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Abstract

We exhibit an O((log k)®)-competitive randomized algorithm for the k-server problem on any
metric space. It is shown that a potential-based algorithm for the fractional k-server problem
on hierarchically separated trees (HSTs) with competitive ratio f(k) can be used to obtain a
randomized algorithm for any metric space with competitive ratio f(k)>*O((log k)?). Employing
the O((log k)?)-competitive algorithm for HSTs from our joint work with Bubeck, Cohen, Lee,
and Madry (2017) yields the claimed bound.

The best previous result independent of the geometry of the underlying metric space is the
2k — 1 competitive ratio established for the deterministic work function algorithm by Koutsoupias
and Papadimitriou (1995). Even for the special case when the underlying metric space is the real
line, the best known competitive ratio was k. Since deterministic algorithms can do no better
than k on any metric space with at least k + 1 points, this establishes that for every metric space
on which the problem is non-trivial, randomized algorithms give an exponential improvement
over deterministic algorithms.
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1 Introduction

An online algorithm is one that receives a sequence of inputs (x1, x, . . .) at discrete times t € {1,2,...}.
At every time step t, the algorithm takes some feasible action based only on the inputs (x1, x2, ..., x¢)
it has seen so far. There is a cost associated with every feasible action, and the objective of an
algorithm is to minimize the average cost per time step. This performance can be compared to the
optimal offline algorithm which is allowed to decide on a sequence of feasible actions given the entire
input sequence in advance.

Roughly speaking, an online algorithm is C-competitive if, on any valid input sequence, its
average cost per time step is at most a factor C more than that of the optimal offline algorithm
for the same sequence. The best achievable factor C is referred to as the competitive ratio of the
underlying problem. It bounds the detrimental effects of uncertainty on optimization. Algorithms
designed in the online model tend to trade off the benefits of acting locally to minimize cost while
hedging against uncertainty in the future. We refer to the book [BE98].

The k-server problem. Perhaps the most well-studied problem in this area is the k-server problem
proposed by Manasse, McGeoch, and Sleator [MMS90] as a significant generalization of various
other online problems. The authors of [BBN10] refer to it as the “holy grail” of online algorithms.

Fix an integer k > 1 and let (X, dx) denote an arbitrary metric space. We will assume that all
metric spaces occurring in the paper have at least two points. The input is a sequence (o; € X : t > 0)
of requests. At every time t, an online algorithm maintains a state p; € X which can be thought of
as the location of k servers in the space X. At time ¢, the algorithm is required to have a server at the
requested site o; € X. In other words, a feasible state p; is one that services o;:

ot € {(pt)lf""(pf)k}'

Formally, an online algorithm is a sequence of mappings p = {p1, p2,...,) where, for every ¢t > 1,
Pt Xt — Xk maps a request sequence (01, ...,0:) to a k-server state that services o;. In general,
po € XF will denote some initial state of the algorithm.

The cost of the algorithm p in servicing o = (o : t > 1) is defined as the sum of the movements of
all the servers:

COStp(O-; kl PO) = Z ka (Pt(alz ey Gt)/ ,Ot—l(al/ ey Ut—l)) s (11)

t>1

where
k
ka ((xll R /xk)l (ylr .. -/]/k)) = Z dX(xi/ ]/z) vxl/ e Xk Y1000 Yk €X.
i=1

For a given request sequence ¢ = (0; : t > 1) and initial configuration pg, denote the cost of the
offline optimum by
COSt*(G; k/ pO) = inf dek (Pt/ Pt—l) ’
(Prp2r) 457
where the infimum is over all sequences {p1, p2, . . .) such that p; services o; for each t > 1.
An online algorithm p is said to be C-competitive if, for every initial configuration po € X*, there
is a number ¢y = co(po) > 0 such that

costy(0; k, po) < C - cost’(o; k, po) + co



for all request sequences o. A randomized online algorithm p is a random online algorithm that is
feasible with probability one. Such an algorithm is said to be C-competitive if for every py € X¥,
there is a number ¢y = co(po) > 0 such that for all o:

E [costy(0; k, po)] < C - cost'(o; k, po) + co .

The initial configuration po will play a minor role in our arguments, and we will usually leave it
implicit, using instead the notations cost,(o; k) and cost*(o; k). Let Dx(X, dx) denote the infimum
of competitive ratios achievable by deterministic online algorithms, and let Ri(X, dx) denote the
infimum over randomized online algorithms. When the metric dx on X is clear from context, we
will often omit it from our notation.

One should note that in defining (1.1), we sum over all times ¢ > 1. This is simply to avoid the
notational clutter caused by an upper time horizon. One can replace a finite sequence (o1, 02, . . ., o)
of requests by the infinite sequence (o1, 02, ..., 0t, 0, 0¢, . . .), where the final request is repeated.

The authors of [MMS90] showed that if (X, dx) is an arbitrary metric space and |X| > k, then
Dx(X) > k. They conjectured that this it tight.

Conjecture 1.1 (k-server conjecture, [MMS90]). For every metric space X with |X| > k > 1, it holds that
Di(X) =k.

Fiat, Rabani, and Ravid [FRR94] were the first to show that Dx(X) < oo for every metric space;
they gave the explicit bound Di(X) < k®®). While Conjecture 1.1 is still open, it is now known to be
true within a factor of 2.

Theorem 1.2 (Koutsoupias-Papadimitriou, [KP95]). For every metric space X and k > 1, it holds that

Dx(X) < 2k —1.

Paging and randomization. Let U, denote the metric space on {1, 2,...,n} equipped with the
uniform metric d(i, j) = Ty;%j;. The special case of the k-server problem when X = U, is called
k-paging. Note that an adversarial request sequence for a deterministic online algorithm can be
constructed by basing future requests on the current state of the algorithm. Consider, for instance,
the following lower bound for U1 € U, (for n > k). For any deterministic algorithm A, define the
request sequence that at time t > 1 makes a request at the unique site in U1 at which A does not
have a server.

Clearly A incurs movement cost exactly ¢ up to time ¢. On the other hand, the algorithm that
starts with its servers at k uniformly random points in {1,2,...,k + 1} and moves a uniformly
random server to service the request (whenever there is not already a server there) has expected
movement cost t/k. Thus there is some (deterministic) offline algorithm with cost t /k up to time ¢.
Moreover, manifestly there is also a randomized online algorithm that achieves cost 1/k per time
step in expectation.

And indeed, in the setting of k-paging, it was show that allowing an online algorithm to make
random choices helps dramatically in general.

Theorem 1.3 ([FKL"91, MS91]). For every n > k > 1:

1 1
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Work of Karloff, Rabani, and Ravid [KRR94] exploited a “metric Ramsey dichotomy” to give a
lower bound on the randomized competitive ratio for any sufficiently large metric space. The works
[BBMO06, BLMNO5] made substantial advances along this front, obtaining the following.

Theorem 1.4. For any metric space X and k > 2 such that |X| > k, it holds that

log k )

R = —
K(X) >4 (log log k

In light of a lack of further examples, a folklore conjecture arose (see, for instance, [Kou09, Conj. 2]).

Conjecture 1.5 (Randomized k-server conjecture). For every metric space X and k > 2:
Ri(X) < O(logk) .

The possibility that Rg(X) < (log k) is stated explicitly many times in the literature; see, e.g.,
[BBK99] and [BE98, Ques. 11.1]. Our main theorem asserts that, indeed, randomization helps
dramatically for every metric space.

Theorem 1.6 (Main theorem). For every metric space X and k > 2:
Ri(X) < O ((logk)°) -

Even when X = R, the best previous upper bound was inherited from the deterministic setting
[CKPVI1]: Re(R) < Di(R) = k.

Theorem 1.6 owes much to three recent works that each dramatically improve our understanding
of the k-server problem. The first is the successful resolution of the randomized k-server conjecture
for an important special case called weighted paging. Consider a set X and a non-negative weight
w : X — R;. Define the distance d(x, y) := max{w(x), w(y)}. We refer to this as a weighted star
metric.

Theorem 1.7 (Bansal-Buchbinder-Naor, [BBN12]). If X is a weighted star metric and k > 2, then
Ri(X) < O(logk) .

The second recent breakthrough shows that when X is finite, the competitive ratio can be
bounded by polylogarithmic factors in | X|.

Theorem 1.8 (Bansal-Buchbinder-Madry-Naor, [BBMIN15]). For every k > 2 and finite metric space X,
it holds that
Re(X) < (log X)) .
Finally, in joint work with Bubeck, Cohen, Lee, and Madry [BCL"17], we obtain a cardinality-
independent bound when X is an ultrametric. This last result will form an essential component of
our arguments.

Theorem 1.9 ([BCL"17]). For every k > 2 and every ultrametric space X, it holds that

Ri(X) < O((log k)z) )



1.1 HST embeddings

The significance of ultrametrics in Theorem 1.9 stems from their pivotal role in online algorithms
for k-server. Consider a rooted tree 7 = (V, E) equipped with non-negative vertex weights
{wy > 0:u € V} such that the weights are non-increasing along every root-leaf path. Let L C V
denote the set of leaves of 7, and define an ultrametric on £ by

dw(l, ) := Wica,ery »

where lca(u, v) denotes the least common ancestor of ,v € Vin 7.

If it holds for some T > 1 that w, < w, /Tt whenever v is a child of u, then (7, w) is called a
t-hierarchically separated tree (t-HST) and (L, dy) is referred to as a T-HST metric space. (For finite
metric spaces, the notion of an ultrametric and a 1-HST are equivalent.)

This notion was introduced in a seminal work of Bartal [Bar96, Bar98] along with the powerful
tool of probabilistic embeddings into random HSTs. Moreover, he showed that every n-point metric
space embeds into a distribution over random HSTs with O(log n log log ) distortion. Using the
optimal O(log 1) distortion bound from [FRT04] yields the following consequence.

Theorem 1.10. Suppose that (X, d) is a finite metric space. Then for every k > 2:

Rk(Xr d) < O(log |X|) © Sup Rk(L/ dl) ’
(L,d)

where the supremum is over all ultrametrics (L, d") with |L| = | X]|.

Clearly in conjunction with Theorem 1.9, this yields R¢(X) < O ((log k)? log | X|) for any finite
metric space X. The reduction from general finite metric spaces to ultrametrics implicit in
Theorem 1.10 is oblivious to the request sequence; one chooses a single random embedding from
X into an HST metric (£, dy,), and then simulates an online algorithm for the request sequence
mapped into (£, dy,). This is both useful and problematic, as no such approach can yield a bound
that does not depend on the cardinality of X; there are many families of metric spaces for which the
O(log|X|) distortion bound is tight.

In [BCL"17], we showed how a dynamic embedding of a metric space into ultametrics could
overcome the distortion barrier.

Theorem 1.11 ([BCL*17]). For every k > 2 and every finite metric space (X, d):
Re(X, d) < O ((logk)®log(1 + Ax)) , (1.2)

where
maxy,yex d(x, y)

- MiNnyzyex d(x,y) '

The dependence of the competitive ratio on Ax is still problematic, but one should note that
the resulting bound could not be achieved with an oblivious embedding. Indeed, suppose that
{G,} is a family of expander graphs with uniformly bounded degrees and such that G, has n
vertices. Let (V,, d,) denote the induced shortest-path metric on the vertices of G,. It is well-known
that a probabilistic embedding into ultrametrics incurs distortion Q(logn), while (1.2) yields
Rc(Viu, dy) < O ((logk)®loglog n).



Experts over HSTs. A natural approach is to construct an online algorithm that maintains, at every
time step, a distribution 9; over embeddings into an HST metric (£, d,) and for each embedding
a : X — L, a k-server configuration p{ corresponding to an online algorithm for the request
sequence mapped into £ via a.

Define the annealed server measure v; to be the measure on X that results from averaging the
configurations a”l( p{) over D;. Now one would like to update D; = Dy based on the measure
7¢. Ideally, the measure 7; would indicate which pieces of the space X are important to approximate
well, allowing an embedding sampled randomly from D; to bypass the distortion lower bounds.

Problematically, as we will now indicate, even if we are allowed to see the entire request sequence
in advance, there is no embedding a : X — £ that can avoid distorting distances by less than
Q(log Ax), even when X C R. In the language of online learning, there is no good “expert.”

At a high level, our solution to this problem is to enlarge the class of experts: We maintain
instead a distribution D; on pairs (p, a), where p is a k-server configuration and a : X — £ is an
embedding. Now let 7; denote a~'(p) averaged over D;.

The distribution D1 is then sampled by a two-step process: (p, &) = (p, @) = (p, &). The first
step corresponds to updating the k-server configuration to service the request o; that arrives at time
t. The second step is new: We alter the embedding a so that it more accurately approximates X
according to the annealed server measure 7. A key property of the transformation a + & is that it
should not induce any movement when the configuration is pulled back to X, i.e., a=}(p) = a71(p).

The limitations of dynamic HST embeddings. Consider a bounded metric space (X, dx) (i.e.,
one with finite diameter) and a fixed (possibly infinite) T-HST metric space (L, dnhst) with 7 > 2. We
may consider a fixed HST because one can choose a universal target space without loss of generality;
see Section 2.1. We will assume that every leaf has a unique preimage, i.e., there is a surjection
B : L — X, and that the map f is 1-Lipschitz:

dx(B(x), B(y)) < dnst(x,y)  Vx,y € L. (1.3)

Given a request sequence ¢ = (01,02,...) in X, one can consider a random sequence & =
(a1, ay,...) of points in L with the property that f(a;) = o; for each t > 1. Say that « is oblivious if
there is a single random map F : X — £ chosen independently of ¢ and «a; := F(o;). Say that « is
adapted to the request sequence if a; depends only on (o1, 02, ..., 0¢) (and possibly some additional
independent randomness).

Finally, say that & has k-server distortion at most D if there is a constant ¢ > 0 such that for every
request sequence o:

E [COSchst(a; k)] < D - costy(o;k)+c. (1.4)

If & is adapted to the request sequence and has k-server distortion at most D, then a C-competitive
k-server algorithm on (L, dnst) yields a CD-competitive algorithm for the k-server problem on
(X, dx) since (1.3) allows us to pull the server trajectories back to X at no additional cost.

In [BCL*17], it is shown that such adapted sequences a with k-server distortion D <
O(log(k)log(1 + Ax)). Unfortunately, this model is too weak to obtain Theorem 1.6 even when X is
the unit circle (or the real line), even for the case of k = 1 server. This is for a simple reason: Even if
we don’t require the sequence « to be adapted (i.e., we are given the entire request sequence in
advance), there are request sequences o so that if (1.4) holds, then D > Q(log Ax).

Lemma 1.12. For every A > 2, there is a set of points X on the unit circle with Ax < A and so that for
any a satisfying (1.4) for every o with k = 1, it holds that

D> Q(logT ﬂ) > Q(log, |X]).
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Figure 1: Fusion and fission of two clusters as a server approaches the boundary and then departs.

We sketch the straightforward proof, as it will motivate our modification of the dynamic
embedding model and its subsequent analysis. Fix some n > 2 and consider a request sequence
o ={01,02,...,0,), where 0; = e~2miy ¢ S! and S! denotes the unit circle in the complex plane
equipped with its radial metric dgi. (In other words, the requests come consecutively at n equally
placed points on a unit circle.)

Clearly cos’c’;1 (0;1) < O(1). We claim that for any sequence of leaves (a1, az, ..., a) satisfying

dpst(@i, aj) > dgi(oi,07) Vi, j, (1.5)
it holds that
n-1
Z dnst(at, 1) = Qlogn) .
t=1

Indeed, this is immediate: For every 1 < j < Ung nl, by (1:5), the sequence (a1, ay, ..., ay) of
leaves must exit a subtree of diameter at least 77/ at least (/) times, implying that

n-1 [log, 1]
Z dhst(at/atﬂ) > Z vt/ > Qlog,_n).
t=1 j=1

1.2 Cluster fusion

Consider again the example of the preceding section, but now it will be helpful to think about a
continuous path: Suppose that ¢ : [0, 00) — S! is a point that moves clockwise at unit speed. Recall
that (L, dnst) is a 7-HST metric.

A non-contractive embedding « : ' — £ induces a sequence of partitions {P; : j > 0} of S!,
where Py = Sl‘, for every j > 0, P41 is a refinement of P;, and where every set S € P; has diameter
at most 2rtt~/. When o(t) approaches the boundary of P}, the image a(c(t)) stands to incur dhst
movement ~ 77/ as a(o(t)) switches sets of the partition P;. In order to prevent this, we will fuse
together the two sets of P; whose boundary o(t) is about to cross. See Figure 1.

When o(t) is safely past the boundary, we need to unfuse these sets so that we are prepared
to fuse across the next P; boundary. Failing to do this, we might start fusing a long chain of sets;
having sets of unbounded diameter in P; would prevent us from maintaining a non-contractive
embedding into L. We will soon describe a model that supports fusion and fission of sets in the
target HST.



Potential-based algorithms for HSTs. Once we allow ourselves such operations, it no longer
seems possible to use a competitive HST algorithm as a black box. Indeed, such an algorithm
maintains internal state, and there is no reason it should continue to operate meaningfully under a
sudden unexpected change to this state (resulting from the fusion of clusters).

Thus we will assume the existence of an HST algorithm that maintains a configuration x and
whose operation can be described as a function (x, o) = x’ that maps a pair (x, 0) to a new
configuration x’, where o € L is the request to be serviced, and x’ induces a fractional k-server
measure X that services 0. (See Section 2 for a discussion of fractional k-server measures; for
the present discussion, one can think of uX" as simply a k-server configuration.) Moreover, we
will assume that the HST algorithm’s competitiveness is witnessed by a potential function ®(6; x)
that tracks the “discrepancy” between the server state induced by x and the server state 6 of the
optimal offline algorithm.

Crucially, we will assume that ® decreases monotonically under fusion operations applied
simultaneously to both 0 and (the measure underlying) x. If ® is thought of as a measure of
discrepancy with respect to the underlying HST, then this makes sense: When two clusters are
fused, the corresponding notion of discrepancy becomes more coarse (meaning that it is less able to
distinguish 0" from uX).

We also need to assume that @ is relatively stable under operations that correspond to fission of
clusters. We state the required properties formally in Section 2.3. In Section 6.3, we confirm that the
algorithm establishing Theorem 1.9 satisfies these properties.

1.3 Embeddings, isoperimetry, and scales

Suppose now that (X, dx) has diameter at most one. Let = (P; : j > 0) denote a sequence of
partitions of X so that for each j > 0, if S € P; then diamx(S) < 7 J For a partition P of X and
x € X, let P(x) denote the unique set of P containing X.
One can define a 7-HST metric on X by
h t(x y) =1 mm{]>0 Pj(x)#P; (y)}
S

If X is finite, then by choosing the partitions P; appropriately at random, one can additionally
obtain the property that

P[P;(x) # Pi(y)] < X(X 2

————0(log|X]) Vi>0. (1.6)
Such random partitions are now ubiquitous in many areas; see, for instance, [FRT04, KLMNO05, LNO5]
for applications in algorithms and metric embedding theory.
In particular, summing over the values of j > 0 such that 7 > > minyyex dx(x, y), (1.6) implies
that forany x, y € X,
E[d}(x, )] < O(log |X]) - O(log Ax), (1.7)

where we recall the aspect ratio of X from (1.2).

Both distortion factors in (1.7) are troublesome, but there is now a well-understood theory
of how they arise. See, for instance, the elegant argument of [FRT04] which indicates that they
cannot arise simultaneously: If the random partitions {P; : j > 0} are chosen carefully, then one
can achieve the bound ]E[d}it(x, )] < O(log|X|) dx(x, y).

The O(log | X|) factor inherited from (1.6) might be called the “isoperimetric” obstruction. For
instance, it can be replaced by a universal constant if X = R, but it is necessary if (X, dx) is
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the shortest-path metric on an expander graph or the ¢; metric on {0,1}" for some d > 1. The
O(log Ax) factor could be called the “multiscale” obstruction, and it arises whenever the underlying
metric space contains paths, i.e., sequences x1, x2, ..., x, € X along which the triangle inequality is
approximately tight:

dx(x1,xn) = dx(x1,x2) + dx(x2, x3) + - + dx(xy-1, Xp) .

1.3.1 The isoperimetric obstruction

If, instead of choosing a static embedding, we imagine maintaining an embedding for the purposes
of solving the k-server problem, then it is not unreasonable to expect that the HST embedding only
needs to “track” O(k) regions at every scale.

Indeed, consider a sequence ¢ = (01, 02,...,0N) of requests in X. Let S C {01,02,...,0N}
denote a T/-separated subset of the requests (so that dx(c,0”) > 17/ for o # 0’ € S). If |S| > k + I,
then any sequence p1, p2,..., PN € Xk of k-server configurations that services o must incur total
movement at least ht7/.

Thus when the request sequence is sufficiently spread out at scale 77/, the optimum offline
algorithm must be incurring proportional cost. This allows us to track only O(k) regions, and pay
some cost whenever we have to alter the embedding to incorporate new regions (and discard old
ones); that “edit cost” can be charged to the movement cost of the optimum. This suggests one
might replace O(log |X|) by O(log k) in (1.7) and, indeed, this is the content of Theorem 1.11.

Unfortunately, this argument overcharges the optimum cost by a factor proportional to log Ax,
since it is not possible to naively perform the same charging argument for all scales simultaneously.
If one considers X = R equipped with its usual metric, then even in the case of k = 1, the request
sequence {0,1,2,..., N} would incur < N charge at each of the < log N scales even though the
optimum only moves distance N.

To address this, we employ a sophisticated dynamic embedding and a charging scheme that
tracks the relationship between the movement at various scales. This is encapsulated in the
“accuracy potential” of Section 5.2.

1.3.2 The multiscale obstruction

It is the more daunting multiscale obstruction that motivates a model in which we can fuse together
sibling clusters in the HST embedding.

Our underlying idea is simple: Suppose that 7; is the annealed server measure described earlier.
Consider a ball B in X and the ball AB (with the same center, and with a A times larger radius),
where A is a large constant. If it holds that for some small 6 > 0,

V¢(B) = (1 = 0)V+(AB), (1.8)

let us say that the ball B is heavy (with respect to ;). If B is heavy, it indicates that we would prefer a
random partition to “cut around B” in the light annulus AB \ B.

We will enforce this by “fusing” together all the sets in P; that intersect B into one supercluster;
see Figure 2(a). The condition (1.8) directly implies that disjoint heavy balls must be far apart, and
thus for A chosen large enough, we avoid the problem of having chains of fusions that produce sets
of unbounded diameter.

This also addresses the multiscale obstruction: At every scale 77/ where the ball Bx(x, t7/) is
heavy, we fuse the clusters near x, and therefore do not pay the separation penalty in (1.6). At how
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(a) Four sets fused into a single supercluster (b) New heavy ball B’ appears

Figure 2: Fusion along heavy balls

many scales j € {0,1,2,...} can the ball Bx(x, 777) be light? It is easy to see that the answer is

O (% log l;tt((f))) since, at every light scale, a 5-fraction of the mass is lost when zooming into x from
radius A7/ to radius 77/. We have 7;(X) = k, and when x has been the site of a recent request, it
will hold roughly that 7;(x) > 1/2. Thus the number of non-trivial scales at which x is not fused
with its neighbor clusters is only O(4 log k). When combined with our solution to the isoperimetric

obstruction, this leads to a bound of O(3(log k)?) in (1.7).

Paying for cluster fission. As mentioned previously, the difficulty comes when a ball that was once
heavy becomes light, and then we must “unfuse” the underlying clusters. This fission cost will be
charged against the transportation cost of the sequence of measures (¥ : t > 0). We only unfuse the
clusters corresponding to a heavy ball B when eventually some ball B’ with diamx(B) < diamx(B’)
becomes heavy and satisfies VAB C AB’ \ B’. See Figure 2(b). It is intuitively clear that this requires
significant movement of the measure ¥; on which heaviness is based. We will employ two properties
in order to charge the cost of fission against this movement:

1. If B is heavy with respect to 7, and B’ is heavy with respect to 74, for t; > ty, we can charge
this against
diamyx(B")v(B’) (1.9)

transportation cost incurred by (v, : t € [t¢, t1]) in the creation of the heavy ball B’.

2. When B’ becomes heavy with respect to 7;, we will need to unfuse any previous heavy balls
B, By, ..., By, satisfying VAB; C AB’ \ B’. If C; is the supercluster that was formed when B;
became heavy at some earlier time, then for A chosen large enough,

CiU--UCyu CVABiU---UVAB,, CAB'\ B,
and therefore it holds that

ﬁt(C1) + e+ ﬁt(Cm) < 617,}(8’) . (110)
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We will assume that fission of a supercluster C only “costs” us f4(k)diamx(C)v(C) for some
function f; : N — [1, o) satisfying fa(k) < (logk)°). (See Axiom (A4) in Section 2.3.)

In this case, (1.10) implies that the total cost of fission is at most

57:(B") max{diamx(C;)} < O(5)7(B’)diamx(B’). (1.11)

Thus by choosing 6 > 0 small enough, we can ensure that the cost of the fission in (2) is paid for by
the transportation cost incurred in (1). The formal charging argument occurs using the “fission
potential” introduced in Section 5.

One should note that, unlike in Section 1.3.1, where the geometry of the request sequence allows
us to charge against the transportation cost of the optimal offline algorithm, here we only charge
against the transportation cost of (¥; : t > 0) (which is essentially the movement cost our online
algorithm has incurred). Thus it is essential that we are allowed to take 6 > 0 in (1.11) to be small
(in fact, we will take 6 < 1/ f4(k)).

The main theorem and algorithmic considerations. The methods outlined in the preceding
sections allow us to obtain the following.

Theorem 1.13. There is a constant C > 1 such that for every k > 2, the following holds. On every metric
space (X, dx), there is a C(log k)®-competitive randomized algorithm for the k-server problem on X.

We remark that if we are allowed to solve a fractional relaxation of the k-server problem (see
Section 2 for a discussion of fractional k-server measures), then the algorithm described here can be
implemented so that it responds to a request in time polynomial in k. (Here, we treat specification of
arequest 0 € X and computation of a distance dx(x, y) as unit cost operations.)

The reason is simple: At any point in time, our algorithm only maintains a distribution over HST
embeddings of k°1) points in X. It is not hard to see that the distribution need only be supported
on k9 different HSTs (as in, e.g., [CCG"98]). Moreover, the HST algorithm of [BCL"17] (to which
we eventually appeal) performs a fractional update in k° time on a k®-vertex HSTs.

On the other hand, rounding a sequence of fractional server measures online (cf. Theorem 2.5)
to a random integral measure currently requires time kO® per request.

1.4 Preliminaries

Let us write R, := [0,00) and Z, := Z N R,. Consider a set X. We use M(X) to denote the
space of measures on X whose support is at most countable. Denote by My(X) € M(X) the
subset of countably-additive measures p € M(X) that satisfy p(X) = k. Since our measures have
at most countable support, when x € X, we will often write u(x) for u({x}). For p € M(X),
define supp(u) := {x € X : u(x) > 0}. Denote by N7[I(X) the set of integral measures on X, i.e., those
p € M(X) which take values in Z,, and similarly Mk(X) = Mp(X) N M(X)

If X, Y are two spaces, F : X — Y, and u € M(X), then we use F#u to denote the pushforward
measure:

F#u(S):= u(F(S)) VvScY.

Note that if u is integral, then so is F#u. If g = (u1, p2, .. .) is a sequence of measures, we define
F#u = (F#uq, F#uo, .. ).

If p is a sequence of measures in M (X), we write

costx(p) := Z Wi (e, te+1)

t>1
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where W)lc( i, v) is the L!-transportation distance between p and v in X. This is sometimes referred
to as the Wasserstein 1-distance or the Earthmover distance. One can consult the book [Vil03]
for an introduction to the geometry of optimal transportation. Note that we only deal here with
countably-supported measures, so our considerations are elementary. (The reader should also note
that with slightly more notational overhead, one could assume that all encountered measures have
finite support.)

The following claim is straightforward. If (X,dx) and (Y,dy) are two metric spaces and

F: X — Y, one defines
dy(F(x), F(y))
Flluip := sup ————
” ||Lp x;&ny dX(x/ ]/)

Claim 1.14. For any sequence p, it holds that

costy (F#u) < ||F||Lip - costx(p) .

For x € X and r > 0, we denote the ball Bx(x,r) := {y € X :dx(x,y) < r} and for S C X,
the neighborhood Bx(S, ) := Uyes Bx(x, 7). For two subsets S,T C X, we write dx(S,T) :=
inf{dx(x,y):x €S, yeT}

For two non-negative expressions E,E’ > 0, we write E < O(E’) to denote that there is a

universal constant C > 0 such that E < CE’. We also write E < E’ to denote the conjunction of
E < O(E’)and E’ < O(E).

2 Fusible HSTs

Fix a metric space (X, dx) with diameter at most one. Consider a global filtration ¥ = (¥, %2, .. .)
where 1 C %> C ---, and F; represents information about the request sequence up to time ¢.
Denote the request sequence ¢ = (01, 02, ...) with 0; € X forall t > 1. We use o, ¢] to denote the
subsequence (0, 0s+1, - . ., 0¢). Say that a sequence p = (po, P1,P2,-- ) is F -adapted if each object
pt is possibly a function of oy ¢] (but not the future o441, 0442, .. .).

A notable observation is that in many cases it suffices to maintain a fractional k-server state, as
opposed to a (random) integral state; one then rounds, in an ¥ -adapted manner, the fractional
solution to a random integral solution without blowing up the expected cost. This idea appears in
[BBK99] and is made explicit in [BBN12] for weighted star metrics. In [BBMIN15], it is extended to
HST metrics. See Theorem 2.5 below for a variant tailored to our setting.

An offline fractional k-server algorithm (for o) is a sequence of measures p = (o, i1, U2, . . .) such
that y; € Mg(X) forall t > 1, and such that p;(o;) > 1 holds for every t > 1. We say that p is integral
if each measure ; takes values in Z,. An online fractional k-server algorithm is such a sequence y
that is additionally ¥ -adapted. We will use the term fractional k-server algorithm to mean an online
algorithm and explicitly use “offline” for the former notion.

2.1 Universal HSTs

It will be convenient for us to have a fixed HST into which our embeddings map requests. To
accommodate request sequences of arbitrary length, the HST will be infinite, but the measure
maintained by our algorithm will always be supported on a finite set of leaves (which are themselves
a subset of the request sequence seen so far).

Fix some number 7 > 2. A sequence of subsets & = (&, &1, &2, .. .) of X is a T-chain if

X=¢&2812&2-,
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and diamy(&;) < v/ forall j > 0. If € is a finite sequence, we refer to & as finite chain and let len(&)
denote its length (otherwise set len(&) := +00). Define the bottom of £ by b(&) := (51 &i. Observe
that for a finite 7-chain &,

diamx(b(&)) < v (2.1)

A decorated t-chain is a sequence E= ((50; 0), &1,&,, .. > where &; = (Ei;ni)fori >1,(&o, &1,--0)
is a t-chain, and (171- €Z,:i> 1) are arbitrary labels. We use len(é) and [b)(é) to denote the
corresponding quantities for the underlying undecorated chain. We denote n((&;, n;)) := n;.

Remark 2.1 (The decorations). We note that the decorations {n;} will play a minor role in our
arguments. One could take 1; € {0,1} for all i > 1. We emphasize, in Section 3.1.4 and Section 6,
the two places where they are used. One could do without them entirely, but they make some
arguments substantially shorter.

Let V1 denote the set of finite decorated t-chains in X. Define a rooted tree structure on T as
follows. The root of T is the length-one chain (X, 0) (with label 0). For two chains &, &" € Vy: &
is a child of £ if £ is a prefix of £’ and len(&’) =len(&) + 1. Let T denote the rooted tree structure

with vertex set V. Let Vw]I C Vr denote the set of 7-chains of length j. A decorated 7-chain £ is a
leaf chain if len(&) = oo and |b(&)| = 1. Let Ly denote the set of leaf chains. We denote the extended
vertex set Vy = L1 U V.

For two distinct chains &, & € Vy, define their least common ancestor 1ca(&, &) € Vr as the
maximal finite chain (&, &1, ..., &) that is a prefix of both & and &’. This allows us to define a
7-HST metric on Vy by

disty (&, &) := g len(lea(£, &%)

We call the pair (T, disty) the universal T-HST on (X, dx). For succinctness, we will employ the

notations costy := cost(,dist;) and ler = W(l% distr)’ We use (VHQ C Vr to denote the subset of

chains whose decorations are identically 0 and £ := L N V¢,

Pushing measures to X. Define the map  : LT — X as follows: p(&) is the unique element in

b(&).
Claim 2.2. 8 is 1-Lipschitz as a map from (L, distt) to (X, dx).

Proof. Consider &,&" € L. Let &= Ica(&, &’). Then by definition, (&), B(E) € [b(é), hence

~ (21 N
dx(B(&), B(")) < diamx(b(&)) < 77 = disty(&, &). _

If one considers a measure pu € M(Ly), then the pushforward p#u gives a canonical way of
transporting that measure to X.

Fusion maps and canonical injections. For & € V7, define
Vr(&) :={& e Vy: isaprefixof &'}
L&) =W(E)n Ly.

Consider j > 1 and siblings &,&" € Vw]r' with b(&) € b(&’). Then there is a canonical mapping
Pee Vo — Vr defined as follows: @ el (s) is the identity, and

(&0, &1, -, Ejm, B(E);N(E)), Eja1, Ejua, - ) € V(&)
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is mapped to
(&0, &1 s Ejm1, (B(E ) (EN), Eje1, Ejus - - o) € VE(E).

We refer to ¢ ¢ as the canonical injection of & into &’. A map ¢ : Vy — Vy is called a fusion map if
it is the composition of finitely many canonical injections (in particular, the identity map is a fusion
map).

The importance of fusion maps is encapsulated in the following lemma. It asserts that
transporting a leaf measure under a fusion map does not induce movement when the measure is
pushed from Ly to X. Its truth is immediate from the fact that if ¢ is a fusion map, then for every

¢ € Ly, fle(&)) = B(&).
Lemma 2.3. If u € M(Lt) and @ is a fusion map, then p#p#u = p#L.

Remark 2.4 (Tree terminology). Despite the orientation of trees found in nature, we will sometimes
informally refer to the root as at the “top” of the tree and the leaves at the “bottom.”

2.2 Stochastic HST embeddings
Let T denote the universal t-HST for (X, dx) and some 7 > 6. A stochastic HST embedding from X

into T is a random ¥ -adapted sequence a = (a; : X — Ly | t > 0) such that with probability one:
b(ai(x)) ={x} VxeX,t >0 (2.2)

aflo) e LY Vt>1. (2.3)

This yields a (random) request sequence a(o) = {(ai(01), a2(02),...) in L%. We remark that

requests are restricted to map to O-decorated leaves simply because we will use the decorations for
“bookkeeping.”

The cost modulo fusion. We will consider fractional k-server algorithms p with p; € Mg(LT).
Lemma 2.3 motivates the following notion of cost in which fusions are “free.” To that end, let us
define the reduced transportation distance

WE(u = 1) := inf {Wy(p#u, ') : ¢ a fusion map},

where the notation is meant to indicate that the “distance” is not symmetric in ¢ and p’. One can
think of this definition as follows: When moving from u to u’, without incurring movement cost,
we are allowed to first apply a fusion map.

For an ¥ -adapted sequence of measures:

p=(u e Mi(Ly): t >0), (2.4)

define the reduced cost:
costh(p) := > WE(ur = pis1).

t>0

The next result is proved in Section 5.5.

Theorem 2.5 (Online rounding under fusions). For every sequence y as in (2.4), there exists a random
integral F -adapted sequence [1 = <ﬁt e M(X): t > 0> such that

p(€) > 1 = (L)) > 1 Vle L1,t>1,
and

E [costx(v)] < O(1) - cost%(y) )
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Our goal is now to construct a pair (i, &) so that « is a stochastic HST embedding a from X
into T and p is a random fractional k-server algorithm (as in (2.4)) satisfying: For every request
sequence o,

1. p services a(o) with probability one, and
2. E [COSt%—([J)] < O((log k)®) costy (o k) + c,

where ¢ = ¢(po) is a constant depending on the initial configuration of servers.

Combined with Theorem 2.5, this yields an O((log k)®)-competitive randomized algorithm for
the k-server problem on X. In order to reach such a conclusion, we now assume the existence of an
HST algorithm that satisfies a certain set of assumptions.

2.3 The potential axioms
We will assume we have a fractional k-server algorithm that operates in the following way.

¢ There is a configuration space I and a transition function y : T x £ —T.

* Every configuration x € I has an associated fractional server measure ut € M(L}). Upon
receiving a request 0 € L3, the algorithm updates its configuration to x” := y(x, o) such that
u¥'(0) > 1.

* For some leaf £y € L7, there exists a configuration x € I such that u*°(£y) = k.

Moreover, there is a potential function @ : Mi(Lr) x T — R, that satisfies the following
assumptions for some functions fi, fs : N — [1, 0).

(A1) Movement of the “optimum” cannot increase the potential too much. For any states
0, 0" € Mi(Lr) and configuration y € I':

[D(0; ) = @6 )| < filk)Wy(0, 6").
In other words, @ is fi(k)-Lipschitz in its first coordinate.

(A2) Movement of the algorithm decreases the potential. For every 0 € Lt and 0 € Mk(ﬁv)
satisfying 0(o) > 1, the following holds. Denoting x” := y(x, o), we have

D (6; X') = D(6; x) < —Wi(uX, u¥).

(A3) Fusion is free. For any fusion map ¢ and configuration y € T, there is a configuration
x(p) € T such that u*?) = p#uX, and moreover

D(p#0; x(9)) < D(0;x) VO € M(Ly). (2.5)
If one thinks of P(I; x) as the “discrepancy” between 6 and u*, then fusion corresponds to

coarsening the discrepancy measure, which should make them appear more similar (hence
the inequality in (2.5)).
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(A4) Stability under local edits. Consider &0 ¢ V% and a child &1 e V{rl. Let F: LT — Ly beany
mapping that satisfies F(£) = & for & ¢ L1(&') and F(L(&Y)) € L1(&°). Then forany x € T
and 0 € My(Ly), it holds that

D(FH#0; x) — D(0; x) < falk)T T uX(L(EY).

This says that moving the 0-mass on &! arbitrarily underneath &0 affects the potential
by a controlled amount. Note that (1) would give fi(k)t10(Lr(EY)) on the RHS since
diam7(L7(&)) < ©7/, but this control is in terms of u*(Vr(&1)).

The algorithm of [BCL"17] achieves these with fi(k), fa(k) < O((logk)?). See Section 6.3.

Theorem 2.6. For any bounded metric space (X, dx), the following holds. If there is a transition function
y : Tx LY — T and a potential O satisfying Axioms (A0)~(A4) for some functions f1(k), fa(k) < (logk)°V,
then there is an O( f1(k) fa(k)(log k)?)-competitive randomized algorithm for the k-server problem on X.

Corollary 2.7. There is an O((log k)®)-competitive randomized algorithm for the k-server problem on any
bounded metric space.

The extension to unbounded metric spaces is addressed in Section 6.3.1.

3 Construction of the embedding

We will construct, inductively, a stochastic HST embedding & = (a; : X — Ly |t > 0) and a
random fractional k-server algorithm p = (u; € Mi(Ly) : t > 0) that services a(c). Let v* denote
an optimal offline integral k-server algorithm for ¢ in X. Without loss of generality, we may assume
that v* is lazy: It responds to requests by moving at most one server per time step.

Theorem 3.1. There is a constant B > 1 such that under the assumptions of Theorem 2.6, there is a pair
(u, @) so that for every initial configuration vy and request sequence o:

E [costf(p)] < Bfi(k) fa(k)(log k)*costx (v") + 4D(vg; xo) ,

where xo is the initial configuration guaranteed in Section 2.3 and g = p*°.

For later use, define yu* = < pe:t > O) as the pushforward of the offline optimum under the
embedding: uj := a;#v}, and denote v; := p#u; for t > 0.
3.1 Embedding components
We first describe some primitives that will be used in the construction of the stochastic HST
embedding a.
3.1.1 Carving out semi-partitions

A semi-partition P of X is a collection of pairwise disjoint subsets of X. For such a semi-partition,
denote

Ap(x,y) = ) [1s(x) = 1s(y)] -

SeP
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Define [P] € X by [P] := [Jsep S. We will sometimes think of P as a function that takes x € [P]
to the unique set P(x) € P containing x. If x ¢ [P], we take P(x) := . If P, P’ are two semi-partitions,
say that P is a refinement of P’ if for every S € P, there is an $ € P such that S C §. Say that P is
A-bounded if S € P = diamx(S) < A.

Consider a triple (C, R, 7) where C C X is a finiteset, R : C - R4, and n : [|C|]] = Cisa
bijection. This defines a semi-partition into at most |C| sets by iteratively carving out balls:

P(C,R, ) := {Bx(n(i),R(n(i))) \ U Bx(m(h), R(n(h))) :i=1,2,..., |C|}

h<i

By construction, P(C, R, 1) is (2 max,ec R(x))-bounded.

3.1.2 Heavy nets and the annealed measures
Recall that we will define the pair (g, &) inductively. For t > 0, denote by 7; € M(X) the measure
V= ]E[Vt] .

Let A := max(9, 7)? and consider 0 < 6 < 1/2. We will choose 6 later so that 6 < 1/ fa(k).
Say that a subset S C X is r-separated if x,y € S = dx(x,y) > r. Say that a pair (x, r) with
x € X and r > 0 is t-heavy if

v (Bx(x, 7)) 2 (1 - 0)v1(Bx(x, Ar)). (3.1)

We will also refer to a ball B = Bx(x, r) as t-heavy if (x, r) is t-heavy, but in such cases the center
and radius will be specified (as a set, B does not necessarily have a unique center or radius).
A set A C X is called a t-heavy r-net if it is 3r-separated and satisfies

(x, L) is t-heavy = dx(x, A) < (3.2)

2R Vi

3.1.3 Cluster fusion

Given a semi-partition 15, a finite set of representatives A C X, and a radius r > 0, we now define
the r-fusion of P along A as follows. For x € A, define

U, := Bx(x, ) U U S. (3.3)
Sep:
Bx(x,7)NS#0

See Figure 3.
Define the collection of fused clusters:

HD, A, r):={Uy,:x €A}, (3.4)
and the semi-partition (cf. Lemma 3.2) of fused and unfused clusters:
QP,A,1r):=HP,Ar)U{SeP:SN[HDP,A,1)]=0}.

The idea here is that in passing from P to Q, all the sets S € P that intersect some ball Bx(x, ) for
x € A are “fused” into a single set U,. (For technical reasons—see Lemma 4.7 below—the ball itself
is also fused in.)
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Figure 3: Clusters Uy, and U,, created by fusing the clusters intersecting Bx(x1, r) and Bx(x2, ).

Lemma 3.2. If P is A-bounded and A is (r + A)-separated, then Q(P,A,r) is a 2(r + A)-bounded
semi-partition.

Proof. Observe that diamyx(Uy) < 2(r + A). Moreover, every y € U, satisfies dx(x, y) < r + A, hence
if Ais (r + A)-separated, then the sets {U, : x € A} are pairwise disjoint. O

3.1.4 Refinement and HST embeddings
Consider now a sequence Q = (QJ : j € Z,) of semi-partitions of X such that Q° = {X} and
Q' is T7/-bounded for all j > 1. (3.5)

We use these to define a sequence Q = (Q/ : j € Z. ) of successively refined full partitions of X as
follows. .
First, we complete each semi-partition to a full partition Q{ by adding singleton clusters:

Q=0 uf{x}:xex\[Q]} Vjez,.
Now we inductively define Q¥ := Q° and for j > 1:
Q :={Sns:5eQ/, s eQil}.

This ensures that for each j € Z,, Q/*! is a refinement of Q.
For x € X, define

rank€(x) := max { jeZ,:xe ﬂ[@i]} : (3.6)

i<j
We can now define an embedding a?: X - Ly by

aQ(x) = ((Q°(x);0), (Q'(x);0), ... (Q"(x);0),(Q"*'(x);1),(Q*(x)1),..) ,  (37)
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where 7 = rank%(x).

One should verify that the latter sequence is indeed a decorated leaf chain by construction and
(3.5). This is the only place that we make use of decorated chains in the proof of Theorem 2.6. The
particular form of (3.7) will be employed to prove (5.11) which asserts that the ®; potential does not
increase under insertions (essentially because we have assumed our algorithm is sensible, thus it
does not place mass in subtrees with a non-zero decoration).

Later, we will use the following basic fact.

Lemma 3.3. For every sequence Q of semi-partitions:
disty (aé(x), aé(y)) <21 Z T_jAQj(x, Y) Vx,yeX.

j>1

Proof. Consider x,y € X and suppose that disty (aé(x), aé(y)) = 17! for some ¢ > 0. Itis
straightforward to check that £ + 1 = min { i Apilx, y) > O}. m]

3.1.5 Truncated exponential radii

For every j € Z, consider the probability distribution y; with density:

Kt/ log K

dyj(r) = ———

exp (-r7/ log K) 1 10,-17(7) -

This is simply an exponential distribution truncated at 7/. Bartal [Bar96] showed that such
distributions are extremely useful in the construction of random HST embeddings.

Lemma 3.4. Consider a finite set C C X and a permutation 1 : [|C|] — C. Choose R:C > R, so
that {R(x) : x € C} are independent random variables with law y;, and define R(x) := R(x)+ t7/. Then
P := P(C, R, ) is a 4t~/ -bounded semi-partition with probability one, and moreover for every x,y € X:

P[Ap(x, y) > 0] < O(log(IC| + 1)) dx(x, y)T/ . (3.8)
If A C X is any 67 /-separated set, then the 27~ I-fusion of P along A:
Q:=Q(P, A, 2t7)
is a 167~/ -bounded semi-partition of X. If dx(x,CUA) < 1~/ and y € X, then:
P[Ag(x, y) > 0] < O(log(IC| + 1)) dx(x, y)T/ . (3.9)

Proof. The fact that P is a 47/-bounded semi-partition follows immediately from the fact that y jis
supported on [0, 77/]. Moreover, (3.8) is a standard bound (see, e.g., [BCL"17, Lem 4.8]).

That Q is a 167~ /-bounded semi-partition follows from Lemma 3.2. Let us now verify (3.9). We
may assume that dx(x, y) < 77/, else the claim is vacuous. If dx(x, A) < 77/, then x, y € Bx(z, 277))
for some z € A, hence x, y € [Q] and Q(x) = Q(y) because x, y € U; (recall (3.3)).

Now assume that dx(x, C) < /. Observe that in this case, x € [P] with probability one and by
construction of the fusion, Ay(x, y) < Ap(x, y), meaning that (3.9) follows from (3.8). O
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3.2 The online algorithm

For j, t € Z, we will maintain several random ¥ -adapted sequences: Centers C] C X, along with
radii R] C] - Ry, permutatlons nt : [|C] |] — cl , and f- heavy 77/-nets A] These give rise to

semi-partitions PZ P(C] , t, {) and fusions Q{ Q(P] , t 1,217 j=1), along with embeddings
ag = o ’

where ét = <Q{ 1] € Z+>.
We will also maintain a sequence (x; € I' : t > 0) of configurations. These yield our sequence
p = (pr € Mg(Vr) : t > 0) of induced fractional k-server measures: ¢ := px'.

Initialization. Let xo € I'and £y € Lt be the configuration and leaf promised in Section 2.3.
e Forall j > 1, define Cé :={{y} and Aé =10}
e Forallt >0, C? =0, A(t) =0, and 15? =X

* Define y_1 := xo and p_1 := pg. For all j > 0, define Cj;l = Cé, 1511 = 156, Aj;l = Aé.

Request. Suppose we receive a request o; € X for some t > 1. For j > 1, denote

U 1 dx(at,Ci_l U A{;_l) > 771
0 otherwise.

Deletions. In the next definition, K > 1 is a parameter that will be chosen later (our choice will
satisfy K < kOW). For every j > 1

j j_ j
- Ct._1 ‘ I=0or|C,_,|<K
f,del Cl_,\{z]} otherwise,
where zt € C] _,1s chosen uniformly at random. Denote Pt dol = P(Ct del” t 17 j_l).

Fission. Denote
. ] j j —j-1
Qtﬁs Q(Ptdel’A 1NN, 2T ) :

This is the semi-partition p! ¢ dei fused only along the centers that survive from time ¢ —2to ¢ — 1.

Insertions. For every j > 1, if I] = 1, we define:

Cl= Claa U{or}
m(IC)1) = ot
Ri(at) = 4 Z; ,
where Zj is sampled independently with law ;. If Ij =0, then Cj = Cj

In either case, we define 7'( so that it induces the same ordering on C] \ {at} as 1’ b 17 and Ri SO

j j
that R; Heiion =R, o}
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j

P 2771 ‘1) and its prefused version:

Fusion. Consider the semi-partition QAg = Q(pj , A\
Y Y 3 Aj -j-1 A7 . i j
Q) ore = QL g U{PIon\ [Q] 1]} U {Bxx, 207\ Q) ] i x e Al VALY (3.10)

Define Q; pre := <Qt,pre 1y 1>. We have [Q{] = [Qi,pre] and Q{’pre is a refinement of QZ by
construction.
Thus we can realize Q; from Q; pre Via an iterative merging of pairs of siblings. Note that

this can be expressed as a composition of canonical injections; to merge siblings &, &’ € V{T with
diamx(b(&)Ub(&’)) < t7/, we fuse & and &’ into their common 0-decorated sibling (b(£)Ub(&’),0) €
ijr' Let ¢; denote the corresponding fusion map (recall that a fusion map is a composition of
canonical injections). Using Axiom (A3), this yields a configuration x;—1(¢¢) € I' such that
pX-1P) = @ #u,_1 and (2.5) is satisfied.

HST evolution. We update the configuration:

Xt = V(Xt—l((Pt)r a¢(oy)).

. . j j
Heavy net maintenance. Now we specify how to update A;_, to A;.
Forj=1,2,..., do the following;:
A= A
1. Set A == Ay,

. . -\ . < -
2. While there is some x € X such that (x, ;ﬁ) is t-heavy and dx(x, A;) > Tﬁ
VA

(@) Rejmove‘ from f\{ all y € X such that dx(x, y) < TT_j .
(b) Al =AU {x}.
3. Set Al{ = Ai.

4 Distortion analysis

Our first goal is to establish a bound on how much « distorts distance in expectation. Let us first
verify a few basic properties of the embedding algorithm from Section 3.2.

Lemma 4.1. Assume that T > 12 and A > 81. Then for each j > 1 and t > 1, it holds that
1. Al is a t-heavy v/-net.
2. QA{ is a T~I-bounded semi-partition.

Proof. A{ is explicitly constructed to satisfy (3.2) and to be 3r-separated with r = 77/, as long as

A > 81. We need to verify that the construction is well-defined, i.e., that the loop defining Ai always
terminates.

To prove this, it suffices to show that if y € X is removed in step 2(a), then (y, %) is not t-heavy.

To that end, it suffices to show that there cannot be two points x, y € X and a radius r > 0 satisfying

%r >dx(x,y) >2r and (x,r)and (y,r)are t-heavy.
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Note that under these assumptions, Bx(x, #)NBx(y, r) = 0,but Bx(x, Ar) 2 Bx(y,r)and Bx(y, Ar) 2
Bx(x,r). Therefore it cannot be that both (x, r) and (y, r) are t-heavy as long as 6 < 1/2 (recall
(3.1)).

Now the fact that QA{ is a 7/-bounded semi-partition follows from Lemma 3.4. m|

We want to distinguish two types of randomness used in the algorithm. There is the probability

space underlying the choice of elements zf in the deletion step which we denote by Qd¢l. All other
randomness is denoted by Q"st.

Fact 4.2. The random variables C{ and A{ are independent of QM. Note that A{ is defined using vy, but this
measure is constructed by averaging over QM.
4.1 Active scales

Define the functions p, p : X X M(X) — Ry by

p(x,v):=sup{r:v(Bx(x,r)) <1/2},
ﬁ(x, V) = inf{W)l((v, V’) : V’(x) > 1} .

The next lemma is straightforward from the definitions.

Lemma 4.3. The following hold true.
1. Forany v € My(X), the maps x — p(x,v) and x — p(x,v) are 1-Lipschitz on (X, dx).
2. Forany x € X, the map v — p(x,v) is 1-Lipschitz on (Mg(X), Wy,).

3. Foranyv € Mg(X) and x € X:
_pr,v)

4.1)
Make the further definitions: For t > 1,

p(&) = p(&, V1)
pr(&) = p(&, Vr).

Lemma 4.4. For every t > 1, it holds that

Pt—l(Ut)
2

< pralo) <E I:W%_(HXt—l((Pt), P‘Xl)] _
Proof. The first inequality follows from (4.1). To prove the second, write
W_}(HXt—l((Pt), pxty > W)l( (ﬁ#yxm((ﬂt),ﬁ#‘u)(t) = W)l( (‘B#HXt—ll‘B#HXt) > p(oy, puli1).

where the last inequality follows from pxt(o¢) > 1.
Now convexity of the Wasserstein distance yields

E[p(ar, p#p*t1)] > plor, E p#prt) = p(or, BHE p'1) = p(oy, ¥1-1). O
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Corollary 4.5. It holds that

D pia(0) <2 )" prea(or) < 2E [cost](w)] -

t>1 t>1

Definition 4.6. Say that a point x € X is (j, t)-heavy if dx(x, A{_l) < v If dx(x, A{_l) > %T‘f'l,
say that x is (j, t)-light. (A point can be both heavy and light.)

We record a fact that follows from our construction of Q; (cf. (3.3)).
Lemma 4.7. If x € X is (j, t)-heavy, then Bx(x, t7/71) C Qf(x).

Denote 7 := (32k fi(k))~!; we may assume that 1 > k=91, We now define a subset J;(x) C Z,
of “active” scales for a given x € X:

Li(x):= {] €Z,:xis(], t)—light} ,
Ji(x)={j € Zs : v > nps(x)} N Li(x),

The next lemma is an essential component of all our arguments: For every x € X, there are only
O(% log k) active scales.

Lemma 4.8. Forevery x € Xand t > 0,

log k 1 log k
IJ]t(x)I < O(T+logﬁ) < O( 5 ) .

Proof. 1f x is (j, t)-light, it means that Bx (x, %) is not t-heavy, which means that

s (BX (x, %)) <(1-06)% (BX (x, ?T‘f)) <(1-06)7 (Bx(x, 7)) .

Since 74(X) = k and ; (B x(x, pt(x))) > 1/2, the result follows using A, T < O(1) and the fact that
there are only O(log %) additional scales between 1p:(x) and p;(x).) O

4.2 The expected stretch

Let us now establish the central claim of this section.

Lemma 4.9. For every t > 1 and every x € X, it holds that
[ [distr(a:(x), as(o0)] < O (3 log()log(K)) dx(x, o) +21pi-1(07).

Before proving the lemma, we state a consequence. It uses the definition of 7 and the fact that
V™ is lazy.

Corollary 4.10. For every t > 1, it holds that

* * * * pt—l(at)
E (Wi (a#v;, aitvi_))] < O (% log(k)log(K)) Wx(vi, vi_))+ A0
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Proof of Lemma 4.9. Let M := max (npt_l(at),ZTdX(x, ot)) and jo := max{j € Z, : 77/ > M}. From
Lemma 3.3, it holds that

1 .. i
5, distr(a(x), ar(or)) < ;‘ T ]AQ{(x, at)

Jo
< npe-1(or) + 2tdx(x, 0p) + Z T"AQ{(x, at) .
j=1

Note that j < jo implies x € Bx(o¢, %’[—j_l). Thus if additionally j ¢ J;—1(0¢), then Lemma 4.7
asserts that A o (x, 0¢) = 0. Therefore:
t

jo
“TA “TA .
ZT AQ{(x’Gt) < Z T AQ{(x,at).

j=1 jedi—1(or)

Now Lemma 3.4 (specifically (3.9)) gives, for every j > 1:

E [v78(x,00] < OllogK) dx(x, 01).

Therefore:

E

E < O(log K) |Ji-1(0p)| dx(x, 04) < O (3 log(k) log(K)) dx(x, 0¢),

D, Ay

j€Jdi-1(0t)

where the final inequality uses Lemma 4.8. ]

5 The competitive ratio

In order to prove our main result (Theorem 3.1), we will relate costx(v*) and E[cost?(u)] using
three potential functions.

5.1 The HST potential

Let us define the primary potential function:
Dy = D(a#vy; x1) .

In the course of analyzing A;®; := Oy — ®;_1, we will define a number of auxiliary objects that will

be used in the remainder of Section 5. Let us define al; " 1= q%re, where we recall the prefusion
semi-partitions Q; pre from (3.10).

We can then express

ArDy = [D(a#vy; xe) — Dladvy; xi-1(@r)] [ movement] (5.1)
+ [D(advy; xi-1(pr) — D(adtv;_y; xe-1(pr))] [v" movement] (5.2)
+ [D(a#vi_y; xi-1(pr)) — Pal#vi_; x1-1)] [fusion] (5.3)
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+ [qb(afre#v:_l; Xt-1) — Pla-1#v,_y; )(t_l)] . [dynamic update] (5.4)
Addressing (5.1), Axiom (A2) gives
CD(Olt#V:} Xt) — q)(at#v;; Xt—l((Pt)) < —qur(Ht/ ,UXH((P[))- (5.5)
Axiom (A1) yields
D(a#tvi; xi-1(pr) — D(avi_; xe-1(pr) < k) Wiladtv;, adv; ),
and this allows us to control (5.2) using Corollary 4.10:
E [t xiea(p) = Plartv_y; xi-a(pr)]

pt-1(o¢)

<0 (fl(k)% log(k) log(K)) W}l((v:, Vi) + 16

(5.6)

Axiom (A3) asserts that the term in (5.3) is non-positive; this uses the fact that a#v;_| = (pt#afre#v:_l.
Thus we have satisfactorily controlled A;®; except for the term (5.4) corresponding to the

dynamic modifications we make to the embedding (insertions, deletions, and fission operations).
5.1.1 Dynamic updates: Analyzing (5.4)
We need to define a few more intermediate embeddings, so let us denote:

A~ A(P] j -j-1

Q) e = Q (Pt,del’At—l’ZT ! )

Qe ={Q] 41 = 1), adel = qQda

Q fis = (QAZ,ﬁS 1j=21), alls = aSfs

We will further decompose (5.4):

D (" H#v;_; xe1) — P (ara#vi_y; xi1)

= [CI)(afre#v:_l; Xt-1) — (D(a?s#v:_l; )(t_l)] [insertion] (5.7)
+ [@(a{is#v’;_l; Xt-1) — (D(af‘“’l#v:_l; )(t_1)] [fission] (5.8)
+ [@(afel#v:_l; Xi-1) — Ola1#v]_y; )(t_l)] . [deletion] (5.9)

Insertions (5.7). We now claim that

* i * j * i—1 *
D #vi_; xem) — Dl #vr_; xior) < Z (@i y; xim1) = D(a) v} _ixen)),  (5.10)
>0

<0, (5.11)

where a) = a?s and a; results from a{_l by incorporating the possible insertion of a set {S;} =

pt] \ﬁi,del. Thus a{ and ai_l agree outside S; \ [Q{,ﬁs]'
By definition of the embedding (recall (3.7)), ai(x) # ai_l(x) only at points x € supp(v;_,) with

rank less than j (cf. (3.6)), but the images of all such points lie outside L] by construction. Since

uXt=1is supported on L%, Axiom (A4) implies that each term in (5.10) is zero, establishing (5.11).
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Deletions (5.9). Denote by
ji=min{j>1:T =1} (5.12)

be the highest scale at which an insertion occurs (we take j; := 0 if no such j exists). If I] =1, then

some cluster S; € P} with center z/ is possibly deleted. Therefore:

1 Ly, * . . —j+1
WT(ate #v,_, apa#vy ) < Z H{Ile}vt_l(sj)rg j+
i>1
Recall that vi_,(X) = k. Since we remove a uniformly random level-j cluster and there are at least K
of them (if a deletion takes place), it holds that

27k
1., dely, * * —j+1 -
QIEel [WT(“te #vi_, ara#v ) | ]t K Z * I] < s M]{JRO}

j>1
where we take expectation only over the random choice of which cluster to delete. In particular,
using Axiom (A1), this implies that

27 1(k)k e
fK T ]fﬂ{]';>0}. (513)

Odel I:CD(O( el#vt 17 Xt— 1) (D(Oét 1#Vt 17 Xt— 1) | ]t] =X

It is at this point that we are no longer able to continuing analyzing A;®; locally in time.
Deletions can increase @;, and we need a way of obtaining credit for this increase from prior
moment of u. A similar fact is true for the analysis of (5.8).

We encapsulate the contents of this section as follows. Let A{iqut denote the expression in (5.8),
and define A® := ;51 Ay D;.

Lemma 5.1. There is a constant Cg = 1 such that

E[AD] < — 3 E [COSHFT(IJ)] + Cq)f1(k)% log(k)log(K)costx (v™)

2 k k . !
[ Tfl( ) ]tﬂ{j;>0} +A?sq)t

t>1
Proof. We sum the inequalities (5.5), (5.6), (5.11), and (5.13), and use the fact (5.3) is non—positive.
Summing the right-hand side of (5.5) and taking expectations gives precisely — E[costf(y)]. W
have also employed Corollary 4.5 to bound the p;_1(o;) term from (5.6). m]

5.2 The accuracy potential

The accuracy potential W# will help us track the cost of insertions and deletions. It measures how

accurately the tree structure induced by the semi-partitions Q; represents the fractional server
measure. One could effectively ignore W4 upon a first reading; using a cruder bound, one loses an
O(loglog Ax) factor in the competitive ratio.

Finally, for x, y € X, denote the truncated distance function:

d;(x, y) = min (T_j, dx(x,y)) -

For u € M(Ly), a function p : X — R, and sequences of finite subsets C = (C/ € X : j > 1)
and A = (AJ C X : j > 1), we define:

VA p,C,A) = Z BHu(x) Z di(x,CT) - () (x, A) = 2np(x) = $77771) (5.14)

xeX j=1
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\I]f = lpA([-lt/ ﬁt—ll Ct/Af—l) ’

where C; :=(C} : j > 1) and A, := (Al : j > 1).
The next lemma follows from S#p#u = B#u when ¢ is any fusion map and p € M(Ly).

Lemma 5.2. If @ is a fusion map, then
v p#u; p,C,A) = v (u; p,C,A).

Remark 5.3 (Accuracy potential). Recall that an insertion occurs at level j when
dx (Gt, C{_l U A{_l) > 77/71, Such an insertion does not increase the potential @ (recall (5.11)), but
it triggers a level-j deletion which might adversely increase ® (recall (5.13)). The potential \Iff
measures how accurately the sets Ctj U A{_l approximate the measure #;.

We know that the underlying k-server algorithm satisfies p:(a¢(0¢)) > 1, and therefore it should
be that either the HST algorithm moves substantially in response to a level-j insertion or the

accuracy improves (because o; € Ctj ), yielding a lower W4 value. This gain is used to charge the
adverse effects of deletion against the movement of the HST algorithm.

Lemma 5.4. For every t > 0 and every sequence C, the map p +— Y*(u; pi-1,C, Ay—1) is O(3 log k)-
Lipschitz on (M(LT), W11r)'

Proof. Define ¥ : X — R, by
¥j(0) = di (6, ¢1) - 7 (d (v, A1) = 20pea(0) — 377

Consider any ¢, ¢’ € Ly and x = B(£), y = B(¢’). Let u’ = s(1¢ — 1) for some s # 0 and write:

.

o AW+ proa, €, Arca) = YA puca, €, )] < Y () = (&)
>0
< ) pi@-wie)

jedi—1(x)udi-1(y)
< O(3} logk)sup [¢;(&) — (&)

j=1

7

where in the second inequality, have used the definition of J;—; and Lemma 4.3(3), and in the last
inequality, Lemma 4.8.

We are left to show that ||{j|lLip < 4 for every j > 1. Consider that p; 1 is 1-Lipschitz (cf.
Lemma 4.3(1)), as are the maps x d;(x,Cf) and x d;(x,A{_l). Factor ¢; = fjg; with
fj = d\(x,C). Then:

l¥illuip < Il filleollgjlILip + Nlgilleoll fillLip < 4,

completing the proof. O

Lemma 5.5. For every p € My(Lt) and t > 1, it holds that

[0 (1; pe-1, Crder, At—2) = ¥ (1; Pr-2, Cr.del, At—2)| < O(nk log k) E [quy(llXt’Z((pH), HXH)] :
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Proof. Since p_1 = po, we may assume that t > 2. Write

[ (W Pr-1, Craet, At—2) — Y (1; Pr—2, Ctdet, A=)
< p#u(X) sup (|91 ()| + [Je—2(x)]) sup | pe-1(x) — pr—a(x)|

xeX xeX
< O(nk3 log )Wy (B#iis—1, B#iit—2),

where the second inequality is Lemma 4.8, and the last inequality is a consequence of Lemma 4.3(2).
By convexity of the Wasserstein distance, we have

Wi (B#iit-1, P#lit-2) < E[Wi(B#us-1, Bi—)]
= E [Wy(B#pr, pu2)]
-E [W;( (ﬁ#‘u)(t—ll ﬁ#[u)(t—Z((Pt—l)):I ,

where the last inequality uses p#uX-2(P-1) = B#qp;_1#uXt-2 = p#ur-2. Now the desired result follows
from the fact that § is 1-Lipschitz. m|

5.2.1 Analysis

For t > 1, define A,W4' := W' — W4 . We decompose:

Atqu = EUA([JH Pi-1,Ct, Aiq) - ¢A(#t_1; Pi-2,Ci-1, Atr)

= [’J’A(#t; pi-1,Cr, A—1) — DA (A1) g, Ct/At—l)] [4 movement]|  (5.15)

+ [9 A1 by, Gy Agoy) = A9 By, Cry Ay [isolation]  (5.16)

+ [EDA(#Xt_l((pt); pi=2, Cr, At-1) — U (w-1; P2, Cr, At—l)] [fusion]  (5.17)

+ [0 (wio1; Pro2, Cr, Aro1) — 0 (W15 Pr—2, Cr del, At—1)] [insertion]  (5.18)

+ [0 (i-1; Pr-2, Cr det, At-1) = ¥ (i-1; Pi-2, Cr det, As—2)] [fission]  (5.19)

+ [0 (15 Pr-2, Cr det, At—2) — VM (pe-1; Pr-2, Ci-1, At-2)] [deletion]  (5.20)
Observe that:

1. From Lemma 5.4, we have (5.15) < O(% log k)W}r(yt, ‘uXH((f’f)).
2. And Lemma 5.2 gives (5.17) < 0.
3. From Lemma 5.5, we conclude that (5.16) < O(n(k/0)log k)W%T(‘ut_L y’“-Z(‘Pf-l)).

Deletion. If I{ =1, then some center z{ € C’tj_1 is possibly deleted in passing from CZ—l to Ctj, del"

For each x € X, let z, ; € C’fj_1 denote some center for which dx(zy,j, x) = dX(Ctj_l, x), and for
zZ € Ct]_l, let Xj(z) ;== {x € X :z4,j = z}. Thenforeachj > 1, {X;(z) : z € Ct]_l} forms a partition of
X, and we have:

VA (pe-1; Pro2, Crdel, Ar—2) = V(1215 Pr-a, Cio1, A—2) < Z ﬂ{ltle}vt—l(Xj(ZZ))T_j-
i>1
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Recall that v;_1(X) = k. Since z{ is chosen uniformly at random from Ctj_1 and |Ctj_1| = Kifa
deletion takes place, it holds that

N N " 2tk _
X, [0 (1115 pe-2, Cr et At-2) = P (pi-1; pr-2, Ci1, Ar-2) | 7] < — T W0y - (5.21)
where we take expectation only over the random choice of which cluster to delete, and we recall the
definition of j; from (5.12).

Insertion. We now analyze the effect of inserting 0. This is the most delicate part of the analysis
of A,W4.

Lemma 5.6. For every t > 1, it holds that

—jr-1
(5.18) < ——

Tgi0) + Wipe, w90 + 20, 5(01) . (5.22)
Proof. Fix j > 1. Suppose that I{ =1 and denote

Y(x;C) = d; (x,Cl)- v/ (d; (x,A{_l) —2npi-a(x) — %T_j_l)

i
Consider some x € Vyrand let £ € C{_l be such that dx(x, C{_l) = dx(x, ®). Since o; is inserted
into Ci, it must hold that dx(o;, £) > t/~! and dx(oy, Ai_l) > 77J71. Therefore either:
1. dx(x,04) > }IT_j_l, or

2. dx(x,04) < dx(x,%)— %T_j_l, and

In either case, we can conclude that for any x € X,
t,b(x;Ct]) - Y(x; Ct]/del) < —%T_j_l +dx(x,0¢) +2npr-2(x). (5.23)

The value (x; Ctj ) — U(x; Ctj del) is never positive (since Ctj del S Ctj ), so we will only use the
contribution (5.23) for certain x € X.

By using (5.23) for the mass moving to o; in the passage from v;_; — v;, we can write for every
j= L

VA peo1; pio1, G Arcr) = 04 (wi-1; pe=1, Cr del, At-1)

1 A
< (_ 8 + W)l((vt/ Vt—l) + ant—Z(Gt)) ﬂ{l{Zl}

i1 )

< (_ g T Wy (ut, ) 4 27]Pt—2(0t)) ﬂ{l{:l} .

Summing over j > 1 yields

—ji-1
8

completing the proof. m]

T

(5.18) < — Ugjis0p + Wipe, p=190) + 2np1a(0y),
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We encapsulate the contents of this section in the following lemma. Define AW4 := 3, At\I’f.
Write A?S\Pf for (5.19).

Lemma 5.7. There is a constant C4 > 1 such that if K > 327k, then

1 »
E[AW4] < 16 Z E [T ]fﬂ{]-;>0}] +Ca (% logk)E [cost(p)] + E

t>1

. ]

t>1

Proof. Sum (5.21) and (5.22), along with the bounds (1)—-(3) derived at the beginning of the section,
and apply Corollary 4.5 to bound the sum over p;_2(o;). Finally, use the fact that n < ﬁ m]

5.3 The fission potential

The fission potential is central to our approach; it allows us to charge the change in A?S(Dt due to
breaking previously fused clusters against the movement of . Recall (3.4) and denote

H) = HD, A, 207,

Observe that [Wtj ]1C [Q{ ] is the subset of points that participate in a fused cluster in Q{ .

Given € M(L7), a sequence P = (P/ : j > 1) of semi-partitions of X,and A = (AJ C X : j > 1)
a sequence of finite subsets, define:

P (P, A) == ) Bt (H(PT, A, 20777

i>1
wE = F(uy; P, Ai-1)

== wipu (H]).

j>1

Remark 5.8 (Fission potential). The W potential rewards us for fusing a cluster that contains
significant v; mass. This will pay for the adverse effects of fission on the @ potential as long as
when we unfuse clusters, we are always doing it in order to fuse new clusters with much greater
mass. This is why we fuse near the centers of heavy balls (which triggers a fission in the “light”
annuli around the heavy ball).

As in Lemma 5.2, the proof of the next lemma follows from p#u = B#p#u for any fusion map ¢.
Lemma 5.9. If ¢ is a fusion map, then
¢F(¢#y;¢,A) = ¢P(y;¢,A).
Lemma 5.10. The map p — PF(y; P,A)is 2-Lipschitz on (M(LT), ler)'

Proof. Consider p’ = u+s(1;—1,)forsomes € Rand ¢, ¢’ € Ly withdisty({, ¢’) = 7. Manifestly:
|YF (P, A) = pF (WP A)| < Is] sy v < 2ls]r. 0
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5.3.1 Analysis

For t > 1, define At\IIf = \I/f - \I/f_l. We decompose:

AW o= IPF(‘Ut}ﬁtzAt—l) - (pea, Pi_1, Ai—2)

= [IPF([Jt; Py, Ai_1) — IPF(th‘l(‘pt); P, At_l)] [ movement] (5.24)
+ [BbF(#Xt’l((Pt);@t,At—l) - ¢F(ut—1;¢t,At_1)] [fusion] (5.25)
+ [l,bF(yt—l; P, At q) - lpF(yt_l;?A’t, At_z)] [heavy net update] (5.26)
+ [¢F(Ht—1; Pr, Ai—2) — O (i-1; Paclr, At_z)] [insertion] (5.27)
+ [IPF(Ht—l}f)del,t/At—Z) - ¢F(#t—1,¢t—1,At_z)] . [deletion] (5.28)

Observe that:
1. Lemma 5.10 yields (5.24) < 2Wf(yt, X190y,
2. From Lemma 5.9, we conclude that (5.25) < 0.

3. Moreover, (5.27) < 0 because insertion can only enlarge the set of points that participate in a
fused cluster.

Define AWF := 3,1 A, W and AW to be the expression in (5.26).

Lemma 5.11. It holds that
E [AWF] < 2 [costh ()] + % DB [t g + ) E [ARWE]

t>1 t>1

Proof. We are left to analyze (5.28). This argument is very similar to the deletion analysis in

Section 5.1.1 and Section 5.2.1. If we delete a level-j cluster in moving from 155_1 to 15: 4o then the

expected potential change (over the random choice of which cluster to delete) is 77/ % Summing
yields the desired bound. o

5.3.2 Fusion and fission
Our final task is to analyze the quantities AlS®;, AfSWA and AfiswF,
Lemma 5.12. For every t > 1 and numbers 0 < ca,cr <1, if
o < C—F s
4(fa(k) + ca)
then
E [AfS (@) + cpWF +caWi)] <0.

Toward that end, fix t > 2. Let U/ := A{_z \ A{_l denote the set of heavy net points that are

ejected in the “heavy net maintenance” phase of time step t — 1. Let V/ := A{_l \ A{_z. Every

u € U/ is ejected because of some newly added point i € V/ with dx(u, #1) < \/TIT_]' . Denote

Bél = {Bx(u,’c—j) ‘U € Wj} ,
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Figure 4: New heavy balls By, B, € ij are responsible for ejecting some of the previously heavy
balls in B;,.

, -j .
B = {BX (U,T—) 10 G(V]} .
v 2VA
Note that since Ai_'l and A{_z are heavy 77/-nets (cf. Lemma 4.1(1)), they are 3§‘j -separated, and

thus the balls in B,]u are pairwise disjoint, and the same holds for the balls in BZV. See Figure 4.

Since A > 36, we have Bx(u, 77/) C Bx(#, )\%) for each u € U/ . Therefore:
U B¢C U (AB\ B). (5.29)
BeB),  Bes),
For j € Z,, define

Shai= | (AB\B),

j
Beg,,

an = U B.

BG‘B,]V
The next three lemmas will yield the proof of Lemma 5.12.

Lemma 5.13. For every t > 2:
fis\yA -j j
AFWE <Y v (Shy) -

j>1
Proof. By definition:
ABSWA = YA (415 pro1, Cr el Ar-1) — WA (pe-1; Pr-1, Cr del, At-2)

= VM (W-1; Pr-1, Crdet, At—1) = 0 (1215 Pr=1, Cr.del, At—2 \ U)
+ I!’A([Ut—l; pt—l; Ct,del; At o\ (l/(]) - IPA(IJt—l; ﬁt—ll Ct,del; Ai2).
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Since the first term involves the addition of points in V/, it is non-positive. Thus we focus on the
second term.

In order for the x term in \I/f to be affected by the change from A;_» to A;—2 \ U/, it must be that
dx(x, UT) < 317, therefore

A?S‘If‘[‘ < Z v (BX((L(j, T_j)) .
i>1

In conjunction with (5.29), this completes the proof. m]
The next lemma is the primary way that Axiom (A4) is employed.

Lemma 5.14. For every t > 1:

Ay < fuk) Y Tves (SL)

i>1

Proof. By definition
Afs, := (D(Of?S#V:_l}Xt—l) - ‘D(Oﬁ?el#vi_l; Xt-1) -
Observe that for each j > 1, the change from édel,t to éﬁs,t (which induces the change from afel

to afi*) results from “unfusing” along the points of U/. Since éi del

semi-partition on X \ [BZH] , Axiom (A4) in conjunction with (5.29) yields the desired result. = O

and Q{ 4 induce the same

The final lemma is key: The introduction of a new heavy ball yields a large decrease in potential.

Lemma 5.15. For every t > 2:

AWE < 37 (a5l ~ (5]
j>1

Proof. Recall that
APWE = 9 (ur-1; Pr, Aia) = F (1P, Ara)
where
OF (e P, A) = = Y Bt (H(P], A, 207771,
i>1

EachB € BZV contributes at most —7/v;_1(B) to the potential, while we gain at most T Ive1(S (];ut). O

Proof of Lemma 5.12. Combining the preceding three lemmas gives, for any 0 < ¢4, cr < 1:

A?S (CDt + Cp\yf + CA\Pf) < Z Z T_j ((CF + f4(k) + CA)Vt—l(AB \ B) - CFVt—l(B)) . (530)
=1 Berv

Now observe that since BZV consists of (t+ — 1)-heavy balls, it holds that for every B € B/ ,

74-1(AB\ B) < 6(1 = 6)¥-1(B) < 26¥;-1(B).
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Therefore taking expectations in (5.30) yields
E [Af (@ + cpW] +caWi)] < Z 77 Z 1_1(B) [5(fa(k) + ca) — (1 = 28)c] . (5.31)
=1 BeB,jV
If we now choose
o < C—F ,
4(f4(k) + CA)

then (5.31) becomes at most zero, completing the proof of Lemma 5.12. m]

5.4 Competitive analysis

Let us now prove Theorem 2.6.

Proof of Theorem 2.6. Use Lemma 5.1, Lemma 5.7, Lemma 5.11, to write, for any numbers 0 <
ca,cp<1:

log k
0

27 f1(k) 2tk ca .
+Z( K +CF?—§ ]E[T ]fﬂ{]‘;>0}]

E [AD + cpAWE + csAWF] < Co f1(K)

log(K) costx(v*)

t>1

log k
+ (ch beaCan - Z)E[cost.';(y)]

+ D B [Af (W + cpWE 4+ cawf)].

t>1
Choosing cr :=1/8 and 0 := m and employing Lemma 5.12 yields

log k
0

2tfi(k) Tk ca i
+Z( K +R—§ ]E[T ]f“{j:>0}]

E [AD + cpAWF + c,AWF] <Co fi(k)

log(K) costx(v*)

t>1

log k
+ (cACA 0(55; - %) ]E[costfr(y)].

Setting K := 213?; ﬁk) then gives
log k logk 1
E[AD + crAWF + CAA‘I/F] < Co f1(k) 0:;; log(K) costx (v™) + (cACA O? - E) ]E[cost-'fr(y)].

Finally, choose c4 := (8Ca fa(k) log k)_l, yielding

log k
0

< O(fi(k) fa(k)(log k)z) costx(v™) — 31 ]E[cost%(y)] ,

E [AD + cp AV + c4AWF] < Co fi(k)

log(K) costx(v™) — % ]E[cost%(y)]
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ie.,
E[cost (1)] < O(fi(k) fa(k)(log k)?) costx(v*) — A E [A® + cp AWF + c4AWA]

Now observe that due to starting in an initial configuration with ug concentrated at a single leaf
{o € L1 and Cé = A(]) = {{o}, it is the case that AWF, AW4 > 0 because \I/(F) and \Ifgl both take their
minimum value. Moreover, @ > 0 by assumption, and thus —A® < CD(VS ; X0), yielding the desired
conclusion. O

5.5 Rounding under fusion

Consider a pair of siblings &4, &8 € Vé with b(&4) € b(EP) and the canonical injection ¢ fACgB.
Using auxiliary labels {1,2} (say), one can encode this injection by a multistep process:

(Co oo &jma, (B(EM);D), (415 1), (Ejus 1), .. )
(&0, .., &, (0(EP);2), (11 1), (Ej42; 1), - . )
(o, i, (0(EP);2), (8j4152), (Ej4251) . . )
(o, .o, &, ((EP);2), (E41;2), (§j4252) .. )

The idea is that only one label is changed from 1 to 2 at every step. (At the end, such atomic steps
can be used to restore the original labeling.)

The advantage of this perspective is that if one is trying to prove monotonicity of some quantity
under fusion maps, it suffices to establish monotonicity for canonical injections, and thus to establish
it for one step of the above process. This corresponds to first “fusing” A into B but still distinguishing
the children of B from those of A, then recursively fusing the children of B into the children of A,
and so on. We will refer to such a step as a primitive fusion of £ into &B.

This will be a useful way of thinking in the next section, as well as in Section 6.3.

5.5.1 Online rounding

The authors of [BBMN15, §5.2] present an online algorithm to round a fractional k-server algorithm
on a 7-HST (for T > 5) to a random integral k-server algorithm in a way that the expected cost
increases by at most an O(1) factor. Unfortunately, this does not quite suffices for us, as our model
allows cluster fusion.

Theorem 516 (HST rounding under fusions). Consider an 9 -adapted sequence p =
(ur € Mg(Lr) : t > 0). There exists a random F -adapted sequence fi = <ﬁt eMp(Ly):t > 0> such
that for every t > 0: With probability one, for every & € Vr,

(L) € {Lu( L@, T (LN} - (532)

Moreover:
E[Cost%(ﬁ)] < 0(1) cost%(y).

Proof. In [BBMN15, §5.2], the authors give a procedure for online rounding of a fractional k-server
algorithm on HSTs to a distribution over integral algorithms that only loses an O(1) factor in the
expected cost. The key property maintained is that the integral algorithm is supported on balanced
configurations with respect to the fractional algorithm, i.e., that (5.32) holds for every & € V7.
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In order to extend this to our model, we need to give a method for the primitive fusion of two
clusters while maintaining the balance property, Suppose that [ is a random integral k-server
measure that satisfies, for two siblings &4, &8 € Vi with b(&4) € b(&P),

E[a(Lr(E)] = u(Lr(EP))
E[a(Lr(E)] = u(Lr(ER)),

and with probability one, fI satisfies the balance conditions:

A(Lr(EM) € [Lp(Lr(EM), |, Tu(LrEN]
A(Lr(ED) € [Lu(Lr(EP), ], Tu(Lr(EPNT] -

For simplicity, let us denote

A= p(Lr(EY)
fp = p(Lr(EP))
wa = u(Lr(EY)
up = p(Lr(EP))
ea=pa—Lual
ep = up— Lus].

We need to produce a random variable (k4, kg) with the following properties:
1. supp ((ka, kp)) C supp ((fia, {i5))
2. P(ka = [pal) =P(fia = Lpal)
3. P(kg = | ug)) = P(fig = | uz))
4. The balance condition is satisfied:

P(ka +kp € [Lua+ ppl, Tua+psl]) = 1.

We then define [i of the fused cluster as k4 + kg and couple the distributions of the children
accordingly using the conditional distributions i | fia = ka and I | fig = kp. In this way, we
preserve a balanced online rounding under a primitive fusion step. Note that we do not incur any
reduced movement cost because we do not pay for the fusion (by definition of the reduced cost).

There are two cases. Note that the first case includes the situation in which one of 4 or up is
an integer.

1. ea+eg <1t

P[(ka, ks) = (Lual, LusD)] = P(fia = Lpal) + P(fp = Lusl) — 1
P[(ka, kg) = (Lual, TusD)] = P(p = Tup)) (550

P[(ka, kp) = ([pal, Lus))] = P(fa = Tual)lie, 501

P[(ka, k) = (Tpal, [us])] = 0.
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2. ea+eg > 1t

P(ka, kp) = (Lual, Lus])] =0

P[(ka, kp) = (Lpal, TusD)] = P(fia = Lpal)

P[(ka, kp) = (Tual, LusD)] = P(fip = Lus))

P((ka, kp) = (Tual, Tus1)] = P(fa = Tual) + P(2p = [up]) - 1. o

The final lemma of this section completes the proof of Theorem 2.5 in conjunction with
Theorem 5.16.

Lemma 5.17. If i = <ﬁt eMp(Ly): t > 0> is a sequence of integral measures, and v = (v¢ : t > 0) is
defined by v := B#uy, then
costx(v) < Cost%(y’).

Proof. This follows immediately from the fact that g is 1-Lipschitz and if ¢ is a fusion map and
u € M(Ly), then p#u € M(Ly), and B#o#u = f#u. ]

6 Reductions

We now present some generic reductions that allow us to assume a weaker set of potential axioms.
In Section 6.3, these are used to apply our framework to the [BCL"17] algorithm.
6.1 Mass at internal nodes

We first discuss algorithms that maintain fractional server mass at internal nodes V1 of T and only
to pay for movement of server mass down the tree. Such algorithms can be incorporated into our
framework as follows.

We now allow the fractional server measure X associated to a configuration x € I' to place
mass on both leaves and internal vertices of T, i.e., u* € Mi(Vr).

Definition 6.1. For two measures , u’ € M(Vr), say that u dominates 1’ if the following are satisfied:
1L uw(Vr) = (Vo).
2. w(Vr(&) < W (Vr(é)) forall & € V.

Let [ 1] denote the collection of all measures u’ € M(Vr) such that y dominates p’.

Note that if y’ € [u]], then p’ can be obtained from u by pushing mass “down the tree” (recall
Remark 2.4). It is helpful to observe that if u is supported on Ly, then [u] = {u} (in intuitive
terms, mass supported on L1 cannot be “pushed down” any further). We now introduce related
modifications of Axiom (A3).

(A3°) For any fusion map ¢ and configuration y € I’, there is a configuration x(¢) € I' such that
pX@) € [p#u*], and moreover

D(p#0; x(9)) < D(0;x) VO € M(Ly). 6.1)
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Theorem 6.2. For any metric space (X, dx), the following holds. If there are functions
(DZM]((.E'[]')XF—) R, )/:I'XL%—>F, X - p* e M(Vr)

satisfying (A1), (A2), (A3°), and (A4) for some functions fi(k), fa(k), then there is an augmented state space
I, and functions

@:I\?ﬂk(.ﬁr)xfaR, ﬁ:fx[%—ﬂq, X 0t e Mi(Ly)
satisfying axioms (A1)—(A4) with the functions 2 f1(k) and 2 f4(k).

Proof. Given the sequence of measures p = (y; : t > 0) corresponding to the online algorithm
induced by the maps y and x +— u*, with uo € My(Lr) and py; € Mg(Vr) for t > 1, one can consider
the corresponding ¥ -adapted lazy sequence fi = (fi; : t > 0) with {fi; : t > 0} € M(Ly) that only
moves mass between leaves.
Our augmented configuration space will be [':= T x My(Ly). For p € M(Vr), define the average
“height” of p:
WH ()= Y v,

j=0

and for (x, fi) € ', define the modified potential
®(0; (x, 1)) = 20(0; x) + W (u¥) + W(u¥, fi). (6.2)

The validity of Axioms (A1) and (A4) is unchanged since & does not introduce an additional
dependence on its first argument.

Consider that when p transports mass, ® does not increase because of (A2). On the other hand,
when [i moves, & decreases in proportion because of the last term in (6.2), and thus (A2) is satisfied
for fi* as well. Moreover, under a “push down” operation occurring as in (A3°), the last term in
(6.2) may increase, but then WH will decrease @ at least as much, meaning that (A3) is satisfies for

(D, 7, x = {X). O

6.2 Extra server mass

We will now show that for any 0 < ¢ < 1, it suffices to have a fractional (k + ¢)-server algorithm
satisfying Axioms (A1)-(A4). The idea of converting a (k + ¢)-server algorithm to a k-server
algorithm storing mass at internal nodes is taken from [BCL"17].

Define the rounding map p : R, — R, as follows: For h € Z,, define p|j, 4+,] = h and extend p
affinely outside (Jez, [h1, h + €]. Note that p is ﬁ-LiSpchitz. For a measure yu € M(L7), define the

measure A, u € M(Vr) by |

p(u(&)) tely

Aepi(€) = 3 p(u(L(E))) - Z p(u(Lr(E))) otherwise.
&’ech(&)

Note that p is superadditive, i.e., p(y + y’) > p(y) + p(y’) forall y, v’ € R4, so A, u does define a
measure. Moreover, by construction we have:

Aep(Vr(8)) = p(u(Lr(8)  VEeVT,
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and therefore
Aep(Vr) = p(u(Lr)) = plk + &) =k,

thus A u € My (V).
The next lemma follows from the fact that p is superadditive.

Lemma 6.3. Forany v € My..(Lr), and fusion map ¢, it holds that
Ac(p#v) € [p#A V] .

Theorem 6.4. For any metric space (X, dx) and 0 < ¢ < 1, the following holds. If there is a transition
function y : T X L% — T, a potential @, and a map x — p* € Myr.(Lr) satisfying Axioms (A0)—(A4)
for some functions fi(k), fa(k), then replacing the map x + u* by the map x — A (u*) yields an
algorithm satisfying Axioms (A1), (A2), (A3°), and (A4) with the new potential ® = 12D and the functions
2 fulk), 12 falk).

Proof. Axiom (A3) is satisfied because of Lemma 6.3. Thus if we establish that
’ 1 ’ ’
WA, Aep’) < T-¢ ) Yy, € M(Ly), (6.3)

it will show Axiom (A2) is satisfied with the potential & = %CD, completing the proof.
Consider p € M(Vr) and denote

llly = > 7 Y (Vi) -

>l &evp

Then,
sl =l < Welp, @) < llu=w'lly Vi ' € M(Vr).

Now we can write:
WHA, A < At = Acplle < Dplluplli = lly < T2 Wh(e, ) Vi, i’ € ML),
verifying (6.3). m|
By composing Theorem 6.4 and Theorem 6.2, we obtain the following.
Corollary 6.5. Under the assumptions of Theorem 6.4, there is a triple (D, y, x — pu* € My (Ly)) satisfying
Axioms (A1)~(A4) with fi(k) < 12 fi(k) and fa(k) < 12 fa(k).

6.3 Verification of the potential axioms for [BCL"17]

In light of Corollary 6.5, it will suffice to demonstrate a fractional (k + ¢)-server algorithm satisfying
(A1)—(A4) for some 0 < ¢ < 1.
Consider an element

x=(x"e[0,1]:£eVy,i=1,2,..)C (VT X Z,).
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For & € V1, write ch(&) for the set of children of £ in T. Let K denote the closed convex set of such x
that satisfy the following linear constraints for every & € V:

X 0 ie{l,2,...,k}
1 i>k,

Z xéi < Z x¢ for all finite S C ch(&) X Z, . (6.4)
i<|S] (€))es
Let us furthermore define z = z(x) by z& := 15 (1 — x*/) and z¢ := };5; z&/. (Note that x and
z are related by an invertible linear transformation, and thus we need only specify one of them in
order to define the corresponding set of values.)

For aleaf £ = (&, &1, ...) € L1, we write

. &j
z{ = lim z; .

j—oo

Fix 6 := % and let K5 C K denote the subset of x € K for which the set {£ : z¢ # 0} is finite, as well as
the sets {i : z¢' # 0} for each & € Vr, and furthermore:

2l <1 Ve Ly, (6.5)

k
E Z_—1_5_k+€’ (6.6)
lelr

where we note that ¢ := 1%5 <1forallk > 1.
Define the measure u* € My,..(Lr) by

©x(S) := Z 2 vSc Ly, (6.7)
teS
One should note that for x € Ks, the inequalities (6.4) imply that for every & € V7,

Z z¢, (6.8)

&’ech(&)

Vv

Z¢

and since zX = k + ¢, (6.6) implies that the inequality in (6.8) holds with equality. In other words,
for every & € VT, we have

28 = p*(Lr(&)). (6.9)

The [BCL*17] algorithm. To each 0 € N7[Ik(£1r), we associate a representation X as follows: For
every & € VT,

2% = Z 0(¢),
teL7(&)

i |0 25>
X =
6 1 otherwise.

and for £ € Vrandi > 1:

Let I := K5, and define the potential:

D(0;x) :== CoD(0;x) — H(x),
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where C¢ < logk, and

} g 25" +0
D(6;x) ::Z ) Z Z(ﬁe’ +6)log(x5’i+6) ,

j>1 fevl 1

H(x) := Z T Z [(zCE +(1+7 Ye)log 2t +z¢ log(zé +e)|.

&

P gevd

and £ denotes the parent of & in T. One should note that this sum converges absolutely because the

sets {& € ijr' : z¢ > 0} are finite for every j > 0, and moreover z forms a measure of weight k + ¢ at
every level.

The [BCL*17] algorithm can be interpreted as a mapping y : T x L3 — T that satisfies axioms
(A1) and (A2).

Theorem 6.6 ([BCL"17]). There is a mapping y : T x LY — T and such that the following hold for every
xel.

1. For any two states 0, 0" € Mk(ﬁv):

|D(0; x) — D(0; x)| < O(log k)> W(6, 0').

2. Forevery o € LY, we have yV(x'U)(a) > 1.

3. For every o € LY and every integral measure 0 € My (L) satisfying 6(c) > 1:

D(0; y(x,0)) - B(0;x) < Wi (¥, @) .

Moreover, the associated measures lie in the O-decorated subtree: {u* : x € K5} C Mlk(L%).
We are thus left to verify Axioms (A3) and (A4).

Axiom (A3). In order to demonstrate the validity of (A3), we need to give a way of updating
the z-variables under a primitive fusion of EAinto B, where &4, &8 € V1]r are siblings in T with
b(A) C b(B). We will use z to denote the variables after the fusion.

For any descendant & of &l (including &4 itself), set 257 := 0 for all i > 1. Let & denote the
application of a primitive fusion step to & (so that &’ is a descendant of EB). If & # &B, we set
z¢ = z% for all i > 1. We now specify how to update the variables {z¢"7 ;i > 1}. All other
variables remain unchanged.

Define the sequence <Z§B'1, 253'2, eel, > by sorting, in non-increasing order, the concatenation of
the two sequences

i1y, @i, (6.10)

(Recall that since x € K, each such sequence has only finitely many non-zero values.)

Lemma 6.7. It holds that x € Ks and p* = @#u®, where ¢ denotes the corresponding primitive fusion map.
Furthermore for any 6 € My (L),
D(p#0;x) < D(O; x). (6.11)
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Proof. The fact that u* = @#u* is immediate from the construction. And from this, it follows that
(6.6) holds. Thus we need only verify that x € K, and only for the third set of inequalities (6.4) is
this slightly non-trivial.

By construction, it is straightforward that those inequalities hold for x for any & € V7 except
& =&B. For the parent é of &4 and &B, the fact that we have merged the two child lists means that
the inequalities (6.4) continue to hold for 3

Thus we need only verify the inequalities for £8. Note that one can rewrite the inequality in

(6.4) as
s

B :

1> 3 E Vfinite S € ch(EP) x Z, .

25
1 (&,))es

i=
Since these inequalities hold for z, they also hold for z because when &4 is fused into &8, we sort
the corresponding list of values in decreasing order.

Let us now prove (6.11). The potential ®(0; x) is a sum of two expressions; the first depends

on 6, whereas the second does not. To see that H(¥) > H(x), apply the next lemma with
cA B
a=2z%,b=2z%,c=1"1

Lemma 6.8. For any numbers a,b,c > 0and 0 < e < 1such that (1 + c)e < 1, it holds that
(a +b+(1+ c)e) log(a+b+¢)> (a +(1+ c)e) log(a + ¢) + (b +(1+ c)e) log(b + ¢€).
Proof. Without loss of generality, we may assume that 2 > b. Define
ft)=(@a+t+Q+c)e)logla+t+(1+c)e)+(b—-t+(1+c)e)logb—t+(1+c)e),

and compute
a+(1+c)e
b+(1+c)e”

| f(t)=log

t=0

We conclude that
(a +b+(1+ c)e) log (a +b+(1+ c)e) + (1 +c)elog[(1+c)e]
> (a +(1+ c)e) log (a +(1+ c)e) + (b +(1+ c)e) log (b +(1+ c)e) .
Since (1 + c¢)e < 1 by assumption, this yields

(a +b+(1+ c)e) log (a +b+(1+ c)e) (6.12)
> (a +(1+ c)e) log (a +(1+ c)e) + (b +(1+ c)e) log (b +(1+ c)e) .

Observe also that
(a+b+1+0)e)log(1- ce (6.13)
a+b+(1+c)e
ce ce
> (ﬂ+(1+C)€)10g(1—m) + (b+(1+C)€)IOg(1—m)
Adding (6.12) and (6.13) yields the desired result. O
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We now address D(0; x). The only terms that change are the ones corresponding to A and &B.
Let 0" = p#0. By construction:

5,1

% &2
7 <
o’

<329, < -

Since we sort both £ and X in increasing order, the value of the D(6; x) decreases, verifying the
claim. O

Axiom (A4). Clearly the change 0 — 0’ with 0, 0’ € M k(Lt) does not change H, so we need only
analyze the first part of ®. Consider & € V%‘l and a child &' e V{;. If 0’ = F#0 where F(&) = & for
& ¢ Vr(&Y) and F(Vr(EY)) € Vi(&D), then the value of ® can change by at most

Co Z 77 Z Z log (x‘gz'i +9)|, (6.14)

pPh Pl geviian g

where we have used the notation &, < &1 to denote that &; is a descendant of &1 (and we say that &;
is a descendant of itself). The desired conclusion follows from the next fact.

Fact 6.9. For every x € [0,1] and 6 € [0, %]:

Using this and recalling that § = 5, (6.14) is bounded by

, — y&2id
OCologh Y w7 Y 3 1255 < Ol(logkPye i (Vi(e)),

jEh 21 gevlie, <8

where in the last inequality we used (6.9).

6.3.1 Extension to unbounded metric spaces

Note that the conclusion of Theorem 2.6 has no dependence on the diameter of the space (X, dx),
and our restriction to diam(X, dx) < 1 was only a matter of scaling.

Throughout, we have used T to denote the universal 7-HST over X, but let us now use the
notation Tx. To handle the case when X is unbounded, we consider a sequence of algorithms
on the HSTs Tp,, Tp,, ... corresponding to bounded spaces By € By C ---X defined by B; =
{0, a1(01), a2(02), . .., at(0t)}, where we recall that £y € L is the leaf guaranteed in Section 2.3
and o = (o; : t > 1) is the request sequence.

The only necessity is that our assumed HST algorithm can be “isometrically transported” from
Tp, into an isometric subtree of Tp,,,. One could easily formalize this property, but for simplicity
we instead confirm that it holds for the algorithm described in the preceding section. Simply
observe that we can extend the potentials D(0; x) and H(x) to sum over all j € Z. The first remains
unchanged, while we define:

_ . £ .
H(x) := Z T =c + Z (z5 +(1+ 1 1e)log z : € zflogzi+o)||,
jGZ EEV-[]r

43



where

k+¢

c:=(k+(1+1He)log -

+ klog(k + ¢).

This ensures that H is bounded whenever the leaf measure 1(€) = z* has bounded support. (When
777 > diamy(supp(u)), the corresponding term will be zero.)
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