
Sparsifying generalized linear models

Arun Jambulapati
*

James R. Lee
†

Yang P. Liu
‡

Aaron Sidford
§

Abstract
We consider the sparsification of sums 𝐹 : ℝ𝑛 → ℝ+where 𝐹(𝑥) = 𝑓1(⟨𝑎1 , 𝑥⟩)+· · ·+ 𝑓𝑚(⟨𝑎𝑚 , 𝑥⟩)

for vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
and functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+. We show that (1+�)-approximate

sparsifiers of 𝐹 with support size
𝑛
�2
(log

𝑛
�)𝑂(1) exist whenever the functions 𝑓1 , . . . , 𝑓𝑚 are

symmetric, monotone, and satisfy natural growth bounds. Additionally, we give efficient

algorithms to compute such a sparsifier assuming each 𝑓𝑖 can be evaluated efficiently.

Our results generalize the classic case of ℓ𝑝 sparsification, where 𝑓𝑖(𝑧) = |𝑧 |𝑝 , for 𝑝 ∈ (0, 2],
and give the first near-linear size sparsifiers in the well-studied setting of the Huber loss function

and its generalizations, e.g., 𝑓𝑖(𝑧) = min{|𝑧 |𝑝 , |𝑧 |2} for 0 < 𝑝 ⩽ 2. Our sparsification algorithm

can be applied to give near-optimal reductions for optimizing a variety of generalized linear

models including ℓ𝑝 regression for 𝑝 ∈ (1, 2] to high accuracy, via solving (log 𝑛)𝑂(1) sparse

regression instances with 𝑚 ⩽ 𝑛(log 𝑛)𝑂(1), plus runtime proportional to the number of nonzero

entries in the vectors 𝑎1 , . . . , 𝑎𝑚 .

1 Introduction 2
1.1 Hypotheses and results for sparsification . 3

1.2 Fast ℓ𝑝 regression . 4

1.3 Discussion of the hypotheses . 5

1.4 Importance sampling and multiscale weights . 8

1.5 Regression via iterative refinement . 10

1.6 Preliminaries . 12

2 Multiscale importance scores 14
2.1 Contractive algorithm . 16

2.2 A variational approach to approximate weights . 22

3 Covering number bounds 24
3.1 Iterative covering . 25

3.2 Norm control . 26

3.3 Sparsification analysis . 28

3.4 The 𝛾𝑝 losses . 32

4 Algorithms for generalized linear models 36
4.1 Optimizing generalized linear models . 36

4.2 Applications . 40

*
University of Washington, jmblpati@uw.edu, †

University of Washington, jrl@cs.washington.edu
‡
Institute for Advanced Study, yangpliu@ias.edu, §

Stanford University, sidford@stanford.edu

1

1 Introduction

Empirical risk minimization (ERM) is a widely studied problem in learning theory and statistics

(see, e.g., [LSZ19a], for relevant references to the expansive literature on this topic). A prominent

special case is the problem of optimizing a generalized linear model (GLM), i.e.,

min

𝑥∈ℝ𝑛
𝐹(𝑥) for 𝐹(𝑥) :=

𝑚∑
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖) , (1.1)

where the total loss 𝐹 : ℝ𝑛 → ℝ, is defined by vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
, 𝑏 ∈ ℝ𝑚

, and loss functions

𝑓1 , . . . , 𝑓𝑚 : ℝ → ℝ. Different choices of the loss functions { 𝑓𝑖} capture important problems,

including linear regression, logistic regression, and ℓ𝑝 regression [BCLL18, AKPS19b].

Recently, efficient algorithms for solving (1.1) to high-accuracy have been developed in many

settings [BLSS20, BLL
+
21, GPV21] such as linear programming and ℓ1-regression, where 𝑓𝑖(𝑥) = |𝑥 |.

For example, when 𝑚 is on the order of 𝑛, it is known how to solve linear programs and some

GLMs in roughly (up to logarithmic factors) the time it currently takes to multiply two general 𝑛 × 𝑛
matrices [AKPS19b, CLS21, LSZ19a, JSWZ21] which is, up to logarithmic factors, the best-known,

running time for solving a single linear system in a dense 𝑛 × 𝑛 matrix.

When 𝑚 ≫ 𝑛, a natural approach for fast algorithms is to apply sparsification techniques to

reduce the value of𝑚, while maintaining a good multiplicative approximation of the objective value.

More precisely, say that the objective 𝐹 admits an 𝑠-sparse �-approximation if there are non-negative

weights 𝑤1 , . . . , 𝑤𝑚 ∈ ℝ𝑚
+ , at most 𝑠 of which are non-zero, and such that

|𝐹(𝑥) − �̃�(𝑥)| ⩽ � 𝐹(𝑥) for all 𝑥 ∈ ℝ𝑛 , where �̃�(𝑥) :=

𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖) .

When 𝑓𝑖(𝑧) = |𝑧 |𝑝 are ℓ𝑝 losses, near-optimal sparsification results are known: If 𝑝 > 0, then 𝐹

admits an 𝑠-sparse �-approximation for 𝑠 ⩽ �̃�(𝑛max{1,𝑝/2}�−2);1 this sparsity bound is known to

be optimal up to polylogarithmic factors [BLM89, Tal90, Tal95, SZ01]. In particular, for 𝑝 ∈ (0, 2],
the size is �̃�(𝑛�−2), near-linear in the underlying dimension 𝑛. The 𝑝 = 2 case has been especially

influential in the development of several fast algorithms for linear programming and graph

optimization over the last two decades [ST14, SS11, BLN
+
20].

However, as far as the authors know, ℓ𝑝 losses are the only class of natural loss functions for

which linear-size sparsification results are known for GLMs. For instance, for the widely-studied

class of Huber loss functions (see (1.2)) and related variants, e.g., 𝑓𝑖(𝑧) = min{|𝑧 |, |𝑧 |2}, the best

known sparsity bound was �̃�(𝑛4−2

√
2�−2) [MMWY22]. Improving this bound to near-linear (in 𝑛) is

an established important open problem that has potential applications to regression for Huber and

ℓ𝑝 losses [AS20, ABKS21, GPV21, MMWY22, WY23].

The main result of this paper is near-optimal sparsification for a large family of loss functions

{ 𝑓𝑖} that include the Huber losses, ℓ𝑝 losses, and generalizations. Informally, we show that if the

loss functions { 𝑓𝑖} are nonnegative, symmetric, and grow at most quadratically, then there exists

an 𝑠-sparse �-approximation of 𝐹 with 𝑠 ⩽ �̃�(𝑛�−2). Moreover, the sparse approximation can be

1
Throughout, we use �̃�(𝑓) to suppress polylogarithmic quantities in 𝑚, 𝑛, �−1

, and 𝑓 .

2

found very efficiently, in time proportional to the time used for �̃�(1) instances of ℓ2-sparsification

(Theorem 1.1). A particularly nice application of our result is an algorithm that solves ℓ𝑝-regression

to high accuracy for 1 < 𝑝 ⩽ 2 by reducing to �̃�𝑝(1) instances of ℓ𝑝-regression with 𝑚 = �̃�(𝑛)
(Theorem 1.2). Our framework can also be applied to minimizing sums of 𝛾𝑝 functions for 𝑝 ∈ (1, 2]
(see (1.2)) to high accuracy, and to approximate Huber regression.

The main technical hurdle in obtaining these results is that the loss functions are not necessarily

homogeneous and they can exhibit different behaviors at different scales. Note that this hurdle

arises already for losses like 𝑓𝑖(𝑧) = min{|𝑧 |, |𝑧 |2}, even though the loss function only has two

different scaling regimes. To overcome this hurdle we develop a multiscale notion of “importance

scores” for appropriately down-sampling 𝐹 into a sparse representation.

1.1 Hypotheses and results for sparsification

Consider a generalized linear model as in (1.1), with loss functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+ and vectors

𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
. For simplicity, we assume that 𝑏 = 0 in (1.1). This is without loss of generality, as

⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖 = ⟨(𝑎𝑖 , 𝑏𝑖), (𝑥,−1)⟩, and (𝑎𝑖 , 𝑏𝑖), (𝑥,−1) ∈ ℝ𝑛+1
, so we can re-encode the problem in 𝑛 + 1

dimensions with 𝑏 = 0.

We will often think of the case 𝑓𝑖(𝑧) = ℎ𝑖(𝑧)2 for some ℎ𝑖 : ℝ→ ℝ+, as the assumptions we need

are stated more naturally in terms of

√
𝑓𝑖 . To that end, consider a function ℎ : ℝ𝑘 → ℝ+ and the

following two properties, where 𝐿 ⩾ 1 and 𝑐, � > 0 are some positive constants.
2

(P1) (𝐿-auto-Lipschitz) |ℎ(𝑧) − ℎ(𝑧′)| ⩽ 𝐿 ℎ(𝑧 − 𝑧′) for all 𝑧, 𝑧′ ∈ ℝ𝑘
.

(P2) (Lower �-homogeneous) ℎ(�𝑧) ⩾ 𝑐��ℎ(𝑧) for all 𝑧 ∈ ℝ𝑘
and � ⩾ 1.

Note that if ℎ : ℝ→ ℝ is concave and symmetric, then it is 1-auto-Lipschitz (see Lemma 3.15).

We can now state our main theorem, whose proof appears in Section 3.3.

Theorem 1.1. Consider 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+, and suppose there are numbers 𝐿 ⩾ 1, 𝑐, � > 0 such that

each

√
𝑓𝑖 is 𝐿-auto-Lipschitz and lower �-homogeneous (with constant 𝑐). Then for any 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛

,

and numbers 0 < � < 1

2
and 𝑠max > 𝑠min ⩾ 0, there are nonnegative weights 𝑤1 , . . . , 𝑤𝑚 ⩾ 0 such that�����𝐹(𝑥) − 𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩)
����� ⩽ �𝐹(𝑥) , ∀𝑥 ∈ ℝ𝑛

s.t. 𝑠min ⩽ 𝐹(𝑥) ⩽ 𝑠max ,

where 𝐹(𝑥) := 𝑓1(⟨𝑎1 , 𝑥⟩) + · · · + 𝑓𝑚(⟨𝑎𝑚 , 𝑥⟩), and

|𝑖 ∈ {1, . . . , 𝑚} : 𝑤𝑖 > 0| ≲𝐿,𝑐,�
𝑛

�2

log

(
𝑛

�
𝑠max

𝑠min

) (
log 𝑆

)
3

, where 𝑆 :=
𝑛

�
log

(
2𝑠max

𝑠min

)
.

Moreover, with high probability, the weights {𝑤𝑖} can be computed in time

�̃�𝐿,𝑐,�
(
(nnz(𝑎1 , . . . , 𝑎𝑚) + 𝑛𝜔 + 𝑚𝒯eval) log(𝑚𝑠max/𝑠min)

)
.

2
The setting 𝑘 = 1 suffices for the present work, though we state them for general 𝑘 ⩾ 1.

3

Here, 𝒯eval is the maximum time needed to evaluate each 𝑓𝑖 , nnz(𝑎1 , . . . , 𝑎𝑚) is the total number

of non-zero entries in the vectors 𝑎1 , . . . , 𝑎𝑚 , and 𝜔 is the matrix multiplication exponent. “High

probability” means that the failure probability can be made less than 𝑛−ℓ for any ℓ > 1 by increasing

the running time by an 𝑂(ℓ) factor.

We use the notation 𝑂𝐿,𝑐,� and �̃�𝐿,𝑐,�(·) to indicate an implicit dependence on the parameters

𝐿, 𝑐, �, and 𝐴 ≲𝐿,𝑐,� 𝐵 is shorthand for 𝐴 ⩽ 𝑂𝐿,𝑐,�(𝐵). The constant hidden by the 𝑂𝐿,𝑐,�(·) notation

is about (𝐿/𝑐)𝑂(�−2)
, though we made no significant effort to optimize this dependence.

It is not difficult to see that for 0 < 𝑝 ⩽ 2, the function 𝑓𝑖(𝑧) = |𝑧 |𝑝 satisfies the required

hypotheses of Theorem 1.1. In Section 3.4, we show that 𝛾𝑝 functions, defined as

𝛾𝑝(𝑧) :=

{
𝑝

2
𝑧2

for |𝑧 | ⩽ 1

|𝑧 |𝑝 − (1 − 𝑝

2
) for |𝑧 | ⩾ 1,

(1.2)

for 𝑝 ∈ (0, 2], also satisfy the conditions. The special case of 𝛾1 is known as the Huber loss. (See

Section 3.4 for a generalization to general thresholds.)

The 𝛾𝑝 functions were introduced in [BCLL18] and have since been used in several works on

high-accuracy ℓ𝑝 regression [AKPS19b, ABKS21, GPV21]. Due to these connections, the works

[GPV21, MMWY22] studied sparsification with 𝛾𝑝 losses, providing sparsity bounds of �̃�(𝑛3) and

�̃�(𝑛4−2

√
2) ≈ �̃�(𝑛1.172), respectively. More precisely, [MMWY22] establish a bound of �̃�(𝑛1+𝛿(𝑝)) for

𝑝 ∈ [1, 2]with 𝛿(1) = 3 − 2

√
2, and 𝛿(𝑝) → 0 as 𝑝 → 2.

1.2 Fast ℓ𝑝 regression

Combining our sparsification theorem with iterative refinement [AKPS19b] yields near-optimal

reductions for solving ℓ𝑝 regression to high accuracy. More specifically, we show that ℓ𝑝 regression

for matrices 𝐴 ∈ ℝ𝑚×𝑛
can be reduced to a sequence of �̃�𝑝(1) instances with 𝐴 ∈ ℝ�̃�(𝑛)×𝑛

. It is

known how to solve such instances in time 𝑛𝜔0
for 𝜔0 := 2 +max

{
1

6
, 𝜔 − 2, 1−𝛼

2

}
[LSZ19a], where

𝛼 is the dual matrix multiplication exponent. Alternatively, they can each be solved in roughly

𝑛1/3
iterations and time 𝑛max{𝜔,2+1/3}

[AKPS19b], where an “iteration” refers to an operation that is

dominated by the cost of solving a particular 𝑛 × 𝑛 linear system.

Theorem 1.2 (Fast ℓ𝑝 regression). There is an algorithm that given any 𝐴 ∈ ℝ𝑚×𝑛
, 𝑏 ∈ ℝ𝑚

, and 𝑝 ∈ (1, 2]
computes an 𝑥 satisfying

∥𝐴𝑥 − 𝑏∥𝑝𝑝 ⩽ (1 + �)min

𝑥∈ℝ𝑛
∥𝐴𝑥 − 𝑏∥𝑝𝑝

in either �̃�𝑝(𝑛
2−𝑝
𝑝+2) iterations and �̃�𝑝(nnz(𝐴) + 𝑛max{𝜔,2+1/3}) time, or �̃�𝑝(

√
𝑛) iterations and �̃�𝑝(nnz(𝐴) +

𝑛𝜔0) time, with high probability.

It is standard to turn a high accuracy algorithm for an optimization problem into one that solves

a corresponding dual problem. We present such an argument for ℓ𝑝-regression in Section 4.2.2.

Theorem 1.3 (Dual of ℓ𝑝 regression). There is an algorithm that given 𝐴 ∈ ℝ𝑚×𝑛
, 𝑐 ∈ ℝ𝑚

, and 𝑞 ∈ [2,∞)
computes a 𝑦 ∈ ℝ𝑚

satisfying 𝐴⊤𝑦 = 𝑐 and

∥𝑦∥𝑞𝑞 ⩽ (1 + �) min

𝐴⊤𝑦=𝑐
∥𝑦∥𝑞𝑞

4

in either �̃�𝑞(𝑛
𝑞−2

3𝑞−2) iterations and �̃�𝑞(nnz(𝐴) + 𝑛max{𝜔,2+1/3}) time, or �̃�𝑞(
√
𝑛) iterations and �̃�𝑞(nnz(𝐴) +

𝑛𝜔0) time, with high probability.

Prior work [JLS22] shows that ℓ𝑝-regression can be solved in �̃�𝑝(𝑛1/3) iterations of solving a

linear system for 𝑝 ∈ [2,∞). Combining that result with Theorem 1.2 shows that ℓ𝑝-regression can

be solved using �̃�𝑝(𝑛1/3) linear systems for all 𝑝 > 1.

1.3 Discussion of the hypotheses

Let us now discuss various hypotheses and the extent to which they are necessary for sparsifiers of

nearly-linear size to exist. In addition to the properties (P1) and (P2), let us consider three others

that we will use frequently. In what follows, 𝐶, 𝑢 > 0 are positive constants and ℎ : ℝ𝑛 → ℝ+.

(P3) (𝐶-symmetric) ℎ(𝑧) ⩽ 𝐶ℎ(−𝑧) for all 𝑧 ∈ ℝ𝑛
.

(P4) (𝐶-monotone) ℎ(𝑧) ⩽ 𝐶ℎ(�𝑧) for � ⩾ 1.

(P5) (Upper 𝑢-homogeneous) ℎ(�𝑧) ⩽ 𝐶�𝑢ℎ(𝑧) for all 𝑧 ∈ ℝ𝑛
and � ⩾ 1.

First, note that (P1) and (P2) imply (P3)–(P5).

Lemma 1.4. The following implications hold:

1. ℎ is 𝐿-auto-Lipschitz =⇒ ℎ is 𝐿-symmetric.

2. ℎ is lower �-homogeneous with constant 𝑐 =⇒ ℎ is 1/𝑐-monotone.

3. ℎ is 𝐿-auto-Lipschitz and 𝐶-monotone =⇒ ℎ is upper 1-homogeneous with constant 2𝐶𝐿.

Proof. Since ℎ(0) = 0, applying the definition of 𝐿-auto-Lipschitz with 𝑧 = 0 gives ℎ(−𝑧) ⩽ 𝐿ℎ(𝑧) for

any 𝑧 ∈ ℝ𝑛
. The second implication is immediate. For the third, note that for a positive integer

𝑘, we have ℎ(𝑘𝑧) ⩽ ∑𝑘−1

𝑗=0
|ℎ((𝑗 + 1)𝑧) − ℎ(𝑗𝑧)| ⩽ 𝑘𝐿ℎ(𝑧). Using the 𝐿-auto-Lipschitz property again

gives

ℎ(�𝑧) ⩽ ℎ(⌈�⌉𝑧) + 𝐿ℎ((⌈�⌉ − �)𝑧) ⩽ ⌈�⌉𝐿 · ℎ(𝑧) + 𝐿𝐶ℎ(𝑧) ⩽ 2𝐶𝐿�ℎ(𝑧) ,

where the penultimate inequality uses 𝐶-monotonicity. □

Symmetry (P3). To illustrate the need for approximate symmetry, let us consider gluing together

two functions that are otherwise “nice” in our framework:

𝑓 (𝑧) :=

{
|𝑧 |2 , 𝑧 ⩾ 0

|𝑧 |, 𝑧 < 0 .

Suppose that 𝑓1 = · · · = 𝑓𝑚 = 𝑓 . Consider unit vectors �̂�1 , . . . , �̂�𝑚 ∈ ℝ𝑛
such that 𝛿𝑖 𝑗 :=

|⟨�̂�𝑖 , �̂� 𝑗⟩| < 1

2
for 𝑖 ≠ 𝑗. A basic volume computation shows that one can choose 𝑚 ⩾ 2

Ω(𝑛)
. Denote

𝑎𝑖 := (�̂�𝑖 , 1) ∈ ℝ𝑛+1
for 𝑖 = 1, . . . , 𝑚.

5

Then for � > 0 and 𝑥 := �(�̂�𝑖 ,− 1

2
), we have

𝑓𝑗(⟨𝑎 𝑗 , 𝑥⟩) = 𝑓 (⟨𝑎 𝑗 ,�(�̂�𝑖 ,− 1

2
)⟩) =

{
𝑓 (�/2) ≍ �2 𝑖 = 𝑗 ,

𝑓 (�(𝛿𝑖 𝑗 − 1

2
)) ≲ � otherwise.

Thus in any approximate sparsifier �̃� = 𝑤1 𝑓1 + · · · + 𝑤𝑚 𝑓𝑚 , it must be that either 𝑤𝑖 > 0, or∑
𝑗≠𝑖 𝑤 𝑗 ≳ �. Sending �→∞ shows that the latter is impossible.

Lower growth and monotonicity (P2), (P4). We consider these properties together since mono-

tonicity is a weaker property than lower homogeneity. A natural function that does not satisfy

lower homogeneity is the Tukey loss which, for the sake of the present discussion, one can take as

𝑓𝑖(𝑧) := min{1, |𝑧 |2}, which is a natural analog of 𝛾𝑝 (recall (1.2)) for 𝑝 = 0.

For sparsifying GLMs with the Tukey loss, previous works have made additional assumptions.

For example, that one only ensures sparsification when ∥𝑎𝑖 ∥2 ⩽ 𝑛𝑂(1), and for inputs 𝑥 ∈ ℝ𝑛

satisfying ∥𝑥∥2 ⩽ 𝑛𝑂(1); see [CWW19, Assumption 2] and the discussion afterwards, and [MMWY22,

§8.3]. In Section 3.4.2, we show how to achieve a �̃�(𝑛1+𝑜(1)�−2)-sparse �-approximations under

these assumptions. At a high level, the simple idea is to consider the proxy loss functions

𝑓𝑖(𝑧) := min{|𝑧 |𝑝 , |𝑧 |2} with 𝑝 sufficiently small.

Upper quadratic growth (P5). Note that, by Lemma 1.4, if

√
𝑓𝑖 satisfies (P1), then 𝑓𝑖 is upper

2-homogeneous. For near-linear size sparsifiers, 2-homogeneity is a natural condition, since

sparsifying with loss functions 𝑓𝑖(𝑥) = |𝑥 |𝑝 and 𝑝 > 2 requires the sparsifier to have at least Ω(𝑛𝑝/2)
terms [BLM89].

The auto-Lipschitz property (P1). As Lemma 1.4 shows, this property gives us approximate

symmetry (P3) and upper 1-homogeneity (P5). Crucially, this property also allows us to exploit the

geometry of the vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
. Note that (P1) implies

(𝑓𝑖(𝑧) − 𝑓𝑖(𝑧′))2 = (𝑓𝑖(𝑧)1/2 − 𝑓𝑖(𝑧′)1/2)2 (𝑓𝑖(𝑧)1/2 + 𝑓𝑖(𝑧′)1/2)2 ⩽ 2𝐿2 𝑓𝑖(𝑧 − 𝑧′)(𝑓𝑖(𝑧) + 𝑓𝑖(𝑧′)) .

In particular, we have(
𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) − 𝑓𝑖(⟨𝑎𝑖 , 𝑦⟩)

)
2

⩽ 2𝐿2 𝑓𝑖(⟨𝑎𝑖 , 𝑥 − 𝑦⟩)︸ ︷︷ ︸ (𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ + 𝑓𝑖(⟨𝑎𝑖 , 𝑦⟩) .
The braced term is what us allows to access the linear structure of the vectors in our analysis.

Comparison to 𝑀-estimators. The works [CW15, MMWY22] consider regression and sparsification

for what they call general 𝑀-estimators. Essentially, this corresponds to the special case of our

framework where all the loss functions are the same: 𝑓1 = · · · = 𝑓𝑚 = 𝑀, and one assumes 𝑀(0) = 0,

monotonicity, and upper and lower growth lower bounds. They additionally assume that 𝑀 is

𝑝-subadditive (for 𝑝 = 1/2) in the sense that 𝑀(𝑥 + 𝑦)𝑝 ⩽ 𝑀(𝑥)𝑝 + 𝑀(𝑦)𝑝 , which is a stronger

condition than the auto-Lipschitz property (P1) for ℎ = 𝑓
1/2
𝑖

.

Under this stronger set of assumptions, the authors of [MMWY22] achieve approximations with

sparsity �̃�(𝑛max{2,𝑝/2+1}), which is a factor 𝑛 larger than what one might hope for. In the regime

𝑝 ⩽ 2 of possible near-linear-sized sparsifiers, we close this gap: Theorem 1.1 gives sparsity �̃�(𝑛).

6

1.3.1 Discussion of the 𝑠max/𝑠min dependence

Note that Theorem 1.1 only achieves an approximation for 𝑠min ⩽ 𝐹(𝑥) ⩽ 𝑠max, and there is a

logarithmic dependence on 𝑠max/𝑠min in the sparsity bound. Intuitively, some dependence on

𝑠max/𝑠min is necessary in the generality of Theorem 1.1 because nothing in our assumptions precludes

the functions 𝑓𝑖 from behaving nearly independently on different scales (at least if the scales are

sufficiently well separated).

In the case that each of the functions 𝑓1 , . . . , 𝑓𝑚 is 𝑝-homogeneous, in the sense that 𝑓𝑖(�𝑧) =
|�|𝑝 𝑓𝑖(𝑧), then 𝐹 and the sparsifier �̃� are both 𝑝-homogeneous, and therefore the guarantee

|𝐹(𝑥) − �̃�(𝑥)| ⩽ � for 𝐹(𝑥) = 1 already suffices to obtain |𝐹(𝑥) − �̃�(𝑥)| ⩽ �𝐹(𝑥) for all 𝑥 ∈ ℝ𝑛
, meaning

there is no scale dependence.

More generally, for 𝐹 satisfying the hypotheses of Theorem 1.1, the growth assumptions on

𝑓1 , . . . , 𝑓𝑚 allow one to obtain weak guarantees even for 𝐹(𝑥) ∉ [𝑠min , 𝑠max]. For tamer functions

with only a constant number of different scaling regimes, this allows one to avoid the 𝑠max/𝑠min

dependence by applying such scaling arguments and a simple reduction. For the sake of concreteness,

we demonstrate this for the Huber loss (the 𝛾1 function as in (1.2)). A similar argument applies for

all the 𝛾𝑝 functionals.

Lemma 1.5. Consider 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
for 𝑚 ⩾ 2, and 1/𝑚 < � < 1. Denote

𝐹(𝑥) := 𝑤1𝛾1(⟨𝑎1 , 𝑥⟩) + · · · + 𝑤𝑚𝛾𝑚(⟨𝑎𝑚 , 𝑥⟩)
�̃�(𝑥) := �̃�1𝛾1(⟨𝑎1 , 𝑥⟩) + · · · + �̃�𝑚𝛾𝑚(⟨𝑎𝑚 , 𝑥⟩)

for some nonnegative weights 𝑤, �̃� ∈ ℝ𝑚
+ . Suppose that

|𝐹(𝑥) − �̃�(𝑥)| ⩽ �𝐹(𝑥) for 𝑥 ∈ ℝ𝑛
such that 𝑤min ⩽ 𝐹(𝑥) ⩽ 4𝑚2𝑤max ,

where 𝑤max
:= max(max(𝑤),max(�̃�)) and 𝑤min

:= min(𝑤). Then �̃� is a 2�-approximation to 𝐹.

Combining this with an analysis of the weights produced by our construction and the guarantee

of Theorem 1.1 yields the following consequence. The proof of Lemma 1.5 and the next result are

presented in Section 3.4.1.

Corollary 1.6. For every � > 0, the function 𝐹(𝑥) := 𝛾1(⟨𝑎1 , 𝑥⟩) + · · · + 𝛾1(⟨𝑎𝑚 , 𝑥⟩) admits an 𝑠-sparse

�-approximation for

𝑠 ≲
𝑛

�2

(
log𝑚

) (
log

(𝑛
�

log𝑚
))

3

.

Note that our sparsity bound has an 𝑚 dependence, as opposed to the classical cases of ℓ𝑝
sparsification, where sparsity bounds depend only on 𝑛 and �. However, some 𝑚 dependence

is not surprising, as [MMWY22, §4.5] present vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
for which the sum of the

sensitivities (see (1.6)) can grow doubly-logarithmically with 𝑚:

𝑚∑
𝑖=1

max

0≠𝑥∈ℝ𝑛

𝛾1(⟨𝑎𝑖 , 𝑥⟩)
𝐹(𝑥) ≳ 𝑛 log log

𝑚

𝑛
.

[MMWY22] also shows that

∑𝑚
𝑖=1

max0≠𝑥∈ℝ𝑛
𝛾𝑝(⟨𝑎𝑖 ,𝑥⟩)
𝐹(𝑥) ≳ 𝑛 log

𝑚
𝑛 is possible for 𝑝 ∈ [0, 1).

7

1.4 Importance sampling and multiscale weights

Given 𝐹(𝑥) = 𝑓1(⟨𝑎1 , 𝑥⟩)+· · ·+ 𝑓𝑚(⟨𝑎𝑚 , 𝑥⟩), our approach to sparsification is via importance sampling.

Given a probability vector 𝜌 ∈ ℝ𝑚
with 𝜌1 , . . . , 𝜌𝑚 > 0 and 𝜌1 + · · · + 𝜌𝑚 = 1, we sample 𝑀 ⩾ 1

coordinates �1 , . . . , �𝑀 i.i.d. from 𝜌, and define our potential approximator by

�̃�(𝑥) :=
1

𝑀

𝑀∑
𝑗=1

𝑓�𝑗 (⟨𝑎�𝑗 , 𝑥⟩)
𝜌�𝑗

.

One can easily check that this gives an unbiased estimator for every 𝑥 ∈ ℝ𝑛
, i.e., 𝔼[�̃�(𝑥)] = 𝐹(𝑥).

Since we want an approximation guarantee to hold simultaneously for many 𝑥 ∈ ℝ𝑛
, it is natural

to analyze expressions of the form

𝔼 max

𝐹(𝑥)⩽𝑠

��𝐹(𝑥) − �̃�(𝑥)�� .
Analysis of this expression involves the size of discretizations of the set 𝐵𝐹(𝑠) := {𝑥 ∈ ℝ𝑛

: 𝐹(𝑥) ⩽ 𝑠}
at various granularities, as explained in Section 1.6.2. The key consideration (via Dudley’s entropy

inequality, Lemma 1.13) is how well 𝐵𝐹(𝑠) can be covered by cells on which we have uniform control

on how much the terms 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩)/𝜌𝑖 vary within each cell.

The ℓ2 case. Let’s consider the case 𝑓𝑖(𝑧) = |𝑧 |2 so that 𝐹(𝑥) = |⟨𝑎1 , 𝑥⟩|2 + · · · + |⟨𝑎𝑚 , 𝑥⟩|2. Here,

𝐵𝐹(𝑠) = {𝑥 ∈ ℝ𝑛
: ∥𝐴𝑥∥2

2
⩽ 𝑠}, where 𝐴 is the matrix with 𝑎1 , . . . , 𝑎𝑚 as rows.

A cell at scale 2
𝑗
looks like

K𝑗 :=

{
𝑥 ∈ ℝ𝑛

: max

𝑖∈[𝑚]

|⟨𝑎𝑖 , 𝑥⟩|2
𝜌𝑖

⩽ 2
𝑗

}
,

and the pertinent question is how many translates of K𝑗 it takes to cover 𝐵𝐹(𝑠). In the ℓ2 case, this is

the well-studied problem of covering Euclidean balls by ℓ∞ balls.

If 𝑁𝑗 denotes the minimum number of such cells required, then the dual-Sudakov inequality

(see Lemma 1.12 and Corollary 3.3) tells us that

log𝑁𝑗 ≲
𝑠

2
𝑗

log(𝑚)max

𝑖∈[𝑚]

∥(𝐴⊤𝐴)−1/2𝑎𝑖 ∥2
2

𝜌𝑖
.

Choosing 𝜌𝑖 := 1

𝑛 ∥(𝐴⊤𝐴)−1/2𝑎𝑖 ∥2
2
, i.e., normalized leverage scores, yields uniform control on the

size of the coverings:

log𝑁𝑗 ≲
𝑠

2
𝑗
𝑛 log𝑚 .

The ℓ𝑝 case, 1 ⩽ 𝑝 < 2. Consider the case 𝑓𝑖(𝑧) = |𝑧 |𝑝 so that 𝐹(𝑥) = ∥𝐴𝑥∥𝑝𝑝 . A cell at scale 2
𝑗
now

looks like

K𝑗 :=

{
𝑥 ∈ ℝ𝑛

: max

𝑖∈[𝑚]

|⟨𝑎𝑖 , 𝑥⟩|𝑝
𝜌𝑖

⩽ 2
𝑗

}
,

To cover 𝐵𝐹(𝑠) by translates of K𝑗 , we again employ Euclidean balls, and use ℓ𝑝 Lewis weights to

relate the ℓ𝑝 structure to an ℓ2 structure.

8

A classical result of Lewis [Lew79] (see also [BLM89, CP15]) establishes that there are nonnegative

weights 𝑤1 , . . . , 𝑤𝑚 ⩾ 0 such that if𝑊 = diag(𝑤1 , . . . , 𝑤𝑚) and𝑈 := (𝐴⊤𝑊𝐴)1/2, then

𝑤𝑖 =
∥𝑈−1𝑎𝑖 ∥𝑝

2

∥𝑈−1𝑎𝑖 ∥2
2

=
𝑓𝑖(∥𝑈−1𝑎𝑖 ∥2)
∥𝑈−1𝑎𝑖 ∥2

2

. (1.3)

Assuming that𝐴 has full rank, a straightforward calculation gives

∑𝑚
𝑖=1
𝑤𝑖 ∥𝑈−1𝑎𝑖 ∥2

2
= tr(𝑈2𝑈−2) = 𝑛.

Therefore, we can choose 𝜌𝑖 := 1

𝑛𝑤𝑖 ∥𝑈−1𝑎𝑖 ∥2
2

for 𝑖 = 1, . . . , 𝑚, and our cells become

K𝑗 :=

{
𝑥 ∈ ℝ𝑛

: max

𝑖∈[𝑚]
|⟨𝑎𝑖 , 𝑥⟩|𝑝 ⩽

2
𝑗

𝑛
𝑤𝑖 ∥𝑈−1𝑎𝑖 ∥2

2

}
.

(Note that the values {𝑤𝑖 ∥𝑈−1𝑎𝑖 ∥2
2

: 𝑖 = 1, . . . , 𝑚} are typically referred to as the “ℓ𝑝 Lewis weights”.)

If we are trying to use ℓ2-ℓ∞ covering bounds, we face an immediate problem: Unlike in the ℓ2
case, we don’t have prior control on ∥𝑈𝑥∥2 for 𝑥 ∈ 𝐵𝐹(𝑠). One can obtain an initial bound using the

structure of𝑈 = (𝐴⊤𝑊𝐴)1/2:

∥𝑈𝑥∥2
2
=

𝑚∑
𝑖=1

𝑤𝑖 ⟨𝑎𝑖 , 𝑥⟩2
(1.3)

=

𝑚∑
𝑖=1

∥𝑈−1𝑎𝑖 ∥𝑝−2

2
⟨𝑎𝑖 , 𝑥⟩2

=

𝑚∑
𝑖=1

(
|⟨𝑎𝑖 , 𝑥⟩|
∥𝑈−1𝑎𝑖 ∥2

)
2−𝑝
|⟨𝑎𝑖 , 𝑥⟩|𝑝 ⩽ ∥𝑈𝑥∥2−𝑝

2

𝑚∑
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩|𝑝 , (1.4)

where the last inequality is Cauchy-Schwarz: |⟨𝑎𝑖 , 𝑥⟩| = |⟨𝑈−1𝑎𝑖 , 𝑈𝑥⟩| ⩽ ∥𝑈−1𝑎𝑖 ∥2∥𝑈𝑥∥2. This

gives the bound ∥𝑈𝑥∥2 ⩽ ∥𝐴𝑥∥𝑝 ⩽ 𝑠1/𝑝
for 𝑥 ∈ 𝐵𝐹(𝑠).

Problematically, this uniform ℓ2 bound is too weak, but there is a straightforward solution:

Suppose we cover 𝐵𝐹(𝑠) by translates of K𝑗0 . This gives an ℓ∞ bound on the elements of each cell,

meaning that we can apply (1.4) and obtain a better upper bound on ∥𝑈𝑥∥2 for 𝑥 ∈ K𝑗0 . Thus to

cover 𝐵𝐹(𝑠) by translates of K𝑗 with 𝑗 < 𝑗0, we will cover first by translates of K𝑗0 , then cover each

translate (𝑥 + K𝑗0) ∩ 𝐵𝐹(𝑠) by translates of K𝑗0−1, and so on.

The standard approach in this setting (see [BLM89] and [LT11, §15.19]) is to instead use

interpolation inequalities and duality of covering numbers for a cleaner analytic version of such

an iterated covering bound. However, the iterative covering argument can be adapted to the

non-homogeneous setting, as we discuss next.

Generalized linear models. When we move to more general loss functions 𝑓𝑖 : ℝ→ ℝ, we lose the

homogeneity property 𝑓𝑖(�𝑥) = �𝑝 𝑓𝑖(𝑥),� > 0 that holds for ℓ𝑝 losses. Because of this, we need to

replace the single Euclidean structure present in (1.3) (given by the linear operator𝑈) with a family

of structures, one for every relevant scale.

Definition 1.7 (Approximate weights). Fix 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
and loss functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+.

We say that a vector 𝑤 ∈ ℝ𝑚
+ is an 𝛼-approximate weight at scale 𝑠 if

𝑠

𝛼
⩽
𝑓𝑖(∥𝑀−1/2

𝑤 𝑎𝑖 ∥2)
𝑤𝑖 ∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
2

⩽ 𝛼𝑠 , 𝑖 = 1, . . . , 𝑚 , where 𝑀𝑤 :=

𝑚∑
𝑗=1

𝑤 𝑗𝑎 𝑗𝑎
⊤
𝑗 . (1.5)

9

To motivate this definition, let us define scale-specific sentivities:

�𝑖(𝑠) := max

{
𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩)
𝐹(𝑥) : 𝑥 ∈ ℝ𝑛 , 𝐹(𝑥) ∈ [𝑠/2, 𝑠]

}
, 𝑖 = 1, . . . , 𝑚 . (1.6)

As shown in Corollary 2.3, if the functions { 𝑓𝑖} are lower �-homogeneous, upper 2-homogeneous,

and 𝑂(1)-symmetric (in the sense of (P3)), then an 𝛼-approximate weight at scale 𝑠 allows us to

upper bound sensitivies by leverage scores:

�𝑖(𝑠) ≲ 𝜎𝑖(𝑊1/2𝐴) , (1.7)

where 𝑊 = diag(𝑤1 , . . . , 𝑤𝑚), and the implicit constant depends on 𝛼 and the homogeneity

parameters. Here, 𝜎𝑖(𝑉) denotes the 𝑖th leverage score of a matrix 𝑉 with rows 𝑣1 , . . . , 𝑣𝑚 :

𝜎𝑖(𝑉) := ⟨𝑣𝑖 , (𝑉⊤𝑉)+𝑣𝑖⟩ ,

where (𝑉⊤𝑉)+ denotes the Moore-Penrose pseudoinverse. Notably, one always has 𝜎1(𝑉) + · · · +
𝜎𝑚(𝑉) = rank(𝑉), and therefore (1.7) gives an upper bound �1(𝑠) + · · · + �𝑚(𝑠) ≲ 𝑛.

In order to generalize the iterated covering argument for ℓ𝑝 losses, we need there to be a

relationship between weights at different scales.

Definition 1.8 (Weight schemes). Let 𝒥 ⊆ ℤ be a contiguous interval. A family {𝑤(𝑗) ∈ ℝ𝑚
+ : 𝑗 ∈ 𝒥}

is an 𝛼-approximate weight scheme if each 𝑤(𝑗) is an 𝛼-approximate weight at scale 2
𝑗
and, furthermore,

for every pair 𝑗 , 𝑗 + 1 ∈ 𝒥 and 𝑖 ∈ {1, . . . , 𝑚},

𝑤
(𝑗+1)
𝑖
⩽ 𝛼𝑤

(𝑗)
𝑖
. (1.8)

Given a weight scheme, we choose sampling probabilities

𝜌𝑖 ∝ max

𝑗∈𝒥
𝑤
(𝑗)
𝑖
∥𝑀−1/2

𝑤(𝑗)
𝑎𝑖 ∥2

2
= max

𝑗∈𝒥
𝜎𝑖(𝑊1/2

𝑗
𝐴) , 𝑖 = 1, . . . , 𝑚 ,

where 𝑊𝑗 = diag(𝑤(𝑗)
1
, . . . , 𝑤

(𝑗)
𝑚). In our setting, |𝒥 | ⩽ 𝑂(log(𝑚𝑠max/𝑠min)), which results in the

sparsity increasing by a corresponding factor.

In Section 2, we establish the existence of approximate weight schemes for general families of

loss functions satisfying certain growth bounds, along with efficient algorithms to compute the

corresponding weights.

1.5 Regression via iterative refinement

Previous works have observed that combining iterative refinement with sparsification of 𝛾𝑝-functions

(recall (1.2)) leads to improved algorithms for ℓ𝑝-regression [AKPS19b, ABKS21, GPV21]. For the

benefit of the reader, we give a description of these ideas in somewhat more generality.

Recall that our goal is to find a point 𝑥 ∈ ℝ𝑛
that computes an approximate minimizer of

𝐹(𝑥) :=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖), up to high accuracy. For now, we assume that 𝐹 is a differentiable

convex function and denote 𝐹∗ := inf𝑥∈ℝ𝑛 𝐹(𝑥). Later, we will introduce additional conditions that

allow for iterative refinement to succeed.

10

Broadly, iterative refinement minimizes 𝐹(𝑥) be repeatedly solving sub-problems, each of which

make multiplicative progress in reducing the error of the current solution. Given a current point 𝑥0,

prior works on iterative refinement define a local approximation of 𝐹 suitably symmetrized and

centered around 𝑥0 such that approximately minimizing this local approximation yields the desired

decrease in function error. One way to derive such local approximations is through Bregman

divergences, which give a natural way of recentering convex functions.

Definition 1.9 (The 𝐹-divergence). For 𝑥, 𝑦 ∈ ℝ𝑛
, use 𝑇𝐹𝑥 (𝑦) := 𝐹(𝑥) + ∇𝐹(𝑥)⊤(𝑦 − 𝑥) to denote

the first order Taylor approximation of 𝐹 at 𝑥, and define the 𝐹-induced Bregman divergence by

𝐷𝐹
𝑥 (𝑦) := 𝐹(𝑦) − 𝑇𝐹𝑥 (𝑦).

Note that for convex 𝐹, the function 𝐷𝐹
𝑥 (𝑦) is convex and minimized at 𝑥. Consequently, given a

point 𝑥0, the function 𝐷𝐹
𝑥0

(𝑦) is a natural function induced by 𝐹 and minimized at 𝑥0. Note that

minimizing 𝐹(𝑥) is the same as minimizing ⟨∇𝐹(𝑥0), 𝑥 − 𝑥0⟩ + 𝐷𝐹
𝑥0

(𝑥)which in turn is the same as

minimizing ⟨∇𝐹(𝑥),Δ⟩ + 𝐷𝐹
𝑥0

(𝑥0 + Δ) over Δ and adding the minimizer to 𝑥0.

Iterative refinement strategies approximately minimize ⟨∇𝐹(𝑥),Δ⟩ + 𝑟(Δ), where 𝑟(Δ) is a

suitable approximation of 𝐷𝐹
𝑥0

(𝑥0 + Δ). One step of refinement moves to 𝑥1
:= 𝑥0 + �Δ̃, where � is a

suitably chosen step-size and Δ̃ is the approximate minimizer. As motivation for our approach,

here we consider the scheme suggested by prior work, where 𝑟(Δ) is a sparsification of a simple

approximation to the divergence.

Informally, one can show that if the square root of the Bregman divergence of each 𝑓𝑖 is

𝐿-auto-Lipschitz (P1) and lower �-homogeneous for some � > 1 (P2), then one step of sparsifica-

tion/refinement decreases the error in the objective value multiplicatively by an absolute constant.

Interestingly, auto-Lipschitzness is only required for sparsification and not for refinement. However,

we critically need the Bregman divergence to be lower �-homogeneous for � > 1 for iterative

refinement, while our sparsification results (Theorem 1.1) only require � > 0.

Lemma 1.10 (Refinement Lemma). Suppose 𝑟 : ℝ𝑛 → ℝ+ is lower �-homogeneous with constant 𝑐 < 1

for � > 1, and for 𝑥0 ∈ ℝ𝑛
and all Δ ∈ ℝ𝑛

and � ∈ [0, 1],

𝑟(Δ) ⩽ 𝐷𝐹
𝑥0

(𝑥0 + Δ) ⩽ 𝛼 𝑟(Δ)

where 𝛼 ⩾ 1 is fixed. Then infΔ∈ℝ𝑛

{
𝑇𝐹𝑥0

(𝑥0 + Δ̂) + 𝑟(Δ̂)
}
⩽ 𝐹∗ and if Δ̂ ∈ ℝ𝑛

satisfies

𝑇𝐹𝑥0

(𝑥0 + Δ̂) + 𝑟(Δ̂) ⩽ 𝐹∗ , (1.9)

then

𝐹(𝑥0 + �̂Δ̂) − 𝐹∗ ⩽ (1 − �̂) (𝑓 (𝑥0) − 𝐹∗) , where �̂ := (𝛼/𝑐)−1/(𝑞−1) . (1.10)

Proof. First note that, for all Δ ∈ ℝ𝑛
,

𝐹(𝑥0 + Δ) = 𝑇𝐹𝑥0

(𝑥0 + Δ) + 𝐷𝐹
𝑥0

(𝑥0 + Δ) . (1.11)

Since, 𝐷𝐹
𝑥0

(𝑥0 + Δ) ⩾ 𝑟(Δ) this implies the desired bound

inf

Δ∈ℝ𝑛

{
𝑇𝐹𝑥0

(𝑥0 + Δ) + 𝑟(Δ)
}
⩽ inf

Δ∈ℝ𝑛
𝐹(𝑥0 + Δ) = 𝐹∗ .

11

Next, note that for all � ∈ [0, 1] and Δ ∈ ℝ𝑛
,

𝑇𝐹𝑥0

(𝑥0 + �Δ) = 𝐹(𝑥0) + �∇𝐹(𝑥0)⊤Δ = (1 − �)𝐹(𝑥0) + �𝑇𝐹𝑥0

(𝑥0 + Δ) (1.12)

𝐷𝐹
𝑥0

(𝑥0 + �Δ) ⩽ 𝛼𝑟(�Δ) ⩽ 𝛼/𝑐 · ��𝑟(Δ) (1.13)

Suppose that Δ̂ ∈ ℝ𝑛
satisfies (1.9). Then plugging (1.12) and (1.13) into (1.11) with Δ = �̂Δ̂ yields

𝐹(𝑥0 + �̂Δ̂) ⩽ (1 − �̂)𝐹(𝑥0) + �̂𝑇𝐹𝑥0

(𝑥0 + Δ̂) + 𝛼/𝑐 · �̂�𝑟(Δ̂)

= (1 − �̂)𝐹(𝑥0) + �̂
(
𝑇𝐹𝑥0

(𝑥0 + Δ̂) + 𝑟(Δ̂)
)
⩽ (1 − �̂)𝐹(𝑥0) + �̂𝐹∗

where we used that 𝛼/𝑐 · �̂�−1 = 1 and �̂ ∈ [0, 1]. Rearranging yields (1.10). □

To apply Lemma 1.10 to ERM for general linear models, note that

𝐷𝐹
𝑥0

(𝑥0 + Δ) =
𝑚∑
𝑖=1

𝐷
𝑓𝑖
⟨𝑎𝑖 ,𝑥0⟩−𝑏𝑖 (⟨𝑎𝑖 ,Δ⟩) .

Now, if the square root of each divergence 𝐷
𝑓𝑖
𝑧 is 𝐿-auto-Lipschitz and lower �-homogeneous, then

Theorem 1.1 gives weights 𝑤 ∈ ℝ𝑚
+ with sparsity �̃�(𝑛) such that

0.9 · 𝐷𝐹
𝑥0

(𝑥0 + Δ) ⩽ 𝑟(Δ) ⩽ 𝐷𝐹
𝑥0

(𝑥0 + Δ) where 𝑟(Δ) :=

𝑚∑
𝑖=1

𝑤𝑖𝐷
𝑓𝑖
⟨𝑎𝑖 ,𝑥0⟩−𝑏𝑖 (⟨𝑎𝑖 ,Δ⟩).

Thus, Lemma 1.10 applies, and we can decrease the objective value error by a multiplicative factor

by minimizing 𝑟(Δ). Since 𝑟(Δ) only has �̃�(𝑛) nonzero terms, one can apply previous solvers for

𝑚 = �̃�(𝑛) [LSZ19a, AKPS19b] to obtain the desired runtimes.

In Section 4.2, we verify that the 𝑓 -divergence of 𝑓 (𝑧) = |𝑧 |𝑝 is the 𝛾𝑝 function, which is lower

𝑝-homogeneous, and has an auto-Lipschitz square root. This yields our algorithm for ℓ𝑝 regression

(Theorem 1.2). A formal version of the argument is presented in Section 4. The main difference is

that some technical work is needed because Theorem 1.1 only provides sparsification for a range

of inputs {𝑥 ∈ ℝ𝑛
: 𝑠min ⩽ 𝐹(𝑥) ⩽ 𝑠max}. Moreover, our algorithm uses an approximate oracle for

GLMs (Definition 4.2) with the functions { 𝑓𝑖} (rather than with the approximate divergence 𝑟(·)),
and we show that the oracle does not need to be solved to high accuracy to make sufficient progress.

1.6 Preliminaries

Throughout the paper, we denote [𝑛] := {1, 2, . . . , 𝑛}. We use the notation 𝑎 ≲ 𝑏 to denote that

there is a universal constant 𝐶 such that 𝑎 ⩽ 𝐶𝑏, and 𝑎 ≲𝐿 𝑏 to denote that 𝐶 may depend on 𝐿. We

use 𝑎 ≍ 𝑏 to denote the conjunction of 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎, and 𝑎 ≍𝐿 𝑏 analogously. We also denote

ℝ+ := {𝑥 ∈ ℝ : 𝑥 ⩾ 0} and ℝ++ := {𝑥 ∈ ℝ : 𝑥 > 0}.
For simplicity of presentation, we assume that the vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛

in (1.1) span ℝ𝑛
and

all are nonzero. In particular, this means that the matrix 𝐴 with rows 𝑎1 , . . . , 𝑎𝑚 has rank 𝑛 and

𝐴⊤𝑊𝐴 is invertible for any diagonal matrix𝑊 with strictly positive entries on the diagonal.

12

1.6.1 Covering numbers and chaining

Consider a metric space (𝑇, 𝑑). For 𝑥 ∈ 𝑇 and 𝑟 > 0, define the ball 𝐵(𝑥, 𝑟) := {𝑦 ∈ 𝑇 : 𝑑(𝑥, 𝑦) ⩽ 𝑟}.

Definition 1.11 (Covering numbers). For a radius 𝑟 > 0, we define the covering number𝒩(𝑇, 𝑑, 𝑟)
as the smallest number of balls of radius 𝑟 (in the distance 𝑑) that are required to cover 𝑇. For

𝑆, 𝑆′ ⊆ ℝ𝑛
, we overload notation and use𝒩(𝑆, 𝑆′) to denote the smallest number of translates of 𝑆′

needed to cover 𝑆.

We require the following “dual Sudakov inequality” (see [PT85] and [LT11, (3.15)]) which gives

bounds for covering the Euclidean ball using balls in an arbitrary norm.

Lemma 1.12 (Dual Sudakov inequality). Let 𝐵𝑛
2

denote the unit ball in 𝑛 dimensions, and ∥ · ∥𝑋 an

arbitrary norm on ℝ𝑛
. If 𝒈 is a standard 𝑛-dimensional Gaussian, then√

log𝒩(𝐵𝑛
2
, 𝐵𝑋) ≲ 𝔼 ∥𝒈∥𝑋 ,

where 𝐵𝑋 := {𝑦 ∈ ℝ𝑛
: ∥𝑦∥𝑋 ⩽ 1}.

We recall Talagrand’s generic chaining functional [Tal14, Def. 2.2.19]:

𝛾2(𝑇, 𝑑) := inf

{𝒜ℎ}
sup

𝑥∈𝑇

∞∑
ℎ=0

2
ℎ/2

diam(𝒜ℎ(𝑥), 𝑑) ,

where the infimum runs over all sequences {𝒜ℎ : ℎ ⩾ 0} of partitions of 𝑇 satisfying |𝒜ℎ | ⩽ 2
2
ℎ

for

each ℎ ⩾ 0. Note that we use the notation𝒜ℎ(𝑥) for the unique set of𝒜ℎ that contains 𝑥.

The chaining functional is used to control the maximum of subgaussian processes (see, e.g., the

discussion in [JLLS23, §2.2] where it is applied precisely in the setting of sparsification). Our use of

the functional occurs only in the statement of Lemma 1.14 below, and in this paper we will only

require the following classical upper bound. (See, eg., [Tal14, Prop 2.2.10].)

Lemma 1.13 (Dudley’s entropy bound). For any metric space (𝑇, 𝑑), it holds that

𝛾2(𝑇, 𝑑) ≲
∑
𝑗∈ℤ

2
𝑗
√

log𝒩(𝑇, 𝑑, 2𝑗) .

The interested reader will note that this is (up to constants) precisely the upper bound one obtains

by choosing𝒜ℎ as a uniform discretization of (𝑇, 𝑑), i.e., to minimize sup{diam(𝒜ℎ(𝑥), 𝑑) : 𝑥 ∈ 𝑇}
over all partitions satisfying |𝒜ℎ | ⩽ 2

2
ℎ
.

1.6.2 Sparsification via subgaussian processes

We discuss sparsification via subgaussian processes. Consider 𝜑1 , 𝜑2 , . . . , 𝜑𝑚 : ℝ𝑛 → ℝ, and define

𝐹(𝑥) :=

𝑚∑
𝑗=1

𝜑 𝑗(𝑥) .

13

Given a strictly positive probability vector 𝜌 ∈ ℝ𝑚
++, and an integer 𝑠 ⩾ 1 and � = (�1 , . . . , �𝑠) ∈ [𝑚]𝑠 ,

define the distance

𝑑𝜌,�(𝑥, 𝑦) :=
©«

𝑠∑
𝑗=1

(
𝜑�𝑗 (𝑥) − 𝜑�𝑗 (𝑦)

𝜌�𝑗 𝑠

)2ª®¬
1/2

.

and the function �̃�𝜌,� : ℝ𝑛 → ℝ

�̃�𝜌,�(𝑥) :=
1

𝑠

𝑠∑
𝑗=1

𝜑�𝑗 (𝑥)
𝜌�𝑗

.

We require the following lemma which employs a variant of a standard symmetrization argument

to control 𝔼max𝑥∈Ω |𝐹(𝑥) − �̃�𝜌,𝝂(𝑥)| using an associated Bernoulli process (see, for example, [Tal14,

Lem 9.1.11]). For a subset Ω ⊆ ℝ𝑛
, denote ∥𝐹∥𝐶(Ω) := sup𝑥∈Ω |𝐹(𝑥)|. The reader will note our typical

application of the lemma to sets of the form Ω = {𝑥 ∈ ℝ𝑛
: 𝐹(𝑥) ⩽ �} for some parameter � > 0.

Lemma 1.14 ([JLLS23, Lemma 2.6]). Consider 𝑠 ⩾ 1, a subset Ω ⊆ ℝ𝑛
, and a probability vector 𝜌 ∈ ℝ𝑚

+ .

Assume that

∃𝑥0 ∈ Ω s.t. 𝜑1(𝑥0) = · · · = 𝜑𝑚(𝑥0) = 0 .

Suppose, further, that for some 0 < 𝛿 ⩽ 1, and every � ∈ [𝑚]𝑠 , it holds that

𝛾2(Ω, 𝑑𝜌,�) ⩽ 𝛿
(
∥𝐹∥𝐶(Ω)

�̃�𝜌,�𝐶(Ω))1/2
.

If 𝝂1 , . . . , 𝝂𝑠 are sampled independently from 𝜌, then

𝔼max

𝑥∈Ω

��𝐹(𝑥) − �̃�𝜌,𝝂(𝑥)�� ≲ 𝔼
[
𝛾2(Ω, 𝑑𝜌,𝝂)

]
⩽ 8𝛿 ∥𝐹∥𝐶(Ω) .

If it also holds that, for all � ∈ [𝑚]𝑠 ,

diam(Ω, 𝑑𝜌,�) ⩽ �̂�
(
∥𝐹∥𝐶(Ω)

�̃�𝜌,�𝐶(Ω))1/2
,

then there is a universal constant 𝐾 > 0 such that for all 0 ⩽ 𝑡 ⩽ 1

2𝐾 �̂�
,

ℙ

(
max

𝑥∈Ω

��𝐹(𝑥) − �̃�𝜌,𝝂(𝑥)�� > 𝐾(𝛿 + 𝑡 �̂�) ∥𝐹∥𝐶(Ω)
)
⩽ 𝑒−𝐾𝑡

2/4.

2 Multiscale importance scores

Recall the definitions of approximate weights (Definition 1.7) and weight schemes (Definition 1.8).

In the present section, we prove the following two results.

Theorem 2.1. Suppose that 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+ are lower �-homogeneous and upper 𝑢-homogeneous

with 𝑢 > � > 0 and uniform constants 𝑐, 𝐶 > 0. Then there is some 𝛼 = 𝛼(�, 𝑐, 𝑢, 𝐶) > 1 such that for

every choice of vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
and 𝑠 > 0, there is an 𝛼-approximate weight at scale 𝑠.

14

This is proved in Section 2.2 by considering critical points of the functional𝑈 ↦→ det(𝑈) subject

to the constraint 𝐺(𝑈) ⩽ 𝑠, where 𝐺(𝑈) := 𝑓1(∥𝑈𝑎1∥2) + · · · + 𝑓𝑚(∥𝑈𝑎𝑚 ∥2), which can be seen as a

generalization of Lewis’ original method.

Single-scale sensitivities. Let us now observe that, in the case 𝑢 ⩽ 2, Theorem 2.1 allows us to

bound sensitivities (recall (1.6)). The next lemma is a generalization of (1.4).

Lemma 2.2. Suppose 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+ satisfy the assumptions of Theorem 2.1 with 𝑢 ⩽ 2, and they

are additionally 𝐾-symmetric in the sense of (P3). If 𝑤 ∈ ℝ𝑚
+ is an 𝛼-approximate weight at scale 𝑠, then for

any 𝑥 ∈ ℝ𝑛
, it holds that

∥𝑀1/2
𝑤 𝑥∥�

2
⩽ max

(
1, 𝛼

𝐶𝐾

𝑐

𝐹(𝑥)
𝑠

)
.

Proof. We may clearly assume that ∥𝑀1/2
𝑤 𝑥∥2 ⩾ 1. Then using the Cauchy-Schwarz inequality

|⟨𝑎𝑖 , 𝑥⟩| ⩽ ∥𝑀−1/2
𝑤 𝑎𝑖 ∥2∥𝑀1/2

𝑤 𝑥∥2 together with the upper quadratic growth assumption gives

𝑓𝑖(|⟨𝑎𝑖 , 𝑥⟩|)
|⟨𝑎𝑖 , 𝑥⟩|2

⩾
1

𝐶

𝑓𝑖(∥𝑀1/2
𝑤 𝑥∥2∥𝑀−1/2

𝑤 𝑎𝑖 ∥2)
∥𝑀1/2

𝑤 𝑥∥2
2
∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
2

⩾
𝑐

𝐶

∥𝑀1/2
𝑤 𝑥∥�

2
𝑓𝑖(∥𝑀−1/2

𝑤 𝑎𝑖 ∥2)

∥𝑀1/2
𝑤 𝑥∥2

2
∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
2

, (2.1)

where the last inequality uses the lower growth assumption.

Using 𝑀𝑤 =
∑𝑚
𝑖=1
𝑤𝑖𝑎𝑖𝑎

⊤
𝑖

, we can bound

∥𝑀1/2
𝑤 𝑥∥2

2
=

𝑚∑
𝑖=1

𝑤𝑖 ⟨𝑎𝑖 , 𝑥⟩2
(2.1)

⩽
𝐶

𝑐
∥𝑀1/2

𝑤 𝑥∥2−�
2

𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖(|⟨𝑎𝑖 , 𝑥⟩|)
∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
2

𝑓𝑖(∥𝑀−1/2
𝑤 𝑎𝑖 ∥2)

⩽ 𝛼
𝐶𝐾

𝑐

1

𝑠
∥𝑀1/2

𝑤 𝑥∥2−�
2

𝑚∑
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) ,

where the last inequality uses the defining property of an 𝛼-approximate weight at scale 𝑠, along

with the assumption of 𝐾-symmetry: 𝑓𝑖(|⟨𝑎𝑖 , 𝑥⟩|) ⩽ 𝐾 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) for all 𝑖 = 1, . . . , 𝑚. □

Corollary 2.3 (Sensitivity upper bound). Under the assumptions of Lemma 2.2, it holds that

�1(𝑠) + · · · + �𝑚(𝑠) ≲ 𝑛 ,

where the implicit constant depends on the parameters 𝛼, �, 𝐶, 𝑐, 𝐾.

Proof. From Lemma 2.2, if 𝐹(𝑥) ⩽ 𝑠, then ∥𝑀1/2
𝑤 𝑥∥2 ⩽ (𝛼𝐶𝐾/𝑐)1/�. By Cauchy-Schwarz, this gives

|⟨𝑎𝑖 , 𝑥⟩| ⩽ (𝛼𝐶𝐾/𝑐)1/�∥𝑀−1/2
𝑤 𝑎𝑖 ∥2, and therefore

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) ⩽ 𝐾 𝑓𝑖(|⟨𝑎𝑖 , 𝑥⟩|) ⩽
𝐾

𝑐
𝑓𝑖

(
(𝛼𝐶𝐾/𝑐)1/�∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
)

⩽
𝐶𝐾

𝑐

(
𝛼𝐶𝐾
𝑐

)
2/�

𝑓𝑖(∥𝑀−1/2
𝑤 𝑎𝑖 ∥2) ⩽

𝛼𝐶𝐾
𝑐

(
𝛼𝐶𝐾
𝑐

)
2/�

𝑠 · 𝑤𝑖 ∥𝑀−1/2
𝑤 𝑎𝑖 ∥2

2
,

where the first inequality uses 𝐾-symmetry, the second uses 1/𝑐-monotonicity (which holds by

Lemma 1.4), the third inequality uses upper homogeneity, and the last inequality uses that 𝑤 is

an 𝛼-approximate weight at scale 𝑠. Finally, one notes that

∑𝑚
𝑖=1
𝑤𝑖 ∥𝑀−1/2

𝑤 𝑎𝑖 ∥2
2
= tr

(
𝑀−1

𝑤 𝑀𝑤

)
= 𝑛,

completing the proof. □

15

We are only able to establish the existence of entire weight schemes (where the weights at

adjacent scales are related) for 𝑢 < 4, which suffices our applications, as 𝑢 ⩽ 2 is a requirement for

Theorem 1.1. The following theorem is proved in Section 2.1, based on the contractive iteration

method introduced by Cohen and Peng [CP15].

Theorem 2.4. Suppose that 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+ are lower �-homogeneous and upper 𝑢-homogeneous

with 4 > 𝑢 > � > 0 and uniform constants 𝑐, 𝐶 > 0. Then there is some 𝛼 = 𝛼(𝑢, 𝐶, �, 𝑐) such that for

every choice of vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
, there is an 𝛼-approximate weight scheme {𝑤(𝑗)

𝑖
: 𝑗 ∈ ℤ}.

In the next section, we show how to compute an approximate weight scheme {𝑤(𝑗)
𝑖

: 𝑗 ∈ 𝒥} using

�̃�(|𝒥 |) computations of leverage scores (𝜎1(𝑉), . . . , 𝜎𝑚(𝑉)) for matrices of the form 𝑉 = 𝐴⊤𝑊𝐴.

2.1 Contractive algorithm

For a weight 𝑤 ∈ ℝ𝑚
+ and 𝑖 ∈ {1, . . . , 𝑚}, define

𝜏𝑖(𝑤) :=
𝜎𝑖(𝑊1/2𝐴)

𝑤𝑖
= ⟨𝑎𝑖 , (𝐴⊤𝑊𝐴)−1𝑎𝑖⟩ , 𝑊 := diag(𝑤1 , . . . , 𝑤𝑚) ,

and denote 𝜏(𝑤) := (𝜏1(𝑤), . . . , 𝜏𝑚(𝑤)).
Fix a scale parameter 𝑠 > 0 and define the iteration 𝜑𝑠 : ℝ𝑚

+ → ℝ𝑚
+ by

(𝜑𝑠(𝑤))𝑖 :=
1

𝑠

𝑓𝑖(
√
𝜏𝑖(𝑤))

𝜏𝑖(𝑤)
. (2.2)

Write 𝜑𝑘
:= 𝜑 ◦ · · · ◦ 𝜑 for the 𝑘-fold composition of 𝜑. In this case where 𝑓𝑖(𝑧) = |𝑧 |𝑝 and 1 ⩽ 𝑝 ⩽ 2,

it is known, for 𝑠 = 1, starting from any 𝑤0 ∈ ℝ𝑚
+ , the sequence {𝜑𝑘

1
(𝑤0) : 𝑘 ⩾ 1} converges to the

unique fixed point of 𝜑, which are the corresponding ℓ𝑝 Lewis weights (1.3).

Define now a metric 𝑑 on ℝ𝑚
+ by

𝑑(𝑢, 𝑤) := max

{����log

𝑢𝑖

𝑤𝑖

���� : 𝑖 = 1, . . . , 𝑚

}
.

We note the following characterization.

Fact 2.5. A vector 𝑤 ∈ ℝ𝑚
+ is an 𝛼-approximate weight at scale 𝑠 if and only if

𝑑(𝑤, 𝜑𝑠(𝑤)) ⩽ log 𝛼 .

First, we observe that 𝜏 is 1-Lipschitz on (ℝ𝑚
+ , 𝑑). In the next proof, ⪯ denotes the ordering

of two real, symmetric matrices in the Loewner order, i.e., 𝐴 ⪯ 𝐵 if and only if 𝐵 − 𝐴 is positive

semi-definite.

Lemma 2.6. For any 𝑤, 𝑤′ ∈ ℝ𝑚
+ , it holds that 𝑑(𝜏(𝑤), 𝜏(𝑤′)) ⩽ 𝑑(𝑤, 𝑤′).

Proof. Denote 𝑊 = diag(𝑤),𝑊 ′ = diag(𝑤′), and 𝛼 := exp(𝑑(𝑤, 𝑤′)). Then 𝛼−1𝑊 ⪯ 𝑊 ′ ⪯ 𝛼𝑊 ,

therefore 𝛼−1𝐴⊤𝑊𝐴 ⪯ 𝐴⊤𝑊 ′𝐴 ⪯ 𝛼𝐴⊤𝑊𝐴, and by monotonicity of the matrix inverse in the

Loewner order, 𝛼−1(𝐴⊤𝑊𝐴)−1 ⪯ (𝐴⊤𝑊 ′𝐴)−1 ⪯ 𝛼(𝐴⊤𝑊𝐴)−1
. This implies 𝑑(𝜏(𝑤), 𝜏(𝑤′)) ⩽ log 𝛼,

completing the proof. □

16

Proof of Theorem 2.4. Consider the map 𝜓 : ℝ𝑚
+ → ℝ𝑚

+ whose 𝑖-th coordinate is defined as

𝜓𝑖(𝑥) :=
𝑓𝑖(
√
𝑥𝑖)

𝑥𝑖
.

Our assumptions on lower and upper-homogeneity give, for all 𝑦𝑖 ⩾ 𝑥𝑖 ,

𝑐

(
𝑦𝑖

𝑥𝑖

)�/2−1

⩽
𝑓𝑖(
√
𝑦𝑖)/𝑦𝑖

𝑓𝑖(
√
𝑥𝑖)/𝑥𝑖

⩽ 𝐶

(
𝑦𝑖

𝑥𝑖

)𝑢/2−1

,

yielding, for 𝐶1
:= max{𝐶, 1/𝑐},

𝑑(𝜓(𝑥),𝜓(𝑦)) ⩽ max

(�����
2

− 1

���� , ���𝑢
2

− 1

���) 𝑑(𝑥, 𝑦) + log(𝐶1) . (2.3)

Fix 𝑠 > 0 and consider the mapping 𝜑 : ℝ𝑚
+ → ℝ𝑚

+ defined in (2.2). Then for 𝑢 < 4 and

𝛿 := max

(���
2
− 1

�� , ��𝑢
2
− 1

��) < 1, (2.3) in conjunction with Lemma 2.6, shows that

𝑑(𝜑𝑠(𝑤), 𝜑𝑠(𝑤′)) < 𝛿 𝑑(𝑤, 𝑤′) + log(𝐶1) . (2.4)

Applying this bound inductively, for any weight 𝑤 ∈ ℝ𝑚
+ and 𝑘 ⩾ 1, we have

𝑑
(
𝜑𝑘
𝑠 (𝑤), 𝜑𝑘+1

𝑠 (𝑤)
)
⩽

𝛿𝑘𝑑(𝜑𝑠(𝑤), 𝑤) + log𝐶1

1 − 𝛿
, (2.5)

Now define

𝑤(0) := 𝜑𝑘
1
(1, . . . , 1) ,

where 𝑘 ⩾ 1 is chosen large enough so that 𝑑(𝑤(0) , 𝜑1(𝑤(0))) ⩽ 2 log𝐶1

1−𝛿 . From Fact 2.5, one sees that

𝑤(0) is an 𝛼-approximate weight at scale 1 for 𝛼 = 𝐶
2/(1−𝛿)
1

.

Define inductively, for 𝑗 = 1, 2, . . .,

𝑤(𝑗) := 𝜑
2
𝑗 (𝑤(𝑗−1))

𝑤(−𝑗) := 𝜑
2
−𝑗 (𝑤(1−𝑗)) .

Note that

𝑑(𝜑
2
𝑗 (𝑤(𝑗)), 𝑤(𝑗)) = 𝑑(𝜑2

2
𝑗 (𝑤(𝑗−1)), 𝜑

2
𝑗 (𝑤(𝑗−1)))

⩽ 𝛿𝑑(𝜑
2
𝑗 (𝑤(𝑗−1)), 𝑤(𝑗−1)) + log(𝐶1)

⩽ 𝛿𝑑(𝜑
2
𝑗−1(𝑤(𝑗−1)), 𝑤(𝑗−1)) + 𝛿 log(2) + log(𝐶1) ,

where the last inequality uses 𝜑2𝑠(𝑤) = 2𝜑𝑠(𝑤) for all 𝑤 ∈ ℝ𝑚
+ .

Therefore, by induction, 𝑑(𝜑
2
𝑗 (𝑤(𝑗)), 𝑤(𝑗)) ⩽ 2 log(𝐶1)+log 2

1−𝛿 for all 𝑗 > 0. To see that the family of

weights {𝑤(𝑗) : 𝑗 ∈ ℤ} forms a weight scheme, note that

𝑑(𝑤(𝑗) , 𝑤(𝑗−1)) = 𝑑(𝜑
2
𝑗 (𝑤(𝑗−1)), 𝑤(𝑗−1)) ⩽ 𝑑(𝜑

2
𝑗 (𝑤(𝑗−1)), 𝑤(𝑗−1)) + log 2 ,

thus {𝑤(𝑗) : 𝑗 ∈ ℤ} is an 𝛼-approximate weight scheme for 𝛼 =
2 log(2𝐶1)

1−𝛿 , completing the proof. □

17

2.1.1 Efficient implementation of the iteration

In this section we give an efficient algorithm for implementing the iteration (2.2). The primary diffi-

cult is that we need to exhibit convergence even when the iterates are only computed approximately.

For convenience, we use the notation 𝑥 ≈𝛼 𝑦 to denote that 𝛼−1 ⩽ |𝑥/𝑦 | ⩽ 𝛼.

Theorem 2.7 (Algorithm for weight construction). Algorithm 2 takes as input functions 𝑓1 , . . . , 𝑓𝑚 :

ℝ→ ℝ+ are lower �-homogeneous with constant 𝑐 (P2) and upper 𝑢-homogeneous with constant 𝐶 (P5),

for some � > 0 and 𝑢 < 4, vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
, integers 𝑗min < 𝑗max, and 𝑤◦ ∈ ℝ𝑚

+ that satisfies

𝑑(𝜑
2
𝑗max (𝑤◦), 𝑤◦) ⩽ 𝛽. (2.6)

For some 𝛼 = 𝛼(�, 𝑢, 𝑐, 𝐶), the algorithm returns an 𝛼-approximate weight scheme {𝑤(𝑗)
𝑖

: 𝑗 ∈ 𝒥} with

𝒥 = ℤ ∩ [𝑗min , 𝑗max], and succeeds with high probability in time

�̃��,𝑢,𝑐,𝐶
(
(nnz(𝑎1 , . . . , 𝑎𝑚) + 𝑛𝜔 + 𝑚𝒯eval)

(
|𝒥 | + log max{𝛽, 1}

))
.

The algorithm proceeds along an iterative procedure akin to (2.2). At each step, the weights are

updated by computing approximate leverage scores of a matrix 𝐴⊤𝑊𝐴.

Theorem 2.8 (Leverage score approximation, [SS11, LMP13, CLM
+
15]). There is an algorithm

LevApprox(𝐴,𝑊, �) that takes a matrix 𝐴 ∈ ℝ𝑚×𝑛
, a non-negative diagonal matrix 𝑊 , and � > 0,

and produces (1 + �)-approximations �̃�𝑖 ≈1+� 𝑤𝑖𝑎⊤𝑖 (𝐴⊤𝑊𝐴)−1𝑎𝑖 for all 𝑖 ∈ [𝑚], in �̃�(�−2(nnz(𝐴) +
𝑛𝜔) log(1/𝛿)) time, with probability at least 1 − 𝛿.

Algorithm 1: Iterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑤, 𝑠, �)
input :Functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+, vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛

, weights 𝑤 ∈ ℝ𝑚
+ , a scale

𝑠 ∈ ℝ+, and � ∈ ℝ+.
1 �̃�← LevApprox(𝐴,𝑊, �).

2 𝑤 𝑖 ← 1

𝑠

𝑓𝑖(
√

�̃�𝑖/𝑤𝑖)
�̃�𝑖/𝑤𝑖 for 𝑖 = 1, . . . , 𝑚.

3 return 𝑤.

Algorithm 1 called with � = 0 is able to directly implement the iteration (2.2). We now show

that Iterate remains approximately contracting for � > 0.

Let 𝜑1 , . . . , 𝜑𝑚 and 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
be given as in Theorem 2.7, and define the function

�̃�𝑠,� : ℝ𝑚
+ → ℝ𝑚

+ by

�̃�𝑠,�(𝑤) :=
1

𝑠

𝑓𝑖(
√
�̃�𝑖/𝑤𝑖)

�̃�𝑖/𝑤𝑖
, where �̃�𝑖 ≈1+� 𝑤𝑖𝑎

⊤
𝑖 (𝐴

⊤𝑊𝐴)−1𝑎𝑖 for all 𝑖 = 1, . . . , 𝑚 , (2.7)

i.e., �̃�𝑖 are arbitrary approximate leverage scores.

Lemma 2.9. For any 𝑤, 𝑤′ ∈ ℝ𝑚
+ and 0 < � < 1/3, it holds that

𝑑(�̃�𝑠,�(𝑤), �̃�𝑠,�(𝑤′)) ⩽ 𝛿𝑑(𝑤, 𝑤′) + log(2𝐶1),

with 𝛿 := max

(���
2
− 1

�� , ��𝑢
2
− 1

��)
, and 𝐶1

:= max(𝐶, 1/𝑐).

18

Algorithm 2: FindWeights({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑗min , 𝑗max , 𝑤
◦ , 𝛽, �, 𝑢, 𝑐, 𝐶)

input :Functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+, vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
, integers 𝑗min < 𝑗max, an

initial weight 𝑤◦ ∈ ℝ𝑚
+ satisfying (2.6) for 𝛽 > 1, parameters �, 𝑢, 𝑐, 𝐶

1 � := 0.1

2 𝑇 ←
⌈

log

(
1+𝛽

log max(2𝐶,2/𝑐)

)
log min(| 2

�−2
|,| 2

𝑢−2
|)

⌉
3 𝑤

(𝑗max)
0

← 𝑤◦

4 for 𝑖 = 0, 1, . . . , 𝑇 do 𝑤
(𝑗max)
𝑖+1

← Iterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑤(𝑗max)
𝑖

, 2𝑗max , �).
5 𝑤(0) ← 𝑤

(0)
𝑇

6 for 𝑖 = 𝑗max , 𝑗max − 1, . . . , 𝑗min do 𝑤(𝑖) ← Iterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑤(𝑖+1) , 2𝑖 , �).
7 return {𝑤(𝑗) : 𝑗min ⩽ 𝑗 ⩽ 𝑗max}.

Proof. Define 𝑊 := diag(𝑤1 , . . . , 𝑤𝑚) and 𝑊 ′ := diag(𝑤′
1
, . . . , 𝑤′𝑚). Suppose that 𝜌, 𝜌′ ∈ ℝ𝑚

are

such that 𝜌𝑖 ≈1+� 𝑎⊤𝑖 (𝐴⊤𝑊𝐴)−1𝑎𝑖 and 𝜌′
𝑖
≈1+� 𝑎⊤𝑖 (𝐴⊤𝑊 ′𝐴)−1𝑎𝑖 for each 𝑖 = 1, . . . , 𝑚, and

�̃�𝑠,�(𝑤)𝑖 =
1

𝑠

𝑓𝑖(
√
𝜌𝑖)√
𝜌𝑖

and �̃�𝑠,�(𝑢)𝑖 =
1

𝑠

𝑓𝑖(
√
𝜌′
𝑖
)√

𝜌′
𝑖

.

From (2.3), we have

𝑑(�̃�𝑠,�(𝑤), �̃�𝑠,�(𝑤′)) = 𝑑 (𝜓(𝜌),𝜓(𝜌′)) ⩽ 𝛿𝑑(𝜌, 𝜌′) + log(𝐶1).

Because 𝜌𝑖 ≈1+� 𝜏𝑖(𝑤) and 𝜌′
𝑖
≈1+� 𝜏𝑖(𝑤′),

𝑑(𝜌, 𝜌′) = max

𝑖∈[𝑚]

����log

𝜌𝑖
𝜌′
𝑖

���� ⩽ max

𝑖∈[𝑚]

����log

𝜏𝑖(𝑤)
𝜏𝑖(𝑤′)

���� + log

(
1 + �
1 − �

)
= 𝑑(𝜏(𝑤), 𝜏(𝑤′)) + log

(
1 + �
1 − �

)
.

Combined with Lemma 2.6, this gives

𝑑(�̃�𝑠,�(𝑤), �̃�𝑠,�(𝑤′)) ⩽ 𝛿𝑑(𝑤, 𝑤′) + log(𝐶1) + log

(
1 + �
1 − �

)
⩽ 𝛿𝑑(𝑤, 𝑤′) + log(2𝐶1) . □

Proof of Theorem 2.7. Because we use Algorithm 2 to find the desired weights, the claimed running

time bound follows from Theorem 2.8 for the choice 𝛿 = (𝑚(|𝒥 | + log max{𝛽, 1}))−𝑂(1). Thus it

suffices to argue that the output weights {𝑤(𝑗) : 𝑗 ∈ 𝒥} form an approximate weight scheme.

For this choice of 𝛿, taking �̃�𝑠max ,0.1(𝑤) := Iterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑤, 𝑠, 0.1) satisfies, with

high probability, (2.7) for all 𝑇 + |𝒥 | calls to Algorithm 1 from Algorithm 2.

For ease of notation, let us denote 𝑠max
:= 2

𝑗max
. The analysis is identical to that in the proof of

Theorem 2.4 (recall (2.5)), except that (2.4) is replaced by Lemma 2.9, and the initial weight bound is

replaced by

𝑑
(
𝑤
(𝑗max)
0

, �̃�𝑠max ,0.1

(
𝑤
(𝑗max)
0

))
⩽ 𝑑

(
𝜑𝑠max

(
𝑤
(𝑗max)
0

)
, 𝑤
(𝑗max)
0

)
+ 𝑑

(
�̃�𝑠max ,0.1

(
𝑤
(𝑗max)
0

)
, �̃�𝑠max ,0

(
𝑤
(𝑗max)
0

))
⩽ log 𝛽 + log(2𝐶1) ,

where the last inequality follows from (2.6) and Lemma 2.6. □

19

2.1.2 Constructing initial weights

A mild problem arises when applying Theorem 2.7, which is that it may be computationally

non-trivial to locate an initial weight 𝑤◦ ∈ ℝ𝑚
+ satisfying (2.6) with 𝛽 sufficiently small. In this

section, we show how to efficiently compute small perturbations 𝑓1 , . . . , 𝑓𝑚 : ℝ𝑛 → ℝ+ of the

functions 𝑓1 , . . . , 𝑓𝑚 : ℝ𝑛 → ℝ+ along with good initial weights 𝑤◦ for { 𝑓𝑖}.
Fix 0 < 𝑠min < 𝑠max and vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛

. Consider 𝑓1 , . . . , 𝑓𝑚 : ℝ𝑛 → ℝ+ such that

𝑓
1/2
1

, . . . , 𝑓
1/2
𝑚 are 𝐿-auto-Lipschitz (P1) and �-lower homogeneous with constant 𝑐 (P2). In that case,

each 𝑓𝑖 is continuous, and therefore for any 0 < 𝛾 ⩽ 1 there exist numbers �̂�1 , . . . , �̂�𝑚 > 0 such that

𝛾𝑠max ⩽ 𝑓𝑖(�̂�𝑖) ⩽ 𝑠max , 𝑖 = 1, . . . , 𝑚 . (2.8)

Define the matrix𝑈 :=
∑𝑚
𝑖=1

�̂�−2

𝑖
𝑎𝑖𝑎
⊤
𝑖

, and let �̃�𝑖 ≈2 ⟨𝑎𝑖 , 𝑈−1𝑎𝑖⟩ for 𝑖 = 1, . . . , 𝑚. Note that these

values can computed using a single call to LevApprox(𝐴, (�̂�−2

1
, . . . , �̂�−2

𝑚), 1/2). Define 𝑤𝑖 := 𝛿/�̃�𝑖 for

some 𝛿 > 0 and 𝑖 = 1, . . . , 𝑚, and finally define

𝑓𝑖(𝑧) := 𝑓𝑖(𝑧) + 𝑠max𝑤𝑖𝑧
2 , 𝑖 = 1, . . . , 𝑚 , (2.9)

The following fact is straightforward.

Fact 2.10. If 𝑓
1/2
1

, . . . , 𝑓
1/2
𝑚 are 𝐿-auto-Lipschitz and �-lower homogeneous with constant 𝑐, then

𝑓
1/2
1

, . . . , 𝑓
1/2
𝑚 are max{1, 𝐿}-auto-Lipschitz and �-lower homogeneous with constant 𝑐.

Proof. Lower homogeneity is clear. Note that for numbers 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, it holds that

|(𝑎2 + 𝑏2)1/2 − (𝑐2 + 𝑑2)1/2 | = |∥(𝑎, 𝑏)∥2 − ∥(𝑐, 𝑑)∥2 | ⩽ ∥(𝑎, 𝑏) − (𝑐, 𝑑)∥2 = ((𝑎 − 𝑐)2 + (𝑏 − 𝑑)2)1/2 .

Employ this to write

| 𝑓𝑖(𝑧)1/2 − 𝑓𝑖(𝑧′)1/2 | ⩽ ((𝑓𝑖(𝑧)1/2 − 𝑓𝑖(𝑧′)1/2)2 + 𝑠max𝑤𝑖(𝑧 − 𝑧′)2)1/2

⩽ (𝐿2 𝑓𝑖(𝑧 − 𝑧′) + 𝑠max𝑤𝑖(𝑧 − 𝑧′)2)1/2 ⩽ max{1, 𝐿} 𝑓𝑖(𝑧 − 𝑧′)1/2.

Thus each 𝑓
1/2
𝑖

is max{1, 𝐿}-auto-Lipschitz for 𝑖 = 1, 2, . . . , 𝑚. □

Theorem 2.11. Let 𝐹(𝑥) :=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) and �̂�(𝑥) :=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) for 𝛿 > 0 and any �̂�𝑖 > 0

satisfying (2.8). For all 𝑥 ∈ ℝ𝑛
,

𝐹(𝑥) ⩽ 𝑠max =⇒ 0 ⩽ �̂�(𝑥) − 𝐹(𝑥) ⩽ 2𝛿𝑚2𝑠max(𝐿/(𝛾𝑐))2/� . (2.10)

Moreover, 𝑤 is an 𝑂((𝐿/𝑐)2𝑚/𝛿)-approximate weight at scale 𝑠max for { 𝑓𝑖} and {𝑎𝑖}.

Proof. Define 𝑀𝑤 := 𝐴⊤𝑊𝐴, where𝑊 := diag(𝑤1 , . . . , 𝑤𝑚). We first claim that

𝛿
2

𝑈 ⪯ 𝑀𝑤 ⪯ 2𝛿𝑚𝑈 . (2.11)

To prove the upper bound in (2.11), note that

𝑎𝑖𝑎
⊤
𝑖 ⪯ ⟨𝑎𝑖 , 𝑈

−1𝑎𝑖⟩𝑈 ⪯ 2�̃�𝑖𝑈 ,

20

Summing over 𝑖 = 1, . . . , 𝑚 indeed gives 𝑀𝑤 = 𝛿
∑𝑚
𝑖=1

1

�̃�𝑖
𝑎𝑖𝑎
⊤
𝑖
⪯ 2𝛿𝑚𝑈 . For the lower bound,

note that 𝑈 ⪰ �̂�−2

𝑖
𝑎𝑖𝑎
⊤
𝑖

and hence 𝑈−1 ⪯ (�̂�2

𝑖
/∥𝑎𝑖 ∥2

2
)𝑎𝑖𝑎⊤𝑖 . Therefore, �̃�𝑖 ⩽ 2⟨𝑎𝑖 , 𝑈−1𝑎𝑖⟩ ⩽ 2�̂�2

𝑖
which

implies that 𝑤𝑖 ⩾ (𝛿/2)�̂�−2

𝑖
and indeed gives the lower bound in (2.11).

Next we prove (2.10). The lower bound of (2.10) is trivial. To prove the upper bound, we first

show that if 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) ⩽ 𝑠max, then it holds that ⟨𝑎𝑖 , 𝑥⟩2 ⩽ (𝐿/(𝛾𝑐))2/� �̂�2

𝑖
for 𝑖 = 1, . . . , 𝑚. Indeed, if

| ⟨𝑎𝑖 , 𝑥⟩ | = ��̂�𝑖 for � ⩾ 1, then lower homogeneity, symmetry, and the definition of �̂�𝑖 in (2.8),

𝑠max ⩾ 𝑓 (⟨𝑎𝑖 , 𝑥⟩) ⩾
1

𝐿
𝑓 (| ⟨𝑎𝑖 , 𝑥⟩ |) ⩾

𝑐��

𝐿
𝑓 (�̂�𝑖) ⩾

𝛾𝑐��

𝐿
𝑠max .

Thus � ⩽ (𝐿/(𝛾𝑐))1/�, as desired. Now note that

�̂�(𝑥) − 𝐹(𝑥) = 𝑠max⟨𝑥, 𝑀𝑤𝑥⟩
(2.11)

⩽ 2𝛿𝑚⟨𝑥,𝑈𝑥⟩ = 2𝛿𝑚𝑠max

𝑚∑
𝑖=1

�̂�−2

𝑖 ⟨𝑎𝑖 , 𝑥⟩
2 ⩽ 2𝛿𝑚2𝑠max(𝐿/(𝛾𝑐))2/� .

Finally, we establish that 𝑤 are suitable approximate weights. Observe that

𝑑(𝜑𝑠max
(𝑤), 𝑤) = max

𝑖∈[𝑚]
log

����� 1

𝑠max

𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2)
𝑤𝑖 · 𝑎⊤𝑖 𝑀

−1

𝑤 𝑎𝑖

����� .
Then by the definition (2.9), we have

1

𝑠max

𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2)
𝑤𝑖 · 𝑎⊤𝑖 𝑀

−1

𝑤 𝑎𝑖
=

1

𝑠max

(
𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2)
𝑤𝑖 · 𝑎⊤𝑖 𝑀

−1

𝑤 𝑎𝑖
+ 𝑠max𝛿/�̃�𝑖

𝑤𝑖

)
= 1 + 1

𝑠max

𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2)
𝑤𝑖 · 𝑎⊤𝑖 𝑀

−1

𝑤 𝑎𝑖
.

Now (2.11) and �̃�𝑖 ⩽ 2�̂�2

𝑖
together give

𝑎⊤𝑖 𝑀
−1

𝑤 𝑎𝑖 ⩽
2

𝛿
𝑎⊤𝑖 𝑈

−1𝑎𝑖 ⩽
4

𝛿
�̃�𝑖 ⩽

8

𝛿
�̂�2

𝑖 , 𝑖 = 1, . . . , 𝑚 .

If (𝑎⊤
𝑖
𝑀−1

𝑤 𝑎𝑖)1/2 ⩽ �̂�𝑖 , then by monotonicity, 𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2) ⩽ (1/𝑐)2 𝑓𝑖(�̂�𝑖) = (1/𝑐)2𝑠max. Otherwise,

the auto-Lipschitz and lower homogeneous properties for 𝑓
1/2
𝑖

give 𝑓𝑖(�𝑥) ⩽ (2𝐿/𝑐)2�2 𝑓𝑖(𝑥) for

every � ⩾ 1 by Lemma 1.4, and this implies

𝑓𝑖((𝑎⊤𝑖 𝑀
−1

𝑤 𝑎𝑖)1/2) ⩽ 4(𝐿/𝑐)2
(
(𝑎⊤
𝑖
𝑀−1

𝑤 𝑎𝑖)1/2

�̂�𝑖

)
2

𝑓𝑖(�̂�𝑖) ≲ (𝐿/𝑐)2
𝑠max

𝛿
.

In either case, 𝑓𝑖((𝑎⊤𝑖 𝑀−1

𝑤 𝑎𝑖)1/2) ≲ (𝐿/𝑐)2𝑠max/𝛿. For the denominator, use (2.11) to write

𝑤𝑖 · 𝑎⊤𝑖 𝑀
−1

𝑤 𝑎𝑖 ⩾
1

2𝛿𝑚
𝑤𝑖𝑎

⊤
𝑖 𝑈
−1𝑎𝑖 ⩾

1

4𝑚
�̃�𝑖 �̃�
−1

𝑖 =
1

4𝑚
.

Combining everything and using that 𝑓𝑖 is non-negative, we arrive at

𝑑(𝜑𝑠max
(𝑤), 𝑤) ⩽ log

(
1 + 1

𝑠max

𝑂((𝐿/𝑐)2𝛿−1𝑠max)
1/(4𝑚)

)
⩽ log(1 + 𝑂((𝐿/𝑐)2𝛿−1𝑚)) . □

21

2.2 A variational approach to approximate weights

In this section we show that even if each 𝑓𝑖 is upper 𝑢-homogeneous for 𝑢 ⩾ 4, approximate weights

still exist. Our sparsification analysis relies on the existence of weight schemes, where there is a

relationship between weights at different scales. But the following existence proof is instructive.

Theorem 2.12. Suppose 𝑓1 , . . . , 𝑓𝑚 : ℝ+ → ℝ+ are lower �-homogeneous with constant 𝑐 and upper

𝑢-homogeneous with constant 𝐶 with 𝑢 > � > 0. Then there is a constant 𝛼 = 𝛼(�, 𝑐, 𝑢, 𝐶) such that for

every choice of vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
and 𝑠 > 0, there is an 𝛼-approximate weight at scale 𝑠.

The idea behind the proof is to set up a variational problem whose critical points produce

approximate weights at a given scale. As observed in [SZ01], this analysis technique does not

require convexity.

Lemma 2.13. Suppose 𝑔1 , . . . , 𝑔𝑚 : ℝ+ → ℝ+ are monotone increasing, continuously differentiable, and

satisfy 𝑔1(0) = · · · = 𝑔𝑚(0) = 0. Then for every 𝛽 > 0, there are weights {𝑤𝑖 ⩾ 0 : 𝑖 = 1, . . . , 𝑚} such that

𝑤𝑖 = 𝛾
𝑔′
𝑖
(∥𝑀−1/2

𝑤 𝑎𝑖 ∥2)

∥𝑀−1/2
𝑤 𝑎𝑖 ∥2

𝑖 = 1, . . . , 𝑚 , (2.12)

𝛾 = 𝑛

(
𝑚∑
𝑖=1

𝑔′𝑖(∥𝑀
−1/2
𝑤 𝑎𝑖 ∥2)∥𝑀−1/2

𝑤 𝑎𝑖 ∥2

)−1

, (2.13)

𝛽 =

𝑚∑
𝑖=1

𝑔𝑖(∥𝑀−1/2
𝑤 𝑎𝑖 ∥2) .

Proof. For a linear operator𝑈 : ℝ𝑛 → ℝ𝑛
, define

𝐺(𝑈) :=

𝑚∑
𝑖=1

𝑔𝑖(∥𝑈𝑎𝑖 ∥2) ,

and consider the optimization

maximize {det(𝑈) : 𝐺(𝑈) ⩽ 𝛽} . (2.14)

Since 𝐺(0) = 0 and each 𝑔𝑖 is monotone increasing, it holds that 𝐺(𝑐𝐼) = 𝛽 for some 𝑐 > 0.

Therefore for any maximizer𝑈∗, it holds that det(𝑈∗) > 0, i.e.,𝑈∗ is invertible, and 𝐺(𝑈∗) = 𝛽.

For𝑈 invertible, we have

∇det(𝑈) = det(𝑈)𝑈−⊤. (2.15)

Let us also calculate

d𝐺(𝑈) =
𝑚∑
𝑖=1

𝑔′𝑖(∥𝑈𝑎𝑖 ∥2)
d∥𝑈𝑎𝑖 ∥2

2

2∥𝑈𝑎𝑖 ∥2
,

and use ∥𝑈𝑎𝑖 ∥2
2
= tr(𝑈⊤𝑈𝑎𝑖𝑎⊤𝑖) to write

1

2

d∥𝑈𝑎𝑖 ∥2
2
= tr

(
(d𝑈)⊤𝑈𝑎𝑖𝑎⊤𝑖

)
,

22

so that

∇𝑈𝐺(𝑈) = 𝑈𝐴⊤𝐷𝑈𝐴 ,
where 𝐷𝑈 is the 𝑚 × 𝑚 diagonal matrix with (𝐷𝑈)𝑖𝑖 =

𝑔′
𝑖
(∥𝑈𝑎𝑖 ∥2)
∥𝑈𝑎𝑖 ∥2 and 𝐴 ∈ ℝ𝑚×𝑛

is the matrix with

rows 𝑎1 , . . . , 𝑎𝑚 .

Combined with (2.15), we see that if𝑈 is an optimal solution to (2.14), then for some Lagrange

multiplier 𝛾 > 0, we have

(𝑈⊤𝑈)−1 = 𝛾𝐴⊤𝐷𝑈𝐴 .

Take 𝑉 := (𝑈⊤𝑈)−1
so that 𝑉 =

∑𝑚
𝑖=1
𝑤𝑖𝑎𝑖𝑎

⊤
𝑖

with 𝑤𝑖 := 𝛾
𝑔′
𝑖
(∥𝑉−1/2𝑎𝑖 ∥2)
∥𝑉−1/2𝑎𝑖 ∥2

. To compute the value of

𝛾, calculate

𝑛 = tr(𝑉𝑉−1) = 𝛾
𝑚∑
𝑖=1

𝑔′
𝑖
(∥𝑉−1/2𝑎𝑖 ∥2)
∥𝑉−1/2𝑎𝑖 ∥2

tr(𝑉−1𝑎𝑖𝑎
⊤
𝑖) = 𝛾

𝑚∑
𝑖=1

𝑔′𝑖(∥𝑉
−1/2𝑎𝑖 ∥2)∥𝑉−1/2𝑎𝑖 ∥2 . □

The preceding lemma assumes that the functions 𝑔𝑖 are monotone increasing. However, the

functions 𝑓𝑖 only satisfy lower homogeneity, which is a weaker condition. To prove Theorem 2.12,

one can take monotone approximations of functions 𝑓𝑖 by averaging over intervals.

Lemma 2.14. Suppose 𝑓 is lower �-homogeneous with constant 𝑐 and upper 𝑢-homogeneous with constant

𝐶 for 𝑢 ⩾ 1. Define 𝐾 := max(𝑒 , (2/𝑐)1/�) and 𝑔 : ℝ+ → ℝ+ by

𝑔(𝑥) :=

∫ 𝐾𝑥

𝑥

𝑓 (𝑡)
𝑡

𝑑𝑡 .

Then 𝑔 is continuously differentiable, monotone increasing, and satisfies 𝑔(0) = 0. Moreover, for all 𝑥 > 0,

𝑓 (𝑥)
𝑥
⩽ 𝑔′(𝑥) ⩽ 𝐶𝐾𝑢

𝑓 (𝑥)
𝑥

, ∀𝑥 ⩾ 0

𝑐 𝑓 (𝑥) ⩽ 𝑔(𝑥) ⩽ 𝐶𝐾𝑢 𝑓 (𝑥) .

Proof. Note that 𝑔′(𝑥) = 𝑓 (𝐾𝑥)− 𝑓 (𝑥)
𝑥 , and 𝑓 (𝐾𝑥) ⩾ 𝑐𝐾� 𝑓 (𝑥) ⩾ 2 𝑓 (𝑥) by lower �-homogeneity. Thus 𝑔

is monotone increasing. Moreover, we have

𝑔(𝑥) =
∫ 𝐾𝑥

𝑥

𝑓 (𝑡)
𝑡
𝑑𝑡 ⩾ 𝑐 𝑓 (𝑥)

∫ 𝐾𝑥

𝑥

1

𝑡
𝑑𝑡 ⩾ 𝑐 · 𝑓 (𝑥),

and for 𝑢 ⩾ 1,

𝑔(𝑥) =
∫ 𝐾𝑥

𝑥

𝑓 (𝑡)
𝑡
𝑑𝑡 ⩽ 𝐶 𝑓 (𝑥)

∫ 𝐾𝑥

𝑥

(𝑡/𝑥)𝑢
𝑡

𝑑𝑡 ⩽ 𝐶𝐾𝑢 𝑓 (𝑥).

□

Proof of Theorem 2.12. Throughout the proof, we use ≍ in place of ≍�,𝑐,𝑢,𝐶 . Let 𝐾 be as in Lemma 2.14

and define 𝑔𝑖(𝑥) :=
∫ 𝐾𝑥

𝑥

𝑓𝑖(𝑡)
𝑡 𝑑𝑡. By Lemma 2.14, we have 𝑔′

𝑖
(𝑥) ≍ 𝑓𝑖(𝑥)/𝑥 and 𝑔(𝑥) ≍ 𝑓𝑖(𝑥) for

𝑖 = 1, . . . , 𝑚.

Let {𝑤𝑖} and 𝑀𝑤 be as in Lemma 2.13 when applied to 𝑔1 , . . . , 𝑔𝑚 with 𝛽 = 𝑛/�. Then,

𝑚∑
𝑖=1

𝑔′𝑖(∥𝑀
−1/2
𝑤 𝑎𝑖 ∥2)∥𝑀−1/2

𝑤 𝑎𝑖 ∥2 ≍
𝑚∑
𝑖=1

𝑓𝑖(∥𝑀−1/2
𝑤 𝑎𝑖 ∥2) ≍

𝑚∑
𝑖=1

𝑔𝑖(∥𝑀−1/2
𝑤 𝑎𝑖 ∥2) = 𝛽 =

𝑛

�
.

Therefore 𝛾 ≍ � (recall (2.13)), and thus (2.12) gives the desired result. □

23

3 Covering number bounds

Consider loss functions 𝑓1 , . . . , 𝑓𝑚 : ℝ→ ℝ+, vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
, and a contiguous interval

𝒥 ⊆ ℤ. Define ℎ𝑖(𝑥) := 𝑓𝑖(𝑥)1/2 for 𝑖 = 1, . . . , 𝑚, ℓ := max(𝒥) + 1, and

𝐹(𝑥) :=

𝑚∑
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩) =
𝑚∑
𝑖=1

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2 .

For 𝑠 > 0, denote 𝐵𝐹(𝑠) := {𝑥 ∈ ℝ𝑛
: 𝐹(𝑥) ⩽ 𝑠}.

Suppose that {𝑤(𝑗) : 𝑗 ∈ 𝒥} is an 𝛼-approximate weight scheme (Definition 1.8) for the families

{ 𝑓𝑖}, {𝑎𝑖}, and recall that

𝑀𝑤(𝑗) =

𝑚∑
𝑖=1

𝑤
(𝑗)
𝑖
𝑎𝑖𝑎
⊤
𝑖 .

Define𝑈 𝑗 := 𝑀
1/2
𝑤(𝑗)

for 𝑗 ∈ 𝒥 so that

∥𝑈 𝑗𝑥∥2
2
=

𝑚∑
𝑖=1

𝑤
(𝑗)
𝑖
⟨𝑎𝑖 , 𝑥⟩2 , 𝑥 ∈ ℝ𝑛 . (3.1)

Analogously to Section 1.4, define the sets

K𝑗 :=

{
𝑥 ∈ ℝ𝑛

: ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2 ⩽ 2
𝑗𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗 𝑎𝑖 ∥2
2
, 𝑖 ∈ [𝑚]

}
, 𝑗 ∈ 𝒥

Kℓ := 𝐵𝐹(2ℓ) .

Our primary technical goal is an estimate on the covering numbers𝒩(𝐵𝐹(2ℓ), K𝑗)when the functions

ℎ1 , . . . , ℎ𝑚 are sufficiently nice.

Recall our assumption in Theorem 1.1 that ℎ𝑖 = 𝑓
1/2
𝑖

is auto-Lipschitz (property (P1)) and

lower �-homogeneous (property (P2)). The following properties (H1)–(H5) follow from these

two assumptions, but we label them specifically as they will be employed numerous times in our

arguments.

Assumption 3.1. Consider ℎ1 , . . . , ℎ𝑚 : ℝ→ ℝ+ for some 𝐿, 𝐶 ⩾ 1 and � > 0, 𝑐 < 1:

(H1) ℎ𝑖(�𝑥) ⩾ 𝑐ℎ𝑖(±𝑥) for all 𝑥 ∈ ℝ and � ⩾ 1.

(H2) |ℎ𝑖(𝑥) − ℎ𝑖(𝑦)| ⩽ 𝐿ℎ𝑖(𝑥 − 𝑦) for all 𝑥, 𝑦 ∈ ℝ.

(H3) ℎ𝑖(�𝑥) ⩽ 𝐶�ℎ𝑖(±𝑥) for all 𝑥 ∈ ℝ and � ⩾ 1.

(H4) ℎ𝑖(�𝑥) ⩾ 𝑐��ℎ𝑖(±𝑥) for all 𝑥 ∈ ℝ and � ⩾ 1.

(H5) ℎ𝑖(𝑥 ± 𝑦) ⩽ 𝐿 (ℎ𝑖(𝑥) + ℎ𝑖(𝑦)) for all 𝑥, 𝑦 ∈ ℝ.

Compared to the assumptions discussed previously, we have added (H5), as it is used many

times. Note that (H5) follows from (H2): ℎ(𝑥 + 𝑦) ⩽ ℎ(𝑦) + 𝐿ℎ(𝑥) and ℎ(𝑥 − 𝑦) ⩽ ℎ(−𝑦) + 𝐿ℎ(𝑥) ⩽
𝐿(ℎ(𝑥) + ℎ(𝑦)), and (H1) is an immediate consequence of (H4).

Let us now state our primary covering estimate, which is established over the next two sections.

24

Theorem 3.2. There is a number �̂� = �̂�(𝐿, 𝐶, �, 𝑐, 𝛼) such that for any {ℎ1 , . . . , ℎ𝑚} satisfying Assump-

tion 3.1, it holds that

log𝒩
(
𝐵𝐹(2ℓ),K𝑗

)
⩽ �̂�2

ℓ−𝑗
log𝑚 , ∀𝑗 ∈ 𝒥 .

3.1 Iterative covering

In order to prove Theorem 3.2, we will relate K𝑗 to ℓ2 and ℓ∞ balls with respect to an appropriate

inner product structure. To this end, let us define the norms, for 𝑗 ∈ 𝐽,

N∞𝑗 (𝑥) := max

𝑖∈[𝑚]

|⟨𝑈−1

𝑗
𝑎𝑖 , 𝑈𝑗𝑥⟩|

∥𝑈−1

𝑗
𝑎𝑖 ∥2

,

N2

𝑗 (𝑥) := ∥𝑈 𝑗𝑥∥2 ,

and let B∞
𝑗

:= {𝑥 ∈ ℝ𝑛
: N∞

𝑗
(𝑥) ⩽ 1} and B2

𝑗
:= {𝑥 ∈ ℝ𝑛

: N2

𝑗
(𝑥) ⩽ 1} denote the corresponding unit

balls. We observe the following consequence of Lemma 1.12.

Corollary 3.3. For every 𝑗 ∈ 𝒥 and � > 0, it holds that√
log𝒩(B2

𝑗
, �B∞

𝑗
) ≲

√
log𝑚

�
.

Proof. By scaling, we may assume that � = 1. Then Lemma 1.12 gives√
log𝒩(B2

𝑗
,B∞

𝑗
) ≲ 𝔼max

𝑖∈[𝑚]

�����
〈
𝑈−1

𝑗
𝑎𝑖

∥𝑈−1

𝑗
𝑎𝑖 ∥2

, 𝒈

〉����� ≲ √
log𝑚 ,

using the fact that if 𝑔1 , . . . , 𝑔𝑘 are random variables that each have law 𝑁(0, 1), then 𝔼max𝑖∈[𝑘] 𝑔𝑖 ≲√
log 𝑘 since ℙ[|𝑔𝑖 | > 𝑡] ⩽ 2𝑒−𝑡

2/2
. □

Thus our goal will be a pair of containment results for translates of the sets K𝑗 . These are proved

in the next section.

Lemma 3.4 (ℓ∞ control). For 𝑗 ∈ 𝒥 and 𝑐0
:= (𝑐4/(4𝛼))1/2� it holds that

𝑐0B∞𝑗 ⊆ K𝑗 ⊆
1

𝑐0

B∞𝑗 .

Lemma 3.5 (ℓ2 control). For any 𝑗 ∈ 𝒥 and 𝑧 ∈ 𝐵𝐹(2ℓ), it holds that

𝐵𝐹(2ℓ) ∩ (𝑧 + K𝑗+1) ⊆ 𝑧 + (4𝐿2𝐶02
ℓ−𝑗)1/2B2

𝑗 ,

where 𝐶0
:= max{(2𝛼𝐶/𝑐)1/� , (𝛼𝐶/𝑐)2(𝛼/𝑐2)1/�}.

25

Note that the preceding lemma relates K𝑗+1 to B2

𝑗
. This is the one place we will employ the key

property of weight schemes (Definition 1.8), which is the containment B2

𝑗+1
⊆ 𝛼B2

𝑗
: For 𝑗 , 𝑗 + 1 ∈ 𝒥

and 𝑥 ∈ ℝ𝑛
, (3.1) gives

∥𝑈 𝑗𝑥∥2
2
=

𝑚∑
𝑖=1

𝑤
(𝑗)
𝑖
⟨𝑎𝑖 , 𝑥⟩2 ⩽ 𝛼

𝑚∑
𝑖=1

𝑤
(𝑗+1)
𝑖
⟨𝑎𝑖 , 𝑥⟩2 = 𝛼∥𝑈 𝑗+1𝑥∥2

2
.

With these two results in hand, we prove Theorem 3.2.

Proof of Theorem 3.2. First, note that for any 𝑗 ∈ 𝒥 and 𝑧 ∈ 𝐵𝐹(2ℓ), we have

log𝒩
(
𝐵𝐹(2ℓ) ∩ (𝑧 + K𝑗+1),K𝑗

)
⩽ log𝒩

(
(4𝐿2𝐶02

ℓ−𝑗)1/2B2

𝑗 , 𝑐0B∞𝑗
)

⩽ 𝐶12
ℓ−𝑗

log𝑚 (3.2)

where 𝐶1
:= 4𝐿2𝐶0/𝑐2

0
, the first inequality follows from Lemma 3.4 and Lemma 3.5, and the second

inequality is a consequence of Corollary 3.3.

An application of (3.2) with 𝑗 = ℓ − 1 and 𝑧 = 0 gives vectors 𝑥1 , . . . , 𝑥𝑇1
∈ 𝐵𝐹(2ℓ) with

𝑇1 ⩽ 2𝐶1 log𝑚, and such that

𝐵𝐹(2ℓ) ⊆
𝑇1⋃
𝑡=1

(
𝐵𝐹(2ℓ) ∩ (𝑥𝑡 + Kℓ−1)

)
.

Now apply (3.2) with 𝑗 = ℓ − 2 and 𝑧 = 𝑥1 , . . . , 𝑥𝑇1
to find vectors 𝑥(𝑡1 ,𝑡2) ∈ 𝐵𝐹(2ℓ) for 1 ⩽ 𝑡1 ⩽ 𝑇1 , 1 ⩽

𝑡2 ⩽ 𝑇2 with 𝑇2 ⩽ 4𝐶1 log𝑚, and such that

𝐵𝐹(2ℓ) ∩ (𝑥𝑡1 + Kℓ−1) ⊆
𝑇2⋃
𝑡2=1

(
𝐵𝐹(2ℓ) ∩ (𝑥(𝑡1 ,𝑡2) + Kℓ−2)

)
, 𝑡1 = 1, . . . , 𝑇1

Continuing inductively, we cover 𝐵𝐹(2ℓ) by 𝑇1 · 𝑇2 · · · 𝑇𝑟 translates of Kℓ−𝑟 , and log |𝑇𝑟 | ⩽ 𝐶12
𝑟
log𝑚.

We conclude that for 𝑗 ∈ 𝒥 ,

log𝒩(𝐵𝐹(2ℓ),K𝑗) ⩽ log |𝑇1 | + · · · + log |𝑇ℓ−𝑗 | ≲
(
2 + 2

2 + · · · + 2
ℓ−𝑗

)
𝐶1 log𝑚 . □

3.2 Norm control

Our goal now is to prove Lemma 3.4 and Lemma 3.5. We will frequently use the following

consequence of the Cauchy-Schwarz inequality

|⟨𝑎𝑖 , 𝑥⟩| = |⟨𝑈−1

𝑗 𝑎𝑖 , 𝑈𝑗𝑥⟩| ⩽ ∥𝑈−1

𝑗 𝑎𝑖 ∥2∥𝑈 𝑗𝑥∥2 , 𝑗 ∈ 𝒥 , 𝑖 = 1, . . . , 𝑚, 𝑥 ∈ ℝ𝑛 .

We also restate the guarantees of our weight scheme {𝑤(𝑗) : 𝑗 ∈ 𝒥} (recall (1.5)):

𝛼−1ℎ𝑖(∥𝑈−1

𝑗 𝑎𝑖 ∥2)2 ⩽ 2
𝑗𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗 𝑎𝑖 ∥2
2
⩽ 𝛼ℎ𝑖(∥𝑈−1

𝑗 𝑎𝑖 ∥2)2 , 𝑖 = 1, . . . , 𝑚, 𝑗 ∈ 𝒥 . (3.3)

Lemma 3.4 follows immediately from the next two lemmas.

26

Lemma 3.6. If 𝑗 ∈ 𝒥 and |⟨𝑎𝑖 , 𝑥⟩| ⩽ 𝑐0∥𝑈−1

𝑗
𝑎𝑖 ∥2 for each 𝑖 ∈ {1, . . . , 𝑚}, then 𝑥 ∈ K𝑗 .

Proof. Suppose that |⟨𝑎𝑖 , 𝑥⟩| ⩽ 𝛿∥𝑈−1

𝑗
𝑎𝑖 ∥2 for some 0 < 𝛿 < 1. Then

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2

2
𝑗𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2

(H1)

⩽
1

𝑐2

ℎ𝑖(𝛿∥𝑈−1

𝑗
𝑎𝑖 ∥2)2

2
𝑗𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2

(3.3)

⩽
𝛼

𝑐2

ℎ𝑖(𝛿∥𝑈−1

𝑗
𝑎𝑖 ∥2)2

ℎ𝑖(∥𝑈−1

𝑗
𝑎𝑖 ∥2)2

(H4)

⩽
𝛼

𝑐4

𝛿2� .

Taking 𝛿 := (𝑐4/(4𝛼))1/2� gives 𝑥 ∈ K𝑗 . □

Lemma 3.7. If 𝑗 ∈ 𝒥 and 𝑥 ∈ K𝑗 , then

|⟨𝑎𝑖 , 𝑥⟩| ⩽ (𝛼/𝑐2)1/2�∥𝑈−1

𝑗 𝑎𝑖 ∥2 , ∀𝑖 ∈ {1, . . . , 𝑚} . (3.4)

Proof. Fix 𝑖 ∈ {1, . . . , 𝑚}. Clearly we may assume that |⟨𝑎𝑖 , 𝑥⟩| ⩾ ∥𝑈−1

𝑗
𝑎𝑖 ∥2. In that case, we can

bound

𝑐2

(
|⟨𝑎𝑖 , 𝑥⟩|
∥𝑈−1

𝑗
𝑎𝑖 ∥2

)
2�

(H4)

⩽
ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2

ℎ𝑖(∥𝑈−1

𝑗
𝑎𝑖 ∥2)2

𝑥∈K𝑗
⩽

2
𝑗𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2

ℎ𝑖(∥𝑈−1

𝑗
𝑎𝑖 ∥2)2

(3.3)

⩽ 𝛼 ,

establishing (3.4). □

Let us now move to the proof of Lemma 3.5. The next lemma follows from an argument identical

to that of Lemma 2.2.

Lemma 3.8. For any 𝑗 ∈ 𝒥 , it holds that

∥𝑈 𝑗𝑥∥2�
2
⩽ max

(
1, 𝛼

𝐶

𝑐
2
−𝑗𝐹(𝑥)

)
.

Lemma 3.9. If 𝑗 , 𝑗 + 1 ∈ 𝒥 and 𝑥 ∈ K𝑗+1, then

∥𝑈 𝑗𝑥∥2
2
⩽ 𝐶02

−𝑗𝐹(𝑥) .

Proof. Since 𝑗 + 1 ∈ 𝒥 , from Lemma 3.7 we have |⟨𝑎𝑖 , 𝑥⟩| ⩽ (𝛼/𝑐2)1/(2�) for each 𝑖 = 1, 2 . . . , 𝑚.

Therefore

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2
⟨𝑎𝑖 , 𝑥⟩2

(H3)

⩾
1

𝐶2

ℎ𝑖((𝛼/𝑐2)1/2�∥𝑈−1

𝑗+1
𝑎𝑖 ∥2)2

(𝛼/𝑐2)1/�∥𝑈−1

𝑗+1
𝑎𝑖 ∥2

2

(H1)

⩾
𝑐2

𝐶2(𝛼/𝑐2)1/�
ℎ𝑖(∥𝑈−1

𝑗+1
𝑎𝑖 ∥2)2

∥𝑈−1

𝑗+1
𝑎𝑖 ∥2

2

(3.3)

⩾
𝑐2

𝛼

2
𝑗+1𝑤

(𝑗+1)
𝑖

𝐶2(𝛼/𝑐2)1/�
.

It follows that

∥𝑈 𝑗𝑥∥2
(3.1)

=

𝑚∑
𝑖=1

𝑤
(𝑗)
𝑖
⟨𝑎𝑖 , 𝑥⟩2

(1.8)

⩽ 𝛼
𝑚∑
𝑖=1

𝑤
(𝑗+1)
𝑖
⟨𝑎𝑖 , 𝑥⟩2 ⩽

(𝛼𝐶/𝑐)2(𝛼/𝑐2)1/�
2
𝑗+1

𝑚∑
𝑖=1

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2 . □

Corollary 3.10. For any 𝛾 ⩾ 1, it holds that if 𝑗 ∈ 𝒥 and 𝑥 ∈ 𝐵𝐹(𝛾2
ℓ) ∩ K𝑗+1, then

∥𝑈 𝑗𝑥∥2
2
⩽ 𝛾𝐶02

ℓ−𝑗 .

27

Proof. If 𝑗 , 𝑗+1 ∈ 𝒥 , the result follows from Lemma 3.9. Otherwise, 𝑗 = ℓ −1 and K𝑗+1 = Kℓ = 𝐵𝐹(2ℓ),
and it follows from Lemma 3.8. □

Proof of Lemma 3.5. Note that 𝐵𝐹(2ℓ)∩(𝑧+K𝑗+1) = 𝑧+
(
(𝐵𝐹(2ℓ) − 𝑧) ∩ K𝑗+1

)
. We claim that 𝐵𝐹(2ℓ)−𝑧 ⊆

𝐵𝐹(4𝐿2
2
ℓ). Indeed, for 𝑥 ∈ 𝐵𝐹(2ℓ), we have

𝐹(𝑥 − 𝑧) =
𝑚∑
𝑖=1

ℎ𝑖(⟨𝑎𝑖 , 𝑥 − 𝑧⟩)2
(H5)

⩽
𝑚∑
𝑖=1

(𝐿(ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩) + ℎ𝑖(⟨𝑎𝑖 , 𝑧⟩)))2 ⩽ 2𝐿2(𝐹(𝑥) + 𝐹(𝑧)) ⩽ 4𝐿2

2
ℓ .

Thus Corollary 3.10 gives

𝐵𝐹(2ℓ) ∩ (𝑧 + K𝑗+1) ⊆ 𝑧 + (4𝐿2𝐶02
ℓ−𝑗)1/2B2

𝑗 . □

3.3 Sparsification analysis

Consider now weights 𝜏 ∈ ℝ𝑚
+ satisfying

𝜏𝑖 ⩾ max

𝑗∈𝒥
𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗 𝑎𝑖 ∥2
2
, 𝑖 = 1, . . . , 𝑚 , (3.5)

Define 𝜌𝑖 := 𝜏𝑖/∥𝜏∥1 for 𝑖 = 1, . . . , 𝑚. Let us analyze the error from taking 𝑀 independent samples

according to 𝜌, following the sparsification framework of Section 1.6.2 with 𝜑𝑖(𝑥) := 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩).
In this case, our potential sparsifier is given by

�̃�𝜌,�(𝑥) :=

𝑀∑
𝑗=1

𝑓�𝑗 (⟨𝑎�𝑗 , 𝑥⟩)
𝑀𝜌�𝑗

, (3.6)

and our approximation guarantee will be derived from Lemma 1.14, by analyzing covering numbers

in the following family of metrics: For a sequence � ∈ [𝑚]𝑑 and 𝑥, 𝑦 ∈ ℝ𝑛
,

𝑑𝜌,�(𝑥, 𝑦) :=
©«
𝑀∑
𝑗=1

(
𝑓�𝑗 (⟨𝑎�𝑗 , 𝑥⟩) − 𝑓�𝑗 (⟨𝑎�𝑗 , 𝑦⟩)

𝑀𝜌�𝑗

)2ª®¬
1/2

=
©«
𝑀∑
𝑗=1

(ℎ�𝑗 (⟨𝑎�𝑗 , 𝑥⟩) − ℎ�𝑗 (⟨𝑎�𝑗 , 𝑦⟩))2

𝑀𝜌�𝑗

(ℎ�𝑗 (⟨𝑎�𝑗 , 𝑥⟩) + ℎ�𝑗 (⟨𝑎�𝑗 , 𝑦⟩))2

𝑀𝜌�𝑗

ª®¬
1/2

.

Let us first observe the bound: For 𝑥, 𝑦 ∈ 𝐵𝐹(2ℓ),

𝑑𝜌,�(𝑥, 𝑦)
(H2)

⩽
©«2𝐿2

𝑀∑
𝑗=1

ℎ�𝑗 (⟨𝑎�𝑗 , 𝑥 − 𝑦⟩)2

𝑀𝜌�𝑗

ℎ�𝑗 (⟨𝑎�𝑗 , 𝑥⟩)2 + ℎ�𝑗 (⟨𝑎�𝑗 , 𝑦⟩)2

𝑀𝜌�𝑗

ª®¬
1/2

≲ 𝑑∞(𝑥, 𝑦)𝐿
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2

, (3.7)

28

where we define

𝑑∞(𝑥, 𝑦) := max

𝑖∈[𝑚]

ℎ𝑖(⟨𝑎𝑖 , 𝑥 − 𝑦⟩)√
𝜏𝑖

.

In particular, we have

𝛾2(𝐵𝐹(2ℓ), 𝑑𝜌,�) ≲ 𝐿𝛾2(𝐵𝐹(2ℓ), 𝑑∞)
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
. (3.8)

Let us first bound the 𝑑∞ diameter of 𝐵𝐹(2ℓ).

Lemma 3.11. For any 𝑗 ∈ 𝒥 , it holds diam(𝐵𝐹(2𝑗+1), 𝑑∞) ⩽ 𝐶22
𝑗/2

for 𝐶2
:= 4(𝛼𝐶0𝐶

2)1/2.

Proof. Using (3.5) and Cauchy-Schwarz yields

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2
𝜏𝑖

⩽
ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2

𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2

(H1)

⩽
1

𝑐

ℎ𝑖(∥𝑈−1

𝑗
𝑎𝑖 ∥2∥𝑈 𝑗𝑥∥2)2

𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2

. (3.9)

Now from Lemma 3.8, we know that for 𝑥 ∈ 𝐵𝐹(2𝑗+1), we have ∥𝑈 𝑗𝑥∥2
2
⩽ 2𝐶0, and therefore

ℎ𝑖(∥𝑈−1

𝑗 𝑎𝑖 ∥2∥𝑈 𝑗𝑥∥2)2
(H3)

⩽ 2𝐶0𝐶
2ℎ𝑖(∥𝑈−1

𝑗 𝑎𝑖 ∥2)2

In conjunction with (3.9) and (3.3), we conclude that

ℎ𝑖(⟨𝑎𝑖 , 𝑥⟩)2
𝜏𝑖

⩽ 2𝛼𝐶0𝐶
2

2
𝑗 , 𝑖 = 1, . . . , 𝑚 ,

which implies the desired bound. □

Combining this with (3.7) yields a diameter bound.

Corollary 3.12. For any 𝑗 ∈ 𝒥 , it holds that

diam(𝐵𝐹(2𝑗+1), 𝑑𝜌,�) ≲ 2
𝑗/2𝐿𝐶2

(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
.

We now handle small scales. For this, define 𝐵∞(𝑟) := {𝑥 ∈ ℝ𝑛
: 𝑑∞(𝑥, 0) ⩽ 𝑟}.

Lemma 3.13. For any 0 < 𝑟 < 𝑅, we have√
log𝒩(𝐵∞(𝑅), 𝐵∞(𝑟)) ≲

√
𝑚

�
log

(
2𝑅

𝑐𝑟

)
.

Proof. Denote 𝑧𝑖 := sup{|𝑧 | : ℎ𝑖(𝑧) ⩽ 𝑅
√
𝜏𝑖} for 𝑖 ∈ [𝑚] and � := (𝐶𝑅/(𝑐𝑟))1/�. For 𝑥 ∈ ℝ𝑛

, define

the vector 𝑎(𝑥) := (⟨𝑎1 , 𝑥⟩ , . . . , ⟨𝑎𝑚 , 𝑥⟩). Then

|𝑎(𝑥)𝑖 | ⩽ 𝑧𝑖 , ∀𝑥 ∈ 𝐵∞(𝑅), 𝑖 = 1, . . . , 𝑚 .

29

By the Pigeonhole principle, there is a set 𝑆 ⊆ 𝐵∞(𝑅) with |𝑆 | ⩽ (2� + 1)𝑚 , and such that for all

𝑥 ∈ 𝐵∞(𝑅), there is �̂� ∈ 𝑆 with |⟨𝑎𝑖 , 𝑥 − �̂�⟩| ⩽ 𝑧𝑖/� for every 𝑖 ∈ {1, . . . , 𝑚}. Thus for each 𝑖, we have

ℎ𝑖(⟨𝑎𝑖 , 𝑥 − �̂�⟩)√
𝜏𝑖

(H4)

⩽
1

𝑐��

ℎ𝑖(𝑧𝑖)√
𝜏𝑖
⩽ 𝑟,

One concludes that

√
log𝒩(𝐵∞(𝑅), 𝐵∞(𝑟)) ⩽

√
log |𝑆 |, completing the proof. □

Theorem 3.14. There is a number 𝐾1 = 𝐾1(𝐿, 𝐶, 𝑐, �, 𝛼) such that if |𝒥 | ⩾ 4 log𝑚, then

𝛾2

(
𝐵𝐹(2ℓ), 𝑑𝜌,�

)
⩽ 𝐾12

ℓ/2(log𝑚)3/2
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2

Proof. First, the assumption (3.5) guarantees that

K𝑗 ⊆ 𝐵∞(2𝑗/2) , ∀𝑗 ∈ 𝒥 ,

and therefore Theorem 3.2 gives(
log𝒩

(
𝐵𝐹(2ℓ), 𝐵∞(2𝑗/2)

))
1/2
⩽ 2
(ℓ−𝑗)/2

√
�̂� log𝑚 , ∀𝑗 ∈ 𝒥 .

We now use Dudley’s inequality (Lemma 1.13) to write

𝛾2(𝐵𝐹(2ℓ), 𝑑∞) ≲
∑
𝑗∈ℤ

2
𝑗/2

√
log𝒩(𝐵𝐹(2ℓ), 𝐵∞(2𝑗/2)) .

Define ℓ̂ := ⌈log
2

diam(𝐵𝐹(2ℓ), 𝑑∞)⌉ and consider any ℓ0 ⩽ ℓ . Splitting the sum into three pieces, we

use (3.3) to bound the first two:∑
𝑗>ℓ

2
𝑗/2

√
log𝒩(𝐵𝐹(2ℓ), 𝐵∞(2𝑗/2)) ≲ diam(𝐵𝐹(2ℓ), 𝑑∞)

√
�̂� log𝑚

ℓ∑
𝑗=ℓ0

2
𝑗/2

√
log𝒩(𝐵𝐹(2ℓ), 𝐵∞(2𝑗/2)) ≲ 2

ℓ/2(ℓ − ℓ0)
√
�̂� log𝑚 .

For the third piece, use Lemma 3.11 to bound 𝐵𝐹(2ℓ) ⊆ 𝐵∞(2ℓ̂) so that∑
𝑗<ℓ0

2
𝑗/2

√
log𝒩(𝐵𝐹(2ℓ), 𝐵∞(2𝑗/2)) ⩽

∑
𝑗<ℓ0

2
𝑗/2

√
log𝒩(𝐵∞(2ℓ̂), 𝐵∞(2𝑗/2))

≲ 2
ℓ0/2

√
𝑚

�

(
(ℓ̂ − ℓ0) + log

2

𝑐

)
.

As long as we can choose ℓ0 ⩽ ℓ − 4 log𝑚, we have therefore bounded

𝛾2(𝐵𝐹(2ℓ), 𝑑∞) ⩽ 𝐾12
ℓ/2(log𝑚)3/2 , (3.10)

for some 𝐾1 depending on the indicated parameters. Combining this with (3.8) yields the desired

bound. □

30

Finally, we can prove Theorem 1.1.

Proof of Theorem 1.1. Let us denote 𝒥 := { 𝑗min , . . . , 𝑗max}, where

𝑗max
:= ⌈log

2
𝑠max⌉ , 𝑗min

:= ⌊log
2
𝑠min − 4 log𝑚⌋ .

Theorem 2.4 yields the existence of an 𝛼-approximate weight scheme {𝑤(𝑗) : 𝑗 ∈ 𝒥} with 𝛼 ≲𝐿,𝑐,� 1.

This yields 𝜏 as in (3.5) satisfying

∥𝜏∥1 ≲𝐿,𝑐,� 𝑛 |𝒥 | ≲ 𝑛 log(𝑚𝑠max/𝑠min) .

Now let us choose an integer 𝑀 := 𝐶�−2∥𝜏∥1(log𝑚)3 for a sufficiently large constant 𝐶 ⩾ 1, and

denote Ω𝑗 := {𝑥 ∈ ℝ𝑛
: �̂�(𝑥) ⩽ 2

𝑗} for 𝑗 ∈ 𝒥 . Then Theorem 3.14 gives us the following, in relation

to the assumptions of Lemma 1.14:

𝛿 ≲ 2
𝑗/2

log(𝑚)
√
𝐶1 log𝑚

(
∥𝜏∥1
𝑀

)
1/2
⩽ �2

𝑗/2 ,

and Corollary 3.12 gives

�̂� ≲ 2
𝑗/2𝐿 𝐶2

(
∥𝜏∥1
𝑀

)
1/2
⩽

�2
𝑗/2

(log𝑚)3/2
.

Thus Lemma 1.14 shows that for some constant 𝑐0 ≳𝐿,𝑐,� 1, with probability at least 1 −
𝑒−𝑐0(log𝑚)3 |𝒥 | over the choice of 𝝂 ∈ [𝑚]𝑀 ,

max

𝑥∈Ω𝑗

|�̃�𝜌,𝝂(𝑥) − 𝐹(𝑥)| ≲ �2
𝑗 ∀𝑗 ∈ 𝒥 , (3.11)

where �̃�𝜌,� is defined as in (3.6). Moreover, �̃�𝜌,� is manifestly 𝑠-sparse with

𝑠 ⩽ 𝑀 ≲𝐿,𝑐,�
𝑛

�2

log(𝑚𝑠max/𝑠min)(log𝑚)3 . (3.12)

Observe that (3.11) gives

|�̃�(𝑥) − 𝐹(𝑥)| ≲ �𝐹(𝑥) , ∀𝑥 ∈ ℝ𝑛
with 𝐹(𝑥) ∈ [𝑠min , 𝑠max] , (3.13)

with �̃� = �̃�𝜌,�. We remark that (3.12) is slightly worse than the bound claimed in Theorem 1.1. We

address this at the end of the proof.

The algorithmic argument. To produce a sparsifier algorithmically, we need to be slightly

more careful. Let 𝑓1 , . . . , 𝑓𝑚 : ℝ𝑛 → ℝ+ be the perturbations guaranteed by Theorem 2.11 with

𝛿 ≍𝐿,𝑐,� �𝑠min/(𝑚3𝑠max) so that (2.10) gives

|𝐹(𝑥) − �̂�(𝑥)| ⩽ �𝑠min , ∀𝑥 ∈ ℝ𝑛
with 𝐹(𝑥) ⩽ 𝑠max , (3.14)

where �̂�(𝑥) :=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩).
From a combination of Theorem 2.11 and Theorem 2.7, we can algorithmically produce an

𝛼-approximate weight scheme {𝑤(𝑗) : 𝑗 ∈ 𝒥} for { 𝑓𝑖} and {𝑎𝑖} with 𝛼 ≲𝐿,𝑐,� 1, in time

�̃�𝐿,𝑐,�

(
(nnz(𝑎1 , . . . , 𝑎𝑚) + 𝑛𝜔 + 𝑚𝒯eval) log

𝑚𝑠max

�𝑠min

)
.

31

By Fact 2.10, the preceding analysis applies to 𝑓1 , . . . , 𝑓𝑚 , yielding, with probability at least

1 − 𝑒−𝑐0(log𝑚)3 |𝒥 |, a sparsifier �̃� of �̂� with

|�̃�(𝑥) − �̂�(𝑥)| ≲ ��̂�(𝑥) , ∀𝑥 ∈ ℝ𝑛
with �̂�(𝑥) ∈ [1

2
𝑠min , 2𝑠max] ,

Combined with (3.14) and the triangle inequality, this gives

|�̃�(𝑥) − 𝐹(𝑥)| ≲ �𝐹(𝑥) , ∀𝑥 ∈ ℝ𝑛
with 𝐹(𝑥) ∈ [𝑠min , 𝑠max] ,

completing the proof.

Improving the 𝑚 dependence. The preceding arguments yield a sparsity bound of the form (3.12),

together with an approximation guarantee (3.13). Define �̃�0
:= 𝐹 and𝑚0

:= 𝑚. Suppose, inductively,

that �̃�𝑖 has 𝑚𝑖 non-zero terms. Let �𝑖 > 0 be a given, and let �̃�𝑖+1 be such that (3.13) holds with

𝐹 = �̃�𝑖 and �̃� = �̃�𝑖+1, and such that �̃�𝑖+1 has at most 𝑚𝑖+1 non-zero terms, where

𝑚𝑖+1 ≲
𝑛

�2

𝑖

log(𝑚𝑖𝑠max/𝑠min)(log𝑚𝑖)3 .

By scaling �̃�𝑖 and adjusting �𝑖 by a constant factor, we may assume that

(1 − �𝑖)�̃�𝑖(𝑥) ⩽ �̃�𝑖+1(𝑥) ⩽ �̃�𝑖(𝑥) , ∀𝑥 ∈ ℝ𝑛
with �̃�𝑖(𝑥) ∈ [𝑠min , 𝑠max] .

Then the triangle inequality gives, for any ℎ ⩾ 1, and all 𝑥 ∈ ℝ𝑛
satisfying �̃�0(𝑥), . . . , �̃�ℎ−1(𝑥) ∈

[𝑠min , 𝑠max],

|𝐹(𝑥) − �̃�ℎ(𝑥)| ⩽
ℎ−1∑
𝑖=0

|�̃�𝑖(𝑥) − �̃�𝑖+1(𝑥)| ⩽
ℎ−1∑
𝑖=0

�𝑖 �̃�𝑖(𝑥) ⩽ 𝐹(𝑥)
ℎ−1∑
𝑖=0

�𝑖 . (3.15)

It is straightforward that one can choose a geometrically increasing sequence �0 < �1 < · · · <
�ℎ−1 = � such that𝑚ℎ ≲

𝑛
�2

log(𝑆 𝑠max

𝑠min

)(log 𝑆)3, with 𝑆 := 𝑛
� log

2𝑠max

𝑠min

. Since the sequence {�𝑖} increases

geometrically, the last expression in (3.15) is at most 𝐶�𝐹(𝑥) for some 𝐶 > 1.

Let us now take 𝑠min
:= 1

2
𝑠min , 𝑠max

:= 𝑠max. We may assume that � < 1/(2𝐶), meaning that

if 𝐹0(𝑥) = 𝐹(𝑥) ∈ [𝑠min , 𝑠max], then �̃�0(𝑥), . . . , �̃�ℎ−1(𝑥) ∈ [𝑠min , 𝑠max], and therefore �̃�ℎ yields the

desired sparsifier. □

3.4 The 𝛾𝑝 losses

First, let us verify that the 𝛾𝑝 losses satisfy the assumptions of Theorem 1.1. Define a generalization

with variable thresholds: For 𝑡 ⩾ 0,

𝛾𝑝(𝑡 , 𝑧) :=

{
𝑝

2
𝑡𝑝−2𝑧2 , |𝑧 | ⩽ 𝑡
|𝑧 |𝑝 − (1 − 𝑝

2
)𝑡𝑝 , |𝑧 | ⩾ 𝑡 ,

(3.16)

Lemma 3.15. Suppose ℎ : ℝ → ℝ is continuous, symmetric and differentiable at all but finitely many

points. If ℎ is additionally approximately concave in the sense that ℎ′(𝑥) ⩽ 𝐿 ℎ′(𝑦) for 0 < 𝑥 < 𝑦, then ℎ is

𝐿-auto-Lipschitz.

32

Proof. Consider 0 < 𝑥 < 𝑦. Then,

ℎ(𝑦) − ℎ(𝑥) =
∫ 𝑦

𝑥

ℎ′(𝑧) 𝑑𝑧 ⩽ 𝐿
∫ 𝑦−𝑥

0

ℎ′(𝑧) 𝑑𝑧 = 𝐿 ℎ(𝑦 − 𝑥) . □

Lemma 3.16. For every 𝑝 ∈ (0, 2] and 𝑡 > 0, the function 𝑧 ↦→ 𝛾𝑝(𝑡 , 𝑧)1/2 is 1-auto-Lipschitz (P1) and

lower 𝑝/2-homogeneous (P2) with constant 1.

Proof. Fix 𝑝 ∈ (0, 2] and 𝑡 > 0, and define ℎ(𝑧) := 𝛾𝑝(𝑡 , 𝑧)1/2. By Lemma 3.15, to show that ℎ is

1-auto-Lipschitz, it suffices to show that ℎ′(𝑧) is non-increasing for 𝑧 > 0. This is clear for 𝑧 < 𝑡,

since ℎ′(𝑧) is independent of 𝑧. For 𝑧 > 𝑡, we calculate

ℎ′′(𝑧) = 𝑝(𝑝 − 1)𝑧𝑝−2

2(𝑧𝑝 + (1 − 𝑝/2)𝑡𝑝)1/2
− 𝑝2𝑧2𝑝−2

4(𝑧𝑝 + (1 − 𝑝/2)𝑡𝑝)3/2

=
𝑝(2 − 𝑝)𝑧𝑝−2

4(𝑧𝑝 + (1 − 𝑝/2)𝑡𝑝)3/2
((𝑝 − 1)𝑡𝑝 − 𝑧𝑝) ⩽ 0 .

To see that ℎ(𝑧)2 is lower 𝑝-homogeneous with constant 1, we first check this for 𝑥 < 𝑦 ⩽ 𝑡.
Then, ℎ(𝑦)/ℎ(𝑥) = (𝑦/𝑥)2 ⩾ (𝑦/𝑥)𝑝 . If 𝑡 ⩽ 𝑥 < 𝑦, then

ℎ(𝑦)2
ℎ(𝑥)2 =

𝑦𝑝 − (1 − 𝑝

2
)𝑡𝑝

𝑥𝑝 − (1 − 𝑝

2
)𝑡𝑝
⩾ (𝑦/𝑥)𝑝 .

For 𝑥 < 𝑡 < 𝑦, we write

ℎ(𝑦)2
ℎ(𝑥)2 =

ℎ(𝑦)2
ℎ(𝑡)2 ·

ℎ(𝑡)2
ℎ(𝑥)2 ⩾ (𝑦/𝑡)

𝑝(𝑡/𝑥)𝑝 = (𝑦/𝑥)𝑝 . □

3.4.1 The Huber Loss

Let us now prove Lemma 1.5 and Corollary 1.6.

Proof of Lemma 1.5. By scaling, we may assume that𝑤max = 1. Accordingly, let us define 𝑠min
:= 𝑤min

and 𝑠max
:= 6𝑚2

. Consider 𝑥 ∈ ℝ𝑛
with 𝐹(𝑥) ⩽ 𝑤min. In that case, 𝛾1(⟨𝑎𝑖 , 𝑥⟩) ⩽ 1, and therefore

|⟨𝑎𝑖 , 𝑥⟩| ⩽ 1 for all 𝑖 = 1, . . . , 𝑚. In particular, this implies that 𝛾1(⟨𝑎𝑖 , 𝑥⟩) = ⟨𝑎𝑖 , 𝑥⟩2/2 for each

𝑖 so that 𝐹(�𝑥) = �2𝐹(𝑥) and �̃�(�𝑥) = �2�̃�(𝑥) for � := (𝐹(𝑥)/𝑤min)−1/2
. If we take 𝑦 := �𝑥, then

𝐹(𝑦) = 𝑤min ∈ [𝑠min , 𝑠max], so it holds that |𝐹(𝑦) − �̃�(𝑦)| ⩽ �𝐹(𝑦). Scaling by � recovers the same

guarantee for 𝑥.

Now consider 𝑥 ∈ ℝ𝑛
with 𝐹(𝑥) ⩾ 𝑠max. Note that |⟨𝑎𝑖 , 𝑦⟩| − 1

2
⩽ 𝛾1(⟨𝑎𝑖 , 𝑦⟩) ⩽ |⟨𝑎𝑖 , 𝑦⟩| holds for

any 𝑦 ∈ ℝ𝑛
and 𝑖 ∈ {1, . . . , 𝑚}, therefore

𝐹(𝑥) ⩽
𝑚∑
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩| ⩽ 𝐹(𝑥) + 𝑚/2 .

Denote � := 𝑠max/(2𝐹(𝑥)) and 𝑦 := �𝑥, and note that

𝐹(𝑦) =
𝑚∑
𝑖=1

𝛾1(⟨𝑎𝑖 , 𝑦⟩) ⩽ �
𝑚∑
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩| ⩽ �(𝐹(𝑥) + 𝑚/2) ⩽ 𝑠max

33

𝐹(𝑦) ⩾ 𝑤min

(
−𝑚/2 + �

𝑚∑
𝑖=1

|⟨𝑎𝑖 , 𝑥⟩|
)
⩾ 𝑤min (�𝐹(𝑥) − 𝑚/2) ⩾ 𝑠min .

Therefore |𝐹(𝑦) − �̃�(𝑦)| ⩽ �𝐹(𝑦) by assumption.

Now use the fact that |𝛾1(𝛽𝑧) − 𝛽𝛾1(𝑧)| ⩽ 𝛽 for all 𝛽 > 1 and 𝑧 ∈ ℝ, implying

|𝐹(𝑥) − �−1𝐹(𝑦)| ⩽ 1

�

𝑚∑
𝑖=1

𝑤𝑖 ⩽
𝑚

�
,

|�̃�(𝑥) − �−1�̃�(𝑦)| ⩽ 1

�

𝑚∑
𝑖=1

�̃�𝑖 ⩽
𝑚

�
.

The triangle inequality gives

|𝐹(𝑥) − �̃�(𝑥)| ⩽ 2𝑚

�
+
|𝐹(𝑦) − �̃�(𝑦)|

�
⩽

4𝑚

𝑠max

𝐹(𝑥) + �
�
𝐹(𝑦) ⩽ 2�𝐹(𝑥) ,

where we have used 𝑠max ⩾ 4𝑚2
and � > 1/𝑚. □

Proof of Corollary 1.6. Note that the sparsifier �̃� = �̃�𝜌,� satisfying the guarantee (3.13) is produced

via importance sampling with respect to the distribution specified by 𝜌 ∈ ℝ𝑚
+ , and if the 𝑖th term

has probability 𝜌𝑖 to be sampled, then it is weighted by (𝜌𝑖𝑀)−1
(recalling (3.6)). Moreover, �̃�𝜌,𝝂

satisfies (3.13) with probability 1 − 𝑜(1) as 𝑚 →∞.

By a union bound, ℙ(min𝑗∈[𝑀] 𝜌𝝂𝑗 ⩽ 𝛿) ⩽ 𝛿𝑀𝑚. Therefore with probability at least 1/2, it

holds min𝑗∈[𝑀] 𝜌𝝂𝑗 ⩾
1

2𝑀𝑚 . If we start with a uniform-weighted function 𝐹(𝑥) = 𝛾1(⟨𝑎1 , 𝑥⟩) + · · · +
𝛾1(⟨𝑎𝑚 , 𝑥⟩), then with probability at least 1/2, the maximum weight in �̃� will be 2𝑚.

Thus if �̃� satisfies (3.13) with 𝑠min = 1/2 and 𝑠max
:= 8𝑚3

, then Lemma 1.5 shows that that �̃�

is a genuine 𝑂(�)-approximation to 𝐹. Now the sparsity guarantee of Theorem 1.1 (or see (3.12))

completes the proof. □

3.4.2 The Tukey Loss

Let us denote the Tukey loss T(𝑧) := min{𝑧2 , 1}, and use ℎ(𝑧) := T(𝑧)1/2 = min{|𝑧 |, 1}. We use the

notation from the beginning of the section.

Theorem 3.17. Suppose 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
satisfy ∥𝑎𝑖 ∥2 ⩽ 𝑛𝑂(1) for 𝑖 = 1, . . . , 𝑚, and denote 𝐹(𝑥) :=∑𝑚

𝑖=1
T(⟨𝑎𝑖 , 𝑥⟩). Then there are weights 𝑤 ∈ ℝ𝑚

+ with |supp(𝑤)| ⩽ 𝑛1+𝑜(1)�−2(log𝑚)4, and such that

(1 − �)𝐹(𝑥) ⩽
𝑚∑
𝑖=1

𝑤𝑖T(⟨𝑎𝑖 , 𝑥⟩) ⩽ (1 + �)𝐹(𝑥) , ∀𝑥 ∈ ℝ𝑛
with ∥𝑥∥2 ⩽ 𝑛𝑂(1) . (3.17)

The weights 𝑤 can be computed in time �̃�(nnz(𝑎1 , . . . , 𝑎𝑚) + 𝑛𝜔 + 𝑚) with high probability.

The remainder of the section is sketching a proof of Theorem 3.17. Note that the Tukey loss

satisfies (P1) and (P3)–(P5), but not (P2), which is why Theorem 1.1 is not directly applicable. This

34

motivates us to define the function ℎ(𝑥) := min{|𝑥 |, |𝑥 |�} for some small � > 0 to be chosen later,

and 𝑓𝑖(𝑥) := ℎ(⟨𝑎𝑖 , 𝑥⟩)2 for 𝑖 = 1, . . . , 𝑚, along with 𝐹(𝑥) :=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩).
By Theorem 2.4, for some 𝛼 = 𝛼(�), there is an 𝛼-approximate weight scheme {𝑤(𝑗) : 𝑗 ∈ 𝒥}

for { 𝑓𝑖} and {𝑎𝑖}, where 𝒥 := { 𝑗 ∈ ℤ : | 𝑗 | ⩽ 𝐶 log𝑚}, with the constant 𝐶 > 1 chosen sufficiently

large. Define 𝜏𝑖 := max𝑗∈𝐽 𝑤
(𝑗)
𝑖
∥𝑈−1

𝑗
𝑎𝑖 ∥2

2
for 𝑖 = 1, . . . , 𝑚 so that ∥𝜏∥1 ≲ 𝑛 |𝒥 | ≲ 𝑛 log𝑚, along with

sampling weights 𝜌𝑖 := 𝜏𝑖/∥𝜏∥1 for 𝑖 = 1, . . . , 𝑚.

Take Ω := {𝑥 : ∥𝑥∥2 ⩽ 𝑛𝑂(1)}, with the notation of Section 1.6.2 and 𝜑𝑖(𝑥) := T(⟨𝑎𝑖 , 𝑥⟩), and

�̃�(𝑥) = ∑𝑀
𝑖=1

1

𝑀𝜌�𝑖
T(⟨𝑎�𝑖 , 𝑥⟩) as constructed in Section 1.6.2. Consider ℓ ∈ ℤ with |ℓ | ⩽ 2 log𝑚. We

can estimate (as in (3.7)): for any 𝑥, 𝑦 ∈ Ω ∩ 𝐵𝐹(2ℓ),

𝑑𝜌,�(𝑥, 𝑦) ≲ 𝑑∞(𝑥, 𝑦)
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2

for 𝑑∞(𝑥, 𝑦) := max

𝑖∈[𝑚]

ℎ(⟨𝑎𝑖 , 𝑥 − 𝑦⟩)√
𝜏𝑖

,

One should observe that (3.7) only requires (H2), which T(𝑧)1/2 satisfies.

Let us also define the distance 𝑑∞(𝑥, 𝑦) := max𝑖∈[𝑚]
ℎ(⟨𝑎𝑖 ,𝑥−𝑦⟩)√

𝜏𝑖
⩾ 𝑑∞(𝑥, 𝑦). Note that Ω∩𝐵𝐹(2ℓ) ⊆

𝐵
𝐹
(𝑛𝑂(�)2ℓ). Therefore,

diam(Ω ∩ 𝐵𝐹(2ℓ), 𝑑𝜌,�) ≲
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· diam(Ω ∩ 𝐵𝐹(2ℓ), 𝑑∞)

⩽

(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· diam(𝐵

𝐹
(𝑛𝑂(�)2ℓ), 𝑑∞)

⩽

(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· 𝐶(�)𝑛𝑂(�)2ℓ/2 ,

where the last inequality is from Lemma 3.11, and 𝐶(�) is a number depending on � > 0.

Thus for some choice 𝑀 ≲ 𝐶(�)�−2𝑛1+𝑂(�)(log𝑚)4, we have

diam(Ω ∩ 𝐵𝐹(2ℓ), 𝑑𝜌,�) ≲
�2

ℓ/2

(log𝑚)3/2

(
max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
.

Similarly,

𝛾2(Ω ∩ 𝐵𝐹(2ℓ), 𝑑𝜌,�) ≲
(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· 𝛾2(Ω ∩ 𝐵𝐹(2ℓ), 𝑑∞)

⩽

(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· 𝛾2(𝐵𝐹(𝑛

𝑂(�)
2
ℓ), 𝑑∞)

(3.10)

⩽

(
∥𝜏∥1
𝑀

)
1/2 (

max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
· 𝐶(�)𝑛𝑂(�)2ℓ/2(log𝑚)3/2

⩽ �2
ℓ/2

(
max

𝑥∈Ω∩𝐵𝐹(2ℓ)
�̃�𝜌,�(𝑥)

)
1/2
,

35

again for 𝑀 ≲ 𝐶(�)�−2𝑛1+𝑂(�)(log𝑚)4 chosen sufficiently large. This implies |𝐹(𝑥) − �̃�(𝑥)| ⩽ � · 𝐹(𝑥)
for all 𝑥 ∈ Ω ∩ 𝐵𝐹(2ℓ). This holds for all |ℓ | ⩽ 2 log𝑚, so |𝐹(𝑥) − �̃�(𝑥)| ⩽ � · 𝐹(𝑥) for all 𝑥 ∈ Ω.

Thus applying Lemma 1.14 shows that �̃� satisfies (3.17). The claimed result now follows by

choosing � = 𝑜(1) as 𝑛 →∞.

We remark that if the proofs of Lemma 3.11 and (3.10) are unraveled, one can check

that 𝐶(�) ≲ exp(𝑂(�−2)), so the optimal choice is � ≍ (log 𝑛)−1/3
, yielding sparsifiers of size

�−2𝑛1+𝑂((log 𝑛)−1/3)(log𝑚)4.

4 Algorithms for generalized linear models

4.1 Optimizing generalized linear models

Here we describe an algorithm that optimizes a GLM (recall (1.1)) under certain assumptions on

its divergence. The algorithm reduces optimizing a GLM to a few queries to what we call a sparse

GLM oracle that optimizes convex GLMs induced by a limited number of functions plus a linear

term. We start by defining convex GLMs (Definition 4.1), a sparse GLM oracle (Definition 4.2), the

assumptions on the functions we consider (Assumption 4.3), and giving the main theorem on the

algorithm for optimizing convex GLMs with a sparse GLM oracle (Theorem 4.4).

Definition 4.1 (Convex GLM). We call a a familyℱ = { 𝑓1 , . . . , 𝑓𝑚} of differentiable, convex functions,

along with vectors 𝑎1 , . . . , 𝑎𝑚 ∈ ℝ𝑛
and 𝑏 ∈ ℝ𝑚

a convex GLM. We let 𝐹(𝑥) def

=
∑𝑚
𝑖=1

𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖)
and let 𝐹∗ := min𝑥∈ℝ𝑛 𝐹(𝑥).

Definition 4.2 (Sparse GLM oracle). We call an algorithm a sparse GLM oracle for a convex GLM

(Definition 4.1) if when given as input � > 0, 𝑤 ∈ ℝ𝑚
+ , and 𝑦, 𝑥in ∈ ℝ𝑛

, it outputs a vector 𝑥out ∈ ℝ𝑛

such that

𝐺(𝑥out) − 𝐺(𝑥∗) ⩽ �(𝐺(𝑥in) − 𝐺(𝑥∗)) ,

where 𝐺(𝑥) := ⟨𝑦, 𝑥⟩ +
𝑚∑
𝑖=1

𝑤𝑖 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖), and 𝑥∗ := argmin𝑥∈ℝ𝑛 𝐺(𝑥) .

We use 𝒯 ℱ
GLM
(𝑠, �) to denote the worst-case runtime of such a GLM oracle on inputs where 𝑤 has at

most 𝑠 nonzero entries, over all convex GLMs with a given family of functions ℱ = { 𝑓1 , . . . , 𝑓𝑚}.

Assumption 4.3 (Approximate Divergence Sparsifiability). Assume that, for some parameters,

� > 1 and 𝛼, 𝑐, 𝐿 > 0, the function 𝑓 : ℝ→ ℝ is convex, differentiable, and satisfies the following

property: For every 𝑥0 ∈ ℝ, there is a convex function 𝑟𝑥0
: ℝ→ ℝ that can be evaluated in �̃�(𝒯eval)

time, and such that

• 𝑟𝑥0
(Δ) ⩽ 𝐷 𝑓

𝑥0

(𝑥0 + Δ) ⩽ 𝛼 · 𝑟𝑥0
(Δ) for all Δ ∈ ℝ,

• 𝑟
1/2
𝑥0

is 𝐿-auto-Lipschitz (property (P1)).

• 𝑟𝑥0
is lower �-homogeneous with constant 𝑐 (property (P2)).

36

Theorem 4.4. Consider 𝑥(0) ∈ ℝ𝑛
and any convex GLM (Definition 4.1) where each 𝑓𝑖 ∈ ℱ satisfies

Assumption 4.3 with uniform constants � > 1, 𝛼, 𝑐, 𝐿 > 0. Provided an upper bound 𝐹(𝑥(0)) − 𝐹∗ ⩽ Γ, with

high probability SolveGLM (Algorithm 4) outputs a vector 𝑦 ∈ ℝ𝑛
satisfying 𝐹(𝑦) − 𝐹∗ ⩽ 𝛿 in time

�̃�
(
�−1(nnz(𝐴) + 𝒯 ℱ

GLM
(�̃�𝛼,𝑐,�,𝐿(𝑛), 𝑂(�/𝛼)) + 𝑚𝒯eval) log (Γ/𝛿)

)
,

where � := (10𝛼2/𝑐)−1/(�−1)
, and 𝒯eval is the worst-case time needed to evaluate a function 𝑓𝑖 .

Under mild assumptions on the family ℱ = { 𝑓1 , . . . , 𝑓𝑚}, it holds that, 𝒯 ℱ
GLM
(�̃�(𝑛), �) ⩽

�̃�(𝑛𝜔0
log(1/�)), where 𝜔0 is as defined as in Section 1.2 (see [LSZ19b, Theorem 4.2] for the formal

conditions).

The algorithm establishing Theorem 4.4 is straightforward. In each iteration, we write our

optimization problem as a divergence with respect to the current point 𝑥(𝑡). Then we sparsify the

divergence using Theorem 1.1. Finally, we call a GLM oracle (Definition 4.2), which is efficient, as

we have sparsified the sum down to �̃�(𝑛) terms. We use this to take a step, obtaining an improved

point 𝑥(𝑡+1)
, and repeat this iteration �̃�(1) times. The main technical point is in handling the

dependence of Theorem 1.1 on the scale parameters 𝑠min and 𝑠max.

Recall from Definition 1.9 that𝑇
𝑓
𝑥 is the first-order Taylor approximation to 𝑓 at 𝑥, and𝐷

𝑓
𝑥 = 𝑓 −𝑇 𝑓

𝑥

is the associated divergence.

Algorithm 3: GLMIterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑏, 𝑥, Γ̃)
input :Functions 𝑓𝑖 : ℝ→ ℝ, vectors 𝑎𝑖 ∈ ℝ𝑛

, 𝑏 ∈ ℝ𝑚
, initial point 𝑥 ∈ ℝ𝑛

. Performs one

step of iterative refinement to decrease function value.

1 𝑦𝑖 ← ⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖 for 𝑖 ∈ [𝑚].
2 Let 𝑟𝑖 ,𝑦𝑖 denote the approximation to 𝐷

𝑓𝑖
𝑦𝑖 , as in Assumption 4.3.

3 𝑠min ← 𝑚−𝑂(1)Γ̃, 𝑠max ← 𝑚𝑂(1)Γ̃.

4 Use Theorem 1.1 to find weights 𝑤 ∈ ℝ𝑚
⩾0

that induce an �̃�𝛼,𝑐,�,𝐿(𝑛)-sparse

(1/10)-approximation of 𝑟(Δ) :=
∑
𝑖∈[𝑚] 𝑟𝑖 ,𝑦𝑖 (⟨𝑎𝑖 ,Δ⟩) for all 𝑠min ⩽ 𝑟(Δ) ⩽ 𝑠max.

5 Let ℎ(Δ) := 𝑇𝐹𝑥 (𝑥 + Δ) + 2

3𝛼

∑
𝑖∈[𝑚] 𝑤𝑖𝐷

𝑓𝑖
𝑦𝑖 (⟨𝑎𝑖 , 𝑥 + Δ⟩ − 𝑏𝑖).

6 �← (10𝛼2/𝑐)−1/(�−1)
.

7 Find Δ̂ satisfying ℎ(Δ̂) ⩽ ℎ(Δ∗) + Γ̃/10 by calling a GLM oracle (Definition 4.2) with

ℱ = { 𝑓1 , . . . , 𝑓𝑚}, 𝑥in = 0, and � = �/(30𝛼).
8 if 𝐹(𝑥 + �Δ̂) ⩽ 𝐹(𝑥) then return 𝑥 + �Δ̂ else return 𝑥

Let 𝐸 = 𝐹(𝑥) − 𝐹(𝑥∗) denote the function value error. The analysis of this algorithm proceeds by

showing that one step of GLMIterate decreases 𝐸 as long as 𝐶0𝑠min ⩽ 𝐸 ⩽ 𝑠max/𝐶0 for sufficiently

large constant 𝐶0 (and otherwise, does not increase the error). Intuitively, as long as this is true, we

will show that Δ∗ := 𝑥∗ − 𝑥 and Δ̂ are points where we indeed have sparsification guarantees by

Theorem 1.1. Towards this, we first establish that 𝑟(Δ∗) ≍ 𝐸, where throughout this section we allow

the implicit constants in the ≍, ≲, ≳ notation to depend on the parameters 𝑐, 𝐿, �, 𝛼 in Theorem 4.4.

Lemma 4.5. In the setting of Theorem 4.4, for Δ∗ := 𝑥∗ − 𝑥 we have 𝐸/𝛼 ≲ 𝑟(Δ∗) ⩽ 2𝐸/�.

37

Algorithm 4: SolveGLM({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑏, 𝑥(0) , Γ, 𝛿)
input :Functions 𝑓𝑖 : ℝ→ ℝ, vectors 𝑎𝑖 ∈ ℝ𝑛

, 𝑏 ∈ ℝ𝑚
, initial point 𝑥(0) ∈ ℝ𝑛

. Output a point

that is a 𝛿-approximate minimizer of min𝑥
∑
𝑖∈[𝑚] 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖).

1 𝜏← ⌈2�−1
log(Γ/𝛿)⌉ for � = (10𝛼2/𝑐)−1/(�−1)

.

2 for 𝑇 = 0, 1, . . . , 𝜏 − 1 do
3 𝑥(𝑇+1) ← GLMIterate({ 𝑓1 , . . . , 𝑓𝑚}, {𝑎1 , . . . , 𝑎𝑚}, 𝑏, 𝑥(𝑇) , (1 − �/2)𝑇Γ).
4 end
5 return 𝑥(𝜏).

Proof. Let 𝑔 = ∇𝐹(𝑥). By optimality of Δ∗, and because (P5) holds by Lemma 1.4,

−𝐸 ⩽ ⟨𝑔 , 2Δ∗⟩ + 𝐷𝐹
𝑥 (𝑥 + 2Δ∗) ⩽ 2 ⟨𝑔 ,Δ∗⟩ + 𝛼𝑟(2Δ∗)

(P5)

⩽ 2 ⟨𝑔 ,Δ∗⟩ + 𝑂(𝛼 · 𝑟(Δ∗)).

Because ⟨𝑔 ,Δ∗⟩ ⩽ −𝐸 by convexity, we deduce that 𝑟(Δ∗) ≳ −𝐸/𝛼.

For the upper bound, choose � = (10𝛼/𝑐)−1/(�−1)
. By optimality of Δ∗ we have

−𝐸 ⩽ ⟨𝑔 , �Δ∗⟩ + 𝐷𝐹
𝑥 (𝑥 + �Δ∗) ⩽ � ⟨𝑔 ,Δ∗⟩ + 𝛼𝑟(�Δ∗)

⩽ � ⟨𝑔 ,Δ∗⟩ + ��𝛼/𝑐 · 𝑟(Δ∗) ⩽ � ⟨𝑔 ,Δ∗⟩ + �/2 · 𝑟(Δ∗) ⩽ −�/2 · 𝑟(Δ∗),

where the final step uses ⟨𝑔 ,Δ∗⟩ + 𝑟(Δ∗) ⩽ 0. Thus, 𝑟(Δ∗) ⩽ 2𝐸/�, as desired. □

Define �̃�(Δ) = 2

3𝛼

∑
𝑖∈[𝑚] 𝑤𝑖𝐷

𝑓𝑖
𝑦𝑖 (⟨𝑎𝑖 , 𝑥 + Δ⟩ − 𝑏𝑖). Note that 𝐷

𝑓𝑖
𝑦𝑖 (⟨𝑎𝑖 , 𝑥 + Δ⟩ − 𝑏𝑖) ⩽ 𝛼𝑟𝑖 ,𝑦𝑖 (⟨𝑎𝑖 ,Δ⟩)

under the assumptions of Theorem 4.4.

Lemma 4.6. If Γ̃/2 ⩽ 𝐸 ⩽ Γ̃, then −𝐸 ≲
〈
∇𝐹(𝑥), Δ̂

〉
+ �̃�(Δ̂) ⩽ −0.8𝐸. Also, 𝑟(Δ̂) ≍ 𝐸.

Proof. Note that 𝐶0𝑠min ⩽ 𝐸 ⩽ 𝑠max/𝐶0 for a large constant 𝐶0 because Γ̃/2 ⩽ 𝐸 ⩽ Γ̃, and the choice

of 𝑠min and 𝑠max. Theorem 1.1 tells us that �̃�(Δ) ⩽ 𝑟(Δ) ⩽ 2̃𝑟(Δ)whenever 𝑠min ⩽ 𝑟(Δ) ⩽ 𝑠max, with

high probability. Combining 𝐶0𝑠min ⩽ 𝐸 ⩽ 𝑠max/𝐶0 and Lemma 4.5 gives that 𝑠min ⩽ 𝑟(Δ∗) ⩽ 𝑠max.

Thus, we know that �̃�(Δ∗) ⩽ 𝑟(Δ∗) ⩽ 2̃𝑟(Δ∗). By the definition of Δ̂ as in line 7 of Algorithm 3,

ℎ(Δ̂) ⩽ ℎ(Δ∗) + Γ̃/10 = 𝑇𝐹𝑥 (𝑥 + Δ∗) + �̃�(Δ∗) + Γ̃/10

⩽ 𝑇𝐹𝑥 (𝑥 + Δ∗) + 𝑟(Δ∗) + Γ̃/10 ⩽ 𝑇𝐹𝑥 (𝑥 + Δ∗) + 𝐷𝐹
𝑥 (𝑥 + Δ∗) + Γ̃/10

= 𝐹(𝑥∗) − 𝐹(𝑥) + Γ̃/10 ⩽ −0.8𝐸,

as long as 𝐸 ⩾ Γ̃/2. This demonstrates the upper bound. Let us proceed to the lower bound. Let

𝑔 = ∇𝐹(𝑥). We first consider the case where 𝑟(Δ̂) < 𝑠min. Let 𝛽 be minimal so that 𝑟(𝛽Δ̂) ⩾ 𝑠min. By

(P4), we have that 𝑟(𝛽Δ̂) ≲ 𝑠min in fact. Then〈
𝑔 , 2𝛽Δ̂

〉
+ �̃�(2𝛽Δ̂) ⩽ 2𝛽

〈
𝑔 , Δ̂

〉
+ 𝑟(2𝛽Δ̂) ⩽ 2𝛽

〈
𝑔 , Δ̂

〉
+ 𝑂(𝑠min) < 1.5

〈
𝑔 , Δ̂

〉
,

contradicting the optimality of Δ̂ (as we have noted that

〈
𝑔 , Δ̂

〉
⩽ −0.8𝐸). If 𝑠min ⩽ 𝑟(Δ̂) ⩽ 𝑠max,

then for � = (10𝛼2/𝑐)−1/(�−1)
,〈

𝑔 , Δ̂
〉
+ �̃�(Δ̂) ⩾

〈
𝑔 , Δ̂

〉
+ 1

2𝛼
𝑟(Δ̂) ⩾ �−1(

〈
𝑔 , �Δ̂

〉
+ 𝛼𝑟(�Δ̂))

38

⩾ �−1(
〈
𝑔 , �Δ̂

〉
+ 𝐷𝐹

𝑥 (𝑥 + �Δ̂)) ⩾ −�−1𝐸.

Finally, if 𝑟(Δ̂) > 𝑠max, first pick � to be maximal so that 𝑟(�Δ̂) ⩽ 𝑠max. It is easy to see that

𝑟(�Δ̂) ≳ 𝑠max. Then �̃�(�Δ̂) ≳ 𝑠max. Because �̃� lower �-homogeneous with constant 𝑐, we deduce that

�|
〈
𝑔 , Δ̂

〉
| ⩾ ��̃�(Δ̂) ≳ �̃�(�Δ̂) ≳ 𝑠max.

For �′ = (𝐶𝛼/𝑐)−1/(�−1)
for sufficiently large 𝐶, we have that

−𝐸 ⩽
〈
𝑔 , ��′Δ̂

〉
+ 𝐷𝐹

𝑥 (𝑥 + ��′Δ̂) ⩽ �′
〈
𝑔 , �Δ̂

〉
+ (�′)�𝛼/𝑐 · 𝑟(�Δ̂) ≲ −𝑠max ,

as 𝑟(�Δ̂) ⩽ 𝑠max and �
〈
𝑔 , Δ̂

〉
≲ −𝑠max. This is a contradiction.

For the second point, we have shown 𝑠min ⩽ 𝑟(Δ̂) ⩽ 𝑠max, so 𝑟(Δ̂) ≍ �̃�(Δ̂) ≍ 𝐸, as desired. □

We now prove that taking one iteration makes sufficient progress.

Lemma 4.7. If Γ̃/2 ⩽ 𝐸 ⩽ Γ̃, then for � = (10𝛼2/𝑐)−1/(�−1)
, we have 𝐹(𝑥 +�Δ̂) − 𝐹(𝑥∗) ⩽ (1−�/2)(𝐹(𝑥) −

𝐹(𝑥∗)).

Proof. Note that 𝑟(�Δ̂) ≍ 𝐸 by Lemma 4.6, so we deduce that

𝐹(𝑥 + �Δ̂) − 𝐹(𝑥∗) = �
〈
𝑔 , Δ̂

〉
+ 𝐷𝐹

𝑥 (𝑥 + �Δ̂) ⩽ �
〈
𝑔 , Δ̂

〉
+ 𝛼𝑟(�Δ̂) ⩽ �

〈
𝑔 , Δ̂

〉
+ 2𝛼2 �̃�(�Δ̂)

⩽ �(
〈
𝑔 , Δ̂

〉
+ �̃�(Δ̂)) ⩽ −0.8�𝐸,

where we have applied Lemma 4.6 again. □

Now Theorem 4.4 follows easily.

Proof of Theorem 4.4. We first bound the runtime. We consider a single iteration of GLMIterate. One

part of the runtime is from sparsifying 𝑟(Δ), and is bounded by Theorem 1.1. The other part is from

calling an GLM oracle in line 7. The sparsity of 𝑤1 , . . . , 𝑤𝑚 is at most �̃�𝛼,𝑐,�,𝐿(𝑛) by Theorem 1.1,

and � = �/(30𝛼), so the runtime is 𝒯 ℱ
GLM
(�̃�𝛼,𝑐,�,𝐿(𝑛), �/(30𝛼)).

Now we verify that ℎ(Δ) takes the form of the GLM oracle as described in Definition 4.2. Indeed,

ℎ(Δ) = 𝑇𝐹𝑥 (𝑥 + Δ) +
2

3𝛼

∑
𝑖∈[𝑚]

𝑤𝑖𝐷
𝑓𝑖
𝑦𝑖 (⟨𝑎𝑖 , 𝑥 + Δ⟩ − 𝑏𝑖)

= 𝐹(𝑥) + ⟨∇𝐹(𝑥),Δ⟩ + 2

3𝛼

∑
𝑖∈[𝑚]

𝑤𝑖(𝑓𝑖(⟨𝑎𝑖 , 𝑥 + Δ⟩ − 𝑏𝑖) − 𝑓𝑖(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖) − 𝑓 ′𝑖 (⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖) ⟨𝑎𝑖 ,Δ⟩).

Now define Δ := 𝑥 + Δ. Upon setting Δ = Δ − 𝑥 in the above expression, all terms become either

reweighted versions of 𝑓𝑖(⟨𝑎𝑖 ,Δ⟩ − 𝑏𝑖), constants, or linear terms in Δ. Thus, ℎ(Δ) has the form of

the GLM oracle.

Now we check that setting � = �/(30𝛼) and 𝑥in = 0 suffices to achieve ℎ(Δ̂) ⩽ ℎ(Δ∗) + Γ̃/10. It

suffices to verify that �(ℎ(0) − ℎ(Δ∗)) ⩽ Γ̃/10. Indeed, a calculation yields

ℎ(0) − ℎ(Δ∗) = 𝐹(𝑥) − (𝑇𝐹𝑥 (𝑥∗) + 𝐷𝐹
𝑥 (𝑥∗)) + (𝐷𝐹

𝑥 (𝑥∗) − 𝑟(Δ∗))

39

= 𝐹(𝑥) − 𝐹(𝑥∗) + (𝐷𝐹
𝑥 (𝑥∗) − 𝑟(Δ∗)) ⩽ 𝐸 + 𝐷𝐹

𝑥 (𝑥∗)
(𝑖)
⩽ 𝐸 + 𝛼𝑟(Δ∗)

(𝑖𝑖)
⩽ 𝐸 + 2𝛼𝐸/� ⩽ 3𝛼Γ̃/�,

where (𝑖) follows by the first bullet of Assumption 4.3, and (𝑖𝑖) follows from Lemma 4.5.

Now we check correctness of the overall algorithm. We show by induction that 𝐹(𝑥(𝑇)) − 𝐹(𝑥∗) ⩽
Γ̃ = (1 − �/2)𝑇Γ. This holds for 𝑇 = 0 by the hypothesis in Theorem 4.4 that 𝐹(𝑥(0)) − 𝐹∗ ⩽ Γ. If

𝐹(𝑥(𝑇)) − 𝐹(𝑥∗) ⩽ (1 − �/2)𝑇+1Γ, then there is nothing to show because 𝐹(𝑥(𝑇+1)) ⩽ 𝐹(𝑥(𝑇)), by line 8

of Algorithm 3. Otherwise, we conclude by Lemma 4.7, whose hypothesis that Γ̃/2 ⩽ 𝐸 ⩽ Γ̃ holds

for Γ̃ = (1 − �/2)𝑇Γ. □

4.2 Applications

4.2.1 ℓ𝑝-regression

To establish Theorem 1.2, it suffices to check that the function 𝑔(𝑥) = |𝑥 |𝑝 satisfies the conditions in

Theorem 4.4.

Proof of Theorem 1.2. Consider the function 𝑔(𝑧) = |𝑧 |𝑝 for 𝑝 > 1. From [AKPS19a, Lemma 4.5], it

holds that

𝛾𝑝(|𝑥0 |,Δ) ≍𝑝 𝐷𝑔
𝑥0

(𝑥0 + Δ) for any 𝑥0 ,Δ ∈ ℝ , (4.1)

where 𝛾𝑝(𝑡 , 𝑧) is defined in (3.16). Therefore it suffices to check that the function 𝑟𝑥0
(Δ) := 𝛾𝑝(|𝑥0 |,Δ)

satisfies the required conditions, and this is the content of Lemma 3.16. □

4.2.2 Dual of ℓ𝑝-regression

We now establish Theorem 1.3 by reducing the dual problem to a primal problem and applying

Theorem 1.2. Consider 𝑝 ∈ (1, 2] and the dual exponent 𝑞 :=
𝑝

𝑝−1
⩾ 2, along with 𝐴 ∈ ℝ𝑚×𝑛

. Then,

min

𝐴⊤𝑦=𝑐
∥𝑦∥𝑞 = min

𝐴⊤𝑦=𝑐
max

∥𝑧∥𝑝⩽1

𝑧⊤𝑦 = max

∥𝑧∥𝑝⩽1

min

𝐴⊤𝑦=𝑐
𝑧⊤𝑦 = max

∥𝐴𝑥∥𝑝⩽1

𝑐⊤𝑥 =

(
min

𝑐⊤𝑥=1

∥𝐴𝑥∥𝑝
)−1

,

where the second equality uses convex duality (von Neumann’s minimax theorem).

Denote 𝑥∗ := argmin𝑐⊤𝑥=1
∥𝐴𝑥∥𝑝 . By the KKT conditions, it holds that

𝑦∗ := argmin𝐴⊤𝑦=𝑐 ∥𝑦∥𝑞 =
sign(𝐴𝑥∗)|𝐴𝑥∗ |𝑝−1

∥𝐴𝑥∗∥𝑝𝑝
,

where we apply scalar functions to vectors in the straightforward way, e.g., |𝐴𝑥∗ |𝑝−1 =(
|(𝐴𝑥∗)1 |𝑝−1 , . . . , |(𝐴𝑥∗)𝑚 |𝑝−1

)
.

Suppose that we have a vector 𝑥 ∈ ℝ𝑛
satisfying 𝑐⊤𝑥 = 1 and ∥𝐴𝑥∥𝑝 ⩽ (1 + �0)∥𝐴𝑥∗∥𝑝 , for some

choice of �0 > 0 that we will make momentarily. We can find 𝑥 using Theorem 1.2 with the objective

min𝑥∈ℝ𝑛 𝐾 |⟨𝑐, 𝑥⟩ − 1|𝑝 + ∥𝐴𝑥∥𝑝𝑝 , for sufficiently large constant 𝐾 depending on �0 , 𝐴. Define

𝑦 :=
sign(𝐴𝑥)|𝐴𝑥 |𝑝−1

∥𝐴𝑥∥𝑝𝑝
.

40

Our output 𝑦 will be the orthogonal projection of 𝑦 onto the affine subspace {𝑦 : 𝐴⊤𝑦 = 𝑐},
which can be found by solving a single linear system in 𝐴⊤𝐴. Denote 𝛿𝑦 := 𝑦 − 𝑦. Clearly

∥𝑦∥𝑞 ⩽ ∥𝑦∥𝑞 + ∥𝛿𝑦 ∥𝑞 . Noting that

∥𝑦∥𝑞 = ∥𝐴𝑥∥−1

𝑝 ⩽ ∥𝐴𝑥∗∥−1

𝑝 = ∥𝑦∗∥𝑞 ,

our goal is to bound ∥𝛿𝑦 ∥𝑞 .
The next lemma shows that choosing �0 ≍𝑝 (�𝑚1/𝑞−1/2)2𝑞/𝑝 suffices to obtain ∥𝑦∥𝑞𝑞 ⩽ (1+ �)∥𝑦∗∥

𝑞
𝑞 .

Lemma 4.8. It holds that ∥𝛿𝑦 ∥𝑞 ≲𝑝 𝑚1/2−1/𝑞�
𝑝/(2𝑞)
0

∥𝑦∗∥𝑞 .

Proof. Write

∥𝛿𝑦 ∥𝑞 ⩽ ∥𝛿𝑦 ∥2 ⩽ ∥𝑦∗ − 𝑦∥2 ⩽ 𝑚1/2−1/𝑞 ∥𝑦∗ − 𝑦∥𝑞 ,
where the first inequality uses 𝑞 ⩾ 2, the second uses the fact that 𝑦 is the orthogonal projection

onto {𝑦 : 𝐴⊤𝑦 = 𝑐}, which contains 𝑦∗, and the third uses Hölder’s inequality.

To bound the last expression, first write

∥𝑦∗ − 𝑦∥𝑞 =
sign(𝐴𝑥∗)|𝐴𝑥∗ |𝑝−1

∥𝐴𝑥∗∥𝑝𝑝
−

sign(𝐴𝑥)|𝐴𝑥 |𝑝−1

∥𝐴𝑥∥𝑝𝑝

𝑞

⩽

����� 1

∥𝐴𝑥∗∥𝑝𝑝
− 1

∥𝐴𝑥∥𝑝𝑝

����� · sign(𝐴𝑥∗)|𝐴𝑥∗ |𝑝−1

𝑞
+

sign(𝐴𝑥∗)|𝐴𝑥∗ |𝑝−1 − sign(𝐴𝑥)|𝐴𝑥 |𝑝−1

∥𝐴𝑥∥𝑝𝑝

𝑞

.

Because ∥𝐴𝑥∥𝑝 ⩽ (1 + �0)∥𝐴𝑥∗∥𝑝 , the first term is bounded by

𝑂(�0) · ∥𝐴𝑥∗∥−𝑝𝑝 · ∥𝐴𝑥∗∥
𝑝/𝑞
𝑝 ≲ �0∥𝐴𝑥∗∥−1

𝑝 ≲ �0∥𝑦∗∥𝑞 .

For the second term, we use 2-uniform convexity (with constant 𝑝−1) of the ℓ𝑝 norm for 𝑝 ∈ (1, 2]
to obtain

∥𝐴(𝑥 − 𝑥∗)∥2𝑝 ⩽
2

𝑝 − 1

(∥𝐴𝑥∥2𝑝 − ∥𝐴𝑥∗∥2𝑝) ≲𝑝 �0∥𝐴𝑥∗∥2𝑝 .

Because the function 𝑓 (𝑧) := sign(𝑧)|𝑧 |𝑝−1
satisfies | 𝑓 (𝑦) − 𝑓 (𝑧)| ≲ 𝑓 (𝑦 − 𝑧) for 1 < 𝑝 ⩽ 2, we getsign(𝐴𝑥∗)|𝐴𝑥∗ |𝑝−1 − sign(𝐴𝑥)|𝐴𝑥 |𝑝−1

∥𝐴𝑥∥𝑝𝑝

𝑞

≲𝑝 ∥𝐴𝑥∥−𝑝𝑝 ∥|𝐴(𝑥∗ − 𝑥)|𝑝−1∥𝑞

⩽ ∥𝐴𝑥∥−𝑝𝑝 ∥𝐴(𝑥∗ − 𝑥)∥
𝑝/𝑞
𝑝 ≲𝑝 �

𝑝/(2𝑞)
0

∥𝐴𝑥∗∥−𝑝𝑝 ∥𝐴𝑥∗∥
𝑝/𝑞
𝑝 = �

𝑝/(2𝑞)
0

∥𝑦∗∥𝑞 . □

4.2.3 𝛾𝑝 regression

Consider the case when the loss functions are of the form 𝑓1(𝑧) = · · · = 𝑓𝑚(𝑧) = 𝛾𝑝(𝑧), and we with

to minimize 𝐹(𝑥) := 𝑓1(⟨𝑎1 , 𝑥⟩) + · · · + 𝑓𝑚(⟨𝑎𝑚 , 𝑥⟩). For 𝑝 = 1 (Huber regression), one can compute a

(1 + �)-approximate solution by first sparsifying down to
𝑛
�2
(log𝑚)𝑂(1) terms using Corollary 1.6,

and then solving the resulting problem using a GLM oracle for the Huber loss on sparse instances.

For 𝑝 ∈ (1, 2], our framework allows us to find a minimizer to high accuracy, in analogy with the

case of ℓ𝑝 regression. This follows because the divergence of 𝛾𝑝 around any point is, up to constants,

equal to 𝛾𝑝(𝑡 , 𝑧) for some threshold 𝑡 ⩾ 0 (defined in (3.16)), and thus we can apply Theorem 4.4.

41

Lemma 4.9. For all 𝑝 ∈ (1, 2], the following holds: If |𝑧 | ⩽ 1 then 𝐷
𝛾𝑝
𝑧 (Δ + 𝑧) ≍𝑝 𝛾𝑝(Δ), and if |𝑧 | ⩾ 1

then 𝐷
𝛾𝑝
𝑧 (Δ + 𝑧) ≍ 𝛾𝑝(|𝑧 |,Δ).

Proof. We will make use of (4.1) and the following fact: For any continuously differentiable function

ℎ : ℝ→ ℝ that is twice-differentiable at all but finitely many points,

𝐷ℎ
𝑧 (𝑧 + Δ) = ℎ(𝑧 + Δ) − [ℎ(𝑧) + ℎ′(𝑧)Δ] =

∫ Δ

0

(Δ − 𝑡)ℎ′′(𝑧 + 𝑡) 𝑑𝑡 for all 𝑧,Δ ∈ ℝ . (4.2)

We now prove the lemma by case analysis on 𝑧,Δ ∈ ℝ. By symmetry, we may assume that 𝑧 ⩾ 0.

Case (1): 𝑧 ∈ [0, 1], |Δ| ⩽ 4. Here we have 𝑧 + Δ ∈ [−4, 5], and on this interval 𝛾′′𝑝 (𝑧 + Δ) ≍ 1. From

(4.2), this yields 𝐷
𝛾𝑝
𝑧 (𝑧 + Δ) ≍𝑝 Δ2 ≍ 𝛾𝑝(Δ).

Case (2): 𝑧 ∈ [0, 1], |Δ| > 4. Since |𝑧 + Δ| > 1 and 𝑝 > 1, it holds that

𝐷
𝛾𝑝
𝑧 (𝑧 + Δ) = |𝑧 + Δ|𝑝 − (1 − 𝑝/2) −

𝑝

2

𝑧2 − 𝑝𝑧 |Δ| ≍𝑝 |Δ|𝑝 ≍ 𝛾𝑝(Δ) .

Case (3): 𝑧 > 1, |𝑧 + Δ| ⩾ 1. In this case, we have 𝐷
𝛾𝑝
𝑧 (𝑧 + Δ) = 𝐷

𝑔
𝑧 (𝑧 + Δ), where 𝑔(𝑧) := |𝑧 |𝑝 . From

(4.1), we have 𝐷
𝑔
𝑧 (𝑧 + Δ) ≍𝑝 𝛾𝑝(|𝑧 |,Δ).

Case (4): 𝑧 > 1, 𝑧 + Δ ∈ [1/2, 1]. Because 𝛾′′𝑝 (𝑦) ≍𝑝 𝑔′′(𝑦) for all 𝑦 ∈ [1/2,∞) \ {1}, (4.2) gives

𝐷
𝛾𝑝
𝑧 (𝑧 + Δ) ≍𝑝 𝐷

𝑔
𝑧 (𝑧 + Δ).

Case (5): 𝑧 > 1, 𝑧 + Δ ∈ [−1, 1/2]. Convexity of 𝛾𝑝 implies that

𝐷
𝛾𝑝
𝑧 (−1) ⩽ 𝐷𝛾𝑝

𝑧 (𝑧 + Δ) ⩽ 𝐷
𝛾𝑝
𝑧 (1/2).

We have already argued that 𝐷
𝛾𝑝
𝑧 (−1) ≍𝑝 𝛾𝑝(|𝑧 |,−1 − 𝑧) and 𝐷

𝛾𝑝
𝑧 (1/2) ≍𝑝 𝛾𝑝(|𝑧 |, 1/2 − 𝑧). Because

−1−𝑧 ≍ 1/2−𝑧, we conclude that𝐷
𝛾𝑝
𝑧 (−1) ≍𝑝 𝐷

𝛾𝑝
𝑧 (1/2) ≍𝑝 𝛾𝑝(|𝑧 |,Δ), for anyΔ ∈ [−1−𝑧, 1/2−𝑧]. □

Acknowledgments

Part of this work was conducted while the authors were visiting the Simons Institute for the Theory

of Computing. James R. Lee is supported in part by NSF CCF-2007079 and a Simons Investigator

Award. Yang P. Liu is partially supported by the Google Research Fellowship and NSF DMS-1926686.

Aaron Sidford is supported in part by a Microsoft Research Faculty Fellowship, NSF CCF-1844855,

NSF CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.

References

[ABKS21] Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. Almost-linear-time

weighted ℓ𝑝-norm solvers in slightly dense graphs via sparsification. In Nikhil Bansal,

Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,

Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual

Conference), volume 198 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021. 2, 4, 10

42

[AKPS19a] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement

for ℓ𝑝-norm regression. 2019. Available at arXiv:1901.06765. 40

[AKPS19b] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement

for lp-norm regression. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,

January 6-9, 2019, pages 1405–1424. SIAM, 2019. 2, 4, 10, 12

[AS20] Deeksha Adil and Sushant Sachdeva. Faster p-norm minimizing flows, via smoothed

q-norm problems. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,

2020, pages 892–910. SIAM, 2020. 2

[BCLL18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy

method for ℓ𝑝 regression provably beyond self-concordance and in input-sparsity time.

In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the

50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,

CA, USA, June 25-29, 2018, pages 1130–1137. ACM, 2018. 2, 4

[BLL
+
21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,

Zhao Song, and Di Wang. Minimum cost flows, mdps, and l
1
-regression in nearly

linear time for dense instances. In Samir Khuller and Virginia Vassilevska Williams,

editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual

Event, Italy, June 21-25, 2021, pages 859–869. ACM, 2021. 2

[BLM89] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes.

Acta Math., 162(1-2):73–141, 1989. 2, 6, 9

[BLN
+
20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol

Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear

time on moderately dense graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,

pages 919–930. IEEE, 2020. 2

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense

linear programs in nearly linear time. In Konstantin Makarychev, Yury Makarychev,

Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,

June 22-26, 2020, pages 775–788. ACM, 2020. 2

[CLM
+
15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,

and Aaron Sidford. Uniform sampling for matrix approximation. In ITCS, pages

181–190. ACM, 2015. 18

[CLS21] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current

matrix multiplication time. J. ACM, 68(1):3:1–3:39, 2021. 2

43

https://arxiv.org/abs/1901.06765

[CP15] Michael B. Cohen and Richard Peng. 𝑙𝑝 row sampling by lewis weights. In Rocco A.

Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on

Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,

pages 183–192. ACM, 2015. 9, 16

[CW15] Kenneth L. Clarkson and David P. Woodruff. Input sparsity and hardness for robust

subspace approximation. In Venkatesan Guruswami, editor, IEEE 56th Annual Sympo-

sium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,

2015, pages 310–329. IEEE Computer Society, 2015. 6

[CWW19] Kenneth L. Clarkson, Ruosong Wang, and David P. Woodruff. Dimensionality reduction

for tukey regression. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,

pages 1262–1271. PMLR, 2019. 6

[GPV21] Mehrdad Ghadiri, Richard Peng, and Santosh S. Vempala. Faster 𝑝-norm regression

using sparsity. abs/2109.11537, 2021. 2, 4, 10

[JLLS23] Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying sums of

norms. arXiv preprint arXiv:2305.09049, 2023. To appear in FOCS 2023. Available at

arXiv:2305.09049. 13, 14

[JLS22] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities for

overconstrained p-norm regression. In Stefano Leonardi and Anupam Gupta, editors,

STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,

June 20 - 24, 2022, pages 529–542. ACM, 2022. 5

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm

for solving general lps. In Samir Khuller and Virginia Vassilevska Williams, editors,

STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,

Italy, June 21-25, 2021, pages 823–832. ACM, 2021. 2

[Lew79] D. R. Lewis. Ellipsoids defined by Banach ideal norms. Mathematika, 26(1):18–29, 1979.

9

[LMP13] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science, pages 127–136. IEEE, 2013. 18

[LSZ19a] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the

current matrix multiplication time. In Alina Beygelzimer and Daniel Hsu, editors,

Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99

of Proceedings of Machine Learning Research, pages 2140–2157. PMLR, 2019. 2, 4, 12

[LSZ19b] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the

current matrix multiplication time. 2019. Available at arXiv:1905.04447. 37

44

https://arxiv.org/pdf/2305.09049.pdf
https://arxiv.org/abs/1905.04447

[LT11] Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Classics in

Mathematics. Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of

the 1991 edition. 9, 13

[MMWY22] Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active

linear regression for ℓ𝑝 norms and beyond. In 63rd IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,

2022, pages 744–753. IEEE, 2022. 2, 4, 6, 7

[PT85] Alain Pajor and Nicole Tomczak-Jaegermann. Remarques sur les nombres d’entropie

d’un opérateur et de son transposé. C. R. Acad. Sci. Paris Sér. I Math., 301(15):743–746,

1985. 13

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.

SIAM J. Comput., 40(6):1913–1926, 2011. 2, 18

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondi-

tioning and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix

Anal. Appl., 35(3):835–885, 2014. 2

[SZ01] Gideon Schechtman and Artem Zvavitch. Embedding subspaces of 𝐿𝑝 into 𝑙𝑁𝑝 , 0 < 𝑝 < 1.

Math. Nachr., 227:133–142, 2001. 2, 22

[Tal90] Michel Talagrand. Embedding subspaces of 𝑙1 into ℓ 𝑛
1

. Proceedings of the American

Mathematical Society, 108(2):363–369, 1990. 2

[Tal95] M. Talagrand. Embedding subspaces of 𝐿𝑝 in 𝑙𝑁𝑝 . In Geometric aspects of functional

analysis (Israel, 1992–1994), volume 77 of Oper. Theory Adv. Appl., pages 311–325.

Birkhäuser, Basel, 1995. 2

[Tal14] Michel Talagrand. Upper and lower bounds for stochastic processes, volume 60 of Ergebnisse

der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics

[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in

Mathematics]. Springer, Heidelberg, 2014. Modern methods and classical problems.

13, 14

[WY23] David P. Woodruff and Taisuke Yasuda. Sharper bounds for ℓ𝑝 sensitivity sampling. In

Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,

and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023,

23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning

Research, pages 37238–37272. PMLR, 2023. 2

45

	Introduction
	Hypotheses and results for sparsification
	Fast p regression
	Discussion of the hypotheses
	Importance sampling and multiscale weights
	Regression via iterative refinement
	Preliminaries

	Multiscale importance scores
	Contractive algorithm
	A variational approach to approximate weights

	Covering number bounds
	Iterative covering
	Norm control
	Sparsification analysis
	The p losses

	Algorithms for generalized linear models
	Optimizing generalized linear models
	Applications

