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ABSTRACT
We exhibit an infinite doubling metric space (X , d) such that
for any non-expansive mapping f : X → L1, there exists a
pair x, y ∈ X with d(x, y) arbitrarily large, and such that

‖f(x)− f(y)‖1
d(x, y)

.

√
log log d(x, y)

log d(x, y)
.

As a consequence, we show that there are n-point dou-

bling metrics which require distortion Ω
(√

log n
log log n

)
into

L1, matching the upper bound of [Gupta-Krauthgamer-Lee,
FOCS’03] up to a factor of O(

√
log log n). The best previous

lower bound for doubling spaces, due to [Cheeger-Kleiner-
Naor, FOCS’09] was of the form (log n)δ for some small,
unspecified value of δ > 0.

Furthermore, this gives a nearly optimal integrality gap
for a weak version of the SDP for the general Sparsest Cut
Problem. The weak SDP suffices for all known rounding al-

gorithms, and the best previous gap was of the order (logn)1/4

log log n

[Lee-Moharrami, STOC’10].

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

1. INTRODUCTION
Beginning with the works [LLR95, AR98], it became ap-

parent that the embeddability of finite metric spaces into
various normed spaces (predominantly L1 and L2) was inti-
mately tied to the efficacy of certain mathematical programs
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for approximating the Sparsest Cut problem in graphs. Sub-
sequently, such tools were used to achieve new approxima-
tion results for an array of well-known problems, many of
which were unapproachable via other methods.

We now recall the Sparsest Cut problem. Given a finite set
V on n points, and two symmetric non-negative functions
cap, dem : V × V → R≥0, one defines the sparsity of the
subset S ⊆ V by

Φcap,dem(S) =
cap(S, S̄)

dem(S, S̄)
,

where we use the notation f(S, S̄) =
∑

x∈S,y/∈S f(x, y) for

f ∈ {cap, dem}. The value of the instance (V, cap, dem) is
then given by Φ(cap, dem) = min{Φcap,dem(S) : S ⊆ V }. We
recall that the instance is said to be uniform if dem(u, v) = 1
for all u, v ∈ V .

It was shown in [LLR95, AR98, GNRS99] that the in-
tegrality gap for a natural linear-programming relaxation
(see [LR99]) is precisely sup {c1(X, d) : (X, d)}, where (X, d)
ranges over all metric spaces on n-points, and c1(X, d) de-
notes the minimal distortion required to embed (X, d) into
an L1 space. Bourgain’s embedding theorem [Bou85] shows
that this bound is O(log n), and in [LLR95, AR98], it was
shown that this is tight for the path metric on expander
graphs.

The Goemans-Linial SDP. In order to achieve better ap-
proximations, one can consider the Goemans-Linial SDP:

min
{ ∑

u,v cap(u, v)‖xu − xv‖22∑
u,v dem(u, v)‖xu − xv‖22

: {xu}u∈V ⊆ R
n

and ‖ · ‖22 is a metric on {xu}u∈V

}
.

In other words, we optimize over sets of n vectors W ⊆ R
n

which satisfy, for every x, y, z ∈ W , the condition

‖x− y‖22 ≤ ‖x− z‖22 + ‖z − y‖22.
In general, we say that a metric space (X, d) is of negative
type if there exists a mapping f : X → L2 such that

‖f(x)− f(y)‖22 = d(x, y)

for all x, y ∈ X.
As before (see [Mat02a, Ch. 15]), the integrality gap of

this relaxation is exactly the solution to an embedding prob-
lem. The gap is precisely the supremum of c1(X, d) over all
n-point metric spaces of negative type. In [ARV04], the
Goemans-Linial SDP was used to achieve an O(

√
log n)-

approximation for the uniform case of Sparsest Cut, and
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building on these techniques as well as various tools from
the theory of metric embeddings, one can obtain c1(X, d) ≤
O(

√
log n log log n) for any n-point space of negative type

([ALN08], following an earlier bound of [CGR05]). This
yields the same bound for approximating the general Spars-
est Cut problem.

Given the effectiveness of this approach, and generally
the power of the ‖ · ‖22 triangle inequality constraints in
relaxations for other basic optimization problems (see e.g.
[FHL05, ACMM05, Kar09, CMM06]), it becomes a matter
of fundamental importance to understand the geometry of
negative-type metrics, and the effect of the negative-type
constraints on mathematical programming relaxations. On
the other hand, since L1 metrics correspond precisely to
the cut cone (whose extreme points are exactly the cuts on
a given set of points), understanding L1-embeddability of
families is of great importance in combinatorial optimiza-
tion. The present paper makes substantial progress on both
fronts, as we now discuss.

Integrality gaps and weak negative type. In order to
crystalize this goal, Goemans and Linial conjectured (see
[Mat02a, Ch. 15], [Lin02]) that c1(X, d) ≤ O(1) for ev-
ery metric space (X, d) of negative type. Khot and Vishnoi
subsequently disproved this in [KV05]. The most ingenious
part of their work involves the construction of the lower
bound space (X, d), and the most intricate technical analy-
sis goes toward showing that (X, d) is of negative type. Sub-
sequently, [KR06] and [DKSV06] proved a stronger quanti-
tative bound of Ω(log log n), where notably the latter lower
bound holds in the uniform case. The first paper uses ex-
actly the Khot-Vishnoi construction, while the second paper
relies heavily on the analysis techniques of [KV05].

In [LN06], a new integrality gap construction was pro-
posed, based on the 3-dimensional Heisenberg group H

3.
Again, the bulk of the work in [LN06] goes into proving that
H

3 admits an interesting metric of negative type. The lower
bound analysis uses work of Cheeger and Kleiner [CK06b,
CK06a, CK09]. Building on this analysis, it was recently
proved in [CKN10] that this construction achieves an inte-
grality gap of (logn)δ0 for some small constant δ0 > 0.

We now express a property that all these lower bounds
share. Recall that a metric space is of negative type if
c2(X,

√
d) = 1. We will say that (X, d) is a space of D-weak

negative type if c2(X,
√
d) ≤ D. In all the above construc-

tions of integrality gaps, it is relatively easy to show that
the space in question is O(1)-weak negative type. In the
case of [KV05]-based constructions, this can be done in a
page of analysis (see, e.g. [KL08]). Since the Heisenberg
group H

3 (equipped with the Carnot-Caratheodory metric)
is doubling, a classical result of Assouad [Ass83] shows that
it is already a space of O(1)-weak negative type. Indeed, in
all these cases, this fact was taken as evidence and motiva-
tion that eventually a (strong) negative-type metric could
be constructed.

Our result. We show that there exist arbitrarily large n-
point metric spaces of O(1)-weak negative type that require
distortion

Ω

(√
log n

log log n

)

to embed into L1. This almost matches the upper bound

of O(
√
log n log log n) from [ALN08], which also holds for

O(1)-weak negative type metrics. The best previous lower

bound, due to [LM10], is on the order of (log n)1/4, up to
a factor of O(log log n). As we discuss below, our lower
bound also yields a nearly-optimal integrality gap for an
SDP which, while weaker than the Goemans-Linial SDP,
is still capable of achieving the best-known approximation
algorithms. Indeed, the full negative-type constraint has not
been used in any rounding analysis that we are aware of; in
all such algorithms, the O(1)-weak negative type constraint
suffices. Furthermore, we conjecture that our space embeds
into a space of negative type; this would imply a nearly-
optimal integrality gap for the Goemans-Linial SDP.

Doubling metric spaces. A metric space (X, d) is called
doubling if every ball in X can be covered by O(1) balls
of half the radius. Our proof shows more: There exists a
doubling metric space (X, d) such that arbitrarily large n-

point subsets of X require distortion Ω
(√

log n
log log n

)
to em-

bed in L1. By Assouad’s embedding theorem [Ass83], every
doubling space is of O(1)-weak negative type. Our lower
bound for doubling spaces nearly matches the O(

√
log n) up-

per bound of [GKL03]. The best previous result of [CKN10]
gives a lower bound of (logn)δ0 for a very small value of
δ0 > 0. We remark that proving lower bounds into L1

is significantly more difficult than for other Lp spaces. In
fact, for every fixed p > 1, the best asymptotic distortion is

(log n)min( 1

2
, 1
p
) [GKL03].

Indeed, proving lower bounds against embeddability into
L1 has been a notoriously difficult challenge. It was asked
in [Mat02b] whether every “O(1)-decomposable” metric ad-
mits an O(1)-distortion embedding into L1. In particular,
every doubling metric is O(1)-decomposable [GKL03]. This
was only recently answered negatively in [CK06a], resolving
a conjecture from [LN06]. The main novelty of [CK06a] is
to develop a differentiation theory for L1-valued maps, and
employ this in proving distortion lower bounds. The bound
of [CK06a] is non-quantitative, and achieving a bound of
the form (log n)δ0 for some δ0 > 0 required first a new ap-
proach to the qualitative non-embedding result [CK09], and
then a very technical and difficult effort [CKN10] to obtain
a concrete bound. It should be noted that the latter effort
faced significant challenges because one must work at a “def-
inite scale” instead of passing to a limit object. We face a
similar challenge in the present work; in order to obtain the
correct asymptotic dependence, further obstacles arise. On
the other hand, in many ways our construction is simpler
than the Heisenberg group, and this allows us to present a
lower bound which is nearly-optimal, and also more accessi-
ble than that of [CKN10]. The details of our approach are
discussed subsequently. First, we address the issue of weak
vs. strong negative type.

Weak vs. strong negative type. Unfortunately, it was
shown in [LM10] that there are metric spaces of O(1)-weak
negative type which cannot be embedded with O(1) dis-
tortion into a space of genuine negative type. In fact, for
n-point spaces, the gap between weak and strong negative

type can be as bad as Ω
(

(log n)1/4

log log n

)
. Nevertheless, these

spaces are far from doubling. A central property used for
the lower bound space X in [LM10] is that any Lipschitz
mapping of X into L2 must shrink the average diameter of
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X by an arbitrarily large amount. No such property can
hold for doubling spaces.

It is a common observation that the algorithms and anal-
ysis of [ARV04, Lee05, CGR05, ALN08] do not require the
vector solution W ⊆ R

n to actually satisfy the full triangle
inequalities, but only the weaker form: For every sequence
w1, w2, . . . , wk ∈ W ,

‖w1 − wk‖22 ≤ C

k−1∑

i=1

‖wi −wi+1‖22,

for some constant C = O(1), independent of the sequence.
This is merely the weak negative type condition in disguise:
It simply says that W is the image of a weak negative type
embedding of some metric space. In all known algorithmic
applications, it is only the weak condition that is needed.

Far more than being a curiousity of the analysis, the fact
that a weaker condition suffices is actually the basis for al-
gorithms which find sparse cuts in graphs without solving
a semi-definite program. In [AHK04], the authors give an
O(

√
log n)-approximation to the uniform Sparsest Cut prob-

lem that runs in Õ(n2) time. In [She09], such an approx-

imation is obtained in Õ(m + n3/2+ε)-time for every fixed
ε > 0. Both of these algorithms are primal-dual, with the
algorithm and analysis being guided by the structure of the
Goemans-Linial SDP and its dual. A key aspect lending to
their efficiency is that they do not need the full power of
the dual; indeed, they operate by finding an “expander flow”
[ARV04], which is a solution that corresponds precisely to
a weakening of the triangle inequalities in the primal. As
stated before, our lower bound yields a nearly-optimal inte-
grality gap for these weaker programs, for the case of general
Sparsest Cut.

Differentiation and bi-Lipschitz embeddings into L1.

Generalizations of classical differentiation theory have played
a prominent role in proving the non-existence of bi-Lipschitz
embeddings between various spaces, when the target space
Z is sufficiently nice (e.g. if Z is a Banach space with the
Radon-Nikodym property); see, for instance [Pan89, Che99,
LN06, BL00, CK06c]. But this approach does not apply to
targets like L1 which don’t have the Radon-Nikodym prop-
erty; in particular, even Lipschitz mappings f : R → L1 are
not guaranteed to be differentiable in the classical sense.

More recently, Cheeger and Kleiner [CK06a, CK06b] have
successfully applied weaker notions of differentiability to the
study of L1 embeddings of the Heisenberg group. Subse-
quent papers [LR07, CK09, CKN10] continue this theme,
and work of [LM10] shows that it can also be used to prove
lower bounds against embeddings into negative type met-
rics. In Section 2, we proceed to a detailed discussion of our
construction and approach. For the moment, we say a few
general words about the new obstacles we face in the present
work.

At a very broad level, distortion lower bounds proved via
differentiation proceed as follows. One first argues that any
low-distortion embedding must be quantitatively very well-
controlled on a small piece of the lower bound space. For
instance, consider a model statement: Every Lipschitz map-
ping f : R → R is differentiable almost everywhere, i.e.
is almost everywhere locally well-approximated by a linear
function. In our case, the lower bound space is constructed
so that the differentiation theory need only be applied to

Figure 1: The spaces X1 and X2 after one and two

rounds of gluing, respectively.

mappings f : [0, 1]2 → L1 from the unit square to L1.
For L1-valued mappings, our proof follows the differenti-

ation approach developed in [CK09] and [LR07], where the
local conclusion is that the cut decomposition of the embed-
ding must have most of its weight concentrated on cuts that
are “monotone” with respect to a given family of lines. The
next step is to prove a structural theorem which classifies
the structure of nearly monotone sets. In order to obtain a
quantitatively near-optimal result, we achieve a tight quan-
titative form of this classification for subsets of [0, 1]2. Our
quantitative analysis follows roughly along the same lines
as that of [CKN10], with a number of changes adapted to
our particular setting, and the goal of an essentially optimal
analysis.

A major difficulty is that since we must work at a fixed
scale, we do not have monotonicity with respect to lines,
but instead with respect to discrete sequences of points along
these lines. If these points were deterministic, then even very
bad sets could elude our test lines by being periodic in sync
with the discrete sequence. To counter this, we develop a
“random” discrete differentiation theory. For instance, con-
sider a mapping f : [0, 1] → L1. Instead of subdividing
[0, 1] into a sequence of hierarchical partitions, we use a se-
quence of random progressively finer, non-hierarchical sub-
divisions. We remark that in the approach of [CKN10, §6],
a related issue is handled using the kinematic formula for
Carnot groups.

2. OVERVIEW
First, we describe our constructions. Then in Section 2.1,

we give a qualitative proof that our lower bound space does
not embed into L1 with O(1) distortion. Finally, in Section
2.2, we describe the novel aspects that go into proving a
precise quantitative bound.

The diamondfold and the Laakso-fold. Informally, our
construction can be defined inductively as follows. We start
with X0 which is just a copy of [0, 1]2. The space X1 is two
copies of X0 glued together along ∂[0, 1]2, where we use ∂S to
denote the topological boundary of a set S ⊆ R

2. In general,
we will take the metric on such a gluing as the quotient
metric on ([0, 1]2 ∐ [0, 1]2)/∼, where ∐ denotes the disjoint
union, and ∼ is the equivalence relation along the boundary.
See Figure 1, which contains a topological representation of
X1. (In the geometry of X1, both copies of [0, 1]2 are flat.)

Now, in X1 there are 8 natural subsquares present in Fig-
ure 1. The space X2 arises after applying the same gluing
process to each of these 8 subsquares. The space X3 arises
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Figure 2: The Laakso-folds after one and two rounds

of gluing, respectively.

from the gluing process applied to each of the 64 subsquares
in X2, and so on. We refer to the spaces {Xk} as the dia-
mondfolds, named after the diamond graphs of Newman and
Rabinovich [NR03]. While it is possible to pass to a Gromov-
Hausdorff limit of these spaces (a limit space contains a copy
of every Xk isometrically), we defer such a discussion from
the present abstract, as it is non-essential in proving our
lower bound.

The diamondfolds are not doubling, but they are slightly
easier to reason about than their doubling counterparts, the
Laakso-folds, which we denote by {Lk}. The Laakso-folds
are based on the Laakso graphs [Laa02, LP01, GKL03].
These are constructed in the same manner as the diamond-
fold, except the gluing process occurs only along a Cantor
set. We refer to Figure 2 for a graphical description.

We remark that if the reader wants to think about graphs
instead of continuous spaces, then it is comforting to know
that our distortion lower bound will actually hold for the
graph formed by taking the 1-dimensional simplicial com-
plex (i.e., weighted graph) which is composed of the bound-
aries of all the glued squares. However, this is only because
the vertices of this complex converge to a net in some other
Xk or Lk space. Our proof requires the full continuous ambi-
ent space, and the discretization will be done by a Lipschitz
extension argument.

A key property. We now state a key property of the
diamondfold construction. A similar property holds in the
Laakso-fold case. Observe that the gluing ([0, 1]2∐[0, 1]2)/∼
is topologically a sphere. Call any such (possibly scaled)
sphere in the construction of some Xk space an identified
sphere. Clearly every identified sphere has a “top” sheet and
a “bottom” sheet. These identified spheres also have levels
corresponding to the round of the construction in which they
were formed. For concreteness, note that X2 has 9 identified
spheres: One level-1 sphere, and 8 level-2 spheres.

Corresponding to these spheres, we can consider a dyadic
partitioning of [0, 1]2. For k = 0, 1, . . . let Dk be the set of
closed squares in [0, 1]2 whose corners occur at multiplies of
2−k. In a natural way, the set of level-k spheres correspond
to the set Dk. The next property is straightforward, but will
be crucial.

Proposition 2.1 (Monochromatic sheet). Suppose
that following holds for some level j ≤ k: Every level-j iden-
tified sphere in Xk has either its top sheet or bottom sheet
colored red. Then there is an isometric copy of [0, 1]2 con-
tained in Xk such that every dyadic square in Dj is colored
red.

A0 A1

x0 x1

S S

Figure 3: The top sheet and bottom sheet of the

sphere S. A0 and A1 have a common boundary.

2.1 A qualitative lower bound
We first give an intuitive (and ultimately invalid) sketch

of why c1(Xk) → ∞. To do so, we need to discuss L1-
valued mappings and their cut cone representation. We will
ignore issues of measurability for this informal description;
we remark only that they play a very mild role in the formal
arguments. Let X be a set, and consider a mapping f : X →
L1. It is well-known that there exists a measure ν on 2X ,
the subsets of X, such that for any x, y ∈ X,

‖f(x)− f(y)‖1 =

∫
|1S(x)− 1S(y)|dν(S).

Here, 1S denotes the characteristic function of S.
Now, examine a Lipschitz mapping f : [0, 1]2 → L1, and

let ν be the corresponding cut measure. Let ℓ ⊆ R
2 be some

line for which ℓ∩[0, 1]2 6= ∅. The point is now that we can say
a lot about the local structure of the map f |ℓ : ℓ → L1 and
the corresponding cut measure νℓ on ℓ: By a differentiation
argument, one can show, morally, that on small subintervals
[a, b] ⊆ ℓ, the cut measure νℓ restricted to [a, b] is concentred
almost entirely on half-segments of the form [a, b′] for some
b′ ≤ b. This “montoncity” property was observed indepen-
dently in [CK09] (who use the metric differentiation theory
of Pauls [Pau01]) and in [LR07] (where the coarse differen-
tiation of Eskin, Fisher, and Whyte [EFW06] is employed).

When this information is combined from all lines ℓ, and
a proper union bound is taken into account, one recovers
(again, only morally) the following: For a sufficiently large
value of k, for most squares A ∈ Dk, the following holds:
If νA is the cut measure restricted to A, then νA is concen-
trated almost entirely on cuts which are formed by inter-
secting a halfspace with A, e.g. see Figure 3.

Let us assume, for the moment, a stronger conclusion:
That for every such mapping f : [0, 1]2 → L1, there exists
a square A ∈ Dk, where the restricted cut measure νA is
concentrated entirely on halfspace cuts. In this case, given a
1-Lipschitz mapping F : Xk → L1, we know that there must
exist a level-k identified sphere S in Xk, such that if A0 is the
top sheet of S and A1 is the bottom sheet, then the restricted
cut measures νA0

and νA1
are both concentrated entirely on

halfspace cuts. Otherwise, we could apply Proposition 2.1
and conclude that there is an isometric copy of C [0, 1]2

where all A ∈ Dk have some of their cut measure not on
halfspace cuts, and this would contradict our assumption
for the map F |C : [0, 1]2 → L1.
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Now, take these sheets A0 and A1, and let νS be the cut
measure restricted to S. The main point is now this: For any
cut S ⊆ S such that A0 ∩ S and A1 ∩S are both halfspaces,
they must be the same halfspace of A0 and A1 (under the
canonical identification). This is because a halfspace cut S ⊆
A0 is completely determined by the intersection S∩∂A0, and
∂A0 = ∂A1 since A0 and A1 are glued together along their
boundaries. Thus for purely “vertically separated” points
x0 ∈ A0 and x1 ∈ A1 as in Figure 3, i.e. points which
are equal under the canonical identifications of A0 and A1,
it is impossible to have 1S(x0) 6= 1S(x1). Thus under our
assumption, the νS-measure of cuts which separate x0 and x1

is 0. In other words, f(x0) = f(x1). Since dXk(x0, x1) > 0,
this implies that f has infinite distortion, completing our
qualitative sketch.

Of course, this sketch is not mathematically valid (in par-

ticular, it is possible to show that c1(Xk) .
√
k), but it gives

some structure and intuition to the quantitative arguments
to come. We remark that this is not merely a “brute force”
quantification (e.g. “chasing ε’s and δ’s”). Even formalizing
the above argument is highly non-trivial. Furthermore, ob-
taining any explicit bound already requires a difficult clas-
sification argument. Finally, obtaining an bound which is
asymptotically near-optimal requires all ingredients to fit
together seamlessly.

2.2 The quantitative lower bound
Making the preceding argument formal requires two major

ingredients. The first is a differentiation theorem that gives
the right kind of control on the cut measure restricted to a
small identified sphere. The second is a classification of the
“controlled”sets. Furthermore, these two ingredients have to
make a trade-off; the classification theorem wants as much as
possible from the differentiation step, but we cannot ask for
too much without losing in the distortion lower bound (be-
cause the differentiation argument will require more scales,
increasing the number of points).

Setup: The kinematic measure and randomly sprin-

kled needles. Let µ0 be the kinetmatic measure on lines
ℓ ⊆ R

2. This is the unique measure, up to scaling, which
is invariant under rigid motions. Let Λ be the set of all
lines in R

2 that intersect [0, 1]2, and define the measure
µ(S) = µ0(S ∩ Λ), scaled so that µ(Λ) = 1.

Let D =
⋃

j≥0 Dj be the set of all dyadic squares in [0, 1]2.
Fix some parameter k ∈ N. For any dyadic square A ∈
D, let A[ℓ] denote a random subset described as follows:
A[ℓ] = (ℓ ∩ ∂A) ∪ TA,ℓ, where TA,ℓ is a uniformly random
subset of A ∩ ℓ of size k. The random sets TA,ℓ are taken
to be independent of each other. We will use E(·) to denote
expectation over these random sets.

The differentiation step. We introduce some notation.
Let (Y, dY ) be an arbitrary meric space. For a function
F : [0, 1]2 → Y and any finite sequence s = 〈s1, s2, . . . , sj〉
of points in [0, 1]2, define

∆F (s) =

j−1∑

i=1

dY (F (si), F (si+1)),

i.e. the variation of F along s. We prove the following
result. (For reasons of space, the reader is referred to the
full version of the paper.)

A

A ∩ ℓ
A[ℓ]

Figure 4: The square A, the line segment A ∩ ℓ, and
the sprinkled points A[ℓ].

Theorem 2.2. For every metric space Y and 1-Lipschitz
mapping F : [0, 1]2 → Y , and every 0 < ε < 1, there exists
a dyadic square A ∈ D of side length at least 2−r , with
r . 1

ε
log k

ε
, and such that

∫
E [∆F (A[ℓ])]dµ(ℓ) ≤ ε2−2r +

∫
∆F (∂A ∩ ℓ) dµ(ℓ). (1)

Before interpreting this theorem, let us scale is up to as-
sume that A = [0, 1]2, in which case it says that
∫

E [∆F (A[ℓ])] dµ(ℓ) ≤ O(ε) +

∫
∆F (∂A ∩ ℓ) dµ(ℓ). (2)

(Here, we have used the fact that the µ-measure of lines
which intersect a square of side length at least 2−r is &
2−2r .)

This says that if we choose a random line ℓ and a random
set A[ℓ], then the expected variation of F over the the whole
set A[ℓ] is only O(ε) more than the variation of F over the
endpoints ∂A ∩ ℓ. (See Figure 4.)

If we now assume that F : [0, 1]2 → L1, and let ν be the
corresponding cut measure on A, then after an application
of Fubini’s theorem, the conclusion is that
∫ ∫

E [∆1S (A[ℓ])−∆1S (∂A ∩ ℓ)]dµ(ℓ) dν(S) ≤ O(ε). (3)

For a set S, let

θkS =

∫
E [∆1S (A[ℓ])−∆1S (∂A ∩ ℓ)] dµ(ℓ),

where we recall that k is the number of random points com-
posing A[ℓ]. Observe that ∆1S (A[ℓ]) represents the number
of times that we cross S when walking along the points of
A[ℓ], while ∆1S (∂A ∩ ℓ) is 0 if ℓ crosses S and 1 otherwise.
The important observation is that these two quantities are
precisely equal when A is the intersection of S with a halfs-
pace. In other words, θkH∩A = 0 for a halfspace H . We know
from (3) that

∫
θkS dν(S) ≤ O(ε). Hence our next goal, the

“classification” step, is to show the reverse implication: if θS
is small, then S is close to a halfspace cut.

One comment before we move on: We are measuring the
variation of F with respect to a random subdivision in The-
orem 2.2. A more standard approach would measure vari-
ation along a fixed sequence of partitions of [0, 1]2, each a
refinement of the previous. It is important for the classifi-
cation step that points of A[ℓ] are sometimes allowed to be
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δ

ℓ

Figure 5: A cut with symmetric difference Ω(δ) to a

halfplane, but θkS = O(δ2).

arbitrarily close together. Our observation is simply that as
long as the random subdivisions become increasingly dense,
they will behave essentially like a sequence of “lazy” refine-
ments. The error from anomalous events is easily controlled
using the Lipschitz property of F .

The classification step. Our next goal is to prove results
of the following sort. We use λ2 to denote the Lebesgue
measure on R

2.

Lemma 2.3 (Classification Lemma). For every k ∈
N, the following holds. Let S ⊆ [0, 1]2 be a polygonal set.
Then there exists a halfspace H such that

λ2(S△H) .
√

θkS + k−1/12.

In other words, sets with θkS small are close to halfspaces
in symmetric difference, up to the coarseness of our observa-
tions (controlled by the parameter k). We remark that the√· dependence is tight, and is the ultimate source of power
1
2
in our

√
log n

log log n
bound. To see this, consider the set in

Figure 5. It has symmetric difference Ω(δ) to a halfspace,
yet the measure of lines that intersect the boundary twice
is only O(δ2). The main point of Lemma 2.3 is as a tool in
proving the following bound on pairs of sets.

Theorem 2.4. For every k ∈ N, the following holds. Let
S, S′ ⊆ [0, 1]2 be polygonal sets such that S ∩ ∂[0, 1]2 = S′ ∩
∂[0, 1]2. Then,

λ2(S△S′) .
√

θkS + θk
S′ + k−1/12.

To finish the argument, we need one additional theorem
which relies on the classification lemma.

Theorem 2.5. For every k ∈ N, the following holds. If
S ⊆ [0, 1]2 satisfies λ2(S) ≤ 1/64, then

λ2

(
S ∩ [ 1

4
, 3
4
]2
)
. θkS + k−1/6.

Putting everything together. We are now ready to
prove the distortion lower bound. Let ε > 0 be given, let
k = ⌈ε−12⌉, and choose an integer r . 1

ε
log 1

ε
so that the

conclusion of Theorem 2.2 follows. Let N ⊆ Xr be a δ-net,
for some δ to be specified later. Note that |N | ≤ O(2rδ−2).

Suppose that F0 : Nδ → L1 is a 1-Lipschitz mapping with
distortion D. A simple Lipschitz extension argument shows

that there is an O(1)-Lipschitz extension F : Xr → L1.
This can be shown by hand, but for instance it is an easy
observation that the space Xr is O(1)-decomposable in the
sense of [LN04], and thus the required extension exists. (In
fact, it is easy to see that the extension can be taken so
that the cut measure induced by F is supported on closed,
polygonal sets in Xk.) By rescaling F0, we may assume that
F is 1-Lipschitz, and F0 has distortion O(D).

By choosing δ ≥ 2−r/O(D), we guarantee that for any
induced sphere S in Xr, if A0 and A1 are the top and bottom
sheets of S, then

∫

x∈[ 1
4
, 3
4
]2
‖F (π0(x))− F (π1(x))‖1 dx &

diam(A0)

D
, (4)

where π0, π1 are the natural maps from [0, 1]2 to A0 and A1,
respectively. This follows from dXr (π0(x), π1(x)) & diam(A0)
for x ∈ [ 1

4
, 3
4
]2.

Applying Theorem 2.2 and the monochromatic sheet prin-
ciple (Proposition 2.1), we find an induced sphere S in Xr

such that the conclusion of Theorem 2.2 holds for both the
top and bottom sheets, A0 and A1, of S. Scaling so that A0

and A1 are both isometric to [0, 1]2, and letting ν be the cut
measure induced by F , restricted to S, we have

∫
θkS∩A0

+ θkS∩A1
dν(S) . ε. (5)

On the other hand, after scaling, (4) gives

∫ ∫

x∈[ 1
4
, 3
4
]2
|1S(π0(x))− 1S(π1(x))|dx dν(S) & 1

D
.

We now write νinner for the measure ν restricted to sets S
which satisfy

(π−1
0 (S) ∪ π−1

1 (S)) ∩ [ 1
4
, 3
4
]2 6= ∅.

Furthermore, we decompose this measure into three dis-
jointly supported measures

νinner = νlarge + νsmall + νtiny,

where the three measures are supported on sets for which:
One of the sets S ∩A0 or S ∩A1 has measure at least 1/64
(νlarge), both sets have measure at most 1/64, but one set
has measure greater than ε (νsmall), both sets have measure
at most ε.

Now, write ρ(S) = λ2(π
−1
0 (A0 ∩ S)△π−1

1 (A1 ∩ S)), and
then

1

D
.

∫ ∫

x∈[ 1
4
, 3
4
]2
|1S(π0(x))− 1S(π1(x))|dx dνinner(S)

≤ 2

∫
λ2(π

−1
0 (A0 ∩ S)△π−1

1 (A1 ∩ S)) dνinner(S)

.

∫
ρ dνlarge +

∫
ρ dνsmall +

∫
ρ dνtiny.

We bound each of these three terms separately.
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First, by Theorem 2.4, and using Cauchy-Schwarz, we
have
∫

ρ dνlarge .

∫ √
θkA0∩S +

√
θkA1∩S + k−1/12 dνlarge

.

√∫
dνlarge

√∫
θkA0∩S + θkA1∩S dνlarge

+

∫
k−1/12 dνlarge

.
√
ε+ ε

.
√
ε,

where we have used k−1/12 ≤ ε, and
∫

θkA0∩S + θkA1∩S dνlarge ≤
∫

θkA0∩S + θkA1∩S dν ≤ O(ε),

by (5), and the fact that
∫

dνlarge = O(1).

The latter fact follows because νlarge is supported on sets S
with λ2(A0 ∩ S) + λ2(A1 ∩ S) ≥ 1/64. By the isoperimetric
inequality in the plane and the fact that F is 1-Lipschitz,
we conclude that

∫
dνlarge = O(1).

We use Theorem 2.5 to bound,
∫

ρ dνsmall .

∫
θkS∩A0

+ θkS∩A1
+ k−1/6 dνsmall

≤
∫

θkS∩A0
+ θkS∩A1

dν + ε2
∫

dνsmall

. ε,

where we have used (5) and the fact that
∫

dνsmall .
1√
ε
.

The latter fact is again by the isoperimetric inequality in
R

2, the fact that F is 1-Lipschitz, and the assumption that
νsmall is supported on sets of measure at least ε.

A final application of the isoperimetric inequality in R
2

shows that since νtiny is supported on sets of measure at
most O(ε),
∫

ρ(S) dνtiny(S) ≤
∫

λ2(S ∩A0) + λ2(S ∩ A1) dνtiny(S)

. ε · 1√
ε
=

√
ε.

It now follows that D & 1√
ε
&
√

r
log r

. On the other hand,

we started with a space on |N | = O(2rδ−2) = O(22rD)

points, hence we conclude that D &
√

logn
log log n

, completing

the proof.

Extending to the Laakso-fold. The only complication
in extending the preceding argument to the Laakso-fold is
that, at any given scale, only 1/4 of the dyadic squares cor-
respond to an induced sphere (as opposed to all the squares
in the diamondfold). This means that the “monochromatic
sheet principle” does not immediately apply. However, the
following straightforward strengthening of Theorem 2.2 says
that most dyadic squares are good, not just one of them. Af-
ter finding an induced sphere on which both sheets satisfy
the theorem, the proof proceeds without change.

Theorem 2.6. For every metric space Y and 1-Lipschitz
mapping F : [0, 1]2 → Y , every 0 < η < 1, and every 0 <

ε < 1, at least a (1− η)-fraction of dyadic squares A ∈ D of
length at least 2−r, with r . 1

ε
log k

ε
, satisfy

∫
E [∆F (A[ℓ])] dµ(ℓ) ≤ ε

η
2−2r +

∫
∆F (∂A ∩ ℓ) dµ(ℓ). (6)
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