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Abstract

We exhibit an O((log k)6)-competitive randomized algorithm for the k-server problem on any
metric space. It is shown that a potential-based algorithm for the fractional k-server problem
on hierarchically separated trees (HSTs) with competitive ratio f (k) can be used to obtain a
randomized algorithm for any metric space with competitive ratio f (k)2O((log k)2). Employing
the O((log k)2)-competitive algorithm for HSTs from our joint work with Bubeck, Cohen, Lee,
and Mądry (2017) yields the claimed bound.

The best previous result independent of the geometry of the underlying metric space is the
2k − 1 competitive ratio established for the deterministicwork function algorithm by Koutsoupias
and Papadimitriou (1995). Even for the special case when the underlying metric space is the real
line, the best known competitive ratio was k. Since deterministic algorithms can do no better
than k on any metric space with at least k + 1 points, this establishes that for every metric space
on which the problem is non-trivial, randomized algorithms give an exponential improvement
over deterministic algorithms.
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1 Introduction

An online algorithm is one that receives a sequence of inputs 〈x1 , x2 , . . .〉 at discrete times t ∈ {1, 2, . . .}.
At every time step t, the algorithm takes some feasible action based only on the inputs 〈x1 , x2 , . . . , xt〉
it has seen so far. There is a cost associated with every feasible action, and the objective of an
algorithm is to minimize the average cost per time step. This performance can be compared to the
optimal offline algorithm which is allowed to decide on a sequence of feasible actions given the entire
input sequence in advance.

Roughly speaking, an online algorithm is C-competitive if, on any valid input sequence, its
average cost per time step is at most a factor C more than that of the optimal offline algorithm
for the same sequence. The best achievable factor C is referred to as the competitive ratio of the
underlying problem. It bounds the detrimental effects of uncertainty on optimization. Algorithms
designed in the online model tend to trade off the benefits of acting locally to minimize cost while
hedging against uncertainty in the future. We refer to the book [BE98].

The k-server problem. Perhaps the most well-studied problem in this area is the k-server problem
proposed by Manasse, McGeoch, and Sleator [MMS90] as a significant generalization of various
other online problems. The authors of [BBN10] refer to it as the “holy grail” of online algorithms.

Fix an integer k > 1 and let (X, dX) denote an arbitrary metric space. We will assume that all
metric spaces occurring in the paper have at least two points. The input is a sequence 〈σt ∈ X : t > 0〉
of requests. At every time t, an online algorithm maintains a state ρt ∈ Xk which can be thought of
as the location of k servers in the space X. At time t, the algorithm is required to have a server at the
requested site σt ∈ X. In other words, a feasible state ρt is one that services σt :

σt ∈
��
ρt

�
1 , . . . ,

�
ρt

�
k

	
.

Formally, an online algorithm is a sequence of mappings ρ � 〈ρ1 , ρ2 , . . . , 〉 where, for every t > 1,
ρt : X t

→ Xk maps a request sequence 〈σ1 , . . . , σt〉 to a k-server state that services σt . In general,
ρ0 ∈ Xk will denote some initial state of the algorithm.

The cost of the algorithm ρ in servicing σ � 〈σt : t > 1〉 is defined as the sum of the movements of
all the servers:

costρ(σ; k , ρ0) :�
∑
t>1

dXk
�
ρt(σ1 , . . . , σt), ρt−1(σ1 , . . . , σt−1)� , (1.1)

where

dXk
�(x1 , . . . , xk), (y1 , . . . , yk)� :�

k∑
i�1

dX(xi , yi) ∀x1 , . . . , xk , y1 , . . . , yk ∈ X .

For a given request sequence σ � 〈σt : t > 1〉 and initial configuration ρ0, denote the cost of the
offline optimum by

cost∗(σ; k , ρ0) :� inf〈ρ1 ,ρ2 ,...〉
∑
t>1

dXk
�
ρt , ρt−1

�
,

where the infimum is over all sequences 〈ρ1 , ρ2 , . . .〉 such that ρt services σt for each t > 1.
An online algorithm ρ is said to be C-competitive if, for every initial configuration ρ0 ∈ Xk , there

is a number c0 � c0(ρ0) > 0 such that

costρ(σ; k , ρ0) 6 C · cost∗(σ; k , ρ0) + c0
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for all request sequences σ. A randomized online algorithm ρ is a random online algorithm that is
feasible with probability one. Such an algorithm is said to be C-competitive if for every ρ0 ∈ Xk ,
there is a number c0 � c0(ρ0) > 0 such that for all σ:

�
�
costρ(σ; k , ρ0)� 6 C · cost∗(σ; k , ρ0) + c0 .

The initial configuration ρ0 will play a minor role in our arguments, and we will usually leave it
implicit, using instead the notations costρ(σ; k) and cost∗(σ; k). Let Dk(X, dX) denote the infimum
of competitive ratios achievable by deterministic online algorithms, and let Rk(X, dX) denote the
infimum over randomized online algorithms. When the metric dX on X is clear from context, we
will often omit it from our notation.

One should note that in defining (1.1), we sum over all times t > 1. This is simply to avoid the
notational clutter caused by an upper time horizon. One can replace a finite sequence 〈σ1 , σ2 , . . . , σt〉
of requests by the infinite sequence 〈σ1 , σ2 , . . . , σt , σt , σt , . . .〉, where the final request is repeated.

The authors of [MMS90] showed that if (X, dX) is an arbitrary metric space and |X | > k, then
Dk(X) > k. They conjectured that this it tight.

Conjecture 1.1 (k-server conjecture, [MMS90]). For every metric space X with |X | > k > 1, it holds that

Dk(X) � k .

Fiat, Rabani, and Ravid [FRR94] were the first to show that Dk(X) < ∞ for every metric space;
they gave the explicit bound Dk(X) 6 kO(k). While Conjecture 1.1 is still open, it is now known to be
true within a factor of 2.

Theorem 1.2 (Koutsoupias-Papadimitriou, [KP95]). For every metric space X and k > 1, it holds that

Dk(X) 6 2k − 1 .

Paging and randomization. LetUn denote the metric space on {1, 2, . . . , n} equipped with the
uniform metric d(i , j) � 1{i, j}. The special case of the k-server problem when X � Un is called
k-paging. Note that an adversarial request sequence for a deterministic online algorithm can be
constructed by basing future requests on the current state of the algorithm. Consider, for instance,
the following lower bound forUk+1 ⊆ Un (for n > k). For any deterministic algorithm A, define the
request sequence that at time t > 1 makes a request at the unique site inUk+1 at which A does not
have a server.

Clearly A incurs movement cost exactly t up to time t. On the other hand, the algorithm that
starts with its servers at k uniformly random points in {1, 2, . . . , k + 1} and moves a uniformly
random server to service the request (whenever there is not already a server there) has expected
movement cost t/k. Thus there is some (deterministic) offline algorithm with cost t/k up to time t.
Moreover, manifestly there is also a randomized online algorithm that achieves cost 1/k per time
step in expectation.

And indeed, in the setting of k-paging, it was show that allowing an online algorithm to make
random choices helps dramatically in general.

Theorem 1.3 ([FKL+91, MS91]). For every n > k > 1:

Rk(Un) � 1 +
1
2 + · · · +

1
k
.

3



Work of Karloff, Rabani, and Ravid [KRR94] exploited a “metric Ramsey dichotomy” to give a
lower bound on the randomized competitive ratio for any sufficiently large metric space. The works
[BBM06, BLMN05] made substantial advances along this front, obtaining the following.

Theorem 1.4. For any metric space X and k > 2 such that |X | > k, it holds that

Rk(X) > Ω
(

log k
log log k

)
.

In light of a lack of further examples, a folklore conjecture arose (see, for instance, [Kou09, Conj. 2]).

Conjecture 1.5 (Randomized k-server conjecture). For every metric space X and k > 2:

Rk(X) 6 O(log k) .
The possibility that Rk(X) 6 (log k)O(1) is stated explicitly many times in the literature; see, e.g.,

[BBK99] and [BE98, Ques. 11.1]. Our main theorem asserts that, indeed, randomization helps
dramatically for every metric space.

Theorem 1.6 (Main theorem). For every metric space X and k > 2:

Rk(X) 6 O
�(log k)6�

.

Even when X � R, the best previous upper bound was inherited from the deterministic setting
[CKPV91]: Rk(R) 6 Dk(R) � k.

Theorem 1.6 owesmuch to three recent works that each dramatically improve our understanding
of the k-server problem. The first is the successful resolution of the randomized k-server conjecture
for an important special case called weighted paging. Consider a set X and a non-negative weight
w : X → R+. Define the distance dw(x , y) :� max{w(x), w(y)}. We refer to this as a weighted star
metric.

Theorem 1.7 (Bansal-Buchbinder-Naor, [BBN12]). If X is a weighted star metric and k > 2, then

Rk(X) 6 O(log k) .
The second recent breakthrough shows that when X is finite, the competitive ratio can be

bounded by polylogarithmic factors in |X |.
Theorem 1.8 (Bansal-Buchbinder-Mądry-Naor, [BBMN15]). For every k > 2 and finite metric space X,
it holds that

Rk(X) 6 �
log |X |�O(1)

.

Finally, in joint work with Bubeck, Cohen, Lee, and Mądry [BCL+17], we obtain a cardinality-
independent bound when X is an ultrametric. This last result will form an essential component of
our arguments.

Theorem 1.9 ([BCL+17]). For every k > 2 and every ultrametric space X, it holds that

Rk(X) 6 O
�(log k)2�

.
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1.1 HST embeddings

The significance of ultrametrics in Theorem 1.9 stems from their pivotal role in online algorithms
for k-server. Consider a rooted tree T � (V, E) equipped with non-negative vertex weights
{wu > 0 : u ∈ V} such that the weights are non-increasing along every root-leaf path. Let L ⊆ V
denote the set of leaves of T , and define an ultrametric on L by

dw(`, `′) :� wlca(`,`′) ,

where lca(u , v) denotes the least common ancestor of u , v ∈ V in T .
If it holds for some τ > 1 that wv 6 wu/τ whenever v is a child of u, then (T , w) is called a

τ-hierarchically separated tree (τ-HST) and (L , dw) is referred to as a τ-HST metric space. (For finite
metric spaces, the notion of an ultrametric and a 1-HST are equivalent.)

This notion was introduced in a seminal work of Bartal [Bar96, Bar98] along with the powerful
tool of probabilistic embeddings into random HSTs. Moreover, he showed that every n-point metric
space embeds into a distribution over random HSTs with O(log n log log n) distortion. Using the
optimal O(log n) distortion bound from [FRT04] yields the following consequence.

Theorem 1.10. Suppose that (X, d) is a finite metric space. Then for every k > 2:

Rk(X, d) 6 O(log |X |) · sup
(L,d′)

Rk(L, d′) ,

where the supremum is over all ultrametrics (L, d′) with |L| � |X |.
Clearly in conjunction with Theorem 1.9, this yields Rk(X) 6 O

�(log k)2 log |X |� for any finite
metric space X. The reduction from general finite metric spaces to ultrametrics implicit in
Theorem 1.10 is oblivious to the request sequence; one chooses a single random embedding from
X into an HST metric (L , dw), and then simulates an online algorithm for the request sequence
mapped into (L , dw). This is both useful and problematic, as no such approach can yield a bound
that does not depend on the cardinality of X; there are many families of metric spaces for which the
O(log |X |) distortion bound is tight.

In [BCL+17], we showed how a dynamic embedding of a metric space into ultametrics could
overcome the distortion barrier.

Theorem 1.11 ([BCL+17]). For every k > 2 and every finite metric space (X, d):
Rk(X, d) 6 O

�(log k)3 log(1 +AX)� , (1.2)

where
AX :�

maxx ,y∈X d(x , y)
minx,y∈X d(x , y) .

The dependence of the competitive ratio onAX is still problematic, but one should note that
the resulting bound could not be achieved with an oblivious embedding. Indeed, suppose that
{Gn} is a family of expander graphs with uniformly bounded degrees and such that Gn has n
vertices. Let (Vn , dn) denote the induced shortest-path metric on the vertices of Gn . It is well-known
that a probabilistic embedding into ultrametrics incurs distortion Ω(log n), while (1.2) yields
Rk(Vn , dn) 6 O

�(log k)3 log log n
�
.
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Experts over HSTs. Anatural approach is to construct an online algorithm that maintains, at every
time step, a distributionDt over embeddings into an HST metric (L , dw) and for each embedding
α : X → L, a k-server configuration ραt corresponding to an online algorithm for the request
sequence mapped into L via α.

Define the annealed server measure ν̄t to be the measure on X that results from averaging the
configurations α−1(ραt ) overDt . Now one would like to updateDt 7→ Dt+1 based on the measure
ν̄t . Ideally, the measure ν̄t would indicate which pieces of the space X are important to approximate
well, allowing an embedding sampled randomly fromDt to bypass the distortion lower bounds.

Problematically, as wewill now indicate, even if we are allowed to see the entire request sequence
in advance, there is no embedding α : X → L that can avoid distorting distances by less than
Ω(logAX), even when X ⊆ R. In the language of online learning, there is no good “expert.”

At a high level, our solution to this problem is to enlarge the class of experts: We maintain
instead a distribution D̂t on pairs (ρ, α), where ρ is a k-server configuration and α : X → L is an
embedding. Now let ν̄t denote α−1(ρ) averaged over D̂t .

The distribution D̂t+1 is then sampled by a two-step process: (ρ, α) 7→ (ρ̂, α) 7→ (ρ̂, α̂). The first
step corresponds to updating the k-server configuration to service the request σt that arrives at time
t. The second step is new: We alter the embedding α so that it more accurately approximates X
according to the annealed server measure ν̄t . A key property of the transformation α 7→ α̂ is that it
should not induce any movement when the configuration is pulled back to X, i.e., α−1(ρ̂) � α̂−1(ρ̂).
The limitations of dynamic HST embeddings. Consider a bounded metric space (X, dX) (i.e.,
one with finite diameter) and a fixed (possibly infinite) τ-HST metric space (L , dhst)with τ > 2. We
may consider a fixed HST because one can choose a universal target space without loss of generality;
see Section 2.1. We will assume that every leaf has a unique preimage, i.e., there is a surjection
β : L → X, and that the map β is 1-Lipschitz:

dX
�
β(x), β(y)� 6 dhst(x , y) ∀x , y ∈ L . (1.3)

Given a request sequence σ � 〈σ1 , σ2 , . . .〉 in X, one can consider a random sequence α �

〈α1 , α2 , . . .〉 of points in L with the property that β(αt) � σt for each t > 1. Say that α is oblivious if
there is a single random map F : X → L chosen independently of σ and αt :� F(σt). Say that α is
adapted to the request sequence if αt depends only on 〈σ1 , σ2 , . . . , σt〉 (and possibly some additional
independent randomness).

Finally, say that α has k-server distortion at most D if there is a constant c > 0 such that for every
request sequence σ:

�
[
cost∗dhst

(α; k)] 6 D · cost∗X(σ; k) + c . (1.4)
If α is adapted to the request sequence and has k-server distortion at most D, then a C-competitive
k-server algorithm on (L , dhst) yields a CD-competitive algorithm for the k-server problem on
(X, dX) since (1.3) allows us to pull the server trajectories back to X at no additional cost.

In [BCL+17], it is shown that such adapted sequences α with k-server distortion D 6
O(log(k) log(1 +AX)). Unfortunately, this model is too weak to obtain Theorem 1.6 even when X is
the unit circle (or the real line), even for the case of k � 1 server. This is for a simple reason: Even if
we don’t require the sequence α to be adapted (i.e., we are given the entire request sequence in
advance), there are request sequences σ so that if (1.4) holds, then D > Ω(logAX).
Lemma 1.12. For everyA > 2, there is a set of points X on the unit circle withAX 6 A and so that for
any α satisfying (1.4) for every σ with k � 1, it holds that

D > Ω
�
logτA

�
> Ω(logτ |X |) .
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Figure 1: Fusion and fission of two clusters as a server approaches the boundary and then departs.

We sketch the straightforward proof, as it will motivate our modification of the dynamic
embedding model and its subsequent analysis. Fix some n > 2 and consider a request sequence
σ � 〈σ1 , σ2 , . . . , σn〉, where σt � e−2πi t

n ∈ S1, and S1 denotes the unit circle in the complex plane
equipped with its radial metric dS1 . (In other words, the requests come consecutively at n equally
placed points on a unit circle.)

Clearly cost∗
S1(σ; 1) 6 O(1). We claim that for any sequence of leaves 〈α1 , α2 , . . . , αn〉 satisfying

dhst(αi , α j) > dS1(σi , σ j) ∀i , j , (1.5)

it holds that
n−1∑
t�1

dhst(αt , αt+1) > Ω(log n) .

Indeed, this is immediate: For every 1 6 j 6 blogτ nc, by (1.5), the sequence 〈α1 , α2 , . . . , αn〉 of
leaves must exit a subtree of diameter at least τ− j at least Ω(τ j) times, implying that

n−1∑
t�1

dhst
(
αt , αt+1

)
>

blogτ nc∑
j�1

τ− jτ j > Ω(logτ n) .

1.2 Cluster fusion

Consider again the example of the preceding section, but now it will be helpful to think about a
continuous path: Suppose that σ : [0,∞)→ S1 is a point that moves clockwise at unit speed. Recall
that (L , dhst) is a τ-HST metric.

A non-contractive embedding α : S1
→ L induces a sequence of partitions {P j : j > 0} of S1,

where P0 � S1, for every j > 0, P j+1 is a refinement of P j , and where every set S ∈ P j has diameter
at most 2πτ− j . When σ(t) approaches the boundary of P j , the image α(σ(t)) stands to incur dhst
movement ≈ τ− j as α(σ(t)) switches sets of the partition P j . In order to prevent this, we will fuse
together the two sets of P j whose boundary σ(t) is about to cross. See Figure 1.

When σ(t) is safely past the boundary, we need to unfuse these sets so that we are prepared
to fuse across the next P j boundary. Failing to do this, we might start fusing a long chain of sets;
having sets of unbounded diameter in P j would prevent us from maintaining a non-contractive
embedding into L. We will soon describe a model that supports fusion and fission of sets in the
target HST.
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Potential-based algorithms for HSTs. Once we allow ourselves such operations, it no longer
seems possible to use a competitive HST algorithm as a black box. Indeed, such an algorithm
maintains internal state, and there is no reason it should continue to operate meaningfully under a
sudden unexpected change to this state (resulting from the fusion of clusters).

Thus we will assume the existence of an HST algorithm that maintains a configuration χ and
whose operation can be described as a function (χ, σ) 7→ χ′ that maps a pair (χ, σ) to a new
configuration χ′, where σ ∈ L is the request to be serviced, and χ′ induces a fractional k-server
measure µχ′ that services σ. (See Section 2 for a discussion of fractional k-server measures; for
the present discussion, one can think of µχ′ as simply a k-server configuration.) Moreover, we
will assume that the HST algorithm’s competitiveness is witnessed by a potential function Φ(θ∗; χ)
that tracks the “discrepancy” between the server state induced by χ and the server state θ∗ of the
optimal offline algorithm.

Crucially, we will assume that Φ decreases monotonically under fusion operations applied
simultaneously to both θ∗ and (the measure underlying) χ. If Φ is thought of as a measure of
discrepancy with respect to the underlying HST, then this makes sense: When two clusters are
fused, the corresponding notion of discrepancy becomes more coarse (meaning that it is less able to
distinguish θ∗ from µχ).

We also need to assume that Φ is relatively stable under operations that correspond to fission of
clusters. We state the required properties formally in Section 2.3. In Section 6.3, we confirm that the
algorithm establishing Theorem 1.9 satisfies these properties.

1.3 Embeddings, isoperimetry, and scales

Suppose now that (X, dX) has diameter at most one. Let P �


P j : j > 0

�
denote a sequence of

partitions of X so that for each j > 0, if S ∈ P j then diamX(S) 6 τ− j . For a partition P of X and
x ∈ X, let P(x) denote the unique set of P containing x.

One can define a τ-HST metric on X by

dPhst(x , y) :� τ−min{ j>0 : P j(x),P j(y)} .
If X is finite, then by choosing the partitions P j appropriately at random, one can additionally
obtain the property that

�
�
P j(x) , P j(y)� 6 dX(x , y)

τ− j O(log |X |) ∀j > 0 . (1.6)

Such randompartitions are nowubiquitous inmany areas; see, for instance, [FRT04,KLMN05, LN05]
for applications in algorithms and metric embedding theory.

In particular, summing over the values of j > 0 such that τ− j > minx,y∈X dX(x , y), (1.6) implies
that for any x , y ∈ X,

�
�
dPhst(x , y)� 6 O(log |X |) · O(logAX) , (1.7)

where we recall the aspect ratio of X from (1.2).
Both distortion factors in (1.7) are troublesome, but there is now a well-understood theory

of how they arise. See, for instance, the elegant argument of [FRT04] which indicates that they
cannot arise simultaneously: If the random partitions {P j : j > 0} are chosen carefully, then one
can achieve the bound �[dPhst(x , y)] 6 O(log |X |) dX(x , y).

The O(log |X |) factor inherited from (1.6) might be called the “isoperimetric” obstruction. For
instance, it can be replaced by a universal constant if X � R, but it is necessary if (X, dX) is
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the shortest-path metric on an expander graph or the `1 metric on {0, 1}d for some d > 1. The
O(logAX) factor could be called the “multiscale” obstruction, and it arises whenever the underlying
metric space contains paths, i.e., sequences x1 , x2 , . . . , xn ∈ X along which the triangle inequality is
approximately tight:

dX(x1 , xn) ≈ dX(x1 , x2) + dX(x2 , x3) + · · · + dX(xn−1 , xn) .

1.3.1 The isoperimetric obstruction

If, instead of choosing a static embedding, we imagine maintaining an embedding for the purposes
of solving the k-server problem, then it is not unreasonable to expect that the HST embedding only
needs to “track” O(k) regions at every scale.

Indeed, consider a sequence σ � 〈σ1 , σ2 , . . . , σN〉 of requests in X. Let S ⊆ {σ1 , σ2 , . . . , σN}
denote a τ− j-separated subset of the requests (so that dX(σ, σ′) > τ− j for σ , σ′ ∈ S). If |S| > k + h,
then any sequence ρ1 , ρ2 , . . . , ρN ∈ Xk of k-server configurations that services σ must incur total
movement at least hτ− j .

Thus when the request sequence is sufficiently spread out at scale τ− j , the optimum offline
algorithm must be incurring proportional cost. This allows us to track only O(k) regions, and pay
some cost whenever we have to alter the embedding to incorporate new regions (and discard old
ones); that “edit cost” can be charged to the movement cost of the optimum. This suggests one
might replace O(log |X |) by O(log k) in (1.7) and, indeed, this is the content of Theorem 1.11.

Unfortunately, this argument overcharges the optimum cost by a factor proportional to logAX ,
since it is not possible to naively perform the same charging argument for all scales simultaneously.
If one considers X � � equipped with its usual metric, then even in the case of k � 1, the request
sequence {0, 1, 2, . . . ,N} would incur � N charge at each of the � log N scales even though the
optimum only moves distance N .

To address this, we employ a sophisticated dynamic embedding and a charging scheme that
tracks the relationship between the movement at various scales. This is encapsulated in the
“accuracy potential” of Section 5.2.

1.3.2 The multiscale obstruction

It is the more daunting multiscale obstruction that motivates a model in which we can fuse together
sibling clusters in the HST embedding.

Our underlying idea is simple: Suppose that ν̄t is the annealed server measure described earlier.
Consider a ball B in X and the ball λB (with the same center, and with a λ times larger radius),
where λ is a large constant. If it holds that for some small δ > 0,

ν̄t(B) > (1 − δ)ν̄t(λB) , (1.8)

let us say that the ball B is heavy (with respect to ν̄t). If B is heavy, it indicates that we would prefer a
random partition to “cut around B” in the light annulus λB \ B.

We will enforce this by “fusing” together all the sets in P j that intersect B into one supercluster;
see Figure 2(a). The condition (1.8) directly implies that disjoint heavy balls must be far apart, and
thus for λ chosen large enough, we avoid the problem of having chains of fusions that produce sets
of unbounded diameter.

This also addresses the multiscale obstruction: At every scale τ− j where the ball BX(x , τ− j) is
heavy, we fuse the clusters near x, and therefore do not pay the separation penalty in (1.6). At how

9



(a) Four sets fused into a single supercluster (b) New heavy ball B′ appears

Figure 2: Fusion along heavy balls

many scales j ∈ {0, 1, 2, . . .} can the ball BX(x , τ− j) be light? It is easy to see that the answer is
O

(
1
δ log ν̄t (X)

ν̄t (x)
)
since, at every light scale, a δ-fraction of the mass is lost when zooming into x from

radius λτ− j to radius τ− j . We have ν̄t(X) � k, and when x has been the site of a recent request, it
will hold roughly that ν̄t(x) > 1/2. Thus the number of non-trivial scales at which x is not fused
with its neighbor clusters is only O

� 1
δ log k

�
. When combined with our solution to the isoperimetric

obstruction, this leads to a bound of O
� 1
δ (log k)2�

in (1.7).

Paying for cluster fission. Asmentioned previously, the difficulty comeswhen a ball that was once
heavy becomes light, and then we must “unfuse” the underlying clusters. This fission cost will be
charged against the transportation cost of the sequence of measures 〈ν̄t : t > 0〉. We only unfuse the
clusters corresponding to a heavy ball B when eventually some ball B′ with diamX(B) � diamX(B′)
becomes heavy and satisfies

√
λB ⊆ λB′ \ B′. See Figure 2(b). It is intuitively clear that this requires

significant movement of the measure ν̄t onwhich heaviness is based. Wewill employ two properties
in order to charge the cost of fission against this movement:

1. If B is heavy with respect to ν̄t0 and B′ is heavy with respect to ν̄t1 for t1 > t0, we can charge
this against

diamX(B′)ν̄t(B′) (1.9)

transportation cost incurred by 〈ν̄t : t ∈ [t0 , t1]〉 in the creation of the heavy ball B′.

2. When B′ becomes heavy with respect to ν̄t , we will need to unfuse any previous heavy balls
B1 , B2 , . . . , Bm satisfying

√
λBi ⊆ λB′ \ B′. If Ci is the supercluster that was formed when Bi

became heavy at some earlier time, then for λ chosen large enough,

C1 ∪ · · · ∪ Cm ⊆
√

λB1 ∪ · · · ∪
√

λBm ⊆ λB′ \ B′ ,

and therefore it holds that

ν̄t(C1) + · · · + ν̄t(Cm) 6 δν̄t(B′) . (1.10)
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We will assume that fission of a supercluster C only “costs” us f4(k)diamX(C)ν̄t(C) for some
function f4 : �→ [1,∞) satisfying f4(k) 6 (log k)O(1). (See Axiom (A4) in Section 2.3.)
In this case, (1.10) implies that the total cost of fission is at most

δν̄t(B′)max
i

{diamX(Ci)} 6 O(δ)ν̄t(B′)diamX(B′) . (1.11)

Thus by choosing δ > 0 small enough, we can ensure that the cost of the fission in (2) is paid for by
the transportation cost incurred in (1). The formal charging argument occurs using the “fission
potential” introduced in Section 5.

One should note that, unlike in Section 1.3.1, where the geometry of the request sequence allows
us to charge against the transportation cost of the optimal offline algorithm, here we only charge
against the transportation cost of 〈ν̄t : t > 0〉 (which is essentially the movement cost our online
algorithm has incurred). Thus it is essential that we are allowed to take δ > 0 in (1.11) to be small
(in fact, we will take δ � 1/ f4(k)).
The main theorem and algorithmic considerations. The methods outlined in the preceding
sections allow us to obtain the following.

Theorem 1.13. There is a constant C > 1 such that for every k > 2, the following holds. On every metric
space (X, dX), there is a C(log k)6-competitive randomized algorithm for the k-server problem on X.

We remark that if we are allowed to solve a fractional relaxation of the k-server problem (see
Section 2 for a discussion of fractional k-server measures), then the algorithm described here can be
implemented so that it responds to a request in time polynomial in k. (Here, we treat specification of
a request σ ∈ X and computation of a distance dX(x , y) as unit cost operations.)

The reason is simple: At any point in time, our algorithm only maintains a distribution over HST
embeddings of kO(1) points in X. It is not hard to see that the distribution need only be supported
on kO(1) different HSTs (as in, e.g., [CCG+98]). Moreover, the HST algorithm of [BCL+17] (to which
we eventually appeal) performs a fractional update in kO(1) time on a kO(1)-vertex HSTs.

On the other hand, rounding a sequence of fractional server measures online (cf. Theorem 2.5)
to a random integral measure currently requires time kO(k) per request.

1.4 Preliminaries

Let us write R+ :� [0,∞) and �+ :� � ∩ R+. Consider a set X. We use M(X) to denote the
space of measures on X whose support is at most countable. Denote by Mk(X) ⊆ M(X) the
subset of countably-additive measures µ ∈ M(X) that satisfy µ(X) � k. Since our measures have
at most countable support, when x ∈ X, we will often write µ(x) for µ({x}). For µ ∈ M(X),
define supp(µ) :�

�
x ∈ X : µ(x) > 0

	
. Denote by M̂(X) the set of integral measures on X, i.e., those

µ ∈ M(X) which take values in �+, and similarly M̂k(X) :� Mk(X) ∩ M̂(X).
If X,Y are two spaces, F : X → Y, and µ ∈ M(X), then we use F#µ to denote the pushforward

measure:
F#µ(S) :� µ(F−1(S)) ∀S ⊆ Y .

Note that if µ is integral, then so is F#µ. If µ � 〈µ1 , µ2 , . . .〉 is a sequence of measures, we define
F#µ :� 〈F#µ1 , F#µ2 , . . .〉.

If µ is a sequence of measures inMk(X), we write

costX(µ) :�
∑
t>1

W1
X(µt , µt+1) ,
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where W1
X(µ, ν) is the L1-transportation distance between µ and ν in X. This is sometimes referred

to as the Wasserstein 1-distance or the Earthmover distance. One can consult the book [Vil03]
for an introduction to the geometry of optimal transportation. Note that we only deal here with
countably-supported measures, so our considerations are elementary. (The reader should also note
that with slightly more notational overhead, one could assume that all encountered measures have
finite support.)

The following claim is straightforward. If (X, dX) and (Y, dY) are two metric spaces and
F : X → Y, one defines

‖F‖Lip :� sup
x,y∈X

dY(F(x), F(y))
dX(x , y) .

Claim 1.14. For any sequence µ, it holds that

costY(F#µ) 6 ‖F‖Lip · costX(µ) .
For x ∈ X and r > 0, we denote the ball BX(x , r) :�

�
y ∈ X : dX(x , y) 6 r

	
and for S ⊆ X,

the neighborhood BX(S, r) :�
⋃

x∈S BX(x , r). For two subsets S, T ⊆ X, we write dX(S, T) :�
inf{dX(x , y) : x ∈ S, y ∈ T}.

For two non-negative expressions E, E′ > 0, we write E 6 O(E′) to denote that there is a
universal constant C > 0 such that E 6 CE′. We also write E � E′ to denote the conjunction of
E 6 O(E′) and E′ 6 O(E).

2 Fusible HSTs

Fix a metric space (X, dX) with diameter at most one. Consider a global filtration F � 〈F1 , F2 , . . .〉
where F1 ⊆ F2 ⊆ · · ·, and Ft represents information about the request sequence up to time t.
Denote the request sequence σ � 〈σ1 , σ2 , . . .〉with σt ∈ X for all t > 1. We use σ[s ,t] to denote the
subsequence 〈σs , σs+1 , . . . , σt〉. Say that a sequence ρ �



ρ0 , ρ1 , ρ2 , . . .

�
is F -adapted if each object

ρt is possibly a function of σ[1,t] (but not the future σt+1 , σt+2 , . . .).
A notable observation is that in many cases it suffices to maintain a fractional k-server state, as

opposed to a (random) integral state; one then rounds, in an F -adapted manner, the fractional
solution to a random integral solution without blowing up the expected cost. This idea appears in
[BBK99] and is made explicit in [BBN12] for weighted star metrics. In [BBMN15], it is extended to
HST metrics. See Theorem 2.5 below for a variant tailored to our setting.

An offline fractional k-server algorithm (for σ) is a sequence of measures µ �


µ0 , µ1 , µ2 , . . .

�
such

that µt ∈ Mk(X) for all t > 1, and such that µt(σt) > 1 holds for every t > 1. We say that µ is integral
if each measure µt takes values in �+. An online fractional k-server algorithm is such a sequence µ
that is additionally F -adapted. We will use the term fractional k-server algorithm to mean an online
algorithm and explicitly use “offline” for the former notion.

2.1 Universal HSTs

It will be convenient for us to have a fixed HST into which our embeddings map requests. To
accommodate request sequences of arbitrary length, the HST will be infinite, but the measure
maintained by our algorithmwill always be supported on a finite set of leaves (which are themselves
a subset of the request sequence seen so far).

Fix some number τ > 2. A sequence of subsets ξ � 〈ξ0 , ξ1 , ξ2 , . . .〉 of X is a τ-chain if

X � ξ0 ⊇ ξ1 ⊇ ξ2 ⊇ · · · ,
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and diamX(ξ j) 6 τ− j for all j > 0. If ξ is a finite sequence, we refer to ξ as finite chain and let len(ξ)
denote its length (otherwise set len(ξ) :� +∞). Define the bottom of ξ by b(ξ) :�

⋂
i>1 ξi . Observe

that for a finite τ-chain ξ,
diamX(b(ξ)) 6 τ−len(ξ) . (2.1)

A decorated τ-chain is a sequence ξ̂ �

(ξ0; 0), ξ̂1 , ξ̂2 , . . .

�
where ξ̂i � (ξi ; ηi) for i > 1, 〈ξ0 , ξ1 , . . .〉

is a τ-chain, and


ηi ∈ �+ : i > 1

�
are arbitrary labels. We use len(ξ̂) and b(ξ̂) to denote the

corresponding quantities for the underlying undecorated chain. We denote η((ξi , ηi)) :� ηi .

Remark 2.1 (The decorations). We note that the decorations {ηi} will play a minor role in our
arguments. One could take ηi ∈ {0, 1} for all i > 1. We emphasize, in Section 3.1.4 and Section 6,
the two places where they are used. One could do without them entirely, but they make some
arguments substantially shorter.

Let VT denote the set of finite decorated τ-chains in X. Define a rooted tree structure on T as
follows. The root of T is the length-one chain (X, 0) (with label 0). For two chains ξ, ξ′ ∈ VT : ξ′
is a child of ξ if ξ is a prefix of ξ′ and len(ξ′) � len(ξ) + 1. Let T denote the rooted tree structure
with vertex set VT . Let V j

T
⊆ VT denote the set of τ-chains of length j. A decorated τ-chain ξ is a

leaf chain if len(ξ) � ∞ and |b(ξ)| � 1. Let LT denote the set of leaf chains. We denote the extended
vertex setVT :� LT ∪ VT .

For two distinct chains ξ, ξ′ ∈ VT , define their least common ancestor lca(ξ, ξ′) ∈ VT as the
maximal finite chain (ξ0 , ξ1 , . . . , ξL) that is a prefix of both ξ and ξ′. This allows us to define a
τ-HST metric onVT by

distT (ξ, ξ′) :� τ−len(lca(ξ,ξ′)) .
We call the pair (T , distT ) the universal τ-HST on (X, dX). For succinctness, we will employ the
notations costT :� cost(VT ,distT ) and W1

T
:� W1

(VT ,distT ). We use V0
T
⊆ VT to denote the subset of

chains whose decorations are identically 0 and L0
T

:� LT ∩V
0
T
.

Pushing measures to X. Define the map β : LT → X as follows: β(ξ) is the unique element in
b(ξ).
Claim 2.2. β is 1-Lipschitz as a map from (LT , distT ) to (X, dX).
Proof. Consider ξ, ξ′ ∈ LT . Let ξ̂ :� lca(ξ, ξ′). Then by definition, β(ξ), β(ξ′) ∈ b(ξ̂), hence

dX
�
β(ξ), β(ξ′)� 6 diamX(b(ξ̂))

(2.1)
6 τ−len(ξ̂))

� distT (ξ, ξ′) . �

If one considers a measure µ ∈ M(LT ), then the pushforward β#µ gives a canonical way of
transporting that measure to X.

Fusion maps and canonical injections. For ξ ∈ VT , define

VT (ξ) :� {ξ′ ∈ VT : ξ is a prefix of ξ′}
LT (ξ) :�VT (ξ) ∩ LT .

Consider j > 1 and siblings ξ, ξ′ ∈ V j
T
with b(ξ) ⊆ b(ξ′). Then there is a canonical mapping

ϕξ↪→ξ′ :VT →VT defined as follows: ϕξ↪→ξ′ |VT\VT (ξ) is the identity, and


ξ0 , ξ1 , . . . , ξ j−1 , (b(ξ); η(ξ)), ξ j+1 , ξ j+2 , . . .

�
∈ VT (ξ)
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is mapped to 

ξ0 , ξ1 , . . . , ξ j−1 , (b(ξ′); η(ξ′)), ξ j+1 , ξ j+2 , . . .

�
∈ VT (ξ′) .

We refer to ϕξ↪→ξ′ as the canonical injection of ξ into ξ′. A map ϕ :VT →VT is called a fusion map if
it is the composition of finitely many canonical injections (in particular, the identity map is a fusion
map).

The importance of fusion maps is encapsulated in the following lemma. It asserts that
transporting a leaf measure under a fusion map does not induce movement when the measure is
pushed from LT to X. Its truth is immediate from the fact that if ϕ is a fusion map, then for every
ξ ∈ LT , β(ϕ(ξ)) � β(ξ).
Lemma 2.3. If µ ∈ M(LT ) and ϕ is a fusion map, then β#ϕ#µ � β#µ.

Remark 2.4 (Tree terminology). Despite the orientation of trees found in nature, we will sometimes
informally refer to the root as at the “top” of the tree and the leaves at the “bottom.”

2.2 Stochastic HST embeddings

Let T denote the universal τ-HST for (X, dX) and some τ > 6. A stochastic HST embedding from X
into T is a random F -adapted sequence α � 〈αt : X → LT | t > 0〉 such that with probability one:

b(αt(x)) � {x} ∀x ∈ X, t > 0 (2.2)
αt(σt) ∈ L0

T ∀t > 1 . (2.3)

This yields a (random) request sequence α(σ) :� 〈α1(σ1), α2(σ2), . . .〉 in L0
T
. We remark that

requests are restricted to map to 0-decorated leaves simply because we will use the decorations for
“bookkeeping.”

The cost modulo fusion. We will consider fractional k-server algorithms µ with µt ∈ Mk(LT ).
Lemma 2.3 motivates the following notion of cost in which fusions are “free.” To that end, let us
define the reduced transportation distance

WF
T (µ→ µ′) :� inf

�
W1

T (ϕ#µ, µ′) : ϕ a fusion map
	
,

where the notation is meant to indicate that the “distance” is not symmetric in µ and µ′. One can
think of this definition as follows: When moving from µ to µ′, without incurring movement cost,
we are allowed to first apply a fusion map.

For an F -adapted sequence of measures:

µ �


µt ∈ Mk(LT ) : t > 0

�
, (2.4)

define the reduced cost:
costF

T (µ) :�
∑
t>0

WF
T (µt → µt+1) .

The next result is proved in Section 5.5.

Theorem 2.5 (Online rounding under fusions). For every sequence µ as in (2.4), there exists a random
integral F -adapted sequence µ̂ �

〈
µ̂t ∈ M̂k(X) : t > 0

〉
such that

µt(`) > 1 �⇒ µ̂t(β(`)) > 1 ∀` ∈ LT , t > 1 ,

and
� [costX(ν)] 6 O(1) · costF

T (µ) .
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Our goal is now to construct a pair (µ, α) so that α is a stochastic HST embedding α from X
into T and µ is a random fractional k-server algorithm (as in (2.4)) satisfying: For every request
sequence σ,

1. µ services α(σ) with probability one, and

2. �
�
costF

T
(µ)� 6 O((log k)6) cost∗X(σ; k) + c,

where c � c(ρ0) is a constant depending on the initial configuration of servers.
Combined with Theorem 2.5, this yields an O((log k)6)-competitive randomized algorithm for

the k-server problem on X. In order to reach such a conclusion, we now assume the existence of an
HST algorithm that satisfies a certain set of assumptions.

2.3 The potential axioms

We will assume we have a fractional k-server algorithm that operates in the following way.

• There is a configuration space Γ and a transition function γ : Γ × L0
T
→ Γ.

• Every configuration χ ∈ Γ has an associated fractional server measure µχ ∈ Mk(L0
T
). Upon

receiving a request σ ∈ L0
T
, the algorithm updates its configuration to χ′ :� γ(χ, σ) such that

µχ
′(σ) > 1.

• For some leaf `0 ∈ LT , there exists a configuration χ0 ∈ Γ such that µχ0(`0) � k.

Moreover, there is a potential function Φ : M̂k(LT ) × Γ → R+ that satisfies the following
assumptions for some functions f1 , f4 : �→ [1,∞).
(A1) Movement of the “optimum” cannot increase the potential too much. For any states

θ, θ′ ∈ M̂k(LT ) and configuration χ ∈ Γ:

|Φ(θ; χ) −Φ(θ′; χ)| 6 f1(k)W1
T (θ, θ′) .

In other words, Φ is f1(k)-Lipschitz in its first coordinate.

(A2) Movement of the algorithm decreases the potential. For every σ ∈ LT and θ ∈ M̂k(LT )
satisfying θ(σ) > 1, the following holds. Denoting χ′ :� γ(χ, σ), we have

Φ (θ; χ′) −Φ(θ; χ) 6 −W1
T (µχ , µχ

′) .

(A3) Fusion is free. For any fusion map ϕ and configuration χ ∈ Γ, there is a configuration
χ(ϕ) ∈ Γ such that µχ(ϕ) � ϕ#µχ, and moreover

Φ(ϕ#θ; χ(ϕ)) 6 Φ(θ; χ) ∀θ ∈ M̂k(LT ) . (2.5)

If one thinks of Φ(θ; χ) as the “discrepancy” between θ and µχ, then fusion corresponds to
coarsening the discrepancy measure, which should make them appear more similar (hence
the inequality in (2.5)).

15



(A4) Stability under local edits. Consider ξ0
∈ V j

T
and a child ξ1

∈ V j+1
T

. Let F : LT → LT be any
mapping that satisfies F(ξ) � ξ for ξ < LT (ξ1) and F(LT (ξ1)) ⊆ LT (ξ0). Then for any χ ∈ Γ
and θ ∈ M̂k(LT ), it holds that

Φ(F#θ; χ) −Φ(θ; χ) 6 f4(k)τ− jµχ(LT (ξ1)) .

This says that moving the θ-mass on ξ1 arbitrarily underneath ξ0 affects the potential
by a controlled amount. Note that (1) would give f1(k)τ− jθ(LT (ξ1)) on the RHS since
diamT (LT (ξ)) 6 τ− j , but this control is in terms of µχ(VT (ξ1)).

The algorithm of [BCL+17] achieves these with f1(k), f4(k) 6 O((log k)2). See Section 6.3.

Theorem 2.6. For any bounded metric space (X, dX), the following holds. If there is a transition function
γ : Γ×L0

T
→ Γ and a potentialΦ satisfying Axioms (A0)–(A4) for some functions f1(k), f4(k) 6 (log k)O(1),

then there is an O( f1(k) f4(k)(log k)2)-competitive randomized algorithm for the k-server problem on X.

Corollary 2.7. There is an O
�(log k)6�

-competitive randomized algorithm for the k-server problem on any
bounded metric space.

The extension to unbounded metric spaces is addressed in Section 6.3.1.

3 Construction of the embedding

We will construct, inductively, a stochastic HST embedding α � 〈αt : X → LT | t > 0〉 and a
random fractional k-server algorithm µ � 〈µt ∈ Mk(LT ) : t > 0〉 that services α(σ). Let ν∗ denote
an optimal offline integral k-server algorithm for σ in X. Without loss of generality, we may assume
that ν∗ is lazy: It responds to requests by moving at most one server per time step.

Theorem 3.1. There is a constant B > 1 such that under the assumptions of Theorem 2.6, there is a pair
(µ, α) so that for every initial configuration ν∗0 and request sequence σ:

�
�
costF

T (µ)
�
6 B f1(k) f4(k)(log k)2costX(ν∗) + 4Φ(ν∗0; χ0) ,

where χ0 is the initial configuration guaranteed in Section 2.3 and µ0 � µχ0 .

For later use, define µ∗ �


µt : t > 0

�
as the pushforward of the offline optimum under the

embedding: µ∗t :� αt#ν∗t , and denote νt :� β#µt for t > 0.

3.1 Embedding components

We first describe some primitives that will be used in the construction of the stochastic HST
embedding α.

3.1.1 Carving out semi-partitions

A semi-partition P of X is a collection of pairwise disjoint subsets of X. For such a semi-partition,
denote

∆P(x , y) :�
∑
S∈P

�
1S(x) − 1S(y)� .
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Define [P] ⊆ X by [P] :�
⋃

S∈P S. We will sometimes think of P as a function that takes x ∈ [P]
to the unique set P(x) ∈ P containing x. If x < [P], we take P(x) :� ∅. If P, P′ are two semi-partitions,
say that P is a refinement of P′ if for every S ∈ P, there is an Ŝ ∈ P such that S ⊆ Ŝ. Say that P̂ is
∆-bounded if S ∈ P̂ �⇒ diamX(S) 6 ∆.

Consider a triple (C, R, π) where C ⊆ X is a finite set, R : C → R+, and π : [|C |] → C is a
bĳection. This defines a semi-partition into at most |C | sets by iteratively carving out balls:

P̂(C, R, π) :�



BX
(
π(i), R(π(i))) \⋃

h<i

BX
(
π(h), R(π(h))) : i � 1, 2, . . . , |C |




By construction, P̂(C, R, π) is (2 maxx∈C R(x))-bounded.

3.1.2 Heavy nets and the annealed measures

Recall that we will define the pair (µ, α) inductively. For t > 0, denote by ν̄t ∈ Mk(X) the measure

ν̄t :� �[νt] .
Let λ :� max(9, τ)2 and consider 0 < δ < 1/2. We will choose δ later so that δ � 1/ f4(k).

Say that a subset S ⊆ X is r-separated if x , y ∈ S �⇒ dX(x , y) > r. Say that a pair (x , r) with
x ∈ X and r > 0 is t-heavy if

ν̄t(BX(x , r)) > (1 − δ)ν̄t(BX(x , λr)) . (3.1)

We will also refer to a ball B � BX(x , r) as t-heavy if (x , r) is t-heavy, but in such cases the center
and radius will be specified (as a set, B does not necessarily have a unique center or radius).

A set Λ ⊆ X is called a t-heavy r-net if it is 3r-separated and satisfies(
x ,

r

2
√
λ

)
is t-heavy �⇒ dX(x ,Λ) 6 r

√
λ
. (3.2)

3.1.3 Cluster fusion

Given a semi-partition P̂, a finite set of representatives Λ ⊆ X, and a radius r > 0, we now define
the r-fusion of P̂ along Λ as follows. For x ∈ Λ, define

Ux :� BX(x , r) ∪
⋃
S∈P̂:

BX(x ,r)∩S,∅

S . (3.3)

See Figure 3.
Define the collection of fused clusters:

H (P̂ ,Λ, r) :� {Ux : x ∈ Λ} , (3.4)

and the semi-partition (cf. Lemma 3.2) of fused and unfused clusters:

Q̂(P̂ ,Λ, r) :� H (P̂ ,Λ, r) ∪ �
S ∈ P̂ : S ∩

�
H (P̂ ,Λ, r)� � ∅	 .

The idea here is that in passing from P̂ to Q̂, all the sets S ∈ P̂ that intersect some ball BX(x , r) for
x ∈ Λ are “fused” into a single set Ux . (For technical reasons—see Lemma 4.7 below—the ball itself
is also fused in.)
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Figure 3: Clusters Ux1 and Ux2 created by fusing the clusters intersecting BX(x1 , r) and BX(x2 , r).

Lemma 3.2. If P̂ is ∆-bounded and Λ is (r + ∆)-separated, then Q̂(P̂ ,Λ, r) is a 2(r + ∆)-bounded
semi-partition.

Proof. Observe that diamX(Ux) 6 2(r +∆). Moreover, every y ∈ Ux satisfies dX(x , y) 6 r +∆, hence
if Λ is (r + ∆)-separated, then the sets {Ux : x ∈ Λ} are pairwise disjoint. �

3.1.4 Refinement and HST embeddings

Consider now a sequence Q̂ �


Q̂ j : j ∈ �+

�
of semi-partitions of X such that Q̂0 � {X} and

Q̂ j is τ− j-bounded for all j > 1. (3.5)

We use these to define a sequence Q �


Q j : j ∈ �+

�
of successively refined full partitions of X as

follows.
First, we complete each semi-partition to a full partition Q̄ j

t by adding singleton clusters:

Q̄ j :� Q̂ j
∪

�{x} : x ∈ X \ [Q̂ j]	 ∀j ∈ �+.

Now we inductively define Q0 :� Q̄0 and for j > 1:

Q j :�
�
S ∩ S′ : S ∈ Q̄ j , S′ ∈ Q j−1	

.

This ensures that for each j ∈ �+, Q j+1 is a refinement of Q j .
For x ∈ X, define

rankQ̂(x) :� max



j ∈ �+ : x ∈
⋂
i6 j

[Q̂ i]


. (3.6)

We can now define an embedding αQ̂ : X → LT by

αQ̂(x) :�
〈 �

Q0(x); 0
�
,

�
Q1(x); 0

�
, . . . (Qr(x); 0) , �Qr+1(x); 1

�
,

�
Qr+2(x); 1

�
, . . .

〉
, (3.7)
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where r � rankQ̂(x).
One should verify that the latter sequence is indeed a decorated leaf chain by construction and

(3.5). This is the only place that we make use of decorated chains in the proof of Theorem 2.6. The
particular form of (3.7) will be employed to prove (5.11) which asserts that the Φt potential does not
increase under insertions (essentially because we have assumed our algorithm is sensible, thus it
does not place mass in subtrees with a non-zero decoration).

Later, we will use the following basic fact.

Lemma 3.3. For every sequence Q̂ of semi-partitions:

distT
(
αQ̂(x), αQ̂(y)

)
6 2τ

∑
j>1

τ− j∆Q̂ j (x , y) ∀x , y ∈ X .

Proof. Consider x , y ∈ X and suppose that distT
(
αQ̂(x), αQ̂(y)) � τ−` for some ` > 0. It is

straightforward to check that ` + 1 � min
{

j : ∆Q̂ j (x , y) > 0
}
. �

3.1.5 Truncated exponential radii

For every j ∈ �, consider the probability distribution γj with density:

dγj(r) :�
Kτ j log K

K − 1 exp
�
−rτ j log K

�
1[0,τ− j](r) .

This is simply an exponential distribution truncated at τ− j . Bartal [Bar96] showed that such
distributions are extremely useful in the construction of random HST embeddings.

Lemma 3.4. Consider a finite set C ⊆ X and a permutation π : [|C |] → C. Choose R̂ : C → R+ so
that {R̂(x) : x ∈ C} are independent random variables with law γj , and define R(x) :� R̂(x) + τ− j . Then
P̂ :� P̂(C, R, π) is a 4τ− j-bounded semi-partition with probability one, and moreover for every x , y ∈ X:

�[∆P̂(x , y) > 0] 6 O
�
log(|C | + 1)� dX(x , y)τ j . (3.8)

If Λ ⊆ X is any 6τ− j-separated set, then the 2τ− j-fusion of P̂ along Λ:

Q̂ :� Q̂(P̂ ,Λ, 2τ− j)
is a 16τ− j-bounded semi-partition of X. If dX(x , C ∪Λ) 6 τ− j and y ∈ X, then:

�[∆Q̂(x , y) > 0] 6 O
�
log(|C | + 1)� dX(x , y)τ j . (3.9)

Proof. The fact that P̂ is a 4τ− j-bounded semi-partition follows immediately from the fact that γj is
supported on [0, τ− j]. Moreover, (3.8) is a standard bound (see, e.g., [BCL+17, Lem 4.8]).

That Q̂ is a 16τ− j-bounded semi-partition follows from Lemma 3.2. Let us now verify (3.9). We
may assume that dX(x , y) 6 τ− j , else the claim is vacuous. If dX(x ,Λ) 6 τ− j , then x , y ∈ BX(z , 2τ− j)
for some z ∈ Λ, hence x , y ∈ [Q̂] and Q̂(x) � Q̂(y) because x , y ∈ Uz (recall (3.3)).

Now assume that dX(x , C) 6 τ− j . Observe that in this case, x ∈ [P̂] with probability one and by
construction of the fusion, ∆Q̂(x , y) 6 ∆P̂(x , y), meaning that (3.9) follows from (3.8). �
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3.2 The online algorithm

For j, t ∈ �+, we will maintain several random F -adapted sequences: Centers C j
t ⊆ X, along with

radii R j
t : C j

t → R+, permutations π j
t : [|C j

t |] → C j
t , and t-heavy τ− j-nets Λ j

t . These give rise to
semi-partitions P̂ j

t :� P̂(C j
t , R

j
t , π

j
t ) and fusions Q̂ j

t :� Q̂(P̂ j
t ,Λ

j
t−1 , 2τ

− j−1), along with embeddings

αt :� αQ̂t ,

where Q̂t :�
〈
Q̂ j

t : j ∈ �+

〉
.

We will also maintain a sequence 〈χt ∈ Γ : t > 0〉 of configurations. These yield our sequence
µ �



µt ∈ Mk(VT ) : t > 0

�
of induced fractional k-server measures: µt :� µχt .

Initialization. Let χ0 ∈ Γ and `0 ∈ LT be the configuration and leaf promised in Section 2.3.

• For all j > 1, define C j
0 :� {`0} and Λ j

0 :� {`0}.
• For all t > 0, C0

t :� ∅, Λ0
t :� ∅, and P̂0

t :� X

• Define χ−1 :� χ0 and µ−1 :� µ0. For all j > 0, define C j
−1 :� C j

0, P̂ j
−1 � P̂ j

0, Λ
j
−1 :� Λ j

0.

Request. Suppose we receive a request σt ∈ X for some t > 1. For j > 1, denote

I j
t :�




1 dX(σt , C
j
t−1 ∪Λ

j
t−1) > τ− j−1

0 otherwise.

Deletions. In the next definition, K > 1 is a parameter that will be chosen later (our choice will
satisfy K 6 kO(1)). For every j > 1:

C j
t ,del :�




C j
t−1 I j

t � 0 or |C j
t−1 | < K

C j
t−1 \ {z j

t} otherwise,

where z j
t ∈ C j

t−1 is chosen uniformly at random. Denote P̂ j
t ,del :� P̂(C j

t ,del , R
j
t−1 , π

j
t−1).

Fission. Denote
Q̂ j

t ,fis :� Q̂
(
P̂ j

t ,del ,Λ
j
t−1 ∩Λ

j
t−2 , 2τ

− j−1
)
.

This is the semi-partition P̂ j
t ,del fused only along the centers that survive from time t − 2 to t − 1.

Insertions. For every j > 1, if I j
t � 1, we define:

C j
t :� C j

t ,del ∪ {σt}
π

j
t (|C j

t |) :� σt

R j
t(σt) :� τ− j−1

+ Z j
t ,

where Z j
t is sampled independently with law γj+1. If I j

t � 0, then C j
t :� C j

t−1.
In either case, we define π j

t so that it induces the same ordering on C j
t \ {σt} as π j

t−1, and R j
t so

that R j
t
���C j

t\{σt} � R j
t−1

���C j
t\{σt}.
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Fusion. Consider the semi-partition Q̂ j
t � Q̂(P̂ j

t ,Λ
j
t−1 , 2τ

− j−1) and its prefused version:

Q̂ j
t ,pre :� Q̂ j

t ,fis ∪
{
P̂ j

t (σt) \
[
Q̂ j

t ,fis

] }
∪

{
BX(x , 2τ− j−1) \ [

Q̂ j
t ,fis

]
: x ∈ Λ j

t−1 \Λ
j
t−2

}
. (3.10)

Define Q̂t ,pre :�


Q̂t ,pre : j > 1

�
. We have [Q̂ j

t ] � [Q̂ j
t ,pre] and Q̂ j

t ,pre is a refinement of Q̂ j
t by

construction.
Thus we can realize Q̂t from Q̂t ,pre via an iterative merging of pairs of siblings. Note that

this can be expressed as a composition of canonical injections; to merge siblings ξ, ξ′ ∈ V j
T
with

diamX(b(ξ)∪b(ξ′)) 6 τ− j , we fuse ξ and ξ′ into their common 0-decorated sibling (b(ξ)∪b(ξ′), 0) ∈
V j
T
. Let ϕt denote the corresponding fusion map (recall that a fusion map is a composition of

canonical injections). Using Axiom (A3), this yields a configuration χt−1(ϕt) ∈ Γ such that
µχt−1(ϕt ) � ϕt#µt−1 and (2.5) is satisfied.

HST evolution. We update the configuration:

χt :� γ(χt−1(ϕt), αt(σt)) .

Heavy net maintenance. Now we specify how to update Λ j
t−1 to Λ

j
t .

For j � 1, 2, . . ., do the following:

1. Set Λ̃ j
t :� Λ j

t−1.

2. While there is some x ∈ X such that
(
x , τ

− j

2
√
λ

)
is t-heavy and dX(x , Λ̃ j

t) > τ− j
√
λ
:

(a) Remove from Λ̃
j
t all y ∈ X such that dX(x , y) <

√
λ

3 τ
− j .

(b) Λ̃ j
t :� Λ̃ j

t ∪ {x}.
3. Set Λ j

t :� Λ̃ j
t .

4 Distortion analysis

Our first goal is to establish a bound on how much α distorts distance in expectation. Let us first
verify a few basic properties of the embedding algorithm from Section 3.2.

Lemma 4.1. Assume that τ > 12 and λ > 81. Then for each j > 1 and t > 1, it holds that

1. Λ j
t is a t-heavy τ− j-net.

2. Q̂ j
t is a τ

− j-bounded semi-partition.

Proof. Λ j
t is explicitly constructed to satisfy (3.2) and to be 3r-separated with r � τ− j , as long as

λ > 81. We need to verify that the construction is well-defined, i.e., that the loop definingΛ j
t always

terminates.
To prove this, it suffices to show that if y ∈ X is removed in step 2(a), then

(
y , τ

− j

2
√
λ

)
is not t-heavy.

To that end, it suffices to show that there cannot be two points x , y ∈ X and a radius r > 0 satisfying

λ
3 r > dX(x , y) > 2r and (x , r) and (y , r) are t-heavy.
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Note that under these assumptions, BX(x , r)∩BX(y , r) � ∅, butBX(x , λr) ⊇ BX(y , r) andBX(y , λr) ⊇
BX(x , r). Therefore it cannot be that both (x , r) and (y , r) are t-heavy as long as δ < 1/2 (recall
(3.1)).

Now the fact that Q̂ j
t is a τ

− j-bounded semi-partition follows from Lemma 3.4. �

We want to distinguish two types of randomness used in the algorithm. There is the probability
space underlying the choice of elements z j

t in the deletion step which we denote by Ωdel. All other
randomness is denoted by Ωhst.

Fact 4.2. The random variables C j
t and Λ

j
t are independent ofΩ

hst. Note that Λ j
t is defined using ν̄t , but this

measure is constructed by averaging over Ωhst.

4.1 Active scales

Define the functions ρ, ρ̂ : X ×Mk(X)→ R+ by

ρ(x , ν) :� sup {r : ν(BX(x , r)) < 1/2} ,
ρ̂(x , ν) :� inf

�
W1

X(ν, ν′) : ν′(x) > 1
	
.

The next lemma is straightforward from the definitions.

Lemma 4.3. The following hold true.

1. For any ν ∈ Mk(X), the maps x 7→ ρ(x , ν) and x 7→ ρ̂(x , ν) are 1-Lipschitz on (X, dX).
2. For any x ∈ X, the map ν 7→ ρ̂(x , ν) is 1-Lipschitz on

�
Mk(X),W1

X

�
.

3. For any ν ∈ Mk(X) and x ∈ X:

ρ̂(x , ν) > ρ(x , ν)2 . (4.1)

Make the further definitions: For t > 1,

ρt(ξ) :� ρ(ξ, ν̄t)
ρ̂t(ξ) :� ρ̂(ξ, ν̄t) .

Lemma 4.4. For every t > 1, it holds that

ρt−1(σt)
2 6 ρ̂t−1(σt) 6 �

[
W1

T (µχt−1(ϕt ) , µχt )] .

Proof. The first inequality follows from (4.1). To prove the second, write

W1
T (µχt−1(ϕt ) , µχt ) > W1

X

(
β#µχt−1(ϕt ) , β#µχt

)
� W1

X

�
β#µχt−1 , β#µχt

�
> ρ̂(σt , β#µχt−1) .

where the last inequality follows from µχt (σt) > 1.
Now convexity of the Wasserstein distance yields

�
�
ρ̂(σt , β#µχt−1)� > ρ̂(σt ,� β#µχt−1) � ρ̂(σt , β#� µχt−1) � ρ̂(σt , ν̄t−1) . �
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Corollary 4.5. It holds that∑
t>1

ρt−1(σt) 6 2
∑
t>1

ρ̂t−1(σt) 6 2�
�
costF

T (µ)
�
.

Definition 4.6. Say that a point x ∈ X is ( j, t)-heavy if dX(x ,Λ j−1
t ) 6 τ− j−1. If dX(x ,Λ j−1

t ) > 1
2τ
− j−1,

say that x is ( j, t)-light. (A point can be both heavy and light.)

We record a fact that follows from our construction of Q̂t (cf. (3.3)).

Lemma 4.7. If x ∈ X is ( j, t)-heavy, then BX(x , τ− j−1) ⊆ Q̂ j
t (x).

Denote η :� (32k f1(k))−1; we may assume that η > k−O(1). We now define a subset Jt(x) ⊆ �+

of “active” scales for a given x ∈ X:

Lt(x) :�
�

j ∈ �+ : x is ( j, t)-light	 ,
Jt(x) :�

�
j ∈ �+ : τ− j > ηρt(x)	 ∩ Lt(x) ,

The next lemma is an essential component of all our arguments: For every x ∈ X, there are only
O( 1

δ log k) active scales.
Lemma 4.8. For every x ∈ X and t > 0,

|Jt(x)| 6 O
(

log k
δ

+ log 1
η

)
6 O

(
log k
δ

)
.

Proof. If x is ( j, t)-light, it means that BX

(
x , τ

− j

2
√
λ

)
is not t-heavy, which means that

ν̄t

(
BX

(
x ,

τ− j

2
√
λ

))
< (1 − δ)ν̄t

(
BX

(
x ,
√
λ

2 τ− j
))
6 (1 − δ)ν̄t

�
BX

�
x , τ− j��

.

Since ν̄t(X) � k and ν̄t
�
BX(x , ρt(x))� > 1/2, the result follows using λ, τ 6 O(1) and the fact that

there are only O(log 1
η ) additional scales between ηρt(x) and ρt(x).) �

4.2 The expected stretch

Let us now establish the central claim of this section.

Lemma 4.9. For every t > 1 and every x ∈ X, it holds that

�
Ωhst

[
distT (αt(x), αt(σt))

]
6 O

� 1
δ log(k) log(K)� dX(x , σt) + 2ηρt−1(σt) .

Before proving the lemma, we state a consequence. It uses the definition of η and the fact that
ν∗ is lazy.

Corollary 4.10. For every t > 1, it holds that

�
Ωhst

�
W1

T

�
αt#ν∗t , αt#ν∗t−1

��
6 O

� 1
δ log(k) log(K)� W1

X(ν∗t , ν∗t−1) +
ρt−1(σt)
16 f1(k) .
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Proof of Lemma 4.9. Let M :� max
�
ηρt−1(σt), 2τdX(x , σt)� and j0 :� max{ j ∈ �+ : τ− j > M}. From

Lemma 3.3, it holds that

1
2τdistT (αt(x), αt(σt)) 6

∑
j>1

τ− j∆Q̂ j
t
(x , σt)

6 ηρt−1(σt) + 2τdX(x , σt) +
j0∑

j�1
τ− j∆Q̂ j

t
(x , σt) .

Note that j 6 j0 implies x ∈ BX(σt , 1
2τ
− j−1). Thus if additionally j < Jt−1(σt), then Lemma 4.7

asserts that ∆Q̂ j
t
(x , σt) � 0. Therefore:

j0∑
j�1

τ− j∆Q̂ j
t
(x , σt) 6

∑
j∈Jt−1(σt )

τ− j∆Q̂ j
t
(x , σt) .

Now Lemma 3.4 (specifically (3.9)) gives, for every j > 1:

�
Ωhst

[
τ− j∆Q̂ j

t
(x , σt)

]
6 O(log K) dX(x , σt) .

Therefore:

�
Ωhst



∑
j∈Jt−1(σt )

τ− j∆Q̂ j
t
(x , y)


6 O(log K) |Jt−1(σt)| dX(x , σt) 6 O

� 1
δ log(k) log(K)� dX(x , σt) ,

where the final inequality uses Lemma 4.8. �

5 The competitive ratio

In order to prove our main result (Theorem 3.1), we will relate costX(ν∗) and �[costF
T
(µ)] using

three potential functions.

5.1 The HST potential

Let us define the primary potential function:

Φt :� Φ(αt#ν∗t ; χt) .
In the course of analyzing ∆tΦt :� Φt −Φt−1, we will define a number of auxiliary objects that will
be used in the remainder of Section 5. Let us define αpre

t :� αQ̂t ,pre , where we recall the prefusion
semi-partitions Q̂t ,pre from (3.10).

We can then express

∆tΦt �
�
Φ(αt#ν∗t ; χt) −Φ(αt#ν∗t ; χt−1(ϕt))� [µ movement] (5.1)

+
�
Φ(αt#ν∗t ; χt−1(ϕt)) −Φ(αt#ν∗t−1; χt−1(ϕt))� [ν∗ movement] (5.2)

+
�
Φ(αt#ν∗t−1; χt−1(ϕt)) −Φ(αpre

t #ν∗t−1; χt−1)� [fusion] (5.3)
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+
�
Φ(αpre

t #ν∗t−1; χt−1) −Φ(αt−1#ν∗t−1; χt−1)� . [dynamic update] (5.4)

Addressing (5.1), Axiom (A2) gives

Φ(αt#ν∗t ; χt) −Φ(αt#ν∗t ; χt−1(ϕt)) 6 −W1
T (µt , µ

χt−1(ϕt )) . (5.5)

Axiom (A1) yields

Φ(αt#ν∗t ; χt−1(ϕt)) −Φ(αt#ν∗t−1; χt−1(ϕt)) 6 f1(k)W1
T (αt#ν∗t , αt#ν∗t−1) ,

and this allows us to control (5.2) using Corollary 4.10:

�
Ωhst

�
Φ(αt#ν∗t ; χt−1(ϕt)) − Φ(αt#ν∗t−1; χt−1(ϕt))�

6 O
�

f1(k) 1
δ log(k) log(K)� W1

X(ν∗t , ν∗t−1) +
ρt−1(σt)

16 . (5.6)

Axiom (A3) asserts that the term in (5.3) is non-positive; this uses the fact that αt#ν∗t−1 � ϕt#α
pre
t #ν∗t−1.

Thus we have satisfactorily controlled ∆tΦt except for the term (5.4) corresponding to the
dynamic modifications we make to the embedding (insertions, deletions, and fission operations).

5.1.1 Dynamic updates: Analyzing (5.4)

We need to define a few more intermediate embeddings, so let us denote:

Q̂ j
t ,del :� Q̂

(
P̂ j

t ,del ,Λ
j
t−1 , 2τ

− j−1
)

Q̂t ,del :� 〈Q̂ j
t ,del : j > 1〉, αdel

t :� αQ̂t ,del

Q̂t ,fis :� 〈Q̂ j
t ,fis : j > 1〉, αfis

t :� αQ̂t ,fis .

We will further decompose (5.4):

Φ
�
α

pre
t #ν∗t−1; χt−1

�
−Φ

�
αt−1#ν∗t−1; χt−1

�

�

[
Φ(αpre

t #ν∗t−1; χt−1) −Φ(αfis
t #ν∗t−1; χt−1)

] [insertion] (5.7)

+

[
Φ(αfis

t #ν∗t−1; χt−1) −Φ(αdel
t #ν∗t−1; χt−1)

] [fission] (5.8)

+

[
Φ(αdel

t #ν∗t−1; χt−1) −Φ(αt−1#ν∗t−1; χt−1)
]
. [deletion] (5.9)

Insertions (5.7). We now claim that

Φ(αpre
t #ν∗t−1; χt−1) −Φ(αfis

t #ν∗t−1; χt−1) 6
∑
j>0

(
Φ(α j

t#ν
∗

t−1; χt−1) −Φ(α j−1
t #ν∗t−1; χt−1)

)
+

(5.10)

6 0 , (5.11)

where α0
t � αfis

t and α j
t results from α

j−1
t by incorporating the possible insertion of a set {S j} �

P̂ j
t \ P̂ j

t ,del. Thus α
j
t and α

j−1
t agree outside S j \ [Q̂ j

t ,fis].
By definition of the embedding (recall (3.7)), α j

t(x) , α j−1
t (x) only at points x ∈ supp(ν∗t−1) with

rank less than j (cf. (3.6)), but the images of all such points lie outside L0
T
by construction. Since

µχt−1 is supported on L0
T
, Axiom (A4) implies that each term in (5.10) is zero, establishing (5.11).
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Deletions (5.9). Denote by
j∗t � min{ j > 1 : I j

t � 1} (5.12)

be the highest scale at which an insertion occurs (we take j∗t :� 0 if no such j exists). If I j
t � 1, then

some cluster S j ∈ P̂ j
t with center z j

t is possibly deleted. Therefore:

W1
T (αdel

t #ν∗t−1 , αt−1#ν∗t−1) 6
∑
j>1

1{I j
t�1}ν

∗

t−1(S j)τ− j+1 .

Recall that ν∗t−1(X) � k. Since we remove a uniformly random level- j cluster and there are at least K
of them (if a deletion takes place), it holds that

�
Ωdel

[
W1

T (αdel
t #ν∗t−1 , αt−1#ν∗t−1) | j∗t

]
6

k
K

∑
j>1

τ− j+1I j
t 6

2τk
K
τ− j∗t1{ j∗t>0} .

where we take expectation only over the random choice of which cluster to delete. In particular,
using Axiom (A1), this implies that

�
Ωdel

[
Φ(αdel

t #ν∗t−1; χt−1) −Φ(αt−1#ν∗t−1; χt−1) | j∗t
]
6

2τ f1(k)k
K

τ− j∗t1{ j∗t>0} . (5.13)

It is at this point that we are no longer able to continuing analyzing ∆tΦt locally in time.
Deletions can increase Φt , and we need a way of obtaining credit for this increase from prior
moment of µ. A similar fact is true for the analysis of (5.8).

We encapsulate the contents of this section as follows. Let ∆fis
t Φt denote the expression in (5.8),

and define ∆Φ :�
∑

t>1 ∆tΦt .

Lemma 5.1. There is a constant CΦ > 1 such that

�[∆Φ] 6 − 3
4 �

�
costF

T (µ)
�
+ CΦ f1(k) 1

δ log(k) log(K)costX(ν∗)
+

∑
t>1
�

[
2τ f1(k)k

K
τ− j∗t1{ j∗t>0} + ∆fis

t Φt

]
.

Proof. We sum the inequalities (5.5), (5.6), (5.11), and (5.13), and use the fact (5.3) is non-positive.
Summing the right-hand side of (5.5) and taking expectations gives precisely −�[costF

T
(µ)]. We

have also employed Corollary 4.5 to bound the ρt−1(σt) term from (5.6). �

5.2 The accuracy potential

The accuracy potentialΨA
t will help us track the cost of insertions and deletions. It measures how

accurately the tree structure induced by the semi-partitions Q̂t represents the fractional server
measure. One could effectively ignoreΨA

t upon a first reading; using a cruder bound, one loses an
O(log logAX) factor in the competitive ratio.

Finally, for x , y ∈ X, denote the truncated distance function:

d j
X(x , y) :� min

�
τ− j , dX(x , y)� .

For µ ∈ M(LT ), a function ρ̂ : X → R+, and sequences of finite subsets C � 〈C j
⊆ X : j > 1〉

and Λ � 〈Λ j
⊆ X : j > 1〉, we define:

ψA(µ; ρ̂, C ,Λ) :�
∑
x∈X

β#µ(x)
∑
j>1

d j
X(x , C j) · τ j

(
d j

X

�
x ,Λ j�

− 2ηρ̂(x) − 1
2τ
− j−1

)
+

(5.14)
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ΨA
t :� ψA(µt ; ρ̂t−1 , Ct ,Λt−1) ,

where Ct :� 〈C j
t : j > 1〉 and Λt :� 〈Λ j

t : j > 1〉.
The next lemma follows from β#ϕ#µ � β#µ when ϕ is any fusion map and µ ∈ M(LT ).

Lemma 5.2. If ϕ is a fusion map, then

ψA(ϕ#µ; ρ̂, C ,Λ) � ψA(µ; ρ̂, C ,Λ) .
Remark 5.3 (Accuracy potential). Recall that an insertion occurs at level j when
dX

(
σt , C

j
t−1 ∪Λ

j
t−1

)
> τ− j−1. Such an insertion does not increase the potential Φ (recall (5.11)), but

it triggers a level- j deletion which might adversely increase Φ (recall (5.13)). The potential ΨA
t

measures how accurately the sets C j
t ∪Λ

j
t−1 approximate the measure β#µt .

We know that the underlying k-server algorithm satisfies µt(αt(σt)) > 1, and therefore it should
be that either the HST algorithm moves substantially in response to a level- j insertion or the
accuracy improves (because σt ∈ C

j
t ), yielding a lowerΨA

t value. This gain is used to charge the
adverse effects of deletion against the movement of the HST algorithm.

Lemma 5.4. For every t > 0 and every sequence C, the map µ 7→ ψA(µ; ρ̂t−1 , C ,Λt−1) is O( 1
δ log k)-

Lipschitz on (M(LT ),W1
T
).

Proof. Define ψ j : X → R+ by

ψ j(x) :� d j
X

�
x , C j�

· τ j
(
d j

X

(
x ,Λ j

t−1

)
− 2ηρ̂t−1(x) − 1

2τ
− j−1

)
+
.

Consider any `, `′ ∈ LT and x � β(`), y � β(`′). Let µ′ � s(1` − 1`′) for some s , 0 and write:

1
|s |

�
ψA(ν + ν′; ρ̂t−1 , C ,Λt−1) − ψA(ν′; ρ̂t−1 , C ,Λt−1)� 6

∑
j>0

�
ψ j(ξ) − ψ j(ξ′)�

6
∑

j∈Jt−1(x)∪Jt−1(y)

�
ψ j(ξ) − ψ j(ξ′)�

6 O( 1
δ log k) sup

j>1

�
ψ j(ξ) − ψ j(ξ′)� ,

where in the second inequality, have used the definition of Jt−1 and Lemma 4.3(3), and in the last
inequality, Lemma 4.8.

We are left to show that ‖ψ j‖Lip 6 4 for every j > 1. Consider that ρ̂t−1 is 1-Lipschitz (cf.
Lemma 4.3(1)), as are the maps x 7→ d j

X(x , C j) and x 7→ d j
X(x ,Λ j

t−1). Factor ψ j � f j1 j with
f j � d j

X(x , C j). Then:
‖ψ j‖Lip 6 ‖ f j‖∞‖1 j‖Lip + ‖1 j‖∞‖ f j‖Lip 6 4 ,

completing the proof. �

Lemma 5.5. For every µ ∈ Mk(LT ) and t > 1, it holds that
�
ψA(µ; ρ̂t−1 , Ct ,del ,Λt−2) − ψA(µ; ρ̂t−2 , Ct ,del ,Λt−2)� 6 O(η k

δ log k)� [
W1

T (µχt−2(ϕt−1) , µχt−1)] .
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Proof. Since ρ̂−1 � ρ̂0, we may assume that t > 2. Write
�
ψA(µ; ρ̂t−1 , Ct ,del ,Λt−2) − ψA(µ; ρ̂t−2 , Ct ,del ,Λt−2)�

6 ηβ#µ(X) sup
x∈X

(|Jt−1(x)| + |Jt−2(x)|) sup
x∈X

�
ρ̂t−1(x) − ρ̂t−2(x)�

6 O(ηk 1
δ log k)W1

X(β#µ̄t−1 , β#µ̄t−2) ,
where the second inequality is Lemma 4.8, and the last inequality is a consequence of Lemma 4.3(2).
By convexity of the Wasserstein distance, we have

W1
X(β#µ̄t−1 , β#µ̄t−2) 6 � �

W1
X(β#µt−1 , β#µt−2)�

� �
�
W1

X(β#µχt−1 , β#µχt−2)�

� �
[
W1

X

(
β#µχt−1 , β#µχt−2(ϕt−1))]

,

where the last inequality uses β#µχt−2(ϕt−1) � β#ϕt−1#µχt−2 � β#µχt−2 . Now the desired result follows
from the fact that β is 1-Lipschitz. �

5.2.1 Analysis

For t > 1, define ∆tΨ
A
t :� ΨA

t −Ψ
A
t−1. We decompose:

∆tΨ
A
t � ψA(µt ; ρ̂t−1 , Ct ,Λt−1) − ψA(µt−1; ρ̂t−2 , Ct−1 ,Λt−2)
�

[
ψA(µt ; ρ̂t−1 , Ct ,Λt−1) − ψA(µχt−1(ϕt ); ρ̂t−1 , Ct ,Λt−1)

] [µ movement] (5.15)

+

[
ψA(µχt−1(ϕt ); ρ̂t−1 , Ct ,Λt−1) − ψA(µχt−1(ϕt ); ρ̂t−2 , Ct ,Λt−1)

] [isolation] (5.16)

+

[
ψA(µχt−1(ϕt ); ρ̂t−2 , Ct ,Λt−1) − ψA(µt−1; ρ̂t−2 , Ct ,Λt−1)

] [fusion] (5.17)

+
�
ψA(µt−1; ρ̂t−2 , Ct ,Λt−1) − ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−1)� [insertion] (5.18)

+
�
ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−1) − ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−2)� [fission] (5.19)

+
�
ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−2) − ψA(µt−1; ρ̂t−2 , Ct−1 ,Λt−2)� [deletion] (5.20)

Observe that:

1. From Lemma 5.4, we have (5.15) 6 O( 1
δ log k)W1

T
(µt , µχt−1(ϕt )).

2. And Lemma 5.2 gives (5.17) 6 0.

3. From Lemma 5.5, we conclude that (5.16) 6 O(η(k/δ) log k)W1
T
(µt−1 , µχt−2(ϕt−1)).

Deletion. If I j
t � 1, then some center z j

t ∈ C
j
t−1 is possibly deleted in passing from C j

t−1 to C
j
t ,del.

For each x ∈ X, let zx , j ∈ C
j
t−1 denote some center for which dX(zx , j , x) � dX(C j

t−1 , x), and for
z ∈ C j

t−1, let X j(z) :� {x ∈ X : zx , j � z}. Then for each j > 1, {X j(z) : z ∈ C j
t−1} forms a partition of

X, and we have:

ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−2) − ψA(µt−1; ρ̂t−2 , Ct−1 ,Λt−2) 6
∑
j>1

1{I j
t�1}νt−1(X j(z j

t ))τ− j .
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Recall that νt−1(X) � k. Since z j
t is chosen uniformly at random from C j

t−1 and |C j
t−1 | � K if a

deletion takes place, it holds that

�
Ωdel

�
ψA(µt−1; ρ̂t−2 , Ct ,del ,Λt−2) − ψA(µt−1; ρ̂t−2 , Ct−1 ,Λt−2) | j∗t

�
6

2τk
K
τ− j∗t1{ j∗t>0} . (5.21)

where we take expectation only over the random choice of which cluster to delete, and we recall the
definition of j∗t from (5.12).

Insertion. We now analyze the effect of inserting σt . This is the most delicate part of the analysis
of ∆tΨ

A
t .

Lemma 5.6. For every t > 1, it holds that

(5.18) 6 −τ
− j∗t−1

8 1{ j∗t>0} + W1
T (µt , µ

χt−1(ϕt )) + 2ηρ̂t−2(σt) . (5.22)

Proof. Fix j > 1. Suppose that I j
t � 1 and denote

ψ(x;C) :� d j
X

�
x , C j�

· τ j
(
d j

X

(
x ,Λ j

t−1

)
− 2ηρ̂t−2(x) − 1

2τ
− j−1

)
+
.

Consider some x ∈ VT and let x̂ ∈ C j
t−1 be such that dX(x , C j

t−1) � dX(x , x̂). Since σt is inserted
into C j

t , it must hold that dX(σt , x̂) > τ− j−1 and dX(σt ,Λ
j
t−1) > τ− j−1. Therefore either:

1. dX(x , σt) > 1
4τ
− j−1, or

2. dX(x , σt) 6 dX(x , x̂) − 1
2τ
− j−1, and

dX(x ,Λ j
t−1) > dX(σt ,Λ

j
t−1) − dX(x , σt) > 3

4τ
− j−1 .

In either case, we can conclude that for any x ∈ X,

ψ(x;C j
t ) − ψ(x;C j

t ,del) 6 −1
8τ
− j−1

+ dX(x , σt) + 2ηρ̂t−2(x) . (5.23)

The value ψ(x;C j
t ) − ψ(x;C j

t ,del) is never positive (since C j
t ,del ⊆ C

j
t ), so we will only use the

contribution (5.23) for certain x ∈ X.
By using (5.23) for the mass moving to σt in the passage from νt−1 → νt , we can write for every

j > 1:

ψA(µt−1; ρt−1 , Ct ,Λt−1) − ψA(µt−1; ρt−1 , Ct ,del ,Λt−1)
6

(
−
τ− j−1

8 + W1
X(νt , νt−1) + 2ηρ̂t−2(σt)

)
1{I j

t�1}

6

(
−
τ− j−1

8 + W1
T (µt , µ

χt−1(ϕt )) + 2ηρ̂t−2(σt)
)
1{I j

t�1} .

Summing over j > 1 yields

(5.18) 6 −τ
− j∗t−1

8 1{ j∗t>0} + W1
T (µt , µ

χt−1(ϕt )) + 2ηρ̂t−2(σt) ,
completing the proof. �
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We encapsulate the contents of this section in the following lemma. Define ∆ΨA :�
∑

t>0 ∆tΨ
A
t .

Write ∆fis
t Ψ

A
t for (5.19).

Lemma 5.7. There is a constant CA > 1 such that if K > 32τk, then

�
�
∆ΨA�

6 −
1
16

∑
t>1
�

[
τ− j∗t1{ j∗t>0}

]
+ CA

� 1
δ log k

�
�

�
costF

T (µ)
�
+�



∑
t>1

∆fis
t Ψ

A
t



Proof. Sum (5.21) and (5.22), along with the bounds (1)–(3) derived at the beginning of the section,
and apply Corollary 4.5 to bound the sum over ρ̂t−2(σt). Finally, use the fact that η 6 1

32k . �

5.3 The fission potential

The fission potential is central to our approach; it allows us to charge the change in ∆fis
t Φt due to

breaking previously fused clusters against the movement of µ. Recall (3.4) and denote

H
j

t :� H (P̂ j
t ,Λ

j
t−1 , 2τ

− j−1) .

Observe that [H j
t ] ⊆ [Q̂ j

t ] is the subset of points that participate in a fused cluster in Q̂ j
t .

Given µ ∈ M(LT ), a sequence P̂ � 〈P̂ j : j > 1〉 of semi-partitions of X, and Λ � 〈Λ j
⊆ X : j > 1〉

a sequence of finite subsets, define:

ψF(µ; P̂ ,Λ) :� −
∑
j>1

τ− jβ#µ
�
H (P̂ j ,Λ j , 2τ− j−1)�

ΨF :� ψF(µt ; P̂t ,Λt−1)
� −

∑
j>1

τ− jβ#µ
(
H

j
t

)
.

Remark 5.8 (Fission potential). The ΨF
t potential rewards us for fusing a cluster that contains

significant νt mass. This will pay for the adverse effects of fission on the Φ potential as long as
when we unfuse clusters, we are always doing it in order to fuse new clusters with much greater
mass. This is why we fuse near the centers of heavy balls (which triggers a fission in the “light”
annuli around the heavy ball).

As in Lemma 5.2, the proof of the next lemma follows from β#µ � β#ϕ#µ for any fusion map ϕ.

Lemma 5.9. If ϕ is a fusion map, then

ψF(ϕ#µ; P̂ ,Λ) � ψF(µ; P̂ ,Λ) .
Lemma 5.10. The map µ 7→ ψF(µ; P̂ ,Λ) is 2-Lipschitz on (M(LT ),W1

T
).

Proof. Consider µ′ � µ+ s(1`−1`′) for some s ∈ R and `, `′ ∈ LT with distT (`, `′) � τ− j . Manifestly:
���ψ

F(µ; P̂ ,Λ) − ψF(µ′; P̂;Λ)��� 6 |s |∑i> j τ
−i 6 2|s |τ− j . �
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5.3.1 Analysis

For t > 1, define ∆tΨ
F
t :� ΨF

t −Ψ
F
t−1. We decompose:

∆tΨ
F
t :� ψF(µt ; P̂t ,Λt−1) − ψF(µt−1 , P̂t−1 ,Λt−2)
�

[
ψF(µt ; P̂t ,Λt−1) − ψF(µχt−1(ϕt ); P̂t ,Λt−1)

] [µ movement] (5.24)

+

[
ψF(µχt−1(ϕt ); P̂t ,Λt−1) − ψF(µt−1; P̂t ,Λt−1)

] [fusion] (5.25)

+

[
ψF(µt−1; P̂t ,Λt−1) − ψF(µt−1; P̂t ,Λt−2)

] [heavy net update] (5.26)

+

[
ψF(µt−1; P̂t ,Λt−2) − ψF(µt−1; P̂del,t ,Λt−2)

] [insertion] (5.27)

+

[
ψF(µt−1; P̂del,t ,Λt−2) − ψF(µt−1 , P̂t−1 ,Λt−2)

]
. [deletion] (5.28)

Observe that:

1. Lemma 5.10 yields (5.24) 6 2WT
1 (µt , µχt−1(ϕt )).

2. From Lemma 5.9, we conclude that (5.25) 6 0.

3. Moreover, (5.27) 6 0 because insertion can only enlarge the set of points that participate in a
fused cluster.

Define ∆ΨF :�
∑

t>1 ∆tΨ
t
F and ∆fis

t Ψ
t
F to be the expression in (5.26).

Lemma 5.11. It holds that

�
�
∆ΨF�

6 2�
�
costF

T (µ)
�
+

2τk
K

∑
t>1
�

[
τ− j∗t1{ j∗t>0}

]
+

∑
t>1
�

[
∆fis

t Ψ
F
t

]

Proof. We are left to analyze (5.28). This argument is very similar to the deletion analysis in
Section 5.1.1 and Section 5.2.1. If we delete a level- j cluster in moving from P̂ j

t−1 to P̂ j
t ,del, then the

expected potential change (over the random choice of which cluster to delete) is τ− j k
K . Summing

yields the desired bound. �

5.3.2 Fusion and fission

Our final task is to analyze the quantities ∆fis
t Φt , ∆fis

t Ψ
A
t , and ∆

fis
t Ψ

F
t .

Lemma 5.12. For every t > 1 and numbers 0 < cA , cF < 1, if

δ 6
cF

4( f4(k) + cA) ,

then
�

[
∆fis

t
�
Φt + cFΨ

F
t + cAΨ

A
t

�]
6 0 .

Toward that end, fix t > 2. Let U j :� Λ j
t−2 \ Λ

j
t−1 denote the set of heavy net points that are

ejected in the “heavy net maintenance” phase of time step t − 1. Let V j :� Λ
j
t−1 \ Λ

j
t−2. Every

u ∈ U j is ejected because of some newly added point û ∈ V j with dX(u , û) 6
√
λ

3 τ
− j . Denote

B
j
U

:�
�
BX(u , τ− j) : u ∈ U j	 ,
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Figure 4: New heavy balls B1 , B2 ∈ B
j
V

are responsible for ejecting some of the previously heavy
balls in B j

U
.

B
j
V

:�
{

BX

(
v ,

τ− j

2
√
λ

)
: v ∈ V j

}
.

Note that since Λ j
t−1 and Λ

j
t−2 are heavy τ

− j-nets (cf. Lemma 4.1(1)), they are 3τ− j-separated, and
thus the balls in B j

U
are pairwise disjoint, and the same holds for the balls in B j

V
. See Figure 4.

Since λ > 36, we have BX(u , τ− j) ⊆ BX(û , λ τ− j

2
√
λ
) for each u ∈ U j . Therefore:⋃

B∈B j
U

B ⊆
⋃

B∈B j
V

(λB \ B) . (5.29)

For j ∈ �+, define

S j
out :�

⋃
B∈B j

V

(λB \ B) ,

S j
in :�

⋃
B∈B j

V

B .

The next three lemmas will yield the proof of Lemma 5.12.

Lemma 5.13. For every t > 2:
∆fis

t Ψ
A
t 6

∑
j>1

τ− jνt−1
(
S j

out

)
.

Proof. By definition:

∆fis
t Ψ

A
t � ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−1) − ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−2)
� ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−1) − ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−2 \ U

j)
+ ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−2 \ U

j) − ψA(µt−1; ρ̂t−1 , Ct ,del ,Λt−2) .
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Since the first term involves the addition of points inV j , it is non-positive. Thus we focus on the
second term.

In order for the x term inΨA
t to be affected by the change fromΛt−2 toΛt−2 \U

j , it must be that
dX(x ,U j) 6 1

2τ
− j , therefore

∆fis
t Ψ

A
t 6

∑
j>1

τ− jνt−1
�
BX(U j , τ− j)� .

In conjunction with (5.29), this completes the proof. �

The next lemma is the primary way that Axiom (A4) is employed.

Lemma 5.14. For every t > 1:

∆fis
t Φt 6 f4(k)

∑
j>1

τ− jνt−1
(
S j

out

)
.

Proof. By definition
∆fis

t Φt :� Φ(αfis
t #ν∗t−1; χt−1) −Φ(αdel

t #ν∗t−1; χt−1) .
Observe that for each j > 1, the change from Q̂del,t to Q̂fis,t (which induces the change from αdel

t

to αfis
t ) results from “unfusing” along the points of U j . Since Q̂ j

t ,del and Q̂
j
t ,fis induce the same

semi-partition on X \
[
B

j
U

]
, Axiom (A4) in conjunction with (5.29) yields the desired result. �

The final lemma is key: The introduction of a new heavy ball yields a large decrease in potential.

Lemma 5.15. For every t > 2:

∆fis
t Ψ

F
t 6

∑
j>1

τ− j
(
νt−1(S j

out) − νt−1(S j
in)

)
.

Proof. Recall that
∆fis

t Ψ
F
t � ψF(µt−1; P̂t ,Λt−1) − ψF(µt−1; P̂t ,Λt−2) ,

where
ψF

t (µt−1; P̂t ,Λ) � −
∑
j>1

τ− jβ#µt−1
(
H (P̂ j

t ,Λ
j , 2τ− j−1

)
.

EachB ∈ B j
V
contributes atmost−τ− jνt−1(B) to thepotential, whilewegain atmost τ− jνt−1(S j

out). �
Proof of Lemma 5.12. Combining the preceding three lemmas gives, for any 0 < cA , cF < 1:

∆fis
t

�
Φt + cFΨ

F
t + cAΨ

A
t

�
6

∑
j>1

∑
B∈B j

V

τ− j
((cF + f4(k) + cA)νt−1(λB \ B) − cFνt−1(B)

)
. (5.30)

Now observe that since B j
V

consists of (t − 1)-heavy balls, it holds that for every B ∈ B j
V
,

ν̄t−1(λB \ B) 6 δ(1 − δ)ν̄t−1(B) 6 2δν̄t−1(B) .
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Therefore taking expectations in (5.30) yields

�
[
∆fis

t
�
Φt + cFΨ

F
t + cAΨ

A
t

�]
6

∑
j>1

τ− j
∑

B∈B j
V

ν̄t−1(B) �
δ( f4(k) + cA) − (1 − 2δ)c�

. (5.31)

If we now choose
δ 6

cF

4( f4(k) + cA) ,
then (5.31) becomes at most zero, completing the proof of Lemma 5.12. �

5.4 Competitive analysis

Let us now prove Theorem 2.6.

Proof of Theorem 2.6. Use Lemma 5.1, Lemma 5.7, Lemma 5.11, to write, for any numbers 0 <
cA , cF < 1:

�
�
∆Φ + cF∆Ψ

F
+ cA∆Ψ

F�
6 CΦ f1(k) log k

δ
log(K) costX(ν∗)

+

∑
t>1

(
2τ f1(k)

K
+ cF

2τk
K
−

cA

8

)
�

[
τ− j∗t1{ j∗t>0}

]

+

(
2cF + cACA

log k
δ
−

3
4

)
�[costF

T (µ)]
+

∑
t>1
�

[
∆fis

t
�
Ψt + cFΨ

F
t + cAΨ

A
t

�]
.

Choosing cF :� 1/8 and δ :� cF
4 f4(k)+cA

and employing Lemma 5.12 yields

�
�
∆Φ + cF∆Ψ

F
+ cA∆Ψ

F�
6CΦ f1(k) log k

δ
log(K) costX(ν∗)

+

∑
t>1

(
2τ f1(k)

K
+
τk
4K
−

cA

8

)
�

[
τ− j∗t1{ j∗t>0}

]

+

(
cACA

log k
δ
−

1
2

)
�[costF

T (µ)].

Setting K :� 2τk f1(k)
32cA

then gives

�
�
∆Φ + cF∆Ψ

F
+ cA∆Ψ

F�
6 CΦ f1(k) log k

δ
log(K) costX(ν∗) +

(
cACA

log k
δ
−

1
2

)
�[costF

T (µ)].

Finally, choose cA :�
�
8CA f4(k) log k

�−1, yielding

�
�
∆Φ + cF∆Ψ

F
+ cA∆Ψ

F�
6 CΦ f1(k) log k

δ
log(K) costX(ν∗) − 1

4 �[costF
T (µ)]

6 O
�

f1(k) f4(k)(log k)2�
costX(ν∗) − 1

4 �[costF
T (µ)] ,
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i.e.,
�[costF

T (µ)] 6 O
�

f1(k) f4(k)(log k)2�
costX(ν∗) − 4�

�
∆Φ + cF∆Ψ

F
+ cA∆Ψ

A�
.

Now observe that due to starting in an initial configuration with µ0 concentrated at a single leaf
`0 ∈ LT and C j

0 � Λ
j
0 � {`0}, it is the case that ∆ΨF ,∆ΨA > 0 becauseΨF

0 andΨA
0 both take their

minimum value. Moreover, Φ > 0 by assumption, and thus −∆Φ 6 Φ(ν∗0; χ0), yielding the desired
conclusion. �

5.5 Rounding under fusion

Consider a pair of siblings ξA , ξB
∈ V j

T
with b(ξA) ⊆ b(ξB) and the canonical injection ϕξA↪→ξB .

Using auxiliary labels {1, 2} (say), one can encode this injection by a multistep process:


ξ̂0 , . . . , ξ̂ j−1 , (b(ξA); 1), (ξ j+1; 1), (ξ j+2; 1), . . .�

7→


ξ̂0 , . . . , ξ̂ j−1 , (b(ξB); 2), (ξ j+1; 1), (ξ j+2; 1), . . .�

7→


ξ̂0 , . . . , ξ̂ j−1 , (b(ξB); 2), (ξ j+1; 2), (ξ j+2; 1) . . .�

7→


ξ̂0 , . . . , ξ̂ j−1 , (b(ξB); 2), (ξ j+1; 2), (ξ j+2; 2) . . .� .

The idea is that only one label is changed from 1 to 2 at every step. (At the end, such atomic steps
can be used to restore the original labeling.)

The advantage of this perspective is that if one is trying to prove monotonicity of some quantity
under fusionmaps, it suffices to establish monotonicity for canonical injections, and thus to establish
it for one step of the above process. This corresponds to first “fusing” A into B but still distinguishing
the children of B from those of A, then recursively fusing the children of B into the children of A,
and so on. We will refer to such a step as a primitive fusion of ξA into ξB.

This will be a useful way of thinking in the next section, as well as in Section 6.3.

5.5.1 Online rounding

The authors of [BBMN15, §5.2] present an online algorithm to round a fractional k-server algorithm
on a τ-HST (for τ > 5) to a random integral k-server algorithm in a way that the expected cost
increases by at most an O(1) factor. Unfortunately, this does not quite suffices for us, as our model
allows cluster fusion.

Theorem 5.16 (HST rounding under fusions). Consider an F -adapted sequence µ �

µt ∈ Mk(LT ) : t > 0

�
. There exists a random F -adapted sequence µ̂ �

〈
µ̂t ∈ M̂k(LT ) : t > 0

〉
such

that for every t > 0: With probability one, for every ξ ∈ VT ,

µ̂t(LT (ξ)) ∈
{bµt(LT (ξ))c , dµt(LT (ξ))e

}
. (5.32)

Moreover:
�

�
costF

T (µ̂)
�
6 O(1) costF

T (µ).
Proof. In [BBMN15, §5.2], the authors give a procedure for online rounding of a fractional k-server
algorithm on HSTs to a distribution over integral algorithms that only loses an O(1) factor in the
expected cost. The key property maintained is that the integral algorithm is supported on balanced
configurations with respect to the fractional algorithm, i.e., that (5.32) holds for every ξ ∈ VT .
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In order to extend this to our model, we need to give a method for the primitive fusion of two
clusters while maintaining the balance property, Suppose that µ̂ is a random integral k-server
measure that satisfies, for two siblings ξA , ξB

∈ VT with b(ξA) ⊆ b(ξB),
�[µ̂(LT (ξA))] � µ(LT (ξB))
�[µ̂(LT (ξA))] � µ(LT (ξB)) ,

and with probability one, µ̂ satisfies the balance conditions:

µ̂(LT (ξA)) ∈ �bµ(LT (ξA)), c , dµ(LT (ξA))e�

µ̂(LT (ξB)) ∈ �bµ(LT (ξB)), c , dµ(LT (ξB))e�
.

For simplicity, let us denote

µ̂A :� µ̂(LT (ξA))
µ̂B :� µ̂(LT (ξB))
µA :� µ(LT (ξA))
µB :� µ(LT (ξB))
εA :� µA − bµAc
εB :� µB − bµBc .

We need to produce a random variable (kA , kB) with the following properties:

1. supp
�(kA , kB)� ⊆ supp

�(µ̂A , µ̂B)�

2. �(kA � bµAc) � �(µ̂A � bµAc)
3. �(kB � bµBc) � �(µ̂B � bµBc)
4. The balance condition is satisfied:

�
�
kA + kB ∈

�bµA + µBc , dµA + µBe��
� 1 .

We then define µ̂ of the fused cluster as kA + kB and couple the distributions of the children
accordingly using the conditional distributions µ̂ | µ̂A � kA and µ̂ | µ̂B � kB. In this way, we
preserve a balanced online rounding under a primitive fusion step. Note that we do not incur any
reduced movement cost because we do not pay for the fusion (by definition of the reduced cost).

There are two cases. Note that the first case includes the situation in which one of µA or µB is
an integer.

1. εA + εB 6 1:

�
�(kA , kB) � (bµAc , bµBc)� � �(µ̂A � bµAc) + �(µ̂B � bµBc) − 1
�

�(kA , kB) � (bµAc , dµBe)� � �(µ̂B � dµBe)1{εB>0}
�

�(kA , kB) � (dµAe , bµBc)� � �(µ̂A � dµAe)1{εA>0}
�

�(kA , kB) � (dµAe , dµBe)� � 0 .
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2. εA + εB > 1:

�
�(kA , kB) � (bµAc , bµBc)� � 0
�

�(kA , kB) � (bµAc , dµBe)� � �(µ̂A � bµAc)
�

�(kA , kB) � (dµAe , bµBc)� � �(µ̂B � bµBc)
�

�(kA , kB) � (dµAe , dµBe)� � �(µ̂A � dµAe) + �(µ̂B � dµBe) − 1 . �

The final lemma of this section completes the proof of Theorem 2.5 in conjunction with
Theorem 5.16.

Lemma 5.17. If µ̂ �

〈
µ̂t ∈ M̂k(LT ) : t > 0

〉
is a sequence of integral measures, and ν � 〈νt : t > 0〉 is

defined by νt :� β#µt , then
costX(ν) 6 costF

T (µ′) .
Proof. This follows immediately from the fact that β is 1-Lipschitz and if ϕ is a fusion map and
µ ∈ M(LT ), then ϕ#µ ∈ M(LT ), and β#ϕ#µ � β#µ. �

6 Reductions

We now present some generic reductions that allow us to assume a weaker set of potential axioms.
In Section 6.3, these are used to apply our framework to the [BCL+17] algorithm.

6.1 Mass at internal nodes

We first discuss algorithms that maintain fractional server mass at internal nodes VT of T and only
to pay for movement of server mass down the tree. Such algorithms can be incorporated into our
framework as follows.

We now allow the fractional server measure µχ associated to a configuration χ ∈ Γ to place
mass on both leaves and internal vertices of T , i.e., µχ ∈ Mk(VT ).
Definition 6.1. For twomeasures µ, µ′ ∈ M(VT ), say that µ dominates µ′ if the following are satisfied:

1. µ(VT ) � µ′(VT ).
2. µ(VT (ξ)) 6 µ′(VT (ξ)) for all ξ ∈ VT .

Let ~µ� denote the collection of all measures µ′ ∈ M(VT ) such that µ dominates µ′.

Note that if µ′ ∈ ~µ�, then µ′ can be obtained from µ by pushing mass “down the tree” (recall
Remark 2.4). It is helpful to observe that if µ is supported on LT , then ~µ� � {µ} (in intuitive
terms, mass supported on LT cannot be “pushed down” any further). We now introduce related
modifications of Axiom (A3).

(A3◦) For any fusion map ϕ and configuration χ ∈ Γ, there is a configuration χ(ϕ) ∈ Γ such that
µχ(ϕ) ∈ ~ϕ#µχ�, and moreover

Φ(ϕ#θ; χ(ϕ)) 6 Φ(θ; χ) ∀θ ∈ M̂k(LT ) . (6.1)
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Theorem 6.2. For any metric space (X, dX), the following holds. If there are functions
Φ : M̂k(LT ) × Γ→ R, γ : Γ × L0

T → Γ, χ 7→ µχ ∈ Mk(VT )
satisfying (A1), (A2), (A3◦), and (A4) for some functions f1(k), f4(k), then there is an augmented state space
Γ̂, and functions

Φ̂ : M̂k(LT ) × Γ̂→ R, γ̂ : Γ̂ × L0
T → Γ̂, χ 7→ µ̃χ ∈ Mk(LT )

satisfying axioms (A1)–(A4) with the functions 2 f1(k) and 2 f4(k).
Proof. Given the sequence of measures µ �



µt : t > 0

�
corresponding to the online algorithm

induced by the maps γ and χ 7→ µχ, with µ0 ∈ Mk(LT ) and µt ∈ Mk(VT ) for t > 1, one can consider
the corresponding F -adapted lazy sequence µ̃ �



µ̃t : t > 0

�
with {µ̃t : t > 0} ⊆ Mk(LT ) that only

moves mass between leaves.
Our augmented configuration space will be Γ̂ :� Γ×Mk(LT ). For µ ∈ M(VT ), define the average

“height” of µ:
ΨH(µ) :�

∑
j>0

τ− jµ(V j
T
) ,

and for (χ, µ̃) ∈ Γ̂, define the modified potential

Φ̂
�
θ; (χ, µ̃)� :� 2Φ(θ; χ) +ΨH(µχ) + W1

T (µχ , µ̃) . (6.2)

The validity of Axioms (A1) and (A4) is unchanged since Φ̂ does not introduce an additional
dependence on its first argument.

Consider that when µ transports mass, Φ̂ does not increase because of (A2). On the other hand,
when µ̃ moves, Φ̂ decreases in proportion because of the last term in (6.2), and thus (A2) is satisfied
for µ̃χ as well. Moreover, under a “push down” operation occurring as in (A3◦), the last term in
(6.2) may increase, but thenΨH will decrease Φ̂ at least as much, meaning that (A3) is satisfies for
(Φ̂, γ̂, χ 7→ µ̃χ). �

6.2 Extra server mass

We will now show that for any 0 < ε < 1, it suffices to have a fractional (k + ε)-server algorithm
satisfying Axioms (A1)–(A4). The idea of converting a (k + ε)-server algorithm to a k-server
algorithm storing mass at internal nodes is taken from [BCL+17].

Define the rounding map ρ : R+ → R+ as follows: For h ∈ �+, define ρ|[h ,h+ε] � h and extend ρ
affinely outside

⋃
h∈�+

[h , h + ε]. Note that ρ is 1
1−ε -Lispchitz. For a measure µ ∈ M(LT ), define the

measure Λεµ ∈ M(VT ) by

Λεµ(ξ) :�



ρ(µ(ξ)) ξ ∈ LT

ρ(µ(LT (ξ))) −
∑

ξ′∈ch(ξ)
ρ(µ(LT (ξ′))) otherwise.

Note that ρ is superadditive, i.e., ρ(y + y′) > ρ(y) + ρ(y′) for all y , y′ ∈ R+, so Λεµ does define a
measure. Moreover, by construction we have:

Λεµ(VT (ξ)) � ρ(µ(LT (ξ))) ∀ξ ∈ VT ,
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and therefore
Λεµ(VT ) � ρ(µ(LT )) � ρ(k + ε) � k ,

thus Λεµ ∈ Mk(VT ).
The next lemma follows from the fact that ρ is superadditive.

Lemma 6.3. For any ν ∈ Mk+ε(LT ), and fusion map ϕ, it holds that

Λε(ϕ#ν) ∈ ~ϕ#Λεν� .

Theorem 6.4. For any metric space (X, dX) and 0 < ε < 1, the following holds. If there is a transition
function γ : Γ × L0

T
→ Γ, a potential Φ, and a map χ 7→ µχ ∈ Mk+ε(LT ) satisfying Axioms (A0)–(A4)

for some functions f1(k), f4(k), then replacing the map χ 7→ µχ by the map χ 7→ Λε(µχ) yields an
algorithm satisfying Axioms (A1), (A2), (A3◦), and (A4) with the new potential Φ̂ �

2
1−εΦ and the functions

2
1−ε f1(k), 2

1−ε f4(k).
Proof. Axiom (A3) is satisfied because of Lemma 6.3. Thus if we establish that

W1
T (Λεµ,Λεµ′) 6

1
1 − εW1

T (µ, µ′) ∀µ, µ′ ∈ M(LT ) , (6.3)

it will show Axiom (A2) is satisfied with the potential Φ̂ �
2

1−εΦ, completing the proof.
Consider µ ∈ M(VT ) and denote

‖µ‖T :�
∑
j>1

τ− j
∑
ξ∈VT

µ (VT (ξ)) .

Then,
1
2 ‖µ − µ′‖T 6 W1

T (µ, µ′) 6
�
µ − µ′

�
T

∀µ, µ′ ∈ M(VT ) .
Now we can write:

W1
T (Λεµ,Λεµ′) 6 ‖Λεµ −Λεµ′‖T 6 ‖ρ‖Lip‖µ − µ′‖T 6 2

1 − εW1
T (µ, µ′) ∀µ, µ′ ∈ M(LT ) ,

verifying (6.3). �

By composing Theorem 6.4 and Theorem 6.2, we obtain the following.

Corollary 6.5. Under the assumptions of Theorem 6.4, there is a triple (Φ, γ, χ 7→ µχ ∈ Mk(LT )) satisfying
Axioms (A1)–(A4) with f̂1(k) 6 4

1−ε f1(k) and f̂4(k) 6 4
1−ε f4(k).

6.3 Verification of the potential axioms for [BCL+17]

In light of Corollary 6.5, it will suffice to demonstrate a fractional (k + ε)-server algorithm satisfying
(A1)–(A4) for some 0 < ε < 1.

Consider an element

x �


xξ,i ∈ [0, 1] : ξ ∈ VT , i � 1, 2, . . .

�
⊆ `∞(VT ×�+) .
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For ξ ∈ VT , write ch(ξ) for the set of children of ξ in T . Let K denote the closed convex set of such x
that satisfy the following linear constraints for every ξ ∈ VT :

xX,i
�




0 i ∈ {1, 2, . . . , k}
1 i > k ,∑

i6|S|
xξ,i 6

∑
(ξ′, j)∈S

xξ
′, j for all finite S ⊆ ch(ξ) ×�+ . (6.4)

Let us furthermore define z � z(x) by zξ,i :� 1
1−δ

�
1 − xξ,i

�
and zξ :�

∑
i>1 zξ,i . (Note that x and

z are related by an invertible linear transformation, and thus we need only specify one of them in
order to define the corresponding set of values.)

For a leaf ` � 〈ξ0 , ξ1 , . . .〉 ∈ LT , we write

z` :� lim
j→∞

z
ξ j
t .

Fix δ :� 1
3k and let Kδ ⊆ K denote the subset of x ∈ K for which the set {` : z` , 0} is finite, as well as

the sets {i : zξ,i , 0} for each ξ ∈ VT , and furthermore:

z` 6 1 ∀` ∈ LT , (6.5)∑
`∈LT

z` �
k

1 − δ � k + ε , (6.6)

where we note that ε :� δk
1−δ < 1 for all k > 1.

Define the measure µx
∈ Mk+ε(LT ) by

µx(S) :�
∑
`∈S

z` ∀S ⊆ LT . (6.7)

One should note that for x ∈ Kδ, the inequalities (6.4) imply that for every ξ ∈ VT ,

zξ >
∑

ξ′∈ch(ξ)
zξ
′

, (6.8)

and since zX � k + ε, (6.6) implies that the inequality in (6.8) holds with equality. In other words,
for every ξ ∈ VT , we have

zξ � µx(LT (ξ)) . (6.9)

The [BCL+17] algorithm. To each θ ∈ M̂k(LT ), we associate a representation x̂θ as follows: For
every ξ ∈ VT ,

ẑξθ :�
∑

`∈LT (ξ)
θ̂(`) ,

and for ξ ∈ VT and i > 1:

x̂ξ,iθ �




0 ẑξθ > i
1 otherwise.

Let Γ :� Kδ, and define the potential:

Φ(θ; x) :� C0D(θ; x) − H(x) ,
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where C0 � log k, and

D(θ; x) :�
∑
j>1

*..
,
τ− j

∑
ξ∈V j

T

∑
i>1

(
x̂ξ,iθ + δ

)
log *

,

x̂ξ,iθ + δ

xξ,i + δ
+
-

+//
-
,

H(x) :�
∑
j>1

τ− j
∑
ξ∈V j

T

[�
zξ + (1 + τ−1)ε�

log zξ + ε
ε

+ zξ log(z ξ̂ + ε)
]
.

and ξ̂ denotes the parent of ξ in T . One should note that this sum converges absolutely because the
sets {ξ ∈ V j

T
: zξ > 0} are finite for every j > 0, and moreover z forms a measure of weight k + ε at

every level.
The [BCL+17] algorithm can be interpreted as a mapping γ : Γ × L0

T
→ Γ that satisfies axioms

(A1) and (A2).

Theorem 6.6 ([BCL+17]). There is a mapping γ : Γ × L0
T
→ Γ and such that the following hold for every

x ∈ Γ.

1. For any two states θ, θ′ ∈ M̂k(LT ):
|Φ(θ; x) −Φ(θ′; x)| 6 O(log k)2 W1

T (θ, θ′) .

2. For every σ ∈ L0
T
, we have µγ(x ,σ)(σ) > 1.

3. For every σ ∈ L0
T
and every integral measure θ ∈ M̂k(LT ) satisfying θ(σ) > 1:

Φ(θ; γ(x , σ)) −Φ(θ; x) 6 −W1
T

(
µx , µγ(x ,σ)

)
.

Moreover, the associated measures lie in the 0-decorated subtree: {µx : x ∈ Kδ} ⊆ Mk(L0
T
).

We are thus left to verify Axioms (A3) and (A4).

Axiom (A3). In order to demonstrate the validity of (A3), we need to give a way of updating
the z-variables under a primitive fusion of ξA into ξB, where ξA , ξB

∈ V j
T
are siblings in T with

b(A) ⊆ b(B). We will use z̄ to denote the variables after the fusion.
For any descendant ξ of ξA (including ξA itself), set z̄ξ,i :� 0 for all i > 1. Let ξ′ denote the

application of a primitive fusion step to ξ (so that ξ′ is a descendant of ξB). If ξ′ , ξB, we set
z̄ξ
′,i :� zξ,i for all i > 1. We now specify how to update the variables {zξ

B ,i : i > 1}. All other
variables remain unchanged.

Define the sequence
〈
z̄ξ

B ,1 , z̄ξ
B ,2 , . . . ,

〉
by sorting, in non-increasing order, the concatenation of

the two sequences
〈zξB ,i : i > 1〉, 〈zξA ,i : i > 1〉 . (6.10)

(Recall that since x ∈ Kδ, each such sequence has only finitely many non-zero values.)

Lemma 6.7. It holds that x̄ ∈ Kδ and µx̄ � ϕ#µx , where ϕ denotes the corresponding primitive fusion map.
Furthermore for any θ ∈ M̂k(LT ),

Φ(ϕ#θ; x̄) 6 Φ(θ; x) . (6.11)
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Proof. The fact that µx̄ � ϕ#µx is immediate from the construction. And from this, it follows that
(6.6) holds. Thus we need only verify that x̄ ∈ K, and only for the third set of inequalities (6.4) is
this slightly non-trivial.

By construction, it is straightforward that those inequalities hold for x̄ for any ξ ∈ VT except
ξ � ξB . For the parent ξ̂ of ξA and ξB , the fact that we have merged the two child lists means that
the inequalities (6.4) continue to hold for ξ̂.

Thus we need only verify the inequalities for ξB. Note that one can rewrite the inequality in
(6.4) as

|S|∑
i�1

z̄ξ
B ,i >

∑
(ξ′, j)∈S

z̄ξ
′, j

∀ finite S ⊆ ch(ξB) ×�+ .

Since these inequalities hold for z, they also hold for z̄ because when ξA is fused into ξB, we sort
the corresponding list of values in decreasing order.

Let us now prove (6.11). The potential Φ(θ; x) is a sum of two expressions; the first depends
on θ, whereas the second does not. To see that H(x̄) > H(x), apply the next lemma with
a � zξ

A
, b � zξ

B
, c � τ−1.

Lemma 6.8. For any numbers a , b , c > 0 and 0 6 ε 6 1 such that (1 + c)ε 6 1, it holds that(
a + b + (1 + c)ε) log (a + b + ε) > (

a + (1 + c)ε) log(a + ε) + (
b + (1 + c)ε) log(b + ε).

Proof. Without loss of generality, we may assume that a > b. Define

f (t) :� (a + t + (1 + c)ε) log(a + t + (1 + c)ε) + (b − t + (1 + c)ε) log(b − t + (1 + c)ε) ,
and compute

d
dt

�����t�0
f (t) � log

a + (1 + c)ε
b + (1 + c)ε > 0 .

We conclude that(
a + b + (1 + c)ε) log

(
a + b + (1 + c)ε) + (1 + c)ε log[(1 + c)ε]

>
(
a + (1 + c)ε) log

(
a + (1 + c)ε) + (

b + (1 + c)ε) log
(
b + (1 + c)ε) .

Since (1 + c)ε 6 1 by assumption, this yields(
a + b + (1 + c)ε) log

(
a + b + (1 + c)ε) (6.12)

>
(
a + (1 + c)ε) log

(
a + (1 + c)ε) + (

b + (1 + c)ε) log
(
b + (1 + c)ε) .

Observe also that(
a + b + (1 + c)ε) log

(
1 − cε

a + b + (1 + c)ε
)

(6.13)

>
(
a + (1 + c)ε) log

(
1 − cε

a + (1 + c)ε
)
+

(
b + (1 + c)ε) log

(
1 − cε

b + (1 + c)ε
)
.

Adding (6.12) and (6.13) yields the desired result. �
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We now address D(θ; x). The only terms that change are the ones corresponding to ξA and ξB .
Let θ′ � ϕ#θ. By construction:

x̂ξ,1θ′ 6 x̂ξ,2θ′ 6 · · · .

Since we sort both x̂θ′ and x̄ in increasing order, the value of the D(θ; x) decreases, verifying the
claim. �

Axiom (A4). Clearly the change θ 7→ θ′ with θ, θ′ ∈ M̂k(LT ) does not change H, so we need only
analyze the first part of Φ. Consider ξ0

∈ Vh−1
T

and a child ξ1
∈ Vh

T
. If θ′ � F#θ where F(ξ) � ξ for

ξ <VT (ξ1) and F(VT (ξ1)) ⊆ VT (ξ0), then the value of Φ can change by at most

C0

��������

∑
j>h

τ− j
∑
i>1

∑
ξ2∈V j

T
:ξ2�ξ1

log
�
xξ2 ,i + δ

�
��������
, (6.14)

where we have used the notation ξ2 � ξ1 to denote that ξ2 is a descendant of ξ1 (and we say that ξ1
is a descendant of itself). The desired conclusion follows from the next fact.

Fact 6.9. For every x ∈ [0, 1] and δ ∈ [0, 1
2 ]:

log 1 + δ
x + δ

6
1 − x
1 − δ log 1

δ

Using this and recalling that δ �
1

3k , (6.14) is bounded by

O(C0 log k)
∑
j>h

τ− j
∑
i>1

∑
ξ2∈V j

T
:ξ2�ξ1

1 − xξ2 ,i

1 − δ 6 O((log k)2)τ−hµx(VT (ξ1)) ,

where in the last inequality we used (6.9).

6.3.1 Extension to unbounded metric spaces

Note that the conclusion of Theorem 2.6 has no dependence on the diameter of the space (X, dX),
and our restriction to diam(X, dX) 6 1 was only a matter of scaling.

Throughout, we have used T to denote the universal τ-HST over X, but let us now use the
notation TX . To handle the case when X is unbounded, we consider a sequence of algorithms
on the HSTs TB0 , TB1 , . . . corresponding to bounded spaces B0 ⊆ B1 ⊆ · · ·X defined by Bt �

{`0 , α1(σ1), α2(σ2), . . . , αt(σt)}, where we recall that `0 ∈ LT is the leaf guaranteed in Section 2.3
and σ � 〈σt : t > 1〉 is the request sequence.

The only necessity is that our assumed HST algorithm can be “isometrically transported” from
TBt into an isometric subtree of TBt+1 . One could easily formalize this property, but for simplicity
we instead confirm that it holds for the algorithm described in the preceding section. Simply
observe that we can extend the potentials D(θ; x) and H(x) to sum over all j ∈ �. The first remains
unchanged, while we define:

H̃(x) :�
∑
j∈�

τ− j *..
,
−c +

∑
ξ∈V j

T

[�
zξ + (1 + τ−1)ε�

log zξ + ε
ε

+ zξ log(z ξ̂ + ε)
]+//

-
,
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where
c :� (k + (1 + τ−1)ε) log k + ε

ε
+ k log(k + ε) .

This ensures that H̃ is bounded whenever the leaf measure µ(`) � z` has bounded support. (When
τ− j > diamT (supp(µ)), the corresponding term will be zero.)
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