F : G•• → [0,∞],∫ ∑

x∈V(G)
F(G, ρ, x) dµ((G, ρ)) �

∫ ∑
x∈V(G)

F(G, x , ρ) dµ((G, ρ)) . (1.13)

If (G, ρ) is a random rooted graphwith law µ, and µ is unimodular, we say that (G, ρ) is a unimodular
random graph.

Distributional limits of finite graphs. As observed by Benjamini and Schramm [BS01], unimod-
ular random graphs can be obtained from limits of finite graphs. Consider a sequence {Gn} ⊆ G
of finite graphs, and let ρn denote a uniformly random element of V(Gn). Then {(Gn , ρn)} is a
sequence of G•-valued random variables, and one has the following.

Lemma 1.12. If {(Gn , ρn)}⇒ (G, ρ), then (G, ρ) is unimodular.

When {Gn} is a sequence of finite graphs, we write {Gn} ⇒ (G, ρ) for {(Gn , ρn)} ⇒ (G, ρ)
where ρn ∈ V(Gn) is chosen uniformly at random.

Unimodular random conformal graphs. A conformal graph is a pair (G, ω), where G is a connected,
locally finite graph and ω : V(G) → R+. Let G∗ and G∗• denote the collections of isomorphism
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classes of conformal graphs and conformal rooted graphs, respectively. As in Section 1.6, one can
define a metric on G∗• as follows: d∗loc

�(G1 , ω1 , ρ1), (G2 , ω2 , ρ2)� � 1/(α + 1), where

α � sup
{

r > 0 : BG1(ρ1 , r) �ρ BG2(ρ2 , r) and d
(
ω1 |BG1 (ρ1 ,r) , ω2 |BG2 (ρ2 ,r)

)
6

1
r

}
,

where for two weights ω1 : V(H1) → R+ and ω2 : V(H2) → R+ on rooted-isomorphic graphs
(H1 , ρ1) and (H2 , ρ2), we write

d(ω1 , ω2) :� inf
ψ:V(H1)→V(H2)

�
ω2 ◦ ψ − ω1

�
`∞ , (1.14)

and the infimum is over all graph isomorphisms from H1 to H2 satisfying ψ(ρ1) � ρ2.
If {µn} and µ are probability measures on G∗•, we abuse notation and write {µn} ⇒ µ to

denote weak convergence with respect to d∗loc. One defines unimodularity of a random rooted
conformal graph (G, ω, ρ) analogously to (1.13): It should now hold that for all Borel-measurable
F : G∗•• → [0,∞],∫ ∑

x∈V(G)
F(G, ω, ρ, x) dµ((G, ω, ρ)) �

∫ ∑
x∈V(G)

F(G, ω, x , ρ) dµ((G, ω, ρ)) .

Indeed, such decorated graphs are a special case of the marked networks considered in [AL07], and
again it holds that every distributional limit of finite unimodular random conformal graphs is a
unimodular random conformal graph.

Suppose that (G, ρ) is a unimodular random graph. A conformal weight on (G, ρ) is a unimodular
random conformal graph (G′, ω, ρ′) such that (G, ρ) and (G′, ρ′) have the same law. We will speak
simply of a “conformal metric ω on (G, ρ).” Only such unimodular metrics are considered in this
work.

1.6.1 Conformal growth rates under distributional limits

In order to establish our main result, we need to pass from a sequence of conformal metrics on
finite graphs to a conformal metric on the distributional limit.

Theorem 1.13. Consider d , q > 1. Suppose {(Gn , ρn)} is a sequence of unimodular random graphs and
{(Gn , ρn)}⇒ (G, ρ). If there is a function h : R+ → R+ such that h(R) 6 Ro(1) as R →∞, and a sequence
of Lq-normalized unimodular random conformal graphs {(Gn , ωn , ρn)} satisfying

‖Bωn (ρn , R)‖L∞ 6 Rd h(R) , (1.15)

then dimq
cg(G, ρ) 6 d. If the unimodular random graphs {(Gn , ρn)} have uniform gauged d-dimensional

growth, then (G, ρ) has gauged d-dimensional growth.

The preceding theorem follows immediately from the next lemma.

Lemma 1.14. Consider a sequence {(Gn , ωn , ρn)} of unimodular random conformal graphs satisfying the
following conditions:

1. {(Gn , ρn)} has a distributional limit.

2. lim supn→∞�[ωn(ρn)] < ∞.

Then {(Gn , ωn , ρn)} has a subsequential weak limit in the metric d∗loc.
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Proof. By passing to a subsequence and scaling, we may assume that

�[ωn(ρn)] 6 1 ∀n > 1 . (1.16)

Let µn denote the law of (Gn , ωn , ρn). We will prove that the sequence {µn} is tight. Since (G∗• , d∗loc)
is a complete, separable metric space, Prokhorov’s theorem then implies that the sequence {µn}
has a weak subsequential limit.

To establish tightness, it suffices to exhibit a sequence {K j ⊆ G
∗
• : j > 1} such that each K j is

compact in the topology induced by d∗loc and

lim
j→∞

lim
n→∞

µn(K j) � 1 . (1.17)

Let µ̂n denote the law of (Gn , ρn). Since (Gn , ρn) has a distributional limit and (G• , dloc) is
complete, Prokhorov’s theorem yields a sequence of compact sets {K̂ j ⊆ G• : j > 1} such that

lim
j→∞

lim
n→∞

µ̂n(K̂ j) � 1 . (1.18)

Denote the numbers:
b j,k :� sup

�|BG(ρ, k)| : (G, ρ) ∈ K̂ j
	
.

Since each K̂ j is compact, we have b j,k < ∞ for all j, k > 1.
Define the compact sets

K j :�
{
(G, ω, ρ) : (G, ρ) ∈ K̂ j and max

x∈BG(ρ,k)
ω(x) 6 jk2b j,2k ∀k > 1

}
.

We are left to verify that (1.17) holds.
To that end, we apply the Mass-Transport Principle to (Gn , ωn , ρn) with the flow

F j,k(G, ω, x , y) :� ω(y)1{distG(x ,y)6k}1{(G,x)∈K̂ j} ,

yielding

jk2b j,2k �

[
(Gn , ρn) ∈ K̂ j and max

x∈BGn (ρn ,k)
ωn(x) > jk2b j,2k

]
6 �


1{(Gn ,ρn)∈K̂ j}

∑
y∈BGn (ρn ,k)

ωn(y)


� �



∑
y∈V(Gn)

F j,k(Gn , ωn , ρn , y)


� �



∑
x∈V(Gn)

F j,k(Gn , ωn , x , ρn)


� �


ωn(ρn)

∑
x∈BGn (ρn ,k)

1{(G,x)∈K̂ j}


6 �[ωn(ρn)]b j,2k .

Using (1.16), this gives

�
�(Gn , ωn , ρn) ∈ K j

�
> �

�(Gn , ρn) ∈ K̂ j
�
−

1
j

∑
k>1

1
k2 .

In conjunction with (1.18), this yields (1.17). �
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1.7 Ahlfors regularity and systems of dyadic cubes

Consider a complete, separable metric space (X, d). For x ∈ X and two subsets S, T ⊆ X, we use the
notations d(S, T) :� infx∈S,y∈T d(x , y) and d(x , S) � d({x}, S). Define diam(S, d) :� supx ,y∈S d(x , y)
and for R > 0, define the closed balls

B(X,d)(x , R) :� {y ∈ X : d(x , y) 6 R} .
We omit the subscript (X, d) if the underlying metric space is clear from context. We say that (X, d)
is doubling if there is a constantD such that every closed ball in X can be covered byD closed balls
of half the radius, and we let D(X,d) denote the infimal D for which this holds. (X, d) is a length
space if, for every x , y ∈ X, the distance d(x , y) is equal to the infimum of the length of continuous
curves connecting x to y in X.

If µ is a measure on the Borel σ-algebra of X, we refer to (X, d , µ) as a metric measure space. Such
a space is said to be Ahlfors β-regular if there are constants c1 , c2 > 0 such that

c1Rβ 6 µ (B(x , R)) 6 c2Rβ
∀x ∈ X, R ∈ [0, diam(X)] .

It will occasionally be convenient to record the constants c1 , c2, in which case we say that (X, d , µ) is
(c1 , c2 , β)-regular. We recall the following elementary fact:

Fact 1.15. If (X, d , µ) is Ahlfors β-regular for some β > 0, then (X, d) is doubling, andD(X,d) 6 C for some
constant C � C(c1 , c2 , β) depending only on c1 , c2 , β.

We will employ an appropriate system of hierarchical dyadic partitions of a doubling metric
space (X, d) along the lines of [Chr90] and [Dav91]. Deterministic and stochastic constructions of
this type are a basic tool in harmonic analysis and metric geometry (see, e.g., [LN05] and [HK12]).

For our purposes, it will be easiest to use a construction from [HK12] which we summarize here.
Consider a metric space (X, d). A bi-infinite sequence P � {Pn : n ∈ Z} of partitions of X is said to
be a hierarchical system if Pn is a refinement of Pn+1 for all n ∈ Z. We say that P is ∆-adic if

S ∈ Pn �⇒ diam(X,d)(S) 6 ∆n
∀n ∈ Z .

Theorem 1.16 ([HK12]). Suppose (X, d) is a doubling metric space. Then there are numbers Q , `,∆ > 2
that depend only onD(X, d) such that the following holds. There is a collection {P(1) , . . . ,P(Q)} of ∆-adic
hierarchical systems such that for every subset S ⊆ X with diam(X,d)(S) 6 ∆m , there is a set

C ∈
Q⋃

i�1
P(i)

m+`

such that S ⊆ C.

2 Quasi-packings and quasisymmetric invariance

We first demonstrate that the quasi-multiplicity condition (1.2) can be replaced by a simpler
assumption whenever (X, dist) is an Ahlfors-regular length space and one uses only strict balls
instead of quasi-balls.

2.1 Round balls, length spaces, and coarse packings

Let B denote the set of closed balls in (X, dist). Say that a graph G is (τ,M)-coarsely packed in (X, dist)
if there is a map Φ : V(G)→ B satisfying (1.1) as well as

#{v ∈ V(G) : x ∈ Φ(v)} 6 M ∀x ∈ X . (2.1)
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Recall that G coarsely packs in (X, dist) if it is (τ,M)-coarsely packed for some τ,M > 1. Our goal in
this section is to provide conditions on (X, dist) under which coarse packings yield quasi-packings.

Theorem 2.1. Suppose that (X, dist, µ) is an Ahlfors d-regular metric measure space and additionally that
(X, dist) is a length space. Then for every locally finite graph G:

G coarsely packs in (X, dist) �⇒ G quasi-packs in (X, dist) .
Quantitatively, if G is (τ,M)-coarsely packed in (X, dist), then it is (τ′,M)-quasi-packed in (X, dist) with
τ′ 6 Cτ, for some C � C(X, dist).

We will prove the theorem after establishing a few preliminary results. Assume now that
X � (X, dist, µ) is a complete, separable metric measure space. A Borel set S ⊆ X is said to be
η-round if the following holds: For every ball B in X whose center lies in S̄ (the closure of S) and for
which S * B, we have

µ(S ∩ B) > η · µ(B) . (2.2)

Say that X is η-round if every ball in X is η-round, and that X is uniformly round if it is η-round for
some η > 0. For instance, Rd with the Euclidean metric is 2−d-round.

We recall that the measure µ is said to be doubling if there is a constant C > 1 such that

µ(B(x , 2r)) 6 Cµ(B(x , r)) (2.3)

for all x ∈ X and r > 0.

Lemma 2.2. If X is a length space and µ is doubling, then X is uniformly round. In particular, if (2.3)
holds for some C > 1, then X is 1/(2C)-round.
Proof. Let B0 � B(x , r). Consider any y ∈ B0 and r′ < r. Since (X, dist) is a length space, there is a
point z ∈ B0 with dist(y , z) + dist(z , x) � dist(x , y) and satisfying

dist(x , z) 6 r − r′ ,
dist(y , z) 6 r′ .

In particular, it holds that B(z , r′) ⊆ B(y , r′) ∩ B(x , r), implying that

µ
�
B0 ∩ B(y , r′)� > µ(B(z , r′)) > C−1µ(B(z , 2r′)) > C−1µ(B(y , r′)) . �

We will require the following elementary fact which states that a point in an Ahlfors d-regular
space cannot be near too many pairwise-disjoint η-round bodies of large diameter.

Lemma 2.3. Suppose X is (c1 , c2 , d)-regular and S1 , S2 , . . . , SK ⊆ X are η-round sets that satisfy

#{i ∈ {1, . . . , K} : y ∈ Si} 6 s ∀y ∈ X , (2.4)

and furthermore there is some x ∈ X such that

max
i∈[K]

dist(x , Si) < α ·min
i∈[K] diam(Si) ,

Then,
K 6 s

c2
c1η

(1 + 2α)d .
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Proof. Let λ � maxi∈[K] dist(x , Si), and let {xi} be a collection of points such that xi ∈ S̄i and
dist(x , xi) 6 λ. Consider the balls Bi � B(xi , λ/(2α)). By assumption, diam(Si) > λ/α, hence Si * Bi .
Thus by the definition of η-round,

µ(Si ∩ Bi) > ηµ(Bi) > ηc1(λ/(2α))d ,

where the latter inequality follows from the Ahlfors regularity of X. But the sets {Si} satisfy
Si ∩ Bi ⊆ B(x , λ(1 + 1/(2α)) for every i ∈ [K] and (2.4), implying that

Kηc1(λ/(2α))d 6 s · µ
(
B(x , λ(1 + 1/(2α))) 6 sc2λ

d(1 + 1/(2α))d ,

where again the final inequality uses the Ahlfors d-regularity. �

Proof of Theorem 2.1. Consider Φ : V(G) → B and suppose that (2.1) holds for some M′. Let
v1 , . . . , vM ∈ V(G) be such that B(x , r)∩Φ(vi) , ∅ and diam(Φ(vi)) > r for each i � 1, . . . ,M. Under
our assumptions, for some c1 , c2 , η > 0, Lemma 2.3 (applied with s � M′ and α � 1) yields

M 6 M′
c2

c1η
3d �

2.2 Quasisymmetric stability

Recall that if (X, dX) and (Y, dY) are metric spaces, then a map f : X → Y is η-quasisymmetric if there
is a homeomorphism η : [0,∞)→ [0,∞) such that for all x , y , z ∈ X:

dY( f (x), f (y))
dY( f (x), f (z)) 6 η

(
dX(x , y)
dX(x , z)

)
. (2.5)

The spaces (X, dX) and (Y, dY) are said to be quasisymmetrically equivalent if, for some η, there is an
η-quasisymmetric bĳection from X to Y.

A metric space (X, dX) is uniformly perfect if there is a number λ > 1 so that for every x ∈ X
and r > 0, the set BX(x , r) \ BX(x , r/λ) is non-empty whenever X \ BX(x , r) is non-empty. We refer
to [Hei01, §11] for background on these notions and their interplay. In particular, one has the
following basic facts.

Lemma 2.4. If (X, dX) and (Y, dY) are quasisymmetrically equivalent, then (X, dX) is uniformly perfect if
and only if (Y, dY) is uniformly perfect.

Lemma 2.5. If f : X → Y is η-quasisymmetric and A ⊆ B ⊆ X, then

1
2η

( diamX(B)
diamX(A)

) 6 diamY( f (A))
diamY( f (B)) 6 η

(
2 diamX(A)
diamX(B)

)
.

Lemma 2.6 ([Tys01, Lem. 2.5]). If f : X → Y is η-quasisymmetric and S is a τ-quasi-ball in X, then f (S)
is a 2η(τ)-quasi-ball in Y.

The main result of this section is that, for uniformly perfect spaces, if X and Y are quasisymmet-
rically equivalent, then the classes of graphs that quasi-pack into X and Y coincide.

Theorem 2.7. Suppose (X, dX) and (Y, dY) are quasisymmetrically equivalent uniformly perfect spaces.
Then there is a constant K > 1 such that a locally finite graph G is (τ,M)-quasi-packed in (X, dX) if and
only if it is (τ′,M)-quasi-packed in (Y, dY), and moreover K−1τ 6 τ′ 6 Kτ.
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Proof. Let f : X → Y be an η-quasisymmetric bĳection. Since f is a bĳection, we will assume that
X � Y. We use BX and BY to denote balls in the metrics dX and dY , respectively. Assume that
(X, dX) is uniformly perfect with constant λ > 1.

Suppose that G is (τ,M)-quasi-packed in (X, dX), and let Φ : V(G)→ Bτ denote a mapping that
verifies (1.1) and (1.2). Our goal is to establish that f ◦Φwitnesses a (τ′,M)-quasi-packing in (Y, dY)
for some τ′ > 1. For every v ∈ V(G), let (xv , rv) be such that BX(xv , rv) ⊆ Φ(v) ⊆ BX(xv , τrv).
Quasi-tangency. Consider {u , v} ∈ E(G) and suppose that diamY(Φ(u)) > diamY(Φ(v)). Observe
that (1.1) implies there is a z ∈ Φ(u) ∩ BX(xv , 2τ2rv). Thus Lemma 2.5 gives

dY(Φ(u),Φ(v)) 6 diamY(BX(xv , 2τ2rv))
6 diamY(Φ(v)) · 2η

(
4τ2rv

diamX(Φ(v))
)

6 diamY(Φ(v)) · 2η �
4λτ2�

,

where the second inequality employs Lemma 2.5, and in the last inequality we have used that X
is uniformly perfect. Employing Lemma 2.6, we have thus verified that (1.1) holds for f ◦Φwith
τ′ � 2η(4λτ2).
Quasi-multiplicity. Consider now some x′ ∈ Y, r′ > 0, and a subset S ⊆ V(G) such that
BY(x′, r′) ∩Φ(v) , ∅ and diamY(Φ(v)) > τ′r′ for all v ∈ S.

Let D :� diamX(BY(x′, r′)). Fix v ∈ S and z ∈ BY(x′, r′) ∩ Φ(v). Choose z′ ∈ Φ(v) such
that dY(z , z′) > τ′r′/2. Choose z′′ ∈ BY(x′, r′) so that dX(z , z′′) > D/2. Note that f −1 is η′-
quasisymmetric with η′(t) � 1/η−1(1/t), therefore from (2.5):

diamX(BY(x′, r′))
diamX(Φ(v)) 6

diamX(BY(x′, r′))
dX(z , z′) 6 2

dX(z , z′′)
dX(z , z′) 6 η

′

(
dY(z , z′′)
dY(z , z′)

)
6 η′

( 4
τ′

)
. (2.6)

Choose τ′ large enough so that η′(4/τ′) 6 1/τ. Let r :� diamX(BY(x′, r′)) and fix any x ∈
BY(x′, r′). By construction, BX(x , r) ∩ Φ(v) , ∅ for every v ∈ S. By (2.6) and our choice of τ′, we
have

diamX(Φ(v)) > τr ∀v ∈ S .

Applying the quasi-multiplicity condition (1.2) to Φ, we see that |S| 6 M. We have thus verified
that (1.2) holds also for f ◦Φwith τ′ is chosen appropriately. �

3 Discrete conformal metrics on d-dimensional graphs

We first state the main technical result of this section. Recall the definition

d∗ :� max(d , 2) .
Theorem 3.1. For every d , τ,M > 1 and c1 , c2 > 0, there is a number C > 1 such that the following holds.
Suppose G � (V, E) is a finite graph that is (τ,M)-quasi-packed in a (c1 , c2 , d)-regular space X. Then for
every R > 0, there is a conformal weight ω : V → R+ that satisfies

1
|V |

∑
x∈V

ω(x)d∗ � 1 , (3.1)

and such that
max
x∈V

|Bω(x , R)| 6 CRd∗ . (3.2)

Combining this with Theorem 1.13 yields Theorem 1.8.
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3.1 Properties of quasi-packings

Suppose that G is (τ,M)-quasi-packed in a (c1 , c2 , d)-regular space (X, dist, µ) for some d , τ,M > 1
and c1 , c2 > 0. Let {Sv : v ∈ V(G)} denote a family of τ-quasi-balls in X that satisfy (1.1) and (1.2).
We now collect all the properties we will require of such a “packing” in proving the main theorem.

Throughout this section and the next, we will use the asymptotic notation A . B to denote that
A 6 C · B for some constant C that depends only the parameters d , c1 , c2 , τ,M. We use A � B to
denote the conjunction of A . B and B . A.

1. For every v ∈ V(G),
diam(Sv)d

� µ(Sv) . (3.3)

This follows immediately from the definition of (c1 , c2 , d)-regular.
2. For every x ∈ X,

#{v ∈ V(G) : x ∈ Sv} . 1 .

This follows from (1.2) with r � 0.

3. For every {u , v} ∈ E(G) and x ∈ Su , y ∈ Sv :

dist(x , y) . diam(Su) + diam(Sv) . (3.4)

This follows immediately from (1.1).

4. Consider a Borel set Y ⊆ X. It holds that∑
v∈V(G):Sv⊆Y

µ(Sv) . µ(Y) . diam(Y)d . (3.5)

The first inequality follows from (2) and the second from Ahlfors regularity.

5. For any λ > 1, there is a number C � C(λ, c1 , c2 , d , τ) such that for all x ∈ X and r > 0,

# {v ∈ V(G) : diam(Sv) > r and dist(x , Sv) 6 λr} . C . (3.6)

We derive this from (1.2) as follows. Cover B(x , λr) by balls B1 , B2 , . . . , BC′ of radius r/τ,
where C′ � C′(c1 , c2 , d , τ, λ). Now apply (1.2) to each Bi separately to obtain (3.6) with
C 6 C′M.

3.2 Discrete uniformization

Our proof of Theorem 3.1 is inspired by the “isolation lemma” of Benjamini and Schramm [BS01]
(see also [BC11, Gil14]). Suppose G � (V, E) is sphere-packed inRd . When the spheres {Sv : v ∈ V}
in the packing have comparable radii, the background Euclidean metric provides a reasonable
conformal weight; one sets ω(v) proportional to the radius of the sphere Sv .

Difficulties arise when the radii degenerate, for instance near an accumulation point (in the case
of infinite G); see, for example, Figure 1(a). But if one imagines an isolated accumulation point as
a cone, then it becomes rather tame: If we think of it as a metric on Sd−1

× [0,∞), where the dth
dimension is along the axis of the cone, then wemerely need to do a “1-dimensional uniformization”
along the axis (this can be seen in the use of the concavity of x 7→ x1/d in Corollary 3.9 below).
It would be problematic if the accumulation points themselves accumulated, e.g., as for a circle
packing of a triangulation of the hyperbolic plane (e.g., Figure 1(b)). But the Benjamini-Schramm
lemma asserts that this cannot happen for distributional limits of finite graphs packed in Rd .

By default, we use the notation diam(·) to denote the diameter in the metric dist. When we
consider another metric, it will be explicitly specified.
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(a) An isolated accumulation point (b) A continuum of accumulation points

Figure 1: Accumulation points

3.2.1 Construction of the conformal weight

Suppose now that G � (V, E) is a finite graph that is (τ,M)-quasi-packed in (X, dist, µ). To each
v ∈ V , associate a τ-quasi-ball Sv ⊆ X so that Section 3.1(1)–(5) are satisfied.

Assume that k > 3 is given. We will establish the existence of a metric ω : V → R+ that satisfies
1
|V |

∑
x∈V ω(x)d . 1 and such that any subset U ⊆ V with |U | � 2k satisfies diamω(U) & 2k/d∗ . This

suffices to establish Theorem 3.1.

Identify v with an arbitrary point in Sv so that wemay consider V ⊆ X. Define ω0(v) :� µ(Sv)1/d .
Then (3.3) gives:

diam(Sv) � ω0(v) . (3.7)

Let P � {Pn : n ∈ Z} denote a ∆-adic hierarchical system in X (recall Section 1.7). Define

P̂ :�
{(C, n) : n ∈ Z, C ∈ Pn

}
.

Consider a positive integer s . 1 to be chosen soon.

The level of a cube. For a pair (C, n) ∈ P̂, define

levP(C, n) :� max
�

j ∈ � : |(V ∩ C) \ C′)| > 2 j for all C′ ∈ Pn−s
	
.

The relevance of this definition is as follows. If levP(C, n) � j, then we are witnessing a “feature”
of size ≈ 2 j that will not be fully seen by any cube at any lower scale. (For technical reasons, we
actually shift by s scales, but s . 1.)

Thus we need to “uniformize” this feature at the current scale. Since we are trying to ensure
d-dimensional volume growth, it should not be that this set of 2 j points is contained in a set of
distω-diameter significantly less than 2 j/d (for d > 2).

Let us first present a heuristic analysis. Suppose we consider a cube C ∈ Pn of diameter at most
∆n and levP(C, n) � j. Moreover, suppose that for v ∈ V ∩ C, it holds that ω0(v) . ∆n . (This is the
case of “small bodies” in the arguments below; large bodies are handled by a separate argument.)

Then we should scale the metric ω0 by ≈ ∆−n2 j/d to ensure that we inflate this set to large
enough diameter. (This is assuming that diam(V ∩ C) ≈ ∆n ; if the bulk V ∩ C has much smaller
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diameter, this feature will be detected at the correct scale in some other hierarchical system.) Thus
we should endow the vertices v ∈ V ∩ C with weight ω(v) > βω0(v), where β ≈ ∆−n2 j/d .

Consider now how much conformal weight we have spent. By a simple volume argument (3.5),
the total `d-weight allocated is proportional to

∆−nd2 j
∑

v∈V∩C

ω0(v)d . ∆−nd2 j∆nd . 2 j .

Thus if we hope to keep the total `d-weight bounded, it should be that we cannot detect too many
level- j features. This is the content of the next lemma which follows [BS01, Lem 2.3].

Lemma 3.2. For all integers j > 0,

#
�(C, n) ∈ P̂ : levP(C, n) � j

	
6

2s |V |
2 j . (3.8)

Proof. Fix j > 0. Denote
[σ] :� {n ∈ Z : n ≡ σ (mod s)} .

We will prove that for σ ∈ {0, 1, . . . , s − 1},

#
�(C, n) ∈ P̂ : levP(C, n) � j and n ∈ [σ]	 6 2|V |

2 j . (3.9)

Fix σ ∈ {0, 1, . . . , s − 1}. For a pair (C, n) ∈ P̂, define the set of children

Λ(C, n) :� {C′ ⊆ C : C′ ∈ Pn−s} .
Define a “flow” F : (2X

× [σ]) × (2X
× [σ])→ R “up” the hierarchical system P as follows: For

every n ∈ [σ],

F
((C′, n − s), (C, n)) �




min{2 j−1 , |C′ ∩ V |} C ∈ Pn , C′ ∈ Λ(C, n)
0 otherwise.

Define also:

Fin(C, n) :�
∑

(C′,n′)∈P̂

F ((C′, n′), (C, n)) ,

Fout(C, n) :�
∑

(C′,n′)∈P̂

F ((C, n), (C′, n′)) ,

F(n)
in :�

∑
C∈Pn

Fin(C, n) .

We make three observations:

1. First, notice that flow only goes “up” from a child set to a parent set, and thus from a lower
level to a higher level:

F ((C′, n′), (C, n)) > 0 �⇒ n , n′ ∈ [σ], n � n′ + s , C′ ∈ Λ(C, n) .

2. The flow out of (C, n) is always at most the flow into (C, n): Fout(C, n) 6 Fin(C, n). This is
because for C ∈ Pn , ∑

C′∈Λ(C,n)
|C′ ∩ V | � |C ∩ V | .
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3. When levP(C, n) � j, the flow leaving (C, n) is less than the flow entering (C, n) by a least 2 j−1

because by definition of levP(C, n),∑
C′∈Λ(C,n)

min{2 j−1 , |C′ ∩ V |} > 2 j .

In particular, combining this with observation (2) yields, for every n ∈ Z,

F(n+1)
in 6 F(n)

in − 2 j−1#{C ∈ Pn : levP(C, n) � j} . (3.10)

On the other hand, let n0 ∈ [σ] be small enough so that every C ∈ Pn0 contains at most one point
of V . Then F(n)

in 6 |V | for all n 6 n0. Combining this with (3.10) and the fact that F > 0 implies
(3.9). �

Let us now assume additionally that P is ∆-adic for some 2 6 ∆ . 1 to be fixed momentarily.
Given S ⊆ X and a parameter n ∈ Z, we define the enlargements

N(S, R) :� {x ∈ X : dist(x , S) 6 R} .
Define also the truncated level function:

lev∗P(C, n) :� min{levP(C, n), k} ,
where we recall that k is the parameter defined at the beginning of Section 3.2.1.

Remark 3.3. The motivation for this truncation lies in the definition (3.12) below, and the fact that
we are only attempting to establish (3.2) for a single value of R or, equivalently, a single value of k.
Considering “features” with level larger than k would incur a quantitative overhead that doesn’t
allow us to obtain a constant C in (3.2) that is independent of R.

Note that Lemma 3.2 gives

#
�(C, n) ∈ P̂ : lev∗P(C, n) � j

	
6

4s |V |
2 j , (3.11)

where the extra factor of 2 comes from the consequence

#
�(C, n) ∈ P̂ : levP(C, n) > j

	
6

4s |V |
2 j .

Recall that d∗ � max(d , 2). For every (C, n) ∈ P̂, we define a function θ(C,n)P : V → R as follows:

θ(C,n)P (v) :�




2lev∗P (C,n)/d∗

�
1 + k − lev∗P(C, n)

�2/d∗
·min

{
∆−n , 1

ω0(v)
}

if Sv ∩ N(C, 2τ∆n) , ∅ ,

0 otherwise.

(3.12)

Define a conformal weight ωP : V → R+ by

ωP(v) :� ω0(v) *.
,

∑
(C,n)∈P̂

(
θ(C,n)P (v))d∗+/

-

1/d∗
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The 1/ω0(v) factor in (3.12) is there to handle the case of a set Sv with diam(Sv) > ∆n intersecting
the neighborhood of C. Denote

En(C) :�
{
v ∈ V : ω0(v) > ∆n and Sv ∩ N(C, 2τ∆n) , ∅}

, (3.13)

From (3.7), we have v ∈ En(C) �⇒ diam(Sv) & ω0(v) > ∆n , and therefore (3.6) implies that

|En(C)| . 1 for all (C, n) ∈ P̂ . (3.14)

Now write:

∑
v∈V

ωP(v)d∗ �

k∑
j�0

2 j

(1 + k − j)2
∑
n∈Z

∑
C∈Pn :

lev∗P (C,n)� j

*.......
,

|En(C)| + ∆−d∗n
∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

ω0(v)d∗

+///////
-

. (3.15)

From (3.7), we have diam(Sv) 6 K0ω0(v) for some 1 6 K0 . 1 and every v ∈ V . Thus in the case
d � d∗, for a fixed C ∈ Pn , we have

∆−d∗n
∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

ω0(v)d∗ � ∆−dn
∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

µ(Sv)

(3.5)
. ∆−dndiam(N(C, (2τ + K0)∆n))d

. 1 .

When d < d∗, use monotonicity of `p norms to write:

*.......
,

∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

(
ω0(v)
∆n

)d∗
+///////
-

d/d∗

6
∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

(
ω0(v)
∆n

)d

� ∆−dn
∑
v∈V :

Sv∩N(C,2τ∆n),∅
ω0(v)6∆n

µ(Sv)
(3.5)
. 1 .

Using this in (3.15) together with (3.14), we conclude that

∑
x∈V

ωP(x)d∗ .
k∑

j�0

2 j

(1 + k − j)2 #
�(C, n) ∈ P̂ : lev∗P(C, n) � j

	

(3.11)
6 |V |

k∑
j�0

4s
(1 + k − j)2

. |V | . (3.16)

Since (X, dist) is doubling, Theorem 1.16 implies that for some positive integers Q , `, . 1 and
2 6 ∆ . 1, there is a sequence {P(1) , . . .P(Q)} of ∆-adic hierarchical systems in X such that:

S ⊆ X, diam(S) 6 ∆m
�⇒ S ⊆ C for some (C,m + `) ∈

Q⋃
i�1

P̂(i) . (3.17)
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Let us now set
s :� ` + 4

in the preceding construction. To construct our final weight, we define

ω :� ωP(1) + · · · + ωP(Q) . (3.18)

It follows that

*
,

1
|V |

∑
x∈V

ω(x)d∗+
-

1/d∗

. max



*
,

1
|V |

∑
x∈V

ωP(i)(x)d∗+
-

1/d∗

: i � 1, . . . ,Q



(3.16)
. 1 ,

where in the first inequality we used the fact that Q . 1.

3.2.2 The growth bound

The next lemma finishes the proof of Theorem 3.1.

Lemma 3.4. For every subset of vertices U ⊆ V with |U | � 2k , there is an index i ∈ {1, . . . ,Q} satisfying

diamωP(i) (U) & 2k/d∗ . (3.19)

Proof. Let us fix a subset U ⊆ V , and denote D � diam(U) > 0. Let n′ :� dlog
∆

De + `. Then by
(3.17), there is an index i ∈ {1, . . . ,Q} such that U ⊆ C for some (C, n′) ∈ P̂(i). Let P � P(i).

We now define inductively a sequence of pairs (C′0 , n′), (C′1 , n′ − s), . . . , (C′m′ , n′ − m′s) ∈ P̂ as
follows.

• Let C′0 :� C .

• If |U ∩ C′i | 6 1, we set m′ :� i and stop.
Otherwise, we choose C′i+1 ∈ Pn−s(i+1) to be an element of the set {C′ ∈ Pn−s(i+1) : C′ ⊆ C′i}
that maximizes |U ∩ C′|.

Let us then pass to the maximal subsequence {(C0 , n0), (C1 , n1), . . . , (Cm , nm)} of the sequence
{(C′0 , n), (C′1 , n − s), . . . , (C′m′ , n − m′s)} with n0 > n1 > · · · > nm and the property that

ni � min
{
n : ∃(C′j , n′ − js) with n � n′ − js and C′j ∩U � Ci ∩U

}
.

In other words, we enforce the property that

Ci+1 ∩U , Ci ∩U for each i � 0, 1, . . . ,m − 1 . (3.20)

Define Cm+1 � ∅.
We have chosen the sequence {ni} in this way so that for every i ∈ {0, 1, . . . ,m},

lev∗P(Ci , ni) > blog2 |(U ∩ Ci) \ Ci+1 |c . (3.21)

From our choice of s � ` + 4 and the fact that P is ∆-adic with ∆ > 2, it holds that

diam(C1) 6 ∆n′−s 6 ∆−3D 6
D
8 .

Since diam(U) � D, there must exist some u0 ∈ U such that

dist(u0 , C1) > D
4 > ∆n1 . (3.22)
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Figure 2: The path γ from u0 ∈ C0 to um ∈ Cm passing through N(C1 ,∆n1) \ C1.

Fix also some um ∈ Cm ∩U. We will establish that distωP (u1 , um) is large, certifying that diamωP (U)
is large as well.

Let Ni :� |(U ∩ Ci) \ Ci+1 | for i � 0, 1, . . . ,m. Note that Ni > 1 from (3.20). Define

`i :� lev∗P(Ci , ni) for i ∈ {0, 1, . . . ,m} ,
and observe from (3.21) that

2`i > Ni/2 . (3.23)

And by construction,
m∑

i�0
Ni � |U | � 2k . (3.24)

The length of a u0-um path. Let γ � 〈v0 , v1 , v2 , . . . , vt〉 be an arbitrary simple path in G with
v0 � u0 and vt � um . Our goal is to prove that

lenωP (γ) & 2k/d∗ , (3.25)

since if this holds for all such paths γ, it verifies (3.19).
The basic outline is as as follows. Informally, imagine that γ is parameterized by arclength in

the metric dist. While γ need not spend much time in a cube Ci , it must cross from outside Ci−1
to inside Ci , and therefore it must spend time � ∆ni in the neighborhood N(Ci ,∆ni ), where its
distωP -length experiences a reweighting by θ(Ci ,ni)

P . See Figure 2. We will now split γ into subpaths
γ0 , γ1 , . . . , γm accordingly and show that the reweighting is sufficient to yield (3.25).

For i ∈ {1, . . . ,m}, let si denote the largest index for which vsi ∈ γ satisfies vsi < N(Ci ,∆ni ),
and let ti denote the smallest index for which ti > si and vti ∈ N(Ci ,∆ni/2). Such indices must

22



exist because γ begins at u0 < N(C1 ,∆n1) (recall (3.22)) and γ ends at um ∈ Cm . Let γi denote the
subpath 〈vsi , . . . , vti 〉. Define γ0 similarly unless γ ⊆ N(C0 ,∆n0). In that case, we define γ0 :� γ.
Observe that, by construction,

lendist(γi) & ∆ni . (3.26)

For i > 1, this follows from vsi < N(Ci ,∆ni ) but vti ∈ N(Ci ,∆ni/2). If i � 0 and γ0 � γ, it follows
from

lendist(γ) > dist(u0 , um)
(3.22)
> D/4 & ∆n0 .

This yields a lower bound on the ω0-length of each γi .

Lemma 3.5. For each i ∈ {0, 1, . . . ,m},
lenω0(γi) & ∆ni .

Proof. Parameterize γi � 〈x1 , x2 , . . . , xh〉. From (3.4), we have

dist(x j , x j+1) . diam(Sx j ) + diam(Sx j+1) . ω0(x j) + ω0(x j+1) , (3.27)

where the last inequality is (3.7).
We conclude that

lenω0(γi) > 1
2

h∑
j�1

ω0(x j)
(3.27)
&

h−1∑
j�1

dist(x j , x j+1) � lendist(γi) & ∆ni . �

Toward proving (3.25), observe that

lenωP (γ) > 1
2

t∑
j�0

ωP(v j) > 1
2

t∑
j�0

ω0(v j) *
,

m∑
i�0

(
θ(Ci ,ni)

P (v j)
)d∗+

-

1/d∗

(3.28)

Recall that 1 6 K0 . 1 was chosen so that diam(Sv) 6 K0ω0(v) for all v ∈ V . Recalling (3.4), let
1 6 K1 . 1 be such that

max
�
dist(x , y) : x ∈ Su , y ∈ Sv

	
6 K1 (diam(Su) + diam(Sv)) ∀{u , v} ∈ E .

For each v ∈ V , denote

L(v) :�
{

i ∈ {0, 1, . . . ,m} : ω0(v) > ∆ni

8K0K1
and Sv ∩ N(Ci , 2τ∆ni ) , ∅

}
.

This is the set of indices i such that Sv intersects the neighborhood of Ci but diam(Sv) is “large”
with respect to diam(Ci).

Define the subset

Λ :�



i ∈ {0, 1, . . . ,m} : i <
⋃
v∈γ

L(v)


,

and the quantities

NΛ :�
∑
i∈Λ

Ni

NΛ̄ :� 2k
− NΛ .

Clearly the following two claims suffice to establish (3.25).
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Lemma 3.6 (Large bodies). If NΛ̄ > 2k−1, then

lenωP (γ) & 2k/d∗ .

Lemma 3.7 (Small bodies). If NΛ > 2k−1, then

lenωP (γ) & 2k/d∗ .

In proving these two lemmas, we will need the following elementary estimate. It is a discretized
version of the fact that the x 7→ (log x)−2/d∗x1/d∗ is concave on the interval [c ,∞) for some c > 1.

Lemma3.8. For some integerA > 2, consider SA � {(a0 , a1 , . . . , ak) ∈ Zk+1
+ : A � a02k+a12k−1+· · ·+ak}

Then the quantity
k∑

i�0
ai

2(k−i)/d∗

(7 + i)2/d∗
(3.29)

is minimized over SA when a1 , . . . , ak ∈ {0, 1}.
Proof. Consider any (a0 , a1 , . . . , ak) ∈ SA such that ai > 2 for some i > 0. Then (a′0 , a′1 , . . . , a′k) ∈ SA
where a′j � a j if j < {i , i − 1}, and a′i � ai − 2, a′i−1 � ai−1 + 1. We can calculate the change in the
value of (3.29):

2(k−i)/d∗

(6 + i)2/d∗
− 22(k−(i+1))/d∗

(7 + i)2/d∗
� 2(k−i)/d∗

(
1

(6 + i)2/d∗
−

21−1/d∗

(7 + i)2/d∗

)
�

2(k−i)/d∗

(7 + i)2/d∗

((
1 +

1
6 + i

)2/d∗
− 21−1/d∗

)
< 0 ,

where we have used d∗ > 2. �

Corollary 3.9. Suppose that for some a0 , a1 , a2 , . . . , ak ∈ Z+, it holds that a02k + a12k−1 + · · ·+ ak > 2k−2.
Then,

k∑
i�0

ai
2(k−i)/d∗

(1 + i)2/d∗
>

2(k−2)/d∗

9 .

Proof. Applying Lemma 3.8 gives
k∑

i�0
ai

2(k−i)/d∗

(1 + i)2/d∗
>

k∑
i�0

ai
2(k−i)/d∗

(7 + i)2/d∗
>

2(k−2)/d∗

92/d∗
>

2(k−2)/d∗

9 . �

Contribution from large bodies. Now we can prove Lemma 3.6.

Proof of Lemma 3.6. From the definition (3.12), we have

i ∈ L(v) �⇒

(
ω0(v)θ(Ci ,ni)

P (v))d∗
&

2`i

(1 + k − `i)2 (3.30)

Using (3.28) in conjunction with (3.30) yields

lenωP (γ) &
∑
v∈γ

*.
,

∑
i∈L(v)

2`i

(1 + k − `i)2
+/
-

1/d∗

>
∑
v∈γ

∑
i∈L(v)

2`i/d∗

(1 + k − `i)2/d∗
. (3.31)

Now from (3.23), we have ∑
v∈γ

∑
i∈L(v)

2`i > NΛ̄/2 > 2k−2 .

Thus Corollary 3.9 in conjunction with (3.31) yields the desired bound. �
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Contribution from small bodies. Once we restrict ourselves to subpaths γi composed of bodies
that are “small” with respect to the scale of the cube Ci , we can argue that the corresponding
subpaths are well-behaved.

Lemma 3.10. For every i ∈ Λ, if γi � 〈x1 , . . . , xh〉, then

dist(x j , x j+1) 6 ∆
ni

4 for j � 1, 2, . . . , h − 1 .

In particular, it holds that γi ⊆ N(Ci , 2∆ni ) \ N(Ci ,∆ni/4).
Proof. By construction, we have x2 , . . . , xh ∈ N(Ci ,∆ni ) and x1 , . . . , xh−1 < N(Ci ,∆ni/2). Thus the
second assertion of the lemma follows from the first.

To verify the former, note that since x2 , . . . , xh ∈ N(Ci ,∆ni ), we have Sx j ∩ N(Ci ,∆ni ) , ∅ for
j � 2, . . . , h. Therefore since i ∈ Λ, it holds that ω0(x j) 6 ∆ni

8K0K1
for j � 2, . . . , h. In particular,

diam(Sx2) 6 K0ω0(x2) 6 ∆ni
8 . Since {x1 , x2} ∈ E, the quasi-tangency condition (1.1) gives

dist(Sx1 , Sx2) 6 τ · diam(Sx2) 6 τ∆
ni

8 ,

and therefore
Sx2 ∩ N(Ci ,∆

ni ) , ∅ �⇒ Sx1 ∩ N(Ci , 2τ∆ni ) , ∅ .
Since i ∈ Λ, we have ω0(x1) 6 ∆ni

8K0K1
as well.

Using this in conjuction with (3.4), it holds that for j � 1, 2, . . . , h − 1, since {x j , x j+1} ∈ E(G),

dist(x j , x j+1) 6 K1
(
diam(Sx j ) + diam(Sx j+1)

)
6 K0K1(ω0(x j) + ω0(x j+1)) 6 2K0K1

∆ni

8K0K1
6
∆ni

4 . �

Recall that γ � 〈v0 , v1 , . . . , vt〉.
Lemma 3.11. For each j ∈ {0, 1, . . . , t}, v j occurs in at most one subpath {γi : i ∈ Λ}.
Proof. Note that since ni+1 6 ni − s for all i � 0, 1, . . . ,m − 1, and ∆ > 2, s > 4, the sets N(Ci , 2∆ni ) \
N(Ci ,∆ni/4) are pairwise disjoint for all i � 0, 1, . . . ,m. Hence the result follows from Lemma 3.10.

�

We can now finish the proof.

Proof of Lemma 3.7. First, note that Lemma 3.11 implies that for every j ∈ {0, 1, . . . , t},

*...
,

∑
i∈Λ:

v j∈γi

(
θ(Ci ,ni)

P (v j)
)d∗+///

-

1/d∗

�

∑
i∈Λ:

v j∈γi

θ(Ci ,ni)
P (v j) .

Using this in (3.28) yields

lenωP (γ) > 1
2

t∑
j�0

ω0(v j)
∑
i∈Λ:

v j∈γi

θ(Ci ,ni)
P (v j) � 1

2

∑
i∈Λ

*.
,

∑
v∈γi

θ(Ci ,ni)
P (v)ω0(v)+/

-
. (3.32)

From Lemma 3.5, we know that ∑
v∈γi

ω0(v) & ∆ni . (3.33)
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For i ∈ Λ, Lemma 3.10 yields γi ⊆ N(Ci , 2∆ni ), hence Sv ∩N(Ci , 2∆ni ) , ∅ for each v ∈ γi . From
the definition of Λ, this yields ω0(v) 6 ∆ni

8K0
, thus from the definition (3.12),

v ∈ γi �⇒ θ(Ci ,ni)
P (v) & ∆−ni

2`i/d∗

(1 + k − `i)2/d∗
.

Combining this with (3.32) and (3.33) gives

lenωP (γ) &
∑
i∈Λ

2`i/d∗

(1 + k − `i)2/d
. (3.34)

By (3.23) and our assumption that NΛ �
∑

i∈Λ Ni > 2k−1, we have
∑

i∈Λ 2`i > 2k−2. Thus Corollary 3.9
in conjunction with (3.34) yields

lenωP (γ) & 2k/d∗ ,

completing the proof. �

�

3.3 d-parabolicity

We first discuss two examples showing that for distributional limits of finite graphs with uniformly
bounded degrees, d-parabolicity and the property that dimd

cg(G, ρ) 6 d are incomparable.
First, we remark on the following general construction. Let {(Hn , ρn) : n > 1} be a sequence of

non-isomorphic, finite rooted graphs, and let p be a probability on �. Let (H , h) be the random
rooted graph that arises by choosing (Hn , ρn) with probability p(n). Suppose furthermore that

� [|V(H)|] �
∑
n>1

p(n)|V(Hn)| < ∞ . (3.35)

Consider a path PN of length N > 1, and attach to each vertex of PN an independent copy of
(H , h) (we identify h with the corresponding vertex in PN ). This yields a random graph GN , and
we choose a root rN ∈ V(GN) uniformly at random. We claim that {(GN , rN)} has a distributional
limit (G, ρ). To see this, note that

q(n) :� lim
N→∞

�[rN is in a copy of Hn] � p(n)|V(Hn)|
�[V(H)] .

Now (3.35) implies that q is a probability on�.
It is then straightforward to describe the limit: (G, ρ) is a bi-infinite path P with some fixed

vertex v0 ∈ V(P). At v0, we attach a copy H of (Hn , ρn)with probability q(n), and choose ρ ∈ V(H)
uniformly at random. At every vertex in V(P) \ {v0}, we attach an independent copy of (H , h).

Using the weight W(v) :� 1V(P)(v)
1+distG(v0 ,v) verifies the following claim.

Claim 3.12. G is almost surely 2-parabolic.

Example 3.13 (Infinite conformal growth exponent but 2-parabolic). Now let {Hn : n > 1} denote
an infinite family of connected, transitive, d-regular graphs with |V(Hn)| ∈ [n , 2n] and

diam(Hn) < C log(n + 1) , (3.36)

for some C > 0. (The diameter here refers to the graph metric.) For instance, one can take a family
of expanding Cayley graphs.

26



Lemma 3.14. If ρn ∈ V(Hn) is uniformly random, then for any ω : V(Hn)→ R+:

max
x∈V(Hn)

����Bω
(
x , 2C log(n + 1)

√
�[ω(ρn)2]

) ���� >
n
4 . (3.37)

Proof. Consider the following family of convex sets indexed by D > 0:

CD :�


ω : �[ω(ρn)2] 6 1 and 1

|V(Hn)|2
∑

x ,y∈V(Hn)
distω(x , y) > D



.

By convexity and transitivity of Hn , ω0 ∈ CD ⇐⇒ CD , ∅, where ω0 ≡ 1 is the uniform weight.
Note that distω0 is simply the graph metric distHn , hence (3.36) implies that CC log(n+1) � ∅.

Thus for any ω : V(Hn)→ R+, there is an x0 ∈ V(Hn) such that

1
|V(Hn)|

∑
x∈V(Hn)

distω(x , x0) < C
√
�[ω(ρn)2] · log(n + 1) .

In particular, for R :� C
√
�[ω(ρn)2] · log(n + 1), it holds that

|Bω(x0 , 2R)| > 1
2 |V(Hn)| ,

completing the proof. �

Define p(n) :� c′
n2(log(n+1))2 , where the constant c′ is chosen so that p is a probability on�. Then

(3.35) is satisfied, hence there is a distributional limit (G, ρ) as above. By Claim 3.12, G is almost
surely 2-parabolic.

Let ω denote a (unimodular) L2-normalized conformal weight on (G, ρ), and define the numbers

Wn :�
√
�

�
ω(ρ)2 | ρ is in a copy of Hn

�
.

Since ω is L2-normalized, we have ∑
n>1

q(n)W2
n 6 1 .

Because q(n) � 1
n(log n)2 , there must exist an infinite set I ⊆ � such that n ∈ I �⇒ Wn 6 log n.

Note that the Mass-Transport Principle yields, for n > 2,

�



1
|V(H)|

∑
x∈V(H)

ω(x)2 �
ρ is in a copy H of Hn


� W2

n ,

hence Markov’s inequality gives

�



1
|V(H)|

∑
x∈V(H)

ω(x)2 > (log n)2W2
n

�
ρ is in a copy H of Hn


6

1
log n

.

Applying the Mass-Transport Principle again, a straightforward application of Borel-Cantelli shows
that almost surely there are infinitely many n ∈ I such that G contains a copy H of Hn with

1
|V(H)|

∑
x∈V(H)

ω(x)2 < (log n)2W2
n 6 (log n)4 .

27



And in this case, (3.37) yields

max
v∈V(H)

�
Bω(v , 2C log(n + 1)3�

>
n
4 ,

clearly ruling out any finite growth exponent. This demonstrates that dimcg(G, ρ) � ∞.

Example 3.15 (2-dimensional conformal growth, but not 2-parabolic). Wewill exhibit a unimodular
random graph (T̂ , ρ) with degT̂(ρ) 6 6 almost surely, and such that T̂ is almost surely transient
(and hence not 2-parabolic), yet dimcg(T̂ , ρ) 6 2.

Denote by Tn the complete 4-ary tree of height n > 1. Let us obtain a graph T̃n by replacing
every edge at distance h from the leaves by f (h) parallel paths of length 1(h), with

f (h) :� 2h ,

1(h) :�
⌈
2h−
√

h
⌉
.

Observe that for any x ∈ V(T̃n) and i > 0, it holds that

|BT̃n
(x , 2i−

√
i)| 6 O(1)

i∑
j�1

4i− j f ( j)1( j) 6 O(4i) , (3.38)

and moreover there is a flow from a leaf of T̃n to the root with energy at most

O(1)
h∑

j�1

1( j)
f ( j) 6 O(1) . (3.39)

Thus if we let (T, ρ) denote the distributional limit of {(T̃n , ρn)} with ρn ∈ V(T̃n) chosen
uniformly at random, then (3.39) implies that T is almost surely transient, and (3.38) implies that
dimcg(T, ρ) 6 2 (using the normalized conformal weight ω ≡ 1).

The only remaining issue is that the vertex degrees in (T, ρ) are not bounded. Since every
distributional limit of finite planar graphs with uniformly bounded degrees is 2-parabolic, replacing
the parallel paths with bounded-degree subgraphs will require the final step in our construction to
be non-planar.

To obtain uniformly bounded degrees, we replace every vertex x ∈ V(Tn) at distance h �

0, 1, 2, . . . from the leaves with a cloud Cx containing f (h) � 2h vertices. Moreover, if y ∈ V(Tn) is a
child of x, we connect every vertex in Cy to exactly two vertices of Cx via internally-disjoint paths
of length 1(h) to obtain a graph T̂n .

Clearly one can do this in a manner so that if x is an internal node of Tn , then the degree of
every vertex in Cx in T̂n is precisely 6 (one path from each of its four children and two paths to its
parent), unless x is the root of Tn , in which case the vertices in Cx have degree 4. Now let (T̂ , ρ)
denote the distributional limit of {(T̂n , ρn)} where ρn ∈ V(T̂n) is chosen uniformly at random.

It is straightforward that both the growth and energy estimates (3.38) and (3.39) hold for T̂n as
well, where now the flow is from a leaf to the cloud Cr of the root r ∈ V(T̂n). Therefore (T̂ , ρ) is a
unimodular random graph with essentially bounded degrees that is almost surely transient (and
hence not 2-parabolic) but which satisfies dimcg(T̂ , ρ) 6 2.

Using the duality between d-parabolicity and the `d′ energy of a flow to ∞ (where d′ � d
d−1

is the dual exponent to d), one can similarly construct examples, for every d > 2, of unimodular
random graphs (G, ρ) such that is almost surely not d-parabolic but satisfies dimd

cg(G, ρ) 6 d.
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3.3.1 Gauged conformal growth and vertex extremal length

We now prove that gauged d-dimensional conformal growth implies d-parabolicity when the
degree of the root is almost surely uniformly bounded.

Proof of Theorem 1.7. Fix d > 1 and a unimodular random graph (G, ρ) with gauged d-dimensional
conformal growth and such that degG(ρ) is essentially bounded. For each R > 0, let ωR be an
Ld-normalized conformal metric on (G, ρ) that satisfies

‖BωR (ρ, R)‖L∞ 6 CRd (3.40)

for some constant C > 1.
From [Lee17, Lem. 2.6], we may assume that for each R > 0, the following additional properties

hold almost surely:

1. For all x ∈ V(G), ωR(x) > 1/2.

2. For all {x , y} ∈ E(G), we have ωR(x) 6 C′ωR(y), where C′ > 1 is a constant depending only
on ‖degG(ρ)‖L∞ .

Moreover, these additional properties are sufficient to guarantee that we can compare distωR balls to
distG balls in the following sense (see [Lee17, Lem. 2.5]): Almost surely, for every x ∈ V(G) and
R, r > 0,

BG *
,

x ,
log r

2ωR(x)
log C′

+
-
⊆ BωR (x , r) ⊆ BG(x , 2r) . (3.41)

Fix ε ∈ (0, 1), n > 1. Let {r j} be the sequence of numbers with r1 � 1 and, that satisfies, for
j > 1,

log εr j
16C′

log C′
� 2r j−1 .

Denote
ΛG :�

{
x ∈ V(G) : ωr j (x) 6 1

ε
for j 6 n

}
.

For x ∈ V(G), let
A j(x) :� Bωr j

(x , r j) \ Bωr j

(
x ,

r j

8C′

)
.

By our choice of the sequence {r j} and (3.41), for every x ∈ ΛG, we have

Bωr j−1
(x , r j−1) ⊆ BG(x , 2r j−1) ⊆ Bωr j

(x , r j/(8C′)) , (3.42)

hence if x ∈ ΛG, then the sets A1(x),A2(x), . . . ,An(x) are pairwise disjoint.
Consider now the following conformal weight which depends on the choice of some z ∈ V(G):

ω(z)(x) :� *.
,

n∑
j�1

r−d
j ωr j (x)d1A j(z)(x)+/

-

1/d

.

By construction, if z ∈ ΛG, then ∑
x∈V(G)

ω(z)(x)d 6
n∑

j�0
r−d

j Vωr j
(z , r j) , (3.43)
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where
Vω(x , r) :�

∑
y∈Bω(x ,r)

ω(y)d ,

we used the fact established earlier that z ∈ ΛG implies that the sets A j(z) are pairwise disjoint for
j � 1, 2, . . . , n.

Now observe that

distω(z)(z , x) >
n∑

j�1

distωr j1Aj (z)(z , x)
r j

. (3.44)

Suppose that x ∈ V(G) \ BG(z , 2rn) and consider any path γ from z to x in G. Let γj denote the
portion of γ which lies inside A j(z). Every vertex u ∈ Bω j (z , r j/(8C′)) satisfies ωr j (u) 6 r j/(4C′) by
definition of distωr j

, thus if {u , v} ∈ E(G), then by Property (2) above, ω(v) 6 r j/4.
In particular,

lenωr j1Aj (z)(γ) � lenωr j
(γj) > r j

2C′
.

Using (3.44), we conclude that

z ∈ ΛG �⇒ distω(z)(z ,V(G) \ BG(z , 2rn)) >
n∑

j�1

r j

2C′r j
>

n
2C′

. (3.45)

Let us now return to (3.43). For a conformal metric ω : V(G)→ R+ and some R > 0, define the
transport

F(G, ω, x , y) � ω(x)d1{distω(x ,y)6R} .

Then by the Mass-Transport Principle,

�
�
Vω(ρ, R)� � �



∑
x∈V(G)

F(G, ω, x , ρ)

� �



∑
x∈V(G)

F(G, ω, ρ, x)


� �
[
ω(ρ)d |Bω(ρ, R)|

]
6 ‖Bω(ρ, R)‖L∞ �

[
ω(ρ)d

]
.

We conclude from (3.40) that for each j 6 n,

�

[
Vωr j

(ρ, r j) | ρ ∈ ΛG

]
6

Crd
j

�[ρ ∈ ΛG] ,

hence

�



∑
x∈V(G)

ω(ρ)(x)d | ρ ∈ ΛG


6

Cn
1 − εd n

,

where we have used Markov’s inequality and a union bound to assert that �[ρ ∈ ΛG] > 1 − εd n.
Take ε � 1/n and n > 2 in the preceding construction and define the event

E(n) :�
{
ωr j (ρ) 6 n for j 6 n and ‖ω(ρ)‖d

`d(V(G) 6 2Cn1.5
}
.

By Markov’s inequality and a union bound, we have

� (E(n)) > 1 − 2
√

n
.
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Moreover from (3.45),

E(n) �⇒
distω(ρ)

�
ρ,V(G) \ BG(ρ, 2rn)�
‖ω(ρ)‖`d(V(G))

>
n

4C′C1/d n1.5/d
>

n1/4

4C′
√

C
.

In other words, for every n > 1, it holds that

�

[
VELd(ΓG(ρ)) > n1/4

4C′
√

C

]
> 1 − 2

√
n
.

Sending n →∞, it follows that
�

�
VELd(ΓG(ρ)) � ∞�

� 1 ,

i.e., almost surely G is d-parabolic. �

3.4 Spectral bounds for the graph Laplacian

We now prove the following generalization of Theorem 1.10.

Theorem 3.16. For every d , τ,M > 1, c1 , c2 > 0, there is a constant C > 1 such that the following holds.
Suppose G � (V, E) is an n-vertex graph that is (τ,M)-quasi-packed in a (c1 , c2 , d)-regular space (X, dist, µ).
Then for k � 1, 2, . . . , n − 1,

λk(G) 6 C
∆G(k)

k

(
log n

k

)2 (
k
n

)2/d

.

Consider a finite connected graph G � (V, E). Define the Rayleigh quotient RG( f ) of non-zero
f : V → R by

RG( f ) :�
∑

{x ,y}∈E | f (x) − f (y)|2∑
x∈V degG(x) f (x)2 .

It is an elementary fact (see, e.g., [Lee17, Cor. 3.1]) that to establish Theorem 3.16, it suffices to find
k disjointly supported functions ϕ1 , ϕ2 , . . . , ϕk : V → R such that for each i � 1, 2, . . . , k,

RG(ϕi) 6 C
∆G(k)

k

(
log n

k

)2 (
k
n

)2/d

.

Toward this end, we now state [Lee17, Thm. 3.12]. For a finite graph G � (V, E), denote
d̄G(ε) :� ∆G(ε|V |)

ε|V | .

Theorem 3.17. There is a constant C > 1 such that the following holds. Consider a finite graph G � (V, E)
with n � |V |. Suppose that ω : V → R+ is a conformal metric on G satisfying

1. 1
|V |

∑
x∈V ω(x)2 6 1 ,

2. For some numbers R > 0, K > 2:

max
x∈V

|Bω(x , R)| 6 K 6 n/2 . (3.46)

Then there exist disjoint supported functions ϕ1 , ϕ2 , . . . , ϕk : V → R+ with k > n/16K, and such that

max
�
RG(ϕ1), . . . ,RG(ϕk)	 6 C

(log K)2 �
d̄G(1/K) + d̄G

�
1/R2��

R2 .
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Remark 3.18. The statement of [Lee17, Thm. 3.12] contains an additional parameter α, and here
we have used the fact that one can take α 6 O(log K). This is a basic and well-known estimate; it
follows, for instance, from [Lee17, Lem. 4.5] which it itself a reference to [LN05, Lem. 3.11].

Now Theorem 3.16 is a consequence of the following proposition combined with Theorem 3.1.

Proposition 3.19. Suppose that G � (V, E) is an n-vertex graph with (c , R, d)-growth for some numbers
c > 1, d > 2 and all R > 0. Then for k � 1, 2, . . . , n − 1,

λk(G) 6 O(1)∆G(k)
k

(
log n

k

)2 (
ck
n

)2/d

.

Proof. For each R > 0, let ωR : V → R+ be a conformal metric on G satisfying

1
|V |

∑
x∈V

ωR(x)d
� 1 ,

and
max
x∈V

|Bω(x , R)| 6 cRd .

Note that from Hölder’s inequality,

1
|V |

∑
x∈V

ωR(x)2 6 *
,

1
|V |

∑
x∈V

ωR(x)d+
-

2/d

� 1 .

So we can apply Theorem 3.17 with ωR and K � cRd to obtain, for k 6 n/(16cRd),

λk(G) 6 O(1) (d log R)2 d̄G( 1
cRd )

R2 .

Setting R :� (n/16ck)1/d yields

λk(G) 6 O(1)
(

ck
n

)2/d (
log n

k

)2 ∆G(k)
k

.

completing the proof. �
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