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Abstract

Consider the undirected graph 𝐺𝑛 = (𝑉𝑛 , 𝐸𝑛) where 𝑉𝑛 = (ℤ/𝑛ℤ)2 and 𝐸𝑛 contains an edge
from (𝑥, 𝑦) to (𝑥 + 1, 𝑦), (𝑥, 𝑦 + 1), (𝑥 + 𝑦, 𝑦), and (𝑥, 𝑦 + 𝑥) for every (𝑥, 𝑦) ∈ 𝑉𝑛 . Gabber and
Galil, following Margulis, gave an elementary proof that {𝐺𝑛} forms an expander family. In this
expository note, we present a somewhat simpler proof of this fact, and demonstrate its utility by
isolating a key property of the linear transformations (𝑥, 𝑦) ↦→ (𝑥 + 𝑦, 𝑥), (𝑥, 𝑦 + 𝑥) that yields
expansion.

As an example, take any invertible, integral matrix 𝑆 ∈ 𝐺𝐿2(ℤ) and let 𝐺𝑆
𝑛 = (𝑉𝑛 , 𝐸

𝑆
𝑛) where

𝐸𝑆
𝑛 contains, for every (𝑥, 𝑦) ∈ 𝑉𝑛 , an edge from (𝑥, 𝑦) to (𝑥+1, 𝑦), (𝑥, 𝑦+1), 𝑆(𝑥, 𝑦), and 𝑆⊤(𝑥, 𝑦),

and 𝑆⊤ denotes the transpose of 𝑆. Then {𝐺𝑆
𝑛} forms an expander family if and only if the

infinite graph
𝐺𝑆 =

(
ℤ2 \ {0},

{
{𝑧, 𝑆𝑧}, {𝑧, 𝑆⊤𝑧} : 𝑧 ∈ ℤ2 \ {0}

})
has positive Cheeger constant.

This latter property turns out to be elementary to analyze: For any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ), the

graph 𝐺𝑆 has positive Cheeger constant if and only if (𝑎 + 𝑑)(𝑏 − 𝑐) ≠ 0. The case 𝑆 =
( 1 1

0 1
)

recovers the Margulis-Gabber-Galil graphs. We also present some other generalizations.

1 Introduction

Expander graphs have played a fundamental role in many areas of mathematics and computer
science; we refer to the monograph [HLW06]. Margulis [Mar73] discovered the first explicit
construction of expanders. Based on his work, Gabber and Galil [GG81] later presented an
elementary construction and analysis. The Gabber-Galil graphs still provide the simplest, most
succinct description of expanders to date.

Consider the undirected graph 𝐺𝑛 = (𝑉𝑛 , 𝐸𝑛) with vertex set 𝑉𝑛 = (ℤ/𝑛ℤ)2 and edge set 𝐸𝑛

which contains, for every (𝑥, 𝑦) ∈ 𝑉𝑛 , an edge to each of (𝑥 ± 1, 𝑦), (𝑥, 𝑦 ± 1), (𝑥 ± 𝑦, 𝑦), (𝑥, 𝑦 ± 𝑥).
Then {𝐺𝑛 : 𝑛 ⩾ 2} forms a family of expander graphs with vertex degree at most 8. Jimbo and
Maruoka [JM87], using discrete Fourier analysis, presented another proof that the Gabber-Galil
graphs are expanders. Both these analyses contain at least one non-trivial and arguably opaque
technical analytic step. For instance, the survey [HLW06] gives an elementary proof along the lines
of [JM87] but still refers to the argument as “subtle and mysterious.”

We present a somewhat simpler proof, or at least one whose pieces are each well-motivated.
The “technical step” is replaced by an application of the discrete Cheeger inequality and a very
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simple combinatorial lemma inspired by a paper of Linial and London [LL06] (cf. Lemma 2.2).
Moreover, the basic approach allows us to analyze a variety of similar families.

Given any two invertible, integral matrices 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ), one can consider the family of graphs
𝐺𝑆,𝑇

𝑛 = (𝑉𝑛 , 𝐸
𝑆,𝑇
𝑛 ), where 𝐸𝑆,𝑇

𝑛 contains edges from every (𝑥, 𝑦) ∈ 𝑉𝑛 to each of

(𝑥 ± 1, 𝑦), (𝑥, 𝑦 ± 1), 𝑆(𝑥, 𝑦), 𝑆−1(𝑥, 𝑦), 𝑇(𝑥, 𝑦), 𝑇−1(𝑥, 𝑦) .

The Gabber-Galil graphs correspond to the choice 𝑆 =
( 1 1

0 1
)

and 𝑇 =
( 1 0

1 1
)
.

Consider also the countably infinite graph 𝐺𝑆,𝑇 with vertex set ℤ2 \ {0} and edges

𝐸𝑆,𝑇 def
=

{
{𝑧, 𝑆𝑧}, {𝑧, 𝑇𝑧} : 𝑧 ∈ ℤ2 \ {0}

}
.

In Section 3, we prove the following relationship.

Theorem 1.1. For any 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ), if 𝐺𝑆⊤ ,𝑇⊤ has positive Cheeger constant, then {𝐺𝑆,𝑇
𝑛 } is a family of

expander graphs.

An infinite graph 𝐺 = (𝑉, 𝐸) with uniformly bounded degrees has positive Cheeger constant if
there is a number 𝜀 > 0 such that every finite subset 𝑈 ⊆ 𝑉 has at least 𝜀|𝑈 | edges with exactly one
endpoint in 𝑈 . While Theorem 1.1 may not seem particularly powerful, it turns out that in many
interesting cases, proving a non-trivial lower bound on the Cheeger constant of 𝐺𝑆,𝑇 is elementary.
For the Gabber-Galil graphs, the argument is especially simple; see Lemma 2.2.

One can generalize the Gabber-Galil graphs in a few different ways. As a prototypical example,
consider the family {𝐺𝑆,𝑆⊤

𝑛 } for any 𝑆 ∈ 𝐺𝐿2(ℤ). In Section 4, we give the following characterization.

Theorem 1.2. For any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ), it holds that {𝐺𝑆,𝑆⊤

𝑛 } is an expander family if and only if
(𝑎 + 𝑑)(𝑏 − 𝑐) ≠ 0.

For instance, the preceding theorem implies that if 𝑆 has order 4 then {𝐺𝑆,𝑆⊤
𝑛 } is not a family of

expander graphs, but if 𝑆 has order 6 and 𝑆 ≠ 𝑆⊤ then the graphs are expanders.
Earlier, Cai [Cai03] considered a different generalization. Let 𝑅 =

( 0 1
1 0

)
be the reflection across

the line 𝑦 = 𝑥. The Gabber-Galil graphs can also be seen as 𝐺𝑆,𝑇
𝑛 where 𝑆 =

( 1 1
0 1

)
and 𝑇 = 𝑅𝑆𝑅. In

Section 4.1, we give the following characterization.

Theorem 1.3. For any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ), it holds that {𝐺𝑆,𝑅𝑆𝑅

𝑛 } is an expander family if and only if
(𝑎 + 𝑑)(𝑏 + 𝑐) ≠ 0.

Cai [Cai03] considers the situation det(𝑆) = 1 and |𝑎 + 𝑑 | ⩾ 2, |𝑏 + 𝑐 | ⩾ 2. However, his work
does not prove that {𝐺𝑆,𝑅𝑆𝑅

𝑛 } are expanders. In fact, the graphs he associates to a matrix 𝑆 are
somewhat complicated and need to refer to the action of 𝑆 on the torus. Moreover, they do not
have uniformly bounded degree; the degree of his graphs grow linearly in ∥𝑆∥1 (the sum of the
magnitudes of the entries of 𝑆). The maximum degree of our graphs is clearly bounded by 8.
Interestingly, Cai states that {𝐺𝑆,𝑆⊤

𝑛 } is a more natural generalization, but the main technical tool of
the Gabber-Galil style analysis (see Theorem 4.10) does not work for these graphs.
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2 The Margulis-Gabber-Galil graphs

Consider an undirected graph 𝐺 = (𝑉, 𝐸) with an at most countable vertex set. For 𝐴, 𝐵 ⊆ 𝑉 , we use
𝐸(𝐴, 𝐵) to denote the set of edges with one endpoint in 𝐴 and one in 𝐵. We write 𝐸(𝐴) = 𝐸(𝐴, �̄�)
where �̄� denotes the complement of 𝐴 in 𝑉 . We define the expansion of a subset 𝑈 ⊆ 𝑉 by

ℎ𝐺(𝑈) def
=

|𝐸(𝑈)|
|𝑈 | .

For 𝐺 finite, we set ℎ(𝐺) def
= min|𝑈 |⩽ 1

2 |𝑉 | ℎ𝐺(𝑈). If 𝐺 is infinite, we put ℎ(𝐺) def
= min𝑈⊆𝑉 :|𝑈 |<∞ ℎ𝐺(𝑈).

In both the finite and infinite case, we refer to ℎ(𝐺) as the Cheeger constant of 𝐺.
We also have the Rayleigh quotient of a function 𝑓 : 𝑉 → ℂ given by

ℛ𝐺( 𝑓 )
def
=

∑
{𝑢,𝑣}∈𝐸 | 𝑓 (𝑢) − 𝑓 (𝑣)|2∑

𝑢∈𝑉 | 𝑓 (𝑢)|2 ,

and for finite 𝐺, we put 𝜆2(𝐺) def
= min{ℛ𝐺( 𝑓 ) :

∑
𝑢∈𝑉 𝑓 (𝑢) = 0}. This is the smallest non-zero

eigenvalue of the combinatorial Laplacian (see, e.g., the book [Chu97]). An infinite family of finite
graphs {𝐺𝑛} with uniformly bounded degrees is called an expander family if 𝜆2(𝐺𝑛) ⩾ 𝑐 > 0 for
some 𝑐 > 0. We will assume familiarity with the following discrete Cheeger inequality.

Lemma 2.1. For any countable graph 𝐺 = (𝑉, 𝐸) with maximum degree Δ and any function 𝑓 : 𝑉 → ℂ

with
∑

𝑣∈𝑉 | 𝑓 (𝑣)|2 < ∞, there exists a finite subset 𝑈 ⊆ {𝑣 ∈ 𝑉 : 𝑓 (𝑣) ≠ 0} such that

ℎ𝐺(𝑈) ⩽
√

2Δℛ𝐺( 𝑓 ) .

Proof. Let 𝑈𝑡 = {𝑣 ∈ 𝑉 : | 𝑓 (𝑣)|2 ⩾ 𝑡}. Observe that for each 𝑡 > 0, one has 𝑈𝑡 ⊆ {𝑣 ∈ 𝑉 : 𝑓 (𝑣) ≠ 0}
and 𝑈𝑡 is finite since

∑
𝑣∈𝑉 | 𝑓 (𝑣)|2 is finite. Now we have:∫ ∞

0
|𝐸(𝑈𝑡 , �̄�𝑡)| 𝑑𝑡 =

∑
{𝑢,𝑣}∈𝐸

��| 𝑓 (𝑢)|2 − | 𝑓 (𝑣)|2
��

=
∑

{𝑢,𝑣}∈𝐸
(| 𝑓 (𝑢)| + | 𝑓 (𝑣)|)(| 𝑓 (𝑢)| − | 𝑓 (𝑣)|)

⩽

√ ∑
{𝑢,𝑣}∈𝐸

(| 𝑓 (𝑢)| + | 𝑓 (𝑣)|)2
√ ∑

{𝑢,𝑣}∈𝐸
| 𝑓 (𝑢) − 𝑓 (𝑣)|2

⩽

√
2Δ

∑
𝑢∈𝑉

| 𝑓 (𝑢)|2
√ ∑

{𝑢,𝑣}∈𝐸
| 𝑓 (𝑢) − 𝑓 (𝑣)|2.

On the other hand,
∫ ∞

0 |𝑈𝑡 | 𝑑𝑡 =
∑

𝑢∈𝑉 | 𝑓 (𝑢)|2 , thus∫ ∞

0
|𝐸(𝑈𝑡 , �̄�𝑡)| 𝑑𝑡 ⩽

√
2Δℛ𝐺( 𝑓 )

∫ ∞

0
|𝑈𝑡 | 𝑑𝑡 ,

implying there exists a 𝑡 > 0 such that ℎ𝐺(𝑈𝑡) ⩽
√

2Δℛ𝐺( 𝑓 ). □
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An initial expanding object. We will start with an initial “expanding object,” and then try to
construct a family of graphs out of it. First, consider the infinite graph 𝒢 = (ℤ2 , 𝐸) whose edges are
given by two maps 𝑆, 𝑇 : ℝ2 → ℝ2 defined by 𝑆(𝑥, 𝑦) = (𝑥, 𝑥 + 𝑦) and 𝑇(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑦). Each
vertex 𝑧 ∈ ℤ2 is connected to 𝑆(𝑧), 𝑆−1(𝑧), 𝑇(𝑧), 𝑇−1(𝑧). So every vertex has degree at most four.
Clearly (0, 0) is not adjacent to anything. Using an argument from [LL06], we will show that this
graph is an expander in the following sense.

Lemma 2.2. For any finite subset 𝐴 ⊆ ℤ2 \ {0}, we have |𝐸(𝐴, �̄�)| ⩾ |𝐴|.

Proof. Define 𝑄1 = {(𝑥, 𝑦) ∈ ℤ2 : 𝑥 > 0, 𝑦 ⩾ 0}. This is the first quadrant, without the 𝑦-axis and
the origin. Define 𝑄2 , 𝑄3 , 𝑄4 similarly by rotating 𝑄1 by 90, 180, and 270 degrees, respectively, and
note that we have a partition ℤ2 \ {0} = 𝑄1 ∪𝑄2 ∪𝑄3 ∪𝑄4.

Let 𝐴𝑖 = 𝐴 ∩𝑄𝑖 . We will show that |𝐸(𝐴1 , �̄� ∩𝑄1)| ⩾ |𝐴1 |. Since our graph is invariant under
rotations of the plane by 90◦, this will imply our goal:

|𝐸(𝐴, �̄�)| ⩾
4∑
𝑖=1

|𝐸(𝐴𝑖 , �̄� ∩𝑄𝑖)| ⩾
4∑
𝑖=1

|𝐴𝑖 | = |𝐴| .

It is immediate that 𝑆(𝐴1), 𝑇(𝐴1) ⊆ 𝑄1. Furthermore, we have 𝑆(𝐴1) ∩ 𝑇(𝐴1) = ∅ because 𝑆

maps points in 𝑄1 above (or onto) the line 𝑦 = 𝑥 and 𝑇 maps points of 𝑄1 below the line 𝑦 = 𝑥.
Furthermore, 𝑆 and 𝑇 are bĳections, thus |𝑆(𝐴1) + 𝑇(𝐴1)| = |𝑆(𝐴1)| + |𝑇(𝐴1)| = 2|𝐴1 | . In particular,
this yields |𝐸(𝐴1 , �̄� ∩𝑄1)| ⩾ |𝐴1 |, as desired. □

Of course, 𝒢 is not a finite graph, so for a number 𝑛 ⩾ 2, we define the graph 𝐺𝑛 = (𝑉𝑛 , 𝐸𝑛) with
vertex set 𝑉𝑛 = (ℤ/𝑛ℤ)2. There are four types of edges in 𝐸𝑛 : A vertex (𝑥, 𝑦) is connected to the
vertices

{(𝑥, 𝑦 ± 1), (𝑥 ± 1, 𝑦), (𝑥, 𝑥 ± 𝑦), (𝑥 ± 𝑦, 𝑦)} ,
where arithmetic is taken modulo 𝑛. This yields a graph of degree at most 8. We now state the
main result of this section.

Theorem 2.3. There is a constant 𝑐 > 0 such that for every 𝑛 ⩾ 2,

𝜆2(𝐺𝑛) ⩾ 𝑐 .

In other words, {𝐺𝑛} forms an expander family.

Passing to the continuous torus. Our results for ℤ2 do not seem immediately useful for analyzing
these finite graphs. We will first pass from the discrete graphs {𝐺𝑛} to the continuous torus. This is
a reassuring step, as it means our analysis is not going to rely on number theoretic considerations
of the modulus 𝑛.

Let 𝕋 2 = ℝ2/ℤ2 be the 2-dimensional torus equipped with the Lebesgue measure and consider
the complex Hilbert space

𝐿2(𝕋 2) =
{
𝑓 : 𝕋 2 → ℂ :

∫
𝕋 2

| 𝑓 |2 < ∞
}
.

equipped with the inner product ⟨ 𝑓 , 𝑔⟩𝐿2 =
∫
𝕋 2 𝑓 �̄�.

4



We also define a related value

𝜆2(𝕋 2
𝑆,𝑇)

def
= min

𝑓 ∈𝐿2(𝕋 2)

{
∥ 𝑓 − 𝑓 ◦ 𝑆∥2

𝐿2 + ∥ 𝑓 − 𝑓 ◦ 𝑇∥2
𝐿2

∥ 𝑓 ∥2
𝐿2

:
∫
𝕋 2

𝑓 = 0

}
. (2.1)

Lemma 2.4. There is some 𝜀 > 0 such that for any 𝑛 ⩾ 2, we have 𝜆2(𝐺𝑛) ⩾ 𝜀𝜆2(𝕋 2
𝑆,𝑇

) .

Proof. Suppose we are given some map 𝑓 : 𝑉𝑛 → ℂ such that
∑

𝑢∈𝑉𝑛
𝑓 (𝑢) = 0. We define its

continuous extension 𝑓 : 𝕋 2 → ℂ as follows. There is a natural embedding of 𝑉𝑛 into [0, 1]2 which
we represent as follows: Given a point 𝑤 = (𝑥/𝑛, 𝑦/𝑛) ∈ [0, 1]2, with 𝑥, 𝑦 ∈ {0, 1, . . . , 𝑛}, we write
[𝑤] for the corresponding element of 𝑉𝑛 .

Every point 𝑧 ∈ [0, 1)2 sits inside a grid square with four corners 𝑢1 , 𝑢2 , 𝑢3 , 𝑢4 such that
[𝑢1], [𝑢2], [𝑢3], [𝑢4] ∈ 𝑉𝑛 . We call such a square (thought of as a subset of 𝕋 2) a canonical square.
Define 𝑓 (𝑧) as the average

𝑓 (𝑧) =
∑4

𝑖=1( 1
𝑛 − ∥𝑢𝑖 − 𝑧∥∞) 𝑓 ([𝑢𝑖])∑4
𝑖=1( 1

𝑛 − ∥𝑢𝑖 − 𝑧∥∞)
. (2.2)

Observe that this is well-defined; e.g., if 𝑧 lies on the segment between 𝑢1 and 𝑢2 then the coefficients
of 𝑓 ([𝑢3]) and 𝑓 ([𝑢4]) are zero. By symmetry, it follows immediately that

∫
𝕋 2 𝑓 = 0.

It is also easy to verify that ∥ 𝑓 ∥2
𝐿2 ⩾

𝑐
𝑛2

∑
𝑣∈𝑉 𝑓 (𝑣)2 for some 𝑐 > 0. For any square with corners

{𝑢1 , 𝑢2 , 𝑢3 , 𝑢4}, let 𝑖 ∈ {1, 2, 3, 4} be such that 𝑓 ([𝑢𝑖])2 is maximal and let 𝐵 denote an ℓ∞ ball of
radius 1

8𝑛 around 𝑢𝑖 . Then
∫
𝐵
| 𝑓 |2 ⩾ 𝑐

𝑛2
∑4

𝑖=1 𝑓 ([𝑢𝑖])2 for some universal constant 𝑐 > 0. Summing
over all the squares yields the claim.

So to finish the proof, we are left to argue that

∥ 𝑓 − 𝑓 ◦ 𝑆∥2
𝐿2 + ∥ 𝑓 − 𝑓 ◦ 𝑆∥2

𝐿2 ⩽
𝑐

𝑛2

∑
{𝑢,𝑣}∈𝐸𝑛

( 𝑓 (𝑢) − 𝑓 (𝑣))2 (2.3)

for some 𝑐 > 0. Consider any point 𝑧 ∈ 𝕋 2 contained in a square □1 and suppose 𝑆(𝑧) is in □2. Note
that □1 = □2 is a possibility. Let 𝒞 be the set of (at most) eight vertices of 𝑉𝑛 that comprise the
corners of □1 and □2. Then any pair of vertices in 𝒞 can reach each other using a path of length
at most five in 𝐺𝑛 . This is the only place where we need to use the fact that edges of the form
(𝑥, 𝑦) ↔ (𝑥, 𝑦 ± 1) and (𝑥, 𝑦) ↔ (𝑥 ± 1, 𝑦) are present in 𝐺𝑛 . On the other hand, we clearly have

| 𝑓 (𝑧) − 𝑓 (𝑆(𝑧))|2 ⩽ max
𝑢,𝑣∈𝒞

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 ,

since 𝑓 (𝑧) is a convex combination of the 𝑓 -values at the corners of □1 and 𝑓 (𝑆(𝑧)) is a convex
combination of the 𝑓 -values at the corners of □2.

Now consider a canonical square □ ⊆ 𝕋 2, which has measure 1/𝑛2. Let 𝐸(□) to denote the set of
edges in 𝐺𝑛 that occur on some path of length at most 5 emanating from the corners of □. Then the
preceding argument yields∫

□
| 𝑓 (𝑧) − 𝑓 (𝑆(𝑧))|2𝑑𝑧 ⩽ 1

𝑛2 max
{𝑢,𝑣}∈𝐸(□)

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 ⩽ 𝑂

(
1
𝑛2

) ∑
{𝑢,𝑣}∈𝐸(□)

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 ,
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using the fact that |𝐸(□)| = 𝑂(1) because 𝐺𝑛 has degree at most 8. Summing the preceding
inequality over all canonical squares yields∫

𝕋 2
| 𝑓 (𝑧) − 𝑓 (𝑆(𝑧))|2𝑑𝑧 ⩽ 𝑂

(
1
𝑛2

) ∑
{𝑢,𝑣}∈𝐸

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 ,

since every edge occurs in some set 𝐸(□) at most 𝑂(1) times. An identical argument holds for 𝑇,
yielding (2.3). □

Using the Fourier transform to unwrap the torus. Our final goal is to show that 𝜆2(𝕋 2
𝑆,𝑇

) > 0. Our
approach is based on the fact that 𝑆 and 𝑇, being shift operators, will act rather nicely on the Fourier
basis.

We recall that if 𝑚, 𝑛 ∈ ℕ and we define 𝜒𝑚,𝑛 ∈ 𝐿2(𝕋 2) by 𝜒𝑚,𝑛(𝑥, 𝑦) = exp(2𝜋𝑖(𝑚𝑥 + 𝑛𝑦)), then
{𝜒𝑚,𝑛 : 𝑚, 𝑛 ∈ ℤ} forms an orthonormal Hilbert basis for 𝐿2(𝕋 2). In particular, every 𝑓 ∈ 𝐿2(𝕋 2)
can be written as

𝑓 =
∑

𝑚,𝑛∈ℤ
𝑓 (𝑚, 𝑛)𝜒𝑚,𝑛 , (2.4)

where 𝑓 (𝑚, 𝑛) = ⟨ 𝑓 , 𝜒𝑚,𝑛⟩𝐿2 and convergence in (2.4) is in the 𝐿2(𝕋 2) norm (see, for instance, [Kat04,
§I.5]). Putting ℓ 2(ℤ2) = { 𝑓 : ℤ2 → ℂ :

∑
𝑧∈ℤ2 | 𝑓 (𝑧)|2 < ∞}, the Fourier transform is the linear

isometry 𝑓 ↦→ 𝑓 from 𝐿2(𝕋 2) to ℓ 2(ℤ2).
For any 𝑚, 𝑛 ∈ ℤ, we have

𝜒𝑚,𝑛 ◦ 𝑆 = 𝜒𝑚,𝑛+𝑚 and 𝜒𝑚,𝑛 ◦ 𝑇 = 𝜒𝑚+𝑛,𝑛 .

Thus for any 𝑓 ∈ 𝐿2(𝕋 2), we have�𝑓 ◦ 𝑆 =
∑
𝑚,𝑛

𝑓 (𝑚, 𝑛)𝜒𝑚,𝑛+𝑚 =
∑
𝑚,𝑛

𝑓 (𝑚, 𝑛 − 𝑚)𝜒𝑚,𝑛 = 𝑓 ◦ 𝑇−1

�𝑓 ◦ 𝑇 =
∑
𝑚,𝑛

𝑓 (𝑚, 𝑛)𝜒𝑚+𝑛,𝑛 =
∑
𝑚,𝑛

𝑓 (𝑚 − 𝑛, 𝑛)𝜒𝑚,𝑛 = 𝑓 ◦ 𝑆−1 .

The final thing to note is that 𝑓 (0, 0) = ⟨ 𝑓 , 𝜒0,0⟩ =
∫
𝕋 2 𝑓 . So now if we simply apply the Fourier

transform (a linear isometry) to the expression in (2.1), we arrive at

𝜆2(𝕋 2
𝑆,𝑇) = min

𝑓 ∈𝐿2(𝕋 2)

{
∥ 𝑓 − �𝑓 ◦ 𝑆∥2

ℓ2 + ∥ 𝑓 − �𝑓 ◦ 𝑇∥2
ℓ2

∥ 𝑓 ∥2
ℓ2

:
∫
𝕋 2

𝑓 = 0

}
= min

𝑓 ∈ℓ2(ℤ2)

{∑
𝑧∈ℤ2 | 𝑓 (𝑧) − 𝑓 (𝑇−1(𝑧))|2 + | 𝑓 (𝑧) − 𝑓 (𝑆−1(𝑧))|2

∥ 𝑓 ∥2
𝐿2

: 𝑓 (0, 0) = 0

}
.

In other words,
𝜆2(𝕋 2

𝑆,𝑇) = min
𝑓 ∈ℓ2(ℤ2)

{ℛ𝒢( 𝑓 ) : 𝑓 (0, 0) = 0} ,

where 𝒢 is our initial graph defined on ℤ2. Applying the discrete Cheeger inequality (Lemma 2.1)
with Δ = 4, yields

min
𝑓 :𝑉→ℂ

{ℛ𝒢( 𝑓 ) : 𝑓 (0, 0) = 0} ⩾ 1
8 min

𝑈 :(0,0)∉𝑈
ℎ𝒢(𝑈)2 ⩾ 1

8 ,
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where the final inequality is exactly the content of Lemma 2.2. Thus by Lemma 2.4 for some 𝜀 > 0
and every 𝑛 ⩾ 2, we have 𝜆2(𝐺𝑛) ⩾ 𝜀𝜆2(𝕋 2

𝑆,𝑇
) ⩾ 𝜀

8 . This completes the proof of Theorem 2.3.

3 The general correspondence

We now perform the steps of the preceding section is somewhat greater generality. Consider
𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ). We will write �̂�𝑆,𝑇 to denote 𝐺𝑆⊤ ,𝑇⊤ . The main result of this section is a connection
between the expansion of {𝐺𝑆,𝑇

𝑛 } and �̂�𝑆,𝑇 .

Theorem 3.1. For every 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ), if ℎ(�̂�𝑆,𝑇) > 0, then {𝐺𝑆,𝑇
𝑛 } forms an expander family.

Define the quantity

𝜆2(𝕋 2
𝑆,𝑇)

def
= min

𝑓 ∈𝐿2(𝕋 2)

{
∥ 𝑓 − 𝑓 ◦ 𝑆∥2

𝐿2 + ∥ 𝑓 − 𝑓 ◦ 𝑇∥𝐿22
∥ 𝑓 ∥𝐿2

:
∫
𝕋 2

𝑓 = 0

}
.

The following result requires a bit more delicacy than Lemma 2.4.

Lemma 3.2. There is an 𝜀 > 0 such that for every 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ) and 𝑛 ⩾ 2, we have

𝜆2(𝐺𝑆,𝑇
𝑛 ) ⩾ 𝜀

∥𝑆∥2
1 + ∥𝑇∥2

1
𝜆2(𝕋 2

𝑆,𝑇) .

Proof. We will use the notion of canonical squares from Lemma 2.4. Suppose we have a map
𝑓 : 𝑉𝑛 → ℂ satisfying

∑
𝑢∈𝑉𝑛

𝑓 (𝑢) = 0. Define the extension 𝑓 : 𝕋 2 → ℂ as in (2.2). The fact that∫
𝕋 2 𝑓 = 0 and

∫
𝕋 2 | 𝑓 |2 ⩾ 𝑐

𝑛2
∑

𝑢∈𝑉𝑛
| 𝑓 (𝑢)|2 for some absolute constant 𝑐 > 0 is proved in Lemma 2.4.

We are thus left to prove that for some 𝑐 > 0,

∥ 𝑓 − 𝑓 ◦ 𝑆∥2
𝐿2 + ∥ 𝑓 − 𝑓 ◦ 𝑇∥2

𝐿2 ⩽ 𝑐
∥𝑆∥2

1 + ∥𝑇∥2
1

𝑛2

∑
{𝑢,𝑣}∈𝐸𝑆,𝑇

𝑛

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 . (3.1)

To this end, suppose 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
and consider a point 𝑧 ∈ □1 and 𝑆𝑧 ∈ □2, where □1 and □2 are

canonical squares whose corners are vertices from 𝑉𝑛 (it is possible that □1 = □2). Since 𝑓 (𝑧) is a
convex combination of the values of 𝑓 at the corners of □1 and similarly for 𝑓 (𝑆(𝑧)) and □2, we have

| 𝑓 (𝑧) − 𝑓 (𝑆𝑧)|2 ⩽ max
𝑢,𝑣∈𝒞

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 , (3.2)

where 𝒞 contains the (at most) eight corners of □1 and □2.
Unlike in Lemma 2.4, the members of 𝒞 can no longer be connected by paths of length 𝑂(1)

in 𝐺𝑆
𝑛 . However, it is elementary to see that they can be connected by paths of length at most

∥𝑆∥1 + 1 = |𝑎 | + |𝑏 | + |𝑐 | + |𝑑 | + 1. We simply need to choose the paths in a consistent way in order
to conclude that (3.1) holds. This will be a bit technical, but the underlying idea is very simple.

We will now specify canonical paths between the members of 𝒞. Let us write 𝐸′
𝑛 ⊆ 𝐸𝑆,𝑇

𝑛 for the
set of edges connecting (𝑥, 𝑦) to (𝑥 ± 1, 𝑦) or (𝑥, 𝑦 ± 1). Call an edge of 𝐸′

𝑛 horizontal if it changes the
𝑥 coordinate and vertical if it changes the 𝑦 coordinate.
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Let (𝑥, 𝑦) ∈ [0, 1)2 denote the lower-left corner of □1 and let (𝑥′, 𝑦′) ∈ [0, 1)2 denote the lower-left
corner of □2. We may assume that 𝑧 = (𝑥 + 𝛼, 𝑦 + 𝛽) for some 𝛼, 𝛽 ∈ (0, 1/𝑛), and

𝑆𝑧 = 𝑆(𝑥, 𝑦) + 𝑆(𝛼, 𝛽) = 𝑆(𝑥, 𝑦) + (𝑎𝛼 + 𝑏𝛽, 𝑐𝛼 + 𝑑𝛽) .

We specify a path from (𝑥, 𝑦) to (𝑥′, 𝑦′). Our path 𝑃𝑧 in 𝐺𝑆
𝑛 will first follow the edge {(𝑥, 𝑦), 𝑆(𝑥, 𝑦)}

then move along edges of 𝐸′
𝑛 in the 𝑥 direction for ⌊𝑎𝛼 + 𝑏𝛽⌋ steps, then move along edges of 𝐸′

𝑛 in
the 𝑦 direction for ⌊𝑐𝛼 + 𝑑𝛽⌋ steps. This will arrive at some corner of □2 (e.g., the lower-left corner
if all the entries of 𝑆 are positive). Our path then moves to (𝑥′, 𝑦′) using at most two additional
edges of □2. For any other pair 𝑢, 𝑣 ∈ 𝒞: If they are in the same square, move along the edges of the
square in some canonical way using a path of length at most two. Otherwise, if 𝑢 is a corner of □1
and 𝑣 is a corner of □2, first from 𝑢 to (𝑥, 𝑦) along edges of □1, then to (𝑥′, 𝑦′) using 𝑃𝑧 , then from
(𝑥′, 𝑦′) to 𝑣 using edges of □2. Let 𝑃𝑧

𝑢𝑣 denote the specified path between 𝑢, 𝑣 ∈ 𝒞. Note that the
length of 𝑃𝑧

𝑢𝑣 is 𝑂(∥𝑆∥1).
The main points of this construction are as follows. First, for every pair of horizontal (respectively,

vertical) edges 𝑒 , 𝑒′ ∈ 𝐸′
𝑛 , we have ∫

𝕋 2
1{𝑒∈𝑃𝑧}𝑑𝑧 =

∫
𝕋 2

1{𝑒′∈𝑃𝑧}𝑑𝑧 . (3.3)

The second is that, combining (3.2) with Cauchy-Schwarz yields

| 𝑓 (𝑧) − 𝑓 (𝑆(𝑧))|2 ⩽ 𝑂(∥𝑆∥1)
∑
𝑢,𝑣∈𝒞

∑
{𝑟,𝑠}∈𝑃𝑧

𝑢𝑣

| 𝑓 (𝑟) − 𝑓 (𝑠)|2 . (3.4)

Using the equitable property (3.3) and the fact that every edge of the form {(𝑥, 𝑦), 𝑆(𝑥, 𝑦)} appears
on the right-hand side of (3.4) only when 𝑧 ∈ □1, we can integrate (3.4) to yield∫

𝕋 2
| 𝑓 (𝑧) − 𝑓 (𝑆(𝑧))|2𝑑𝑧 ⩽ 𝑂

(
∥𝑆∥2

1
𝑛2

) ∑
{𝑢,𝑣}∈𝐸𝑆,𝑇

𝑛

| 𝑓 (𝑢) − 𝑓 (𝑣)|2 .

An identical analysis holds for 𝑇, allowing us to verify (3.1). □

Lemma 3.3. For any 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ), we have

𝜆2(𝕋 2
𝑆,𝑇) = min

𝑓 ∈ℓ2(ℤ2)
{ℛ�̂�𝑆,𝑇 ( 𝑓 ) : 𝑓 (0, 0) = 0} .

Proof. Note that if 𝑓 ∈ 𝐿2(𝕋 2), then�𝑓 ◦ 𝑆 =
∑
𝑚,𝑛

𝑓 (𝑚, 𝑛)𝜒𝑎𝑚+𝑐𝑛,𝑏𝑚+𝑑𝑛

=
∑
𝑚,𝑛

𝑓 (𝑚, 𝑛)𝜒𝑆⊤(𝑚,𝑛)

=
∑
𝑚,𝑛

𝑓 (𝑆−⊤(𝑚, 𝑛))𝜒𝑚,𝑛

= 𝑓 ◦ 𝑆−⊤ .

8



Similarly, �𝑓 ◦ 𝑇 = 𝑓 ◦𝑇−⊤. Using the fact that the Fourier transform is a linear isometry from 𝐿2(𝕋 2)
to ℓ 2(ℤ2) and 𝑓 (0, 0) =

∫
𝕋 2 𝑓 , we have

𝜆2(𝕋 2
𝑆,𝑇) = min

𝑓 ∈ℓ2(ℤ2)

{∑
𝑧∈ℤ2 | 𝑓 (𝑧) − 𝑓 (𝑆−⊤𝑧)|2 + | 𝑓 (𝑧) − 𝑓 (𝑇−⊤𝑧)|2∑

𝑧∈ℤ2 | 𝑓 (𝑧)|2
: 𝑓 (0, 0) = 0

}
= min

𝑓 ∈ℓ2(ℤ2)
{ℛ�̂�𝑆,𝑇 ( 𝑓 ) : 𝑓 (0, 0) = 0} ,

completing the proof. □

Combining Lemma 3.3 with the discrete Cheeger inequality (Lemma 2.1) yields the following.

Corollary 3.4. For any 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ), 𝜆2(𝕋 2
𝑆,𝑇

) ⩾ 1
8 ℎ(�̂�𝑆,𝑇)2.

Finally, combining this corollary with Lemma 3.2 yields Theorem 3.1.

4 Expansion analysis

For ease of notation, we will write 𝐺𝑆
𝑛

def
= 𝐺𝑆,𝑆⊤

𝑛 and 𝐺𝑆 def
= 𝐺𝑆,𝑆⊤ .

Theorem 4.1. For any 𝑆 ∈ 𝐺𝐿2(ℤ), it holds that ℎ(𝐺𝑆) > 0 if and only if 𝑆 ≠ 𝑆⊤ and tr(𝑆) ≠ 0.

Combining the preceding result with Theorem 3.1, we can prove the following.

Theorem 4.2. For any 𝑆 ∈ 𝐺𝐿2(ℤ), it holds that {𝐺𝑆
𝑛} is an expander family if and only if 𝑆 ≠ 𝑆⊤ and

tr(𝑆) ≠ 0.

Proof. Since 𝐺𝑆 = �̂�𝑆,𝑆⊤ and ℎ(𝐺𝑆) > 0 by Theorem 4.1, we can use Theorem 3.1 to conclude that
{𝐺𝑆

𝑛} is an expander family. On the other hand, if 𝑆 = 𝑆⊤, then Lemma 4.15 shows that {𝐺𝑆
𝑛} is

not an expander family. If tr(𝑆) = 0 then 𝑆4 = 𝐼 = (𝑆⊤)4 and Lemma 4.16 shows that {𝐺𝑆
𝑛} is not an

expander family. □

To prove Theorem 4.1, we will first analyze the case when det(𝑆) = 1 and 𝑆 has all non-negative
entries. This is essentially the main technical lemma of the section; we will show that all other cases
can be reduced to this one.

Lemma 4.3. If 𝑆 ∈ 𝐺𝐿2(ℤ) has all non-negative entries, det(𝑆) = 1, and 𝑆 ≠ 𝑆⊤, then

𝑆(𝑄1) ∩ 𝑆⊤(𝑄1) = ∅
𝑆(𝑄3) ∩ 𝑆⊤(𝑄3) = ∅

𝑆−1(𝑄2) ∩ 𝑆−⊤(𝑄2) = ∅
𝑆−1(𝑄4) ∩ 𝑆−⊤(𝑄4) = ∅

Proof. Let 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
for some 𝑎, 𝑏, 𝑐, 𝑑 ⩾ 0 and let 𝑇 = 𝑆⊤. Since det(𝑆) = 1, we can write:

𝑆−1 =
(

𝑑 −𝑏
−𝑐 𝑎

)
𝑇 = ( 𝑎 𝑐

𝑏 𝑑 ) 𝑇−1 =
(

𝑑 −𝑐
−𝑏 𝑎

)
(4.1)

9



We need only prove that 𝑆(𝑄1)∩𝑇(𝑄1) = ∅. Since𝑄3 = −𝑄1, this immediately yields 𝑆(𝑄3)∩𝑇(𝑄3) =
∅. Consider the matrix 𝐴 =

( 0 1
−1 0

)
that maps 𝑄1 bĳectively to 𝑄2. Then

|𝑆−1(𝑄2) ∩ 𝑇−1(𝑄2)| = |𝐴−1𝑆−1𝐴(𝑄1) ∩ 𝐴−1𝑇−1𝐴(𝑄1)| = |𝑇(𝑄1) ∩ 𝑆(𝑄1)| = 0 .

Similarly, since 𝑄2 = −𝑄4, this yields 𝑆−1(𝑄4) ∩ 𝑇−1(𝑄4) = ∅ as well.
Now suppose that 𝑆(𝑄1) ∩𝑇(𝑄1) ≠ ∅. We will derive a contradiction. Restating our assumption,

there exists (𝑥, 𝑦) ∈ 𝑄1 with 𝑆−1𝑇(𝑥, 𝑦) ∈ 𝑄1. This implies that

(𝑎𝑑 − 𝑏2)𝑥 + 𝑑(𝑐 − 𝑏)𝑦 > 0 (4.2)
𝑎(𝑏 − 𝑐)𝑥 + (𝑎𝑑 − 𝑐2)𝑦 ⩾ 0 . (4.3)

Note that 𝑏 ≠ 𝑐 since, by assumption, 𝑆⊤ ≠ 𝑆. Also, 𝑎𝑑 ≠ 0, since in this case 𝑏𝑐 = −1, which is
impossible under our assumption that 𝑏, 𝑐 ⩾ 0.

If 𝑎𝑑 = 𝑐2 then 1 = 𝑎𝑑 − 𝑏𝑐 = 𝑐(𝑐 − 𝑏) which implies that 𝑐 = 1 and 𝑏 = 0. This yields −𝑎𝑥 ⩾ 0 in
(4.3), which is impossible since (𝑥, 𝑦) ∈ 𝑄1 =⇒ 𝑥 > 0.

If 𝑎𝑑 = 𝑏2 then 1 = 𝑎𝑑 − 𝑏𝑐 = 𝑏(𝑏 − 𝑐), which implies that 𝑐 = 0 and 𝑏 = 1. Altogether, in this
case, we have 𝑆 =

( 1 1
0 1

)
. Here we can conclude that 𝑆(𝑄1) ∩𝑇(𝑄1) = ∅ because 𝑆 maps points of 𝑄1

strictly below the line 𝑦 = 𝑥 and 𝑇 maps points of 𝑄1 above (or onto) the line 𝑦 = 𝑥.
To summarize, we are left to deal with the case

𝑏 ≠ 𝑐, 𝑎 > 0, 𝑑 > 0, 𝑎𝑑 ≠ 𝑏2 , 𝑎𝑑 ≠ 𝑐2 .

If 𝑏 > 𝑐 then 𝑎𝑑 − 𝑏2 < 𝑎𝑑 − 𝑏𝑐 = 1 which implies 𝑎𝑑 − 𝑏2 < 0 since 𝑎𝑑 ≠ 𝑏2. In this case,
𝑑(𝑐 − 𝑏) < 0 as well. Thus if (4.2) holds, then 𝑥 = 𝑦 = 0. Similarly, if 𝑐 > 𝑏, then 𝑎𝑑− 𝑐2 < 𝑎𝑑− 𝑏𝑐 = 1
hence 𝑎𝑑 − 𝑐2 < 0 and 𝑎(𝑏 − 𝑐) < 0, implying 𝑥 = 𝑦 = 0. We conclude that 𝑆(𝑄1) ∩ 𝑇(𝑄1) = ∅. □

Corollary 4.4. If 𝑆 ∈ 𝐺𝐿2(ℤ) has all non-negative entries, 𝑆 ≠ 𝑆⊤, and det(𝑆) = 1, then for any subset
𝐴 ⊆ ℤ2 \ {0},

|𝑆(𝐴) ∪ 𝑆⊤(𝐴) ∪ 𝑆−1(𝐴) ∪ 𝑆−⊤(𝐴)| ⩾ 2|𝐴| .
In particular, ℎ(𝐺𝑆) > 0.

Proof. In this case, we have 𝑆(𝑄1), 𝑆⊤(𝑄1) ⊆ 𝑄1, 𝑆(𝑄3), 𝑆⊤(𝑄3) ⊆ 𝑄3, 𝑆−1(𝑄2), 𝑆−⊤(𝑄2) ⊆ 𝑄2, and
𝑆−1(𝑄4), 𝑆−⊤(𝑄4) ⊆ 𝑄4. Thus Lemma 4.3 yields the desired result. □

To handle the case of general 𝑆 ∈ 𝐺𝐿2(ℤ), it will help to have the following well-known fact.

Lemma 4.5. Consider two infinite graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉, 𝐸′) on the same countable index set
𝑉 , both of which have uniformly bounded degree. Suppose there is a number 𝑘 ∈ ℕ such that that for every
{𝑥, 𝑦} ∈ 𝐸, there is a path of length at most 𝑘 between 𝑥 and 𝑦 in 𝐺′. Then ℎ(𝐺) > 0 implies ℎ(𝐺′) > 0.

Proof. Let Δ be a uniform upper bound on the degree of vertices in 𝐺 and 𝐺′. For a subset 𝑈 ⊆ 𝑉

and 𝑗 ⩾ 1, write 𝑁
𝑗

𝐺′(𝑈) ⊆ 𝑉 for the set of vertices within distance 𝑗 of the set 𝑈 in 𝐺′.
Now, suppose that ℎ(𝐺′) = 0. In that case, for every 𝜀 > 0, there exists a finite subset 𝑈 ⊆ 𝑉

such that |𝑁1
𝐺′(𝑈)| ⩽ (1 + 𝜀)|𝑈 |. In particular, this implies that |𝑁 𝑘

𝐺′(𝑈)| ⩽ (1 + 𝜀Δ𝑘)|𝑈 |. But, by our
assumptions on 𝐺 and 𝐺′, this implies

|𝐸(𝑈, �̄�)| ⩽ Δ(|𝑁 𝑘
𝐺′(𝑈)| − |𝑈 |) ⩽ 𝜀Δ𝑘+1 |𝑈 | .

Letting 𝜀 → 0 shows that ℎ(𝐺) = 0 as well. □
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The following two simple lemmas give conditions under which 𝐺𝑆,𝑇 has Cheeger constant zero.

Lemma 4.6. For any 𝑆 ∈ 𝐺𝐿2(ℤ), we have ℎ(𝐺𝑆,𝑆−1) = ℎ(𝐺𝑆,−𝑆−1) = 0.

Proof. Let 𝐺 = 𝐺𝑆,±𝑆−1 have edge set 𝐸. Consider the sets {𝑈𝑘 ⊆ ℤ2} given by

𝑈𝑘 = {(𝑗 , 0), 𝑆(𝑗 , 0), . . . , 𝑆𝑘(𝑗 , 0) : 𝑗 ∈ {−1, 1}} .

If sup𝑘 |𝑈𝑘 | < ∞, then clearly ℎ𝐺𝑆 (𝑈𝑘) = 0 for some 𝑘. Otherwise, since |𝐸(𝑈𝑘)| ⩽ 4, it must be that
ℎ𝐺𝑆 (𝑈𝑘) → 0 as 𝑘 → ∞, implying that ℎ(𝐺𝑆) = 0. □

Lemma 4.7. Suppose 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ) satisfy 𝑆4 = 𝑇4 = 𝐼. Then ℎ(𝐺𝑆,𝑇) = 0.

Proof. First, an elementary calculation shows that if 𝐴 ∈ 𝐺𝐿2(ℤ) satisfies det(𝐴) = 1 and 𝐴2 = 𝐼,
then 𝐴 ∈ {−𝐼 , 𝐼}. Thus 𝑆2 , 𝑇2 ∈ {−𝐼 , 𝐼}. So for any 𝑗1 , 𝑘1 , 𝑗2 , 𝑘2 , . . . , 𝑗𝑚 , 𝑘𝑚 ∈ ℤ, we have

𝑆 𝑗1𝑇 𝑘1𝑆 𝑗2𝑇 𝑘2 · · · 𝑆 𝑗𝑚𝑇 𝑘𝑚 = (−1)𝑖0𝑇 𝑗0(𝑆𝑇)𝑗𝑆𝑘0 .

for some 𝑖0 , 𝑗0 , 𝑘0 ∈ {0, 1} and 𝑗 ∈ ℕ ∪ {0}. Consider now the sets

𝑈𝑘 =
{
(−1)𝑖0𝑇 𝑗0(𝑆𝑇)𝑗𝑆𝑘0(1, 0) : 𝑖0 , 𝑗0 , 𝑘0 ∈ {0, 1} and 0 ⩽ 𝑗 ⩽ 𝑘

}
.

Letting 𝐸𝑆,𝑇 denote the edge set of 𝐺𝑆,𝑇 , we have |𝐸𝑆,𝑇(𝑈𝑘 , �̄�𝑘)| ⩽ 2 · 8 for every 𝑘 ⩾ 1, and thus
ℎ(𝐺𝑆,𝑇) = 0. □

Finally, we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ) satisfies 𝑆 ≠ 𝑆⊤ and tr(𝑆) ≠ 0, i.e. 𝑏 ≠ 𝑐

and 𝑎 + 𝑑 ≠ 0. Let 𝑇 = 𝑆⊤. If 𝑆 has all non-negative or all non-positive entries, then the
matrix 𝑆2 =

(
𝑎2+𝑏𝑐 𝑏(𝑎+𝑑)
𝑐(𝑎+𝑑) 𝑏𝑐+𝑑2

)
has all non-negative entries, det(𝑆2) = 1, and 𝑆2 ≠ (𝑆2)⊤ by our initial

assumptions. Therefore by Corollary 4.4, we have ℎ(𝐺𝑆2) > 0. Now Lemma 4.5 implies ℎ(𝐺𝑆) > 0
as well.

If 𝑎𝑑 > 0 then | det(𝑆)| = 1 implies 𝑏𝑐 ⩾ 0. In this case, 𝑆−1 has all non-negative or all non-positive
entries, hence ℎ(𝐺𝑆) = ℎ(𝐺𝑆−1) > 0 by the preceding paragraph.

Thus we are left to deal with the case 𝑎𝑑 ⩽ 0. But now consider the matrix 𝑆𝑇−1 =

det(𝑆)
(
𝑎𝑑−𝑏2 𝑎(𝑏−𝑐)
𝑑(𝑐−𝑏) 𝑎𝑑−𝑐2

)
. We have det(𝑆𝑇−1) = 1 and 𝑆𝑇−1 ≠ (𝑆𝑇−1)⊤, by our initial assumptions

that 𝑏 ≠ 𝑐 and 𝑎 + 𝑑 ≠ 0. Furthermore, the diagonal entries of 𝑆𝑇−1 have the same sign, so our
previous considerations yield ℎ(𝐺𝑆𝑇−1) > 0. By Lemma 4.5, this yields ℎ(𝐺𝑆) > 0 as well.

To finish the proof, we must now show that if 𝑆 satisfies 𝑆 = 𝑆⊤ or tr(𝑆) = 0 then ℎ(𝐺𝑆) = 0.
In the former case, we can apply Lemma 4.6. If tr(𝑆) = 0, then 𝑆2 =

(
𝑎2+𝑏𝑐 0

0 𝑏𝑐+𝑑2

)
= ±𝐼. Similarly,

𝑇2 = ±𝐼. Thus ℎ(𝐺𝑆) = 0 by Lemma 4.7. □
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4.1 Conjugating by a reflection

To further exhibit the flexibility of our method, we analyze the expansion a different family of
operators considered earlier by Cai [Cai03]. Let 𝑅 =

( 0 1
1 0

)
and for every 𝑆 ∈ 𝐺𝐿2(ℤ), consider the

graph
𝐺𝑆,𝑅𝑆𝑅 =

(
ℤ2 \ {0},

{
{𝑧, 𝑆𝑧}, {𝑧, 𝑅𝑆𝑅𝑧} : 𝑧 ∈ ℤ2 \ {0}

})
.

Our goal is to prove the following analog of Theorem 4.1.

Theorem 4.8. For any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ), we have ℎ(𝐺𝑆,𝑅𝑆𝑅) > 0 if and only if (𝑎 + 𝑑)(𝑏 + 𝑐) ≠ 0.

The next result follows from the preceding theorem and Theorem 3.1

Theorem 4.9. For any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ), {𝐺𝑆,𝑅𝑆𝑅

𝑛 } is an expander family if and only if (𝑎+𝑑)(𝑏+ 𝑐) ≠ 0.

Proof. By Theorem 4.8, we have ℎ(𝐺𝑆⊤ ,𝑅𝑆⊤𝑅) > 0. Now Theorem 3.1 implies that {𝐺𝑆,𝑅𝑆𝑅
𝑛 } is an

expander family, noting that (𝑅𝑆𝑅)⊤ = 𝑅𝑆⊤𝑅.
On the other hand, suppose that 𝑎 + 𝑑 = 0. Then 𝑆4 = 𝐼 = 𝑅𝑆4𝑅 so Lemma 4.16 implies that

{𝐺𝑆,𝑅𝑆𝑅
𝑛 } is not an expander family. If 𝑏 + 𝑐 = 0 then 𝑆𝑇 ∈ {−𝐼 , 𝐼}, so Lemma 4.15 implies the

same. □

To illustrate another method of expansion analysis, we recall the following result of [Cai03].
Gabber and Galil [GG81] proved this for 𝑆 =

( 1 1
0 1

)
.

Theorem 4.10. Consider any 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ) such that det(𝑆) = 1 and |𝑎 + 𝑑 |, |𝑏 + 𝑐 | ⩾ 2 are

satisfied. Then for any 𝑧 ∈ ℤ2 \ {0}, one of the following two conclusions holds for the set{
∥𝑆𝑧∥∞ , ∥𝑆−1𝑧∥∞ , ∥𝑅𝑆𝑅𝑧∥∞ , ∥𝑅𝑆−1𝑅𝑧∥∞

}
.

Either three of the elements are strictly greater than ∥𝑧∥∞ or at most two are equal to ∥𝑧∥∞ and the rest are
strictly greater than ∥𝑧∥∞.

This rather immediately yields a positive Cheeger constant for 𝐺𝑆,𝑅𝑆𝑅.

Theorem 4.11. Suppose that 𝑆 satisfies the assumptions of Theorem 4.10. Then ℎ(𝐺𝑆,𝑅𝑆𝑅) > 0.

Proof. For an edge {𝑥, 𝑦} ∈ 𝐸𝑆,𝑅𝑆𝑅, let

Δ(𝑥, 𝑦) =


0 ∥𝑥∥∞ = ∥𝑦∥∞
1 ∥𝑥∥∞ > ∥𝑦∥∞
−1 otherwise.

Consider a finite set 𝑈 ⊆ ℤ2 \ {0}. Then by Theorem 4.10,∑
𝑥∈𝑈

∑
𝐴∈{𝑆,𝑅𝑆𝑅,𝑆−1 ,𝑅𝑆−1𝑅}

Δ(𝑥, 𝐴𝑥) ⩾ 2|𝑈 | .

On the other hand, whenever 𝑥 and 𝐴𝑥 are both in 𝑈 , the total contribution from the terms Δ(𝑥, 𝐴𝑥)
and Δ(𝐴𝑥, 𝑥) is zero. Thus at least |𝑈 |/2 elements of 𝑈 have a neighbor outside 𝑈 . This implies
that ℎ(𝐺𝑆,𝑅𝑆𝑅) > 0. □
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Remark 4.12. We observe that Theorem 4.10 appears to be a genuinely different reason for expansion,
as an analysis akin to Lemma 4.3 does not appear to work in this setting when 𝑎𝑑 ⩽ 0. To illustrate
this, suppose that 𝑆 =

(
𝑎 𝑏
𝑐 𝑑

)
and 𝑎, 𝑏 > 0 and 𝑐, 𝑑 < 0. Setting𝑇 = 𝑅𝑆𝑅, one has 𝑆(𝑄1) ⊆ 𝑄2 , 𝑆(𝑄3) ⊆

𝑄4 , 𝑆
−1(𝑄1) ⊆ 𝑄4 , 𝑆

−1(𝑄3) ⊆ 𝑄2 , 𝑇(𝑄1) ⊆ 𝑄4 , 𝑇(𝑄3) ⊆ 𝑄2 , 𝑇
−1(𝑄1) ⊆ 𝑄2 , 𝑇

−1(𝑄3) ⊆ 𝑄4. Notice
that unlike in the case of 𝑇 = 𝑆⊤, one can only restrict the images to a single quadrant when
the domain is 𝑄1 or 𝑄3. This seems to elude the simple counting argument of Lemma 4.3 and
Corollary 4.4.

We can now prove our main theorem.

Proof of Theorem 4.8. Suppose first that 𝑆 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝐺𝐿2(ℤ) satisfies det(𝑆) = 1 and (𝑎 + 𝑑)(𝑏 + 𝑐) ≠ 0.

Consider the matrix 𝑆(𝑅𝑆𝑅) =
(
𝑏2+𝑎𝑑 𝑎(𝑏+𝑐)
𝑑(𝑏+𝑐) 𝑐2+𝑎𝑑

)
. First, we have

tr(𝑆𝑅𝑆𝑅) = 𝑏2 + 𝑐2 + 2𝑎𝑑 = 𝑏2 + 𝑐2 + 2(1 + 𝑏𝑐) = (𝑏 + 𝑐)2 + 2 > 2 , (4.4)

where we have used 𝑎𝑑 − 𝑏𝑐 = 1. Let ( 𝑢 𝑣
𝑤 𝑥 ) denote 𝑆𝑅𝑆𝑅 and note that (4.4) gives 𝑢 + 𝑥 > 2.

We have (𝑆𝑅𝑆𝑅)2 =

(
𝑢2+𝑣𝑤 𝑣(𝑢+𝑥)
𝑤(𝑢+𝑥) 𝑥2+𝑣𝑤

)
. The sum of the diagonal entries of this matrix is

𝑢2 + 𝑥2 + 2𝑣𝑤 = 𝑢2 + 𝑥2 + 2(𝑢𝑥 − 1) ⩾ (𝑢 + 𝑥)2 − 2 > 2 ,

where we have used 1 = det(𝑆𝑅𝑆𝑅) = 𝑢𝑥 − 𝑣𝑤 and 𝑢 + 𝑥 ⩾ 2. Furthermore, the sum of the
off-diagonal entries satisfies

|(𝑤 + 𝑣)(𝑢 + 𝑥)| ⩾ 2|𝑤 + 𝑣 | = 2|(𝑎 + 𝑑)(𝑏 + 𝑐)| ⩾ 2 .

where we have used the assumption that (𝑎 + 𝑑)(𝑏 + 𝑐) ≠ 0. Thus we can apply Theorem 4.11 to
(𝑆𝑅𝑆𝑅)2 to conclude that ℎ(𝐺(𝑆𝑅𝑆𝑅)2 ,𝑅(𝑆𝑅𝑆𝑅)2𝑅) > 0. Noting that

𝑅(𝑆𝑅𝑆𝑅)2𝑅 = 𝑅(𝑆𝑅𝑆𝑅)(𝑆𝑅𝑆𝑅)𝑅 = (𝑅𝑆𝑅)𝑆(𝑅𝑆𝑅)𝑆
we can apply Lemma 4.5 to conclude that ℎ(𝐺𝑆,𝑅𝑆𝑅) > 0 as well.

Finally, consider the case det(𝑆) = −1 and (𝑎 + 𝑑)(𝑏 + 𝑐) ≠ 0. The matrix 𝑆2 =

(
𝑎2+𝑏𝑐 𝑏(𝑎+𝑑)
𝑐(𝑎+𝑑) 𝑑2+𝑏𝑐

)
satisfies det(𝑆2) = 1. The sum of the off-diagonal entries is (𝑏 + 𝑐)(𝑎 + 𝑑) ≠ 0. The sum of the
diagonal entries is 𝑎2 + 𝑑2 + 2𝑏𝑐 = 𝑎2 + 𝑑2 + 2(𝑎𝑑 − 1) = (𝑎 + 𝑑)2 − 2 ≠ 0. Thus the preceding
paragraph implies that ℎ(𝐺𝑆2 ,𝑅𝑆2𝑅) > 0. Now Lemma 4.5 yields ℎ(𝐺𝑆,𝑅𝑆𝑅) > 0 as well.

We now address the cases where the Cheeger constant is zero. Write 𝑇 = 𝑅𝑆𝑅. If 𝑎 + 𝑑 = 0 then
𝑆2 = ±𝐼 and 𝑇2 = ±𝐼, so Lemma 4.7 yields ℎ(𝐺𝑆,𝑇) = 0. If 𝑏 + 𝑐 = 0 then 𝑆𝑇 =

(
𝑏2+𝑎𝑑 0

0 𝑏2+𝑎𝑑

)
= ±𝐼, so

Lemma 4.6 yields ℎ(𝐺𝑆,𝑇) = 0. □

4.2 Transformations for which {𝐺𝑆,𝑇
𝑛 } is not an expander family

Here, we argue that if 𝑇 = 𝑆−1 or 𝑆4 = 𝑇4 = 𝐼, then the graphs {𝐺𝑆,𝑇
𝑛 } do not form expander families.

The arguments are related to Lemma 4.6 and Lemma 4.7, respectively, but we must also address the
isoperimetric properties of boxes under linear transformations. To this end, we define for 𝐿 ⩾ 0 the
box 𝐵𝐿 = {(𝑥, 𝑦) ∈ ℝ2 : −𝐿 ⩽ 𝑥 ⩽ 𝐿,−𝐿 ⩽ 𝑦 ⩽ 𝐿}. For a subset Ω ⊆ ℝ2, we write [Ω] = Ω ∩ℤ2. We
also use 𝐸ℤ2 to denote the edge set of the canonical graph on the integer lattice where 𝑥, 𝑦 ∈ ℤ2

are connected by an edge if and only if ∥𝑥 − 𝑦∥1 = 1. The next lemma follows from elementary
geometric considerations.
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Lemma 4.13. For every 𝑆 ∈ 𝐺𝐿2(ℤ), there is a constant 𝑐 > 0 such that the following holds. For
every 𝐿 ⩾ 0, 𝑆(𝐵𝐿) is a parallelogram with area 4𝐿2 and perimeter at most 𝑐𝐿. Furthermore, we have
lim inf𝐿→∞[𝑆(𝐵𝐿)]/𝐿2 > 0 and lim sup𝐿→∞ |𝐸ℤ2([𝑆(𝐵𝐿)])|/𝐿 ⩽ 𝑐.

We also have the following basic classification of matrices in 𝐺𝐿2(ℤ); see, e.g. [Gun62, Ch. 1].

Lemma 4.14. Every 𝑆 ∈ 𝐺𝐿2(ℤ) satisfies exactly one of the following.

1. 𝑆 has order dividing 12.

2. 𝑆 is conjugate in 𝐺𝐿2(ℝ) to
(
𝛼 0
0 𝛼−1

)
for some 𝛼 ∈ ℝ with |𝛼 |, |𝛼−1 | ≠ 1.

3. 𝑆 is conjugate in 𝐺𝐿2(ℝ) to ±1
(

1 𝛾
0 1

)
for some 𝛾 ∈ ℝ.

The next lemma demonstrates our approach to proving non-expansion.

Lemma 4.15. For any 𝑆 ∈ 𝐺𝐿2(ℤ), if 𝑇 ∈ {𝑆−1 ,−𝑆−1}, it holds that {𝐺𝑆,𝑇
𝑛 } is not an expander family.

Proof. For 𝑇 ∈ {𝑆−1 ,−𝑆−1}, let �̄� have vertex set ℤ2 and edge set 𝐸 = 𝐸𝑆,𝑇 ∪ 𝐸ℤ2 . We will prove
that ℎ(�̄�) = 0. This is sufficient to show that {𝐺𝑆,𝑇

𝑛 } is not an expander family. Indeed, if {𝑈𝑘} is
a sequence of finite sets with ℎ�̄�(𝑈𝑘) → 0, then for each 𝑘 one can choose the modulus 𝑛 large
enough to avoid “wrap around,” yielding ℎ

𝐺
𝑆,𝑇
𝑛
(𝑈𝑘) = ℎ�̄�(𝑈𝑘), where we consider 𝑈𝑘 as a set of

vertices in 𝐺𝑆,𝑇
𝑛 by reducing modulo 𝑛.

For 𝑘 ∈ ℕ and 𝐿 ⩾ 0, consider the sets {𝑈𝑘(𝐿) ⊆ ℤ2} given by

𝑈𝑘(𝐿) = [𝐵𝐿] ∪ [𝑆(𝐵𝐿)] ∪ [𝑆2(𝐵𝐿)] ∪ · · · ∪ [𝑆𝑘(𝐵𝐿)] .

Observe that 𝐵𝐿 = −𝐵𝐿.
If we are in case (i) of Lemma 4.14, then 𝑈𝑘0 = 𝑈𝑘0 + 1 for some finite 𝑘0. So by Lemma 4.13, we

have lim inf𝐿→∞ |𝑈𝑘0(𝐿)| ⩾ 4𝐿2, while 𝐸𝑆,𝑇(𝑈𝑘0(𝐿)) = ∅ and lim sup𝐿→∞ |𝐸ℤ2(𝑈𝑘0(𝐿))| ⩽ 𝑐𝐿, where
𝑐 is some constant depending on 𝑆 and 𝑘0. Thus lim𝐿→∞ |𝐸(𝑈𝑘0(𝐿))|/|𝑈𝑘0(𝐿)| = 0 and ℎ(�̄�) = 0.

Now suppose that we are in case (ii) of Lemma 4.14 and, without loss of generality, |𝛼 | > 1. In
this case, for some constant 𝜀 > 0 (depending possibly on 𝑆) and every 𝑘 ∈ ℕ, we have

lim inf
𝐿→∞

|𝑈𝑘(𝐿)|/𝐿2 ⩾ 𝜀𝑘 . (4.5)

This follows because the eccentricity of the parallelogram 𝑆𝑘(𝐵𝐿) grows exponentially fast; in fact,
proportional to |𝛼 |𝑘 . Similarly, in case (iii) of Lemma 4.14, there is an 𝜀 > 0 (depending on both 𝑆)
such that lim inf𝐿→∞ |𝑈𝑘(𝐿)|/𝐿2 ⩾ 𝜀𝑘. To see this, it suffices to consider the case 𝛾 = 1 in (iii) (since
𝜀 can be depend on 𝛾). In that case, the set 𝐴𝑘 = 𝐵𝐿 ∪ 𝑆(𝐵𝐿) ∪ · · · ∪ 𝑆𝑘(𝐵𝐿) contains an isosceles
triangle whose corners are {(0, 0), (𝑘𝐿, 𝐿), (−𝑘𝐿, 𝐿)}, thus the volume of 𝐴𝑘 is at least 𝑘𝐿2. Therefore
(4.5) again holds.

On the other hand, from Lemma 4.13 it follows that for some constant 𝑐 > 0 (depending on 𝑆

and 𝑘), lim sup𝐿→∞ |𝐸ℤ2(𝑈𝑘(𝐿))|/𝐿 ⩽ 𝑐 and lim sup𝐿→∞ |𝐸𝑆,𝑇(𝑈𝑘(𝐿))|/𝐿2 ⩽ 𝑐. Therefore,

lim sup
𝐿→∞

|𝐸(𝑈𝑘(𝐿))|
|𝑈𝑘(𝐿)|

⩽
𝑐

𝜀𝑘
.

Taking 𝑘 → ∞ shows that ℎ(�̄�) = 0.
Finally, suppose that 𝑆 satisfies case (iii) of Lemma 4.14. □
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Lemma 4.16. Suppose 𝑆, 𝑇 ∈ 𝐺𝐿2(ℤ) satisfy 𝑆4 = 𝑇4 = 𝐼. Then {𝐺𝑆,𝑇
𝑛 } is not an expander family.

Proof. Let �̄� have vertex set ℤ2 and edge set 𝐸 = 𝐸𝑆,𝑇 ∪ 𝐸ℤ2 . As in Lemma 4.15, it will suffice to
show that ℎ(�̄�) = 0.

As in Lemma 4.7, an elementary calculation shows that if 𝐴 ∈ 𝐺𝐿2(ℤ) satisfies det(𝐴) = 1 and
𝐴2 = 𝐼, then 𝐴 ∈ {−𝐼 , 𝐼}. Thus 𝑆2 , 𝑇2 ∈ {−𝐼 , 𝐼}. So for any 𝑗1 , 𝑘1 , 𝑗2 , 𝑘2 , . . . , 𝑗𝑚 , 𝑘𝑚 ∈ ℤ, we have

𝑆 𝑗1𝑇 𝑘1𝑆 𝑗2𝑇 𝑘2 · · · 𝑆 𝑗𝑚𝑇 𝑘𝑚 = (−1)𝑖0𝑇 𝑗0(𝑆𝑇)𝑗𝑆𝑘0 .

for some 𝑖0 , 𝑗0 , 𝑘0 ∈ {0, 1} and 𝑗 ∈ ℕ. Consider now the sets

𝑈𝑘(𝐿) =
{
[𝑇 𝑗0(𝑆𝑇)𝑗𝑆𝑘0𝐵𝐿] : 𝑗0 , 𝑘0 ∈ {0, 1} and 0 ⩽ 𝑗 ⩽ 𝑘

}
.

We can apply Lemma 4.14 to the matrix 𝑆𝑇; the resulting case analysis is essentially the same as
Lemma 4.15. □

Acknowledgements

I am grateful to Mohammad Moharrami, Yuval Peres, and the audience at Microsoft Research for
many helpful comments.

References

[Cai03] Jin-Yi Cai. Essentially every unimodular matrix defines an expander. Theory Comput.
Syst., 36(2):105–135, 2003. 2, 12

[Chu97] Fan R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series
in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC, 1997. 3

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. J.
Comput. System Sci., 22(3):407–420, 1981. Special issued dedicated to Michael Machtey. 1,
12

[Gun62] R. C. Gunning. Lectures on modular forms. Notes by Armand Brumer. Annals of Mathe-
matics Studies, No. 48. Princeton University Press, Princeton, N.J., 1962. 14

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applica-
tions. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006. 1

[JM87] S. Jimbo and A. Maruoka. Expanders obtained from affine transformations. Combinatorica,
7(4):343–355, 1987. 1

[Kat04] Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, third edition, 2004. 6

[LL06] Nathan Linial and Eran London. On the expansion rate of Margulis expanders. J. Combin.
Theory Ser. B, 96(3):436–442, 2006. 2, 4

[Mar73] G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–80,
1973. 1

15


	Introduction
	The Margulis-Gabber-Galil graphs
	The general correspondence
	Expansion analysis
	Conjugating by a reflection
	Transformations for which {GnS,T} is not an expander family


