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Abstract
We initiate the study of approximate algorithms on neg-

atively curved spaces. These spaces have recently become
of interest in various domains of computer science includ-
ing networking and vision. The classical example of such a
space is the real-hyperbolic spaceHd for d ≥ 2, but our ap-
proach applies to a more general family of spaces charac-
terized by Gromov's (combinatorial) hyperbolic condition.
We give ef�cient algorithms and data structures for prob-
lems like approximate nearest-neighbor search and com-
pact, low-stretch routing on subsets of negatively curved
spaces of �xed dimension (including Hd as a special case).
In a different direction, we show that there is a PTAS for the
Traveling Salesman Problem when the set of cities lie, for
example, in Hd. This generalizes Arora's results for Rd.

Most of our algorithms use the intrinsic distance geome-
try of the data set, and only need the existence of an embed-
ding into some negatively curved space in order to function
properly. In other words, our algorithms regard the inter-
point distance function as a black box, and are independent
of the representation of the input points.

1 Introduction
The algorithmic and structural theory of �nite metric

spaces has been a very active and fruitful area of study, with
a diverse range of applications in computer science. This
connection is most straightforward when the input at hand
is equipped with an explicit distance metric, for instance
when the distance function represents a similarity measure
on a set of data, or the hop-distance between nodes in a
network. In these cases, a number of important computa-
tional tasks become apparent, e.g. nearest-neighbor search,
clustering, routing, object location, �nding optimal sales-
man tours, etc.

Often these tasks are prohibitively dif�cult on general
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metric spaces, and thus one seeks natural and plausible re-
strictions on the spaces under consideration which could
lead to the existence of ef�cient algorithms and data struc-
tures. A classical assumption might be that the data points
lie in some �nite-dimensional vector space Rd, where dis-
tances are computed according to an `p norm. Indeed, this
is the setting of classical computational geometry. On the
other hand, such restrictions are very rigid, and often in-
appropriate as they not only make assumptions about the
pairwise distances between points, but also about their rep-
resentation.
Intrinsic metric properties. Instead, we would like to
place conditions on the intrinsic geometry of the input met-
ric space, and ideally these conditions are both independent
of the input representation, and stable under small perturba-
tions of the distances. Studies of this type have a number
bene�ts: They suggest new algorithmic approaches which
would have been infeasible under general assumptions, they
lend new insight into the understanding of well-known al-
gorithms by exposing the simplest set of restrictions nec-
essary for their analysis, and they can yield algorithms and
data structures which are more amenable to ef�cient imple-
mentation.

As an example, consider the doubling dimension of a
metric space, which was suggested in [16] (based on a clas-
sical notion of [4], and inspired by the approach in [18])
as an intrinsic notion of metric dimension that affects algo-
rithmic tractability�we refer to [16] for the de�nition, and
merely note that subsets of Rd are a special case of spaces
having small dimension in this sense. The paper [19] gave
algorithms and data structures for nearest-neighbor search
problems in such spaces whose ef�ciency depended on the
doubling dimension. Beygelzimer, Kakade, and Langford
[7] built upon these techniques to obtain ef�cient imple-
mentations that compare favorably with known approaches
for general metric spaces. Finally, in a sequence of papers
[20, 17, 12], culminating in the recent result of Cole and
Gottlieb, it is shown that one can give data structures whose
theoretical ef�ciency matches the well-known optimal algo-
rithms for low-dimensional Euclidean spaces [3], giving a
better understanding of even the classical case.



Negatively curved spaces. In the present paper, we study
approximate algorithms on negatively curved spaces and
their metric generalizations. The classical example of such
a space is the real-hyperbolic space Hd for d ≥ 2, but sig-
ni�cant generalizations are made possible by the pioneering
work of Gromov [15] (see Section 2). We are motivated in
part by recent studies in networking and vision which sug-
gest that there are a variety of interesting data sets which
exhibit negatively curved properties.

Shavitt and Tankel [26] show empirically that the inter-
net topology (namely, the AS graph) embeds with better ac-
curacy (smaller average distortion) into a low-dimensional
hyperbolic space than into a Euclidean space of compara-
ble dimension. They also demonstrate the application of
their embedding to delay estimation and server selection.
Begelfor and Werman [6] obtain similar conclusions for
several data sets including the internet (where distance is
number of hops), actors database (distance based on num-
ber of joint movies), and genomic data (distance between
potential genes computed using BLAST), using a different
notion of accuracy�the average additive distortion. They
also suggest that such embeddings may be useful for clus-
tering problems. Finally, Sharon and Mumford [25] model
the similarity between 2-D objects in the plane using con-
formal mappings (i.e. maps that locally preserve angles).
The distance function they de�ne turns out to represent the
geodesic distance along a certain manifold of non-positive
curvature.

Another motivation for studying negatively curved
spaces concerns the overarching approach of all algorithms
based on doubling dimension restrictions�hierarchical lo-
cal search. These algorithms depend crucially on the fact
that the �volume growth� of balls in such spaces is only
polynomial in the radius of the ball. At the end of the day,
all the algorithmic approaches on spaces of small doubling
dimension boil down to (sometimes very clever) forms of
�brute force� local search. For negatively curved spaces,
this volume growth constraint no longer exists because�by
their very nature�such spaces exhibit exponential volume
growth. Thus in order to solve geometric problems on these
spaces, we are forced to confront exponential growth in a
tractable way.

To demonstrate our techniques, we consider three repre-
sentative problems: Nearest-neighbor search, sparse span-
ners and and compact routing tables, and approximation al-
gorithms for the Traveling Salesman Problem (TSP). While
based on similar principles, the solution to each requires
overcoming distinct obstacles. An important point is that
many of our algorithms depend only on the intrinsic geom-
etry of the distance function d(·, ·), and not on any repre-
sentation of the points in a speci�c negatively curved space.

In Section 1.2, we give a precise statement of our results,
and an overview of the techniques involved. For readers

interested in a crash course in negatively curved geometry,
we refer to the introduction in Section 2, where we discuss
Gromov hyperbolic spaces�these spaces are de�ned by a
combinatorial condition of Gromov, which is completely
divorced from any continuous (e.g. manifold) structure.

1.1 Preliminaries

We use standard notions from geometric analysis. Let
(X, dX) be a metric space. For x ∈ X, r ≥ 0, we write
B(x, r) = {y ∈ X : dX(x, y) ≤ r} for the closed ball of
radius r about x. Given another metric space (Y, dY ) and a
map f : X → Y , we say that f is a distortion C embedding
of X into Y if there exists a number c0 > 0 for which

dX(x, y) ≤ c0 · dY (f(x), f(y)) ≤ C · dX(x, y),

holds for all x, y ∈ X . We refer to such a map as a C-
embedding of X into Y .

The doubling constant of X , written λ(X), is the small-
est λ such that every ball in X can be covered by λ balls
of half the radius. A subset S ⊆ X is ε-separated if
d(x, y) ≥ ε for every x, y ∈ S. A set S is an ε-net if it
is ε-separated and X ⊆ ⋃

x∈S B(x, ε).

1.2 Results and techniques

We now describe our results, and give a brief overview
of the techniques involved. In Section 2, we give a short in-
troduction to Gromov hyperbolic metric spaces, along with
some equivalent characterizations (via the shapes of trian-
gles and divergence of geodesics) that will be useful later.
In general, our results hold for arbitrary subsets of locally
doubling, geodesic, δ-hyperbolic spaces (see Section 2 for
the de�nitions�this includes, e.g. Hd), and most of the
algorithms and constructions only access the distance func-
tion as an oracle. To avoid messy quantitative statements at
this point, we will let M represent a space satisfying these
properties (for some �xed setting of the other parameters),
and X ⊆M an arbitrary n-point subset.

Random decompositions, spanners, and routing. In Sec-
tion 3, we turn to random low-diameter decompositions of
negatively curved spaces. Such decompositions are a well-
studied and essential tool in the �eld of discrete metric
spaces (see, e.g. [5, 24, 16, 23, 21, 11]). Using these de-
compositions, we construct a (1+ε)-stretch routing scheme
for X , where the average amount of memory needed per
node is only O(log Φ)2�here, Φ is the ratio of the largest
to smallest distance in X . This application follows almost
immediately from ef�ciently constructible hierarchical de-
compositions with small support (see [11]). We also show
how, for every ε > 0, one can construct a (1 + ε)-spanner
of X with only ( 1

ε )O(1) · n edges, but using Steiner nodes.
If we are not allowed Steiner nodes, it is not dif�cult to



see that (1 + ε)-stretch is impossible to achieve; without
Steiner nodes, we can still construct constant-stretch linear-
sized spanners.

The dif�culty in constructing random �padded� decom-
positions (especially with small support) comes from the
phenomenon of exponential volume growth in negatively
curved spaces. But this growth comes at a price�geodesics
in such spaces �diverge� at an exponential rate. This cre-
ates a subtle trade-off that is best viewed �at in�nity.� In
fact, such a structure at in�nity exists, called the Gromov
boundary of X , and denoted ∂X (see Section 2). If X is
locally doubling (i.e. is ��at� at small scales), then this
structure is manifested on ∂X which, by a result of Bonk
and Schramm [8] will also be doubling. Because of expo-
nential divergence of geodesics, there is a tight relationship
between ∂X and X , and thus we can use known decom-
positions for doubling spaces [16] as a crucial step in our
constructions for X (see Figure 2(b)).

While the previous description is the best way to under-
stand our approach, it does not yield ef�cient algorithms
(in particular, we cannot actually go to in�nity), but there
is a way of transferring such results to the intrinsic algo-
rithmic setting by explicitly using exponential divergence
of geodesics in place of the structure of ∂X .

Nearest-neighbor search. In Section 4, we design ap-
proximate nearest neighbor search algorithms for a data set
X ⊆M and queries q ∈M. Speci�cally, our main techni-
cal result is an ef�cient algorithm achieving O(1)-additive
approximation, with query time O(log2 n) and with pre-
processing storage O(n2). The algorithm is intrinsic (or
black-box) in the sense that it only requires distance com-
putations over the input points. Our algorithm easily ex-
tends to (1 + ε)-approximations�since our space M (and
hence X) is assumed to be locally doubling, we can locally
employ the search procedures of [19].

We employ a divide-and-conquer approach based on
structural properties of negatively curved spaces. Whereas
algorithms for Euclidean spaces might try to recursively
con�ne the set of feasible answers to smaller and smaller
balls or half-spaces, our approach uses a sequence of hier-
archically structured �cones� (such sets are allowed to be
signi�cantly larger in the �vertical� direction than the �hor-
izontal� direction). A signi�cant challenge is posed by the
need for the search structure to occupy only polynomial
space, and for the algorithm to only ask distance queries
d(q, x) for x ∈ X (as opposed to x ∈M).

Traveling salesman tours. Finally, in Section 5, we give
an overview of our approach to obtaining a PTAS for TSP
on n-point subsets X ⊆ M. Actually, we are only able to
obtain a quasi-PTAS (i.e. quasi-polynomial running time)
for such X , but we obtain a true PTAS for, e.g. subsets
of Hd (or any space where the local doubling property of

M is replaced by a �uniformly locally Euclidean� property,
discussed in Section 2).

Essentially, we show that for every �nite subset X ⊆M
and every ε > 0, X admits an embedding into a distribution
over dominating �neighborhood-trees� with distortion 1+ε.
A neighborhood-tree is basically a tree of neighborhoods in
M, where each neighborhood has diameter at most τ =
τ(ε). Since M is locally doubling and geodesic, for every
�xed value of τ , the local neighborhoods are doubling (or
close to Euclidean ifM satis�es a stronger property), hence
inside each neighborhood we can use known techniques for
doubling [27] or �nite-dimensional Euclidean [2] spaces to
compute near-optimal salesman tours. In the latter case, we
need to observe that Arora's geometric TSP framework can
be extended to subsets of Euclidean space that are distorted
by an arbitrary constant.

2 Gromov hyperbolic metric spaces

In this section, we give the basic de�nitions and proper-
ties of spaces that one might consider �negatively curved.�
Such spaces include classical examples like the real and
complex-hyperbolic spaces Hd and CHd, and Riemannian
manifolds of (strictly) negative sectional curvature, but also
many discrete spaces like graph-theoretic trees and the Cay-
ley graphs of �word-hyperbolic� groups. The ability to ar-
gue at this level of generality is due, in large part, to Gro-
mov [15] who introduced the notion of a δ-hyperbolic met-
ric space. We refer to [14] for a comprehensive treatment
of such spaces.

Let (X, d) be any metric space. We �x a basepoint r ∈
X , which will sometimes be implicit in the de�nitions that
follow. For any x, y ∈ X , we write |x − y| = d(x, y) and
|x| = |x− r|. One de�nes the Gromov product of x, y ∈ X
with respect to r by

(x|y)r = 1
2 (|x− r|+ |y − r| − |x− y|) ,

where we will sometimes omit the basepoint r and simply
write (x|y). One calls a space δ-hyperbolic if, for every
x, y, z, r ∈ X , we have

(x|y)r ≥ min{(x|z)r, (y|z)r} − δ. (1)

Observe that the case δ = 0 coincides precisely with the
family of metric trees, and if one thinks of r as the root
of the tree, then (x|y)r corresponds exactly to the distance
from r to the least common ancestor of x and y. We note
that if the inequality (1) holds only for a �xed basepoint
r ∈ X , then it holds with respect to any basepoint if δ is
replaced by 2δ, i.e. X is 2δ-hyperbolic (see e.g. [1, Lem.
2.3]).



Figure 1. Divergence of geodesics: u(t) & exp(Ct) for
hyperbolic spaces.

Geodesics. A geodesic segment in X is a map γ : [0, L] →
X for some L > 0 which is an isometric embedding of
[0, L] onto its image. We say that the space X is a geodesic
space if every pair of points x, y ∈ X can be connected
by a geodesic. For two points x, y in a geodesic space X ,
we will sometimes write [x, y] to represent some geodesic
between them.

In geodesic spaces, there are equivalent notions of �hy-
perbolicity� that will be useful.
Thin triangles. The following notion is due to Rips. Let
x, y, z ∈ X be distinct points. A geodesic triangle in X
is the set [x, y] ∪ [y, z] ∪ [z, x] ⊆ X for some choice of
geodesics. Such a triangle is called δ-thin if, for every w ∈
[x, y], we have d(w, [y, z] ∪ [z, x]) ≤ δ (and similarly for
the other sides [y, z], [z, x]). We will say that X is δ-thin if
every geodesic triangle in X is δ-thin. It is an exercise to
see that a geodesic metric space X is δ-thin if and only if X
is O(δ)-hyperbolic.
Exponential divergence of geodesics. In general, we de-
�ne a continuous path in X to be the image of a continuous
map P : [0, 1] → X . We can then de�ne the length of P as

length(P ) = inf
x1,...,xm

m−1∑

i=1

|P (xi)− P (xi+1)| ,

where the in�mum is over all subdivisions 0 = x1 < x2 <
· · · < xm = 1 of [0, 1].

Let γ1, γ2 : [0, L] → X be two geodesic segments with
the same initial point x0 = γ1(0) = γ2(0). They are said to
diverge at rate u : [0,∞) → R if, for every pair of numbers
t and T , with 0 ≤ T, t + T ≤ L, the following property
holds: Whenever |γ1(T )− γ2(T )| > u(0), if a continuous
path P connects γ1(T + t) and γ2(T + t) in the closure
of X \ B(x0, T + t), then the length of P is at least u(t).
(See Figure 1, where the thick dotted line represents the
boundary of B(x0, T + t).)

We will say that geodesics in X diverge at an expo-
nential rate if there exists a constant C > 0 and a map
u : [0,∞) → R such that u(t) ≥ Ω(exp(Ct)) as t → ∞,
and every pair of geodesics γ1, γ2 in X diverge at rate u.
The following theorem relates exponential divergence of
geodesics to hyperbolicity (see, e.g. [1, Th. 2.19]).

Theorem 2.1. A geodesic metric space X is δ-hyperbolic
for some δ > 0 if and only if geodesics in X diverge at an
exponential rate. Furthermore, the rate of divergence and
the value of δ depend solely on each other.

Local geometry. Clearly the condition in (1) is relevant
only for the �large scale� geometry of X . In particular, if
(x|z), (y|z) ≤ δ, then the condition becomes trivial. On the
other hand, the interaction between the local geometry of
a space (below the �hyperbolicity radius� δ) with the neg-
ative curvature manifests itself in the large-scale geometry
of X . Thus we de�ne three progressively stronger ways of
bounding the local geometry of a space.

1. We will say that X has local geometry of type (λ0, R0)
if every ball of radius R0 in X can be covered by λ0

balls of half the radius.

2. We will say that X is locally doubling if there exist
constants λ0, R0 > 0 such that X has local geometry
of type (λ0, R) for every R ≤ R0.

3. Finally, we will say that X is locally Euclidean if there
exist constants C,R, k > 0 such that every ball of ra-
dius R in X admits a C-embedding into Rk.

The following well-known lemma shows that in a
geodesic space, a uniform bound on the local geometry im-
plies that the space has at most singly-exponential growth.
We omit its proof from this extended abstract.

Lemma 2.2. If a geodesic space (X, d) has local geome-
try of type (λ0, R0), then it also has local geometry of type
(λ2R/R0+1

0 , R) for every R ≥ R0.

Examples. Recall that there exists a δ > 0 such that for ev-
ery d ≥ 1, the real and complex hyperbolic spacesHd,CHd

are δ-hyperbolic. Furthermore, these spaces are locally Eu-
clidean. In fact, Topogonov's comparison theorem implies
that if X is any complete simply-connected Riemannian
manifold of dimension n with �pinched� negative sectional
curvature κ (see e.g. [22]), i.e. b ≤ κ ≤ a < 0, then
X is δ-hyperbolic and locally Euclidean, with parameters
depending only on a and b. By de�nition, all these spaces
are geodesic. Another interesting family of δ-hyperbolic
spaces is given by the word-hyperbolic groups (see [1, 14]).
Clearly the word metric on �nitely-generated groups is lo-
cally doubling (as is the shortest path metric on any graph
with uniformly bounded degrees).



The Gromov boundary. One of the most important objects
associated to a Gromov hyperbolic space is its boundary at
in�nity. We recall the standard construction. Let X be a
δ-hyperbolic space, and �x a basepoint r ∈ X . A sequence
{xi}∞i=1 ⊆ X is said to converge at in�nity if

lim
i,j→∞

(xi|xj)r = ∞.

We de�ne the Gromov boundary of X , denoted ∂X , as
the set of equivalence classes of convergent sequences with
equivalence relation

{xi} ≡ {yi} ⇐⇒ lim
i→∞

(xi|yi)r = ∞.

This equivalence relation is easily seen to be independent of
the choice of basepoint.

We now extend the product operation to the boundary in
the standard way. Let a, b ∈ ∂X . We de�ne

(a|b)r = sup
{

lim inf
i→∞

(xi|yi)r : {xi} ∈ a, {yi} ∈ b
}

.

For a ∈ ∂X, y ∈ X , de�ne

(a|y)r = (y|a)r = sup
{

lim inf
i→∞

(xi|y)r : {xi} ∈ a
}

.

Observe that for any a, b, x ∈ X ∪ ∂X , we have

(a|b) ≥ min{(a|x), (b|x)} − 2δ, (2)

using (1) and the de�nitions above.
Visual spaces. We will say that a Gromov hyperbolic space
X is visual (with respect to the basepoint r) if, for every
x ∈ X , there exists an isometric map γ : [0,∞) → X for
which γ(0) = r, γ(t0) = x for some t0 ≥ 0, and such that
{γ(ti)} converges at in�nity for every sequence {ti} with
ti → ∞. In words, there is a geodesic ray starting from
r, traveling through x, and converging at in�nity. We can
identify γ with {γ(ti)} so that γ ∈ ∂X . We mention, for
instance, that Hd is visual with respect to any basepoint.
The canonical gauge on ∂X . There is a family of standard
metrics on the boundary of a Gromov hyperbolic space X .
If x, y ∈ ∂X , r ∈ X , and ε > 0, one de�nes

dr,ε(x, y) = inf

{
n∑

i=1

e−ε(xi−1|xi)r

}
,

where the in�mum is taken over all �nite sequences x =
x0, x1, . . . , xn = y ∈ ∂X , with the convention that e−∞ =
0. The following lemma can be found in [14, Ch. 7]�
in a sense, it captures succinctly the effect of exponential
divergence at in�nity.
Lemma 2.3. There exists a constant C0 > 0 such that if X
is δ-hyperbolic and εδ ≤ C0, then

1
2e−ε(x|y)r ≤ dr,ε(x, y) ≤ e−ε(x|y)r , ∀x, y ∈ ∂X.

Following [8], and in light of Lemma 2.3, we de�ne the
canonical gauge G(X) on ∂X as

G(X) = {dr,ε : 0 < ε ≤ C0/δ},

We refer to Figure 2(a) for a graphical representation of ∂X
in an Escher painting (of the Poincaré disc model of H2).

We now discuss brie�y the proper setting for Gromov
hyperbolic spaces�coarse geometry�and also recent re-
sults on embeddings of such spaces.

Coarse geometry. A map f : X → Y between two met-
ric spaces X and Y is called a quasi-isometry if there exist
constants K ≥ 1, c ≥ 0 such that

1
K |x− y| − c ≤ |f(x)− f(y)| ≤ K|x− y|+ c

for every x, y ∈ X . In other words, we allow both multi-
plicative and additive distortion of distances. Such a map is
called a (K, c)-quasi-isometry. Since the δ-hyperbolic con-
dition is independent of the local geometry of a space, it
turns out that �quasi-isometric� notions are the proper set-
ting in which to discuss Gromov hyperbolic spaces.

The relevance of such notions to computer science is that
they are signi�cantly more �exible. For instance, one could
de�ne a c-rough geodesic γ : [0, L] → X as a map which is
a (1, c)-quasi-isometry onto its image. (The image of such
a map might be a discrete set in X instead of a continuous
path.) This approach is taken, for instance, in [8]. We re-
mark that all our results hold in the corresponding �coarse�
setting (so anywhere we assume a space to be geodesic, we
might as well assume it is only roughly geodesic for some
c > 0), but we avoid these generalizations for simplic-
ity of presentation. Similar approaches have been taken in
the computer science literature, e.g. the concept of (α, β)-
spanners [13].

Embeddings of Gromov hyperbolic spaces. Finally, we
mention a couple of results about embedding δ-hyperbolic
spaces into other spaces, though we do not use these re-
sults in the present work. It is known, through work of
Buyalo and Schroeder, that every geodesic δ-hyperbolic
space with local geometry of type (λ0, R0) admits a quasi-
isometric embedding into a product of a bounded number
of in�nite complete binary trees [9, 10]. Furthermore, Bonk
and Schramm [8] showed that every geodesic δ-hyperbolic
space with local geometry of type (λ0, R0) admits a quasi-
isometric embedding into a real-hyperbolic space Hd. In
both cases, the quantities involved in the embeddings (e.g.
dimension, quasi-isometric distortion, number of trees) de-
pend only on δ, λ0, R0. Products of trees are (obviously)
not themselves Gromov hyperbolic, and it seems far more
dif�cult to design algorithms for such spaces.



3 Probabilistic decompositions

Let (X, d) be a metric space. We begin by recalling the
notion of a padded (probabilistic) decomposition of X . If
P is a partition of X and x ∈ X , we use P (x) to denote the
unique set P (x) ∈ P which contains x. Let µ be a distri-
bution over partitions of X . We say that µ is τ -bounded if,
for every partition P ∈ supp(µ) and every S ∈ P , we have
diam(S) ≤ τ .

We say that a τ -bounded distribution is (α, β)-padded if
the following holds for every x ∈ X ,

Pr
P∈µ

[B(x, τ/α) ⊆ P (x)] ≥ β.

We will say that µ is α-padded if it is (α, 1
2 )-padded. Let

P = (P1, P2, . . . , Pk) be a �nite sequence of partitions
of X . The decomposition induced by P is the distribution
Pi where i is a random variable uniformly distributed over
{1, . . . , k}.

We recall the following decomposition theorem from
[16] (although the focus therein is on doubling metrics and
thus it is stated slightly differently.)

Theorem 3.1 ([16]). There exists a constant C ≥ 1 such
that for every τ > 0 and λ > 0, if the metric space X
is locally doubling with parameters (λ, τ), then there ex-
ists a sequence of partitions, P , that induces a τ -bounded
O(log λ)-padded decomposition of X , and furthermore
|P| ≤ O(log λ log log λ).

The main result of this section is the following decompo-
sition theorem for Gromov hyperbolic spaces. It is weaker
than our most general decomposition theorem, and is not
obviously algorithmic (in particular, we will make liberal
use of ∂X), but it contains all of the essential ideas.

Theorem 3.2. Let (X, d) be a visual, geodesic δ-hyperbolic
space that is locally doubling with parameters (λ0, δ). Then
there exists a threshold T = Θ(δ log log λ0) such that
the following holds. For every τ > 0, there is a se-
quence P of τ -bounded partitions of X such that |P| ≤
O(log λ0(log log λ0)2), and the distribution induced by P
is: O(log λ0 log log λ0)-padded if τ ≤ T , and (5, 1

4 )-
padded if τ ≥ T .

Before proving Theorem 3.2, let us present one of its
key ingredients. Fix some metric d∂X ∈ G(X). Bonk and
Schramm [8] show that if X is δ-hyperbolic with bounded
growth at some scale, then for every d∂X ∈ G(X), one has
dimA(∂X, d∂X) < ∞, where dimA(·) is the Assouad di-
mension [4]. Following their proof, we state below a quan-
titative version of this result, which is a (straightforward)
generalization of [8]. We recall that λ(X, d) is the (global)
doubling constant of the metric space (X, d).

Theorem 3.3. Let X be a geodesic δ-hyperbolic metric
space and suppose X has local geometry of type (λ0, R0)
for some R0 ≥ δ. Then λ(∂X, d∂X) ≤ λ

O(R0/δ)
0 .

We will also need the following simple proposition.

Proposition 3.4. Let (X, d) be a δ-hyperbolic space and
suppose x, y ∈ X and a, b ∈ ∂X satisfy (a|x) ≥ |x| and
(b|y) ≥ |y|. Then

min{|x|, |y|, (a|b)} − 4δ ≤ (x|y) ≤ (a|b) + 4δ.

Proof. Two applications of (2) imply that

(a|b) ≥ min{(a|x), (x|y), (y|b)} − 4δ

≥ min{|x|, (x|y), |y|} − 4δ.

By de�nition, (x|y) ≤ min{|x|, |y|}, and thus we get
(a|b) ≥ (x|y) − 4δ. On the other hand, applying (2) twice
again, we have

(x|y) ≥ min{(x|a), (a|b), (b|y)} − 4δ

≥ min{|x|, (a|b), |y|} − 4δ.

We are now ready to prove Theorem 3.2. The general
idea is as follows: As in Figure 2(b), we will use a partition
of ∂X to induce a partition of X itself, and since λ(∂X)
is small by Theorem 3.3, using Theorem 3.1 we get good
decompositions for the boundary. The key connection be-
tween ∂X and X is given by Lemma 2.3.

Proof of Theorem 3.2. Setting T = cδ log log λ0 for a suf-
�ciently large constant c > 0, the following holds.

First, we observe the existence of decompositions for
small scales τ . If τ ≤ δ, we can simply use the lo-
cally doubling condition along with Theorem 3.1. If
δ < τ ≤ T , then by Lemma 2.2 we know that X

has local geometry of type (λ2τ/δ+1
0 , τ), hence applying

Theorem 3.1, there exists a sequence P partitions of X
such that the induced decomposition is τ -bounded and has
O( τ

δ log λ0) = O(log λ0 log log λ0) padding, and further-
more |P| = O(log λ0(log log λ0)2).

Next, we handle the more dif�cult case of large scales
τ ≥ T . The decomposition is constructed in two stages
as follows. The �rst step decomposes X into two sets of
concentric annuli of width ∆ = τ/5. For u ∈ {0, 1} and
k ∈ N, de�ne

Au
k =

{
x ∈ X :

(
k − u

2

)
∆ ≤ |x| < (

k + 1− u
2

)
∆

}
.

It is clear that for each u ∈ {0, 1}, X =
⋃

k≥0 Au
k is a par-

tition of X . The second step further decomposes each an-
nulus Au

k separately. To this end, �x u ∈ {0, 1} and k ≥ 1.
(If k = 0 then there is no further decomposition.) For every



(a) The boundary at in�nity in an Escher painting (b) Partitioning annuli using a partition of ∂X

Figure 2. A decomposition of the boundary ∂X induces a partition of X.

x ∈ Au
k , �x a geodesic ray γx with γx(0) = r, γx(|x|) = x,

and such that γx converges to in�nity. Such a ray exists
since X is assumed to be visual with respect to r. Observe
that (x|γx) = |x|. Recall that, for a some ε = ε(δ), we have
by Lemma 2.3

1
2e−ε(a|b) ≤ d∂X(a, b) ≤ e−ε(a|b), ∀a, b ∈ ∂X. (3)

Clearly via the correspondence x 7→ γx, any partition of
∂X induces a partition of Au

k (�a la Figure 2(b)). Set ∆∗ =
1
2e−ε(k−1−u/2)∆, and use Theorem 3.1 derive a sequence
P∗ of ∆∗-bounded partitions of (∂X, d∂X). By Theorem
3.3, we know that

|P∗| ≤ O((log λ(∂X))(log log λ(∂X))2)
≤ O(log λ0(log log λ0)2),

and thus, for each u ∈ {0, 1}, the decomposition of ∂X in-
duces a sequence of O(log λ0(log log λ0)2) partitions of X .
By going over the two values for u, we obtain a sequence of
O(log λ0(log log λ0)2) partitions of X .

Let us now show that this decomposition of X is τ -
bounded. Consider a partition P of X constructed in this
way, and two points x, y ∈ X for which P (x) = P (y). Let
u ∈ {0, 1} be the value used to construct P . Clearly, there
exists k ≥ 0 such that both x, y ∈ Au

k . We may assume
that k ≥ 1, as otherwise we're done. Let γx and γy be the
rays corresponding to x and y. Thus, d∂X(γx, γy) ≤ ∆∗.
Applying (3), we get

(γx|γy) ≥ (k − 1− u/2)∆,

which implies, by Proposition 3.4, that
|x− y| ≤ |x|+ |y| − 2min{|x|, |y|, (γx|γy)}+ 8δ

≤ 2(k + 1− u/2)∆− 2(k − 1− u/2)∆ + 8δ

≤ 4∆ + 8δ.

If c > 0 is chosen to be a suf�ciently large constant, we get
8δ ≤ T/5 ≤ τ/5 and thus |x− y| ≤ τ .

We now analyze the padding of this decomposition of X .
Fix x ∈ X , and consider B(x, ∆) where ∆ = τ/5. Then
there exists u ∈ {0, 1} and k ∈ N such that B(x, ∆) ⊆ Au

k .
If k = 0 then we are done (since Au

0 is not further decom-
posed). Otherwise, consider any y ∈ B(x, ∆). Applying
Proposition 3.4 we get that

(γx|γy) ≥ 1
2 (|x|+ |y|−|x−y|)−4δ ≥ (k− u

2 − 1
2 )∆−4δ.

which implies, by applying (3),

d∂X(γx, γy) ≤ e−ε(γx|γy)

≤ 2∆∗ · e−ε(∆/2−4δ) ≤ 2∆∗ · e−ε∆/3.

Notice that ε∆ ≥ C0c log log λ0, thus if c > 0 is cho-
sen to be a suf�ciently large constant, then d∂X(γx, γy) ≤

∆∗
O(log λ0)

. In particular, using the padding property of P∗,
with probability 1

2 over the choice of a random partition
P ∈ P∗, we have

{γy : y ∈ B(x, ∆)} ⊆ B∂X

(
γx,

∆∗

O(log λ0)

)
⊆ P (γx),

which implies that B(x, ∆) is also contained completely
within the corresponding induced partition. Thus, the
O(log λ0)-padding for ∂X implies (5, 1

4 )-padding for
X .

For an intrinsic version of this decomposition, along with
applications to spanners and compact routing tables, we re-
fer to the full version of the paper.



4 Nearest-neighbor search

A nearest-neighbor search algorithm is called intrinsic
(or black-box) if its only access to the metric space is
through distance computations involving the input point set
S and the query point q. It may be crucial to assume certain
properties of the metric space (X, d), e.g. that it is geodesic,
but the algorithm has no access to such points in X\S, even
thought they are known to exist.

In this section we give an ef�cient algorithm for intrin-
sic, approximate nearest-neighbor search in Gromov hyper-
bolic metric spaces. Technically, we require our point set to
be a subset of some geodesic hyperbolic metric space with a
bound on the local geometry. Our main technical result be-
low is a scheme for nearest-neighbor with an O(δ)-additive
approximation guarantee.

Theorem 4.1. Let (X, d) be a δ-hyperbolic metric space
that is geodesic and has local geometry of type (λ, δ/3).
Then there exists an intrinsic nearest-neighbor search al-
gorithm that preprocesses an n-point subset S ⊆ X using
O(n2) storage, and can �nd for every given query q ∈ X a
point a ∈ S such that d(q, a) ≤ d(q, S) + O(δ), where the
query procedure has running-time λO(1) log2 n.

The theorem immediately extends to local geometry of
type (λ,R) as follows. If R > δ/3 then setting δ′ = 3R it
is clear that (X, d) is δ′-hyperbolic and has local geometry
of type (λ, δ′/3). If R < δ/3 then Lemma 2.2 implies that
(X, d) is has local geometry (λ′, δ/3) for a suitable λ′ =
λO(δ/R).

To simplify the exposition and demonstrate the basic
technique, we �rst show in Section 4.1 a simpler scheme
whose query time is similar to the above, but it is not intrin-
sic and does not achieve the desired storage requirement. In
the full version, we build on these ideas, to arrive at a full
scheme that proves Theorem 4.1. It is possible to extend the
scheme to achieve (1 + ε)-approximation in metric spaces
are locally doubling by combining the full scheme with the
techniques of [19].
Preliminaries and basic observations. Throughout this
section, let (X, d) be a geodesic δ-hyperbolic metric space
with local geometry of type (λ, δ/3), and �x a basepoint
r ∈ X . For z ∈ X and t ≥ 0 de�ne

Xt
z = {x ∈ X : (x|z) ≥ |z| − t}.

For example, if (X, d) is a tree metric (i.e. 0-hyperbolic),
then Xt

z corresponds to a subtree, and in particular X0
z is

the subtree rooted under z.

Proposition 4.2. Let x, y, c ∈ X and k > 0 be such that
x ∈ Xkδ

c and y /∈ X
(k+1)δ
c . Then

|x− y| ≤ |x− c|+ |c− y| ≤ |x− y|+ (2k + 2)δ.

Proof. The �rst inequality is just the triangle inequality, so
we only need to prove the second inequality. By the δ-
hyperbolicity (1), we have

(y|c) ≥ min{(x|y), (x|c)} − δ.

The minimum in the RHS cannot be attained by (x|c), be-
cause we know that (y|c) < |c| − (k + 1)δ and (x|c) ≥
|c| − kδ. Thus, (y|c) ≥ (x|y) − δ, which by rearranging
yields

|x− y| ≥ |y − c|+ |x| − |c| − 2δ.

Observing that x ∈ Xkδ
c implies |x| − |c| ≥ |x− c| − 2kδ,

and we get the desired inequality.

We say that S ⊆ X is t-separated for t > 0 if the min-
imum inter-point distance in S is at least t. For example, a
t-net is clearly t-separated. The following proposition fol-
lows using argument similar to Lemma 2.2.

Proposition 4.3. If N ⊆ X is δ-separated and contained
in a ball of radius t ≥ δ, then |N | ≤ λO(t/δ).

4.1 A simple scheme for fast querying

In this subsection we prove a weaker version of Theo-
rem 4.1, in which the query time is similar to that stated
in the theorem, but the nearest-neighbor search algorithm
is not intrinsic (black-box), and it does not achieve the de-
sired storage requirement. First, we present a basic struc-
tural fact.

Lemma 4.4 (Separator point in hyperbolic metric). Let S ⊆
X be 20δ-separated and suppose 1 < |S| < ∞. Then there
exists a point c ∈ X such that

|S|/λO(δ) ≤ |S ∩Xδ
c | ≤ |S ∩X3δ

c | ≤ |S|/2.

This lemma can be seen to generalize the following sim-
ple fact about a vertex separator in trees: Every rooted tree
T = (V, E) with maximum degree λ contains a vertex
z ∈ V , such that the number of vertices in the subtree of
T rooted at z is between |V |/2λ− 1 and |V |/2 (inclusive).
For our intended application it is crucial that the lemma pro-
duces bounds on both Xδ

c and X3δ
c . The distinction between

these two sets is hidden in the preceding fact about trees,
because in trees δ = 0 and thus the two sets are identical.

Proof of Lemma 4.4. The following proposition will be key
to proving the lemma. We will actually require only the case
k = 2.

Proposition 4.5. For every z ∈ X and k ≥ 1 there is N ⊆
X of size |N | ≤ λO(k), such that Xkδ

z \ BX(z, 3kδ) ⊆⋃
y∈N Xδ

y . Furthermore,

N ⊆ {x ∈ X : |x| ≥ |z|+ (k − 1)δ}.



Proof. Fix z ∈ X and k ≥ 1 and let N ′ be a δ-net in X .
Now de�ne

N = {x ∈ N ′ : |x− z| ≤ 3(k + 1) and |x| ≥ (k − 1)δ}.

Since N ⊆ N ′ is δ-separated and contained in B(z, 3(k +
1)δ), by Proposition 4.3, |N | ≤ λO(k).

Consider a point x ∈ Xkδ
z \BX(z, 3kδ). Thus, (x|z) ≥

|z| − kδ and |x − z| > 3kδ; using the last two inequalities
we get |x| − |z| ≥ |x − z| − 2kδ > kδ. It follows that a
geodesic between r and x must contain a point y′ such that
|y′| = |z|+ kδ. By the δ-hyperbolicity (1),

(y′|z) ≥ min{(y′|x), (z|x)} − δ.

By de�nition (y′|x) = |y′| = |z| + kδ, and recalling again
that (z|x) ≥ |z| − kδ, we have (y′|z) ≥ |z| − (k + 1)δ.
Rearranging the last inequality yields

|y′ − z| ≤ |y′| − |z|+ 2(k + 1)δ = (3k + 2)δ.

Now, the net N ′ must contain a point y with |y−y′| ≤ δ.
Using the triangle inequality, it is easy to verify that y ∈ N ,
and furthermore

(x|y)− |y| =
1
2
(|x| − |y| − |x− y|)

≥ 1
2
(|x| − |y′| − |x− y′|)− δ = −δ.

We conclude that x ∈ Xδ
y , which proves the proposition.

We can now complete the proof of Lemma 4.4. Let p > 0
be a constant to be de�ned later, and de�ne

Z = {z ∈ X : |S ∩Xδ
z | ≥ |S|/λp}.

Let M = supz∈Z |z| and observe that M ≤ maxx∈S |x|+δ
and thus �nite. Let c ∈ Z be a point with |c| ≥ M − δ (e.g.,
a point c ∈ Z with maximum |c|, if such a point exists).

It remains to show that |S ∩X3δ
c | ≤ |S|/2. To see this,

apply Proposition 4.5 to c ∈ X and k = 3 and obtain
N ⊆ X with |N | ≤ λO(δ), such that X3δ

c \ BX(c, 9δ) ⊆⋃
y∈N Xδ

y . The last inequality implies that

|S ∩X3δ
c | ≤ |S ∩BX(c, 9δ)|+

∑

y∈N

|S ∩Xδ
y |.

Recalling that S is 20δ-separated, we have |S ∩
BX(c, 9δ)| = 1. For every y ∈ N , we have |y| ≥ |c|+2δ >
M , and by the choice of c among Z we get that |S ∩Xδ

y | <
|S|/λp. We conclude that |S∩X3δ

c | ≤ 1+ |N | · |S|/λp, and
the RHS can be upper bounded by |S|/2 if the constant p is
chosen appropriately. This completes the proof of Lemma
4.4.

The algorithm. Let S ⊆ X be an n-point input data set.
We may assume without loss of generality that S is (20δ)-
separated, as otherwise we could compute a (20δ)-net Ŝ in
S, and execute the entire algorithm only on Ŝ, which clearly
increases the additive approximation by at most 20δ.

We describe a query procedure that solves a more gen-
eral problem P (q, S′): Given a subset S′ ⊆ S and a query
point q ∈ X , �nd the point in S′ that is closest to q within
additive O(δ). This more general problem will be useful be-
cause we will exhibit a recursive algorithm for it. Clearly,
the desired query algorithm is just an instantiation of this
procedure with S′ = S.

The algorithm for P (q, S′) proceeds as follows. We may
assume that |S′| > 1, as otherwise the algorithm computes
d(q, S′) directly. Let c ∈ X be a point such that

|S|/λO(δ) ≤ |S ∩Xδ
c | ≤ |S ∩X3δ

c | ≤ |S|/2.

We assume that c was computed at the preprocessing stage
by applying Lemma 4.4 to S′. We now have two cases.
Case 1: Suppose q ∈ X2δ

c . Then use divide and conquer
given by:

d(q, S′) = min{d(q, S′ ∩X3δ
c ), d(q, S′ \X3δ

c )}.
First, the algorithm estimates d(q, S′∩X3δ

c ) within additive
error O(δ), by recursively solving P (q, S′ ∩X3δ

c ). Second,
the algorithm estimates d(q, S′ \X3δ

c ) by d(q, c)+d(c, S′ \
X3δ

c ). The error in the second estimate is at most 6δ, since
for all x ∈ S′ \X3δ

c , Proposition 4.2 gives |q − x| ≤ |q −
c| + |c − x| ≤ |q − x| + 6δ. Note further that this second
estimate can be computed in O(1) time, since the summand
d(c, S′\X3δ

c ) can be calculated already at the preprocessing
stage. Finally, the algorithm reports the minimum of the two
estimates.
Case 2: Suppose q /∈ X2δ

c . Then use divide and conquer
given by:

d(q, S′) = min{d(q, S′ ∩Xδ
c ), d(q, S′ \Xδ

c )}.
First, the algorithm estimates d(q, S′ ∩ Xδ

c ) by d(q, c) +
d(c, S′ \Xδ

c ). The error in this �rst estimate is at most 4δ,
since for all x ∈ S′ \ Xδ

c , Proposition 4.2 gives |q − x| ≤
|q−c|+ |c−x| ≤ |q−x|+4δ. Note further that this second
estimate can be computed in O(1) time, since the summand
d(c, S′∩Xδ

c ) can be calculated already at the preprocessing
stage. Second, the algorithm estimates d(q, S′ \Xδ

c ) within
additive error O(δ), by recursively solving P (q, S′ \ Xδ

c ).
Finally, the algorithm reports the minimum of the two esti-
mates. The algorithm above computes d(q, S) within addi-
tive error of 6δ, as can be easily veri�ed from the discussion
above by induction on |S′|.
Analysis of running time and storage for the simple
scheme. The running time of this algorithm is λO(1) log n.



To see this, observe that solving P (q, S′) (in either of the
two cases) takes O(1) time except for one recursive call in
which at least 1/λO(1) fraction of the points in S′ are elim-
inated. Furthermore, the algorithm easily extends to also
produces a point a ∈ S whose distance from the query is
at most the reported distance. Note, however, that the stor-
age requirement of this algorithm might be exponential in
n = |S|, since we might have to store data (during the pre-
processing stage) for every subset of S (including e.g. a
separator point c). This non-trivial problem is overcome in
the full version, where we give an algorithm that requires
polynomial storage (independent of λ), and that is also in-
trinsic.

5 The Traveling Salesman Problem

We recall that, given an n-point metric space (X, d), the
Traveling Salesman Problem (TSP) on X is to �nd an or-
dering (x1, x2, . . . , xn) of the points in X such that the cost∑n−1

i=1 d(xi, xi+1) + d(xn, x1) is minimized. Here we out-
line an approach for approximating the TSP arbitrarily well
when X is a subset of some negatively curved space.

In what follows, we refer to a randomized algorithm that
computes a (1 + ε)-approximation to TSP as a (1 + ε)-
TSP algorithm. Unless otherwise stated, ef�cient means
polynomial-time. We �rst state the main result of this sec-
tion, which follows from Theorem 5.7 below.

Theorem 5.1 (TSP). There is a PTAS for TSP on any com-
plete, simply-connected Riemannian manifold of pinched
negative sectional curvature, including e.g. Hd for every
d ≥ 1. Furthermore, there is a PTAS for TSP on any
bounded-degree δ-hyperbolic graph.

We de�ne a tree of metric spaces as a graph-theoretic
tree T = (V,E) together with a family of disjoint metric
spaces {(Xv, dv)}v∈V , and for every edge e = {u, v} ∈ E,
a pair of points pe

u ∈ Xu, pe
v ∈ Xv . We de�ne the induced

metric space (XT , dT ) by �rst taking X ′ =
⊔

v∈V Xv to be
the disjoint union of {Xv}v∈V , and then letting XT be the
quotient metric on X ′ under the equivalence relation

x ∼ y ⇐⇒ x = pe
u, y = pe

v for some e = {u, v} ∈ E.

In other words, for every e = {u, v} ∈ E, we identify
(i.e. glue) the points pe

u ∈ Xu and pe
v ∈ Xv , and then take

shortest paths to get a metric dT on the quotient XT . We
will refer to XT as a tree metric over the family {Xv}v∈V .
We will say that XT is a τ -neighborhood-tree over (X, d) if
XT is a tree metric over some family F where each S ∈ F
is actually a subset S ⊆ X with diam(S) ≤ τ .

We now present a sequence of results whose conse-
quence will be our algorithm for approximating TSP. The
proofs are deferred to the full version.

Lemma 5.2. Given a tree metric XT over the family
{X1, . . . , Xn}, there exists a (1+ ε)-TSP algorithm on XT

running in time O(n+
∑n

i=1 ti(ε)), where ti(ε) is an upper
bound on the running time of a (1 + ε)-TSP algorithm for
Xi.

Let (X, d) be a metric space, and consider a countable
family of metric spaces {(Xi, di)}i∈I , along with a family
of non-contracting maps {fi : X → Xi}i∈I . If µ is a prob-
ability measure on I , then we think of µ as an embedding
of X into a distribution over the Xi's, with the induced dis-
tance function dµ given by

dµ(x, y) = Ei∼µ [di(fi(x), fi(y))]

for x, y ∈ X . If we have dµ(x, y) ≤ α · d(x, y) for every
x, y ∈ X , then we say that µ is an expanding α-embedding
of X into a distribution over the family {Xi}i∈I . The next
lemma is straightforward.

Lemma 5.3. If (X, d) admits an ef�ciently samplable ex-
panding α-embedding into a distribution over the family
{Xi}i∈I , and there exists an ef�cient β-TSP algorithm for
every Xi, then there is an ef�cient αβ-TSP algorithm for
X .

Now we come to our main technical theorem.

Theorem 5.4. Let M be a geodesic, visual, δ-hyperbolic
metric space with local geometry of type (λ0, δ). Then for
every ε > 0, there exists a value τ = τ(ε), such that for
every �nite X ⊆ M, there is an ef�ciently computable, ex-
panding (1 + ε)-embedding of X into a family {XT } of
τ -neighborhood trees over M.

Finally, we need a way to solve (1 + ε)-TSP in τ -
neighborhoods of M. First, there is a quasi-PTAS (i.e.
quasi-polynomial running time) for doubling neighbor-
hoods.

Theorem 5.5 ([27]). If (X, d) is a �nite doubling metric
space, then there exists a quasi-PTAS for TSP on X (where
the running time depends only on |X| and the doubling con-
stant of X).

Secondly, it is not dif�cult to see that Arora's algorithm
[2] can be made to work on distorted Euclidean spaces.

Theorem 5.6. If (X, d) is a metric space, and we are
given a C-embedding of X into some �nite-dimensional Eu-
clidean spaceRk, then there is a PTAS for TSP on X (where
the running time depends only on k, C, and |X|).

Combining the preceding collection of reductions yields
an algorithm for approximate TSP.



Theorem 5.7. If M is as in Theorem 5.4, and in addition
M is locally doubling, then there is a quasi-PTAS for TSP
on �nite subsets of M. Additionally, if there exists a value
k ∈ N such that every ball of radius τ inM admits a C(τ)-
embedding into Rk, then there is a PTAS for TSP on �nite
subsets of M.
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