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Abstract

It is well-known that RY has subspaces of dimension proportional to N on which the ¢,
and /5 norms are uniformly equivalent, but it is unknown how to construct them explicitly. We
show that, for any § > 0, such a subspace can be generated using only N° random bits. This
improves over previous constructions of Artstein-Avidan and Milman, and of Lovett and Sodin,
which require O(Nlog N), and O(N) random bits, respectively.

It is known that such subspaces give rise to error-correcting codes over the reals and com-
pressed sensing matrices. As in the work of Guruswami, Lee, and Razborov, our construction
is the continuous analog of a Tanner code, and makes use of expander graphs to impose a col-
lection of local linear constraints on vectors in the subspace. Our analysis is able to achieve
uniform equivalence of the ¢; and ¢» norms (independent of the dimension). It has parallels to
iterative decoding of Tanner codes, and leads to an analogous near-linear time algorithm for
error-correction over reals.

1 Introduction

Given z € RY one has the straightforward inequality ||z|l2 < ||z|l1 < V/N|z|]2. Classical results

of Figiel, Lindenstrauss, and Milman [FLM77] and Kasin [Kas77] show that for every n > 0, there
exists a constant C(n) and a subspace X C RY with dim(X) > (1—n)N such that for every = € X,

CVN|zlz < Jlzlli < VN|z]l2.

We say that such a subspace has distortion at most C(7), where for a subspace X C RY, we define
the distortion of X as the quantity

A(X) = sup M

sex |zl
z#0

The distortion always lies in the range 1 < A(X) < v N, and describes the extent to which the ¢y
mass of vectors in X is spread among the coordinates.
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It is known that subspaces with good distortion give rise to error-correcting codes over the reals
and compressed sensing matrices [KT07, Don06]. When viewed as embeddings of £3 into £} (hence
the terminology “distortion”), they are useful for problems like high-dimensional nearest-neighbor
search [Ind06]. We discuss connections of our work to coding over reals in Section 3.

The existence proofs of [FLM77, Kas77] proceed by showing that a random subspace (for various
notions of “random”) satisfies the above conditions with positive probability. The problem of
explicit constructions of these subspaces has been raised by a number of authors; see, e.g. [Sza06,
Sec. 4], [Mil00, Prob. 8], [JS01, Sec. 2.2].

Although no explicit construction is known, there has been progress on reducing the amount of
randomness needed to construct such subspaces. Kasin’s proof [Kas77] is particularly amenable to
such analysis because the subspaces he constructs are kernels of uniformly random sign matrices.
This immediately gives rise to an algorithm which produces such a matrix using O(N?) random
bits. Previous approaches to partial derandomization construct sign matrices whose entries are
non-independent random signs; indeed, Artstein-Avidan and Milman reduce the randomness re-
quirement to O(N log N) using random walks on expander graphs [AAMO06], and Lovett and Sodin
[LSO7] improve this to O(N) random bits by employing, in addition, families of ©(log N)-wise
independent random variables. We remark that the pseudorandom generator approach of Indyk
[Ind06] can be used to efficiently construct such subspaces using O(N log? N) random bits.

As pointed out in [LS07], since these direct approaches require taking a union bound over an
(exponentially large) e-net, it is unlikely that they can be pushed beyond a linear dependence on
the number of random bits. In contrast, the approaches of Indyk [Ind07] and Guruswami, Lee, and
Razborov [GLROS] are inspired by work in randomness extraction and the theory of error-correcting
codes. The latter paper uses a continuous variant of expander codes to deterministically construct
a subspace X C RY satisfying dim(X) > (1 — o(1))N and,

A(X) < (IOgN)O(logloglogN) )

Even using sub-linear randomness, they are only able to achieve a distortion of poly(log N). In
the present paper, we overcome this barrier by producing almost-Euclidean sections of E{V with
constant distortion and proportional dimension, while using only N? random bits for any § > 0. In
Section 2 and Remark 1, we discuss how our analysis overcomes some difficulties from [GLROS].

In the next section, we show that given a subspace X C R"™ with dim(X) > (1 — n)n, for every

N > n there exists a simple, explicit construction of a subspace X’ C R¥ satisfying dim(X’) >
1

(I-2n)N and A(X') < NO(logn)A(X). If X is the kernel of a sign matrix, then so is X’. By choosing
n = N%/2 and generating X as the kernel of a random sign matrix, we achieve a construction with
A(X') = O(1) distortion using at most N° random bits.

1.1 Preliminaries

We use [M] to denote the set {1,2,...,M}. For z € RY and a subset I C [N], we denote by
Ty € RHI the restriction of x to the coordinates in 1.

Definition 1 (Well spread subspaces). A subspace L C R™ is said to be (b, p)-spread if for every
y € L, and every set S C [m] size at least m — b, ||lys|l2 = pllyll2-



As stated below, there is a straightforward relation between spread subspaces and distortion
(see, e.g. [GLRO8, Lemma 2.11]), but the former notion is a well-suited to our arguments

Lemma 2. Suppose X C RV,

1. If X is (b, p)-spread then

2. Conversely, X is (ﬁ, F%X)) -spread.

We will make use of the following (non-constructive) result on the existence of well-spread
subspaces; it is due to Kasin [Kas77], with the optimal bound obtained by Garnaev and Gluskin
[GG8&4].

Theorem 3 ([Kas77, GG84]). For all integers 1 < k < d, there exists a subspace Y C R? of dimen-
sion at least d — k, specified as the kernel of a k x d sign matriz, such that A(Y) < O<\ / % log %),

and so by Lemma 2, Y is
k k
Ql ———— 1,9 _ - d.
( <log<d/k>>’ ( dlog(d/k>)) e

In fact, a random such matrixz has this property with probability 1 — o4(1).

Definition 4 (Subspaces from regular graphs). Given an undirected d-regular graph G = (V, E)
with N edges and a subspace L C R?, we define the subspace T(G, L) C RN by

T(G,L) = {z e RY | Tr) € L for everyv e V} . (1)

where I'(v) is the set of d edges incident on v in some fized order.

The definitions of the subspace T'(G, L) is inspired by the construction of expander codes,
following Sipser and Spielman [SS96] and Tanner [Tan81].

Definition 5 (Expander). A simple, undirected graph G is said to be an (n,d, \)-expander if G has
n vertices, is d-reqular, and the second largest eigenvalue of the adjacency matriz of G in absolute
value is at most \.

For a graph G = (V, E)) (which will be clear from context) and W C V', we denote by E(W) the
set of edges both of whose endpoints lie in W. For two subsets X,Y C V (which could intersect),
we denote by E(X,Y) the (multi)set of edges with one endpoint in X and the other in Y. Recall
that for a vertex v € V, I'(v) C E is the set of edges incident upon v.

2 Derandomized sections

Following [GLROS8], we now show that if L is well-spread and G is an expander graph, then T(G, L)
is itself well-spread. This immediately implies the ability to create large dimensional low-distortion
subspaces from those with smaller dimension. In Remark 1, we discuss how our analysis is able
to overcome the apparent barrier in [GLROS]. Finally, in Section 2.2, we present a construction of
Noga Alon which shows that our analysis is tight amongst a certain class of approaches.



2.1 Spread boosting

The following is the analog of the spread-boosting theorem in [GLRO08], except we only care about
the mass outside edges in induced subgraphs of G (and not an arbitrary collection of edges of certain
size).

Lemma 6. Let G = (V, E) be an (n,d, \)-expander, and let L C R? be a (d/B p)-spread subspace
for some pammeters B >1and p < 1. Then, for al W CV, |W| < g5, there exists a subset

ZCW, |Z| < (2>‘B) |W| such that for every x € T(G, L) the following holds:

sz/QZw. (2)

e¢E(W) e¢FE(Z

Proof. Given W, we define Z as follows:

d
Z:{weW : |Ng(w)ﬂW|>B} .

By definition, |E(Z,W)| > %]Z\. On the other hand, by the expander mixing lemma (see, e.g.
[HLWO06, §2.4]),

IW\ dIZI
[E(Z,W)| < d|Z]— + AVI[Z][W +AVI[Z[W

Combining the two bounds, |Z| < (2/\3 ) |W|. By definition of Z and the (d/B, p)-spread property

of L, it follows easily that
doowlzp D llerwls 3)

ecE(W,W) vEWN\Z
Now
Yo el = llzl3 - D 22 - Z ze= Y @ Y, a. (4)
veEW\Z ecE(W) e€E(Z e¢E(Z) ecE(W)
Combining the previous two bounds, we get the desired conclusion (2). O

Remark 1 (Comparison to [GLRO8]). A generalization of the T'(G, L) construction (and, indeed,
the natural setting for expander codes) is to consider a bipartite graph H = (V, Vg, F) with
N = |V, in which every node of Vi has degree exactly d. In this case, given L C R%, one defines
the subspace

X(H,L)y={z € RY . rr, ) € L for every j € Vr},

where now I'g7 (7) C V7, denotes the neighbors of a vertex j € Vi. Clearly T(G, L) = X (H, L), where
H is defined by Vi, = E(G), Vg = V(G), and the edges of H are naturally given by edge-vertex
incidence in G.

The paper [GLRO8] analyzes the well-spreadness of X (H, L) in terms of the well-spreadness of
L and the combinatorial expansion properties of H (i.e. how large are the neighbor sets of subsets
S C Vi). There does not exist a bipartite expander graph H with properties strong enough to
imply our main result (Corollary 9), if one requires expansion from every subset S C V7, and uses
only the iterative spreading analysis of [GLR08]. We overcome this by structuring the iteration
so that only certain subsets arise in the analysis, and we only require strong expansion properties



from these subsets. Lemma 6 represents this idea, applied to the subspace T'(G,L). Here, the
special subsets are precisely those edge sets which arise from induced subgraphs of G (as opposed
to arbitrary subsets of the edges).

Iterating Lemma 6 yields the following.

Corollary 7. Let G = (V, E) be an (n,d, \)-ezpander, and L C R be a (d/B, p)-spread subspace.

Let ¢ be an integer such that
d \* n
(ZAB) 2B

Then for all x € T(G, L) with ||z||2 = 1 and every W C V with |W| < g5, we have

Yo oalz

e¢E(W)

We now come to the proof of our main theorem.

Theorem 8 (Main). Let G = (V, E) be an (n,d, \)-expander with N = nd/2 edges. Let L C R? be
a (d/B, p)-spread subspace of co-dimension at most nd for some parameters p,n < 1 and B > 1.
Then the subspace T(G,L) C RN has dimension at least N(1 — 2n) and it is

N b o
——nlos -spread .

282 /3 prea
In particular, by Lemma 2, this implies

2v/2B 2log(1/p)

. nlog(d/(Q)\B)) .
p

A(T(G,L)) <

Proof. The claim about the dimension of T'(G, L) is obvious Fix an arbitrary z € T(G, L) with
|z]|2 = 1. Let F C E be an arbitrary set with |F| < 5%z = We need to prove that

15
Z 22 > nl;;;;%g;g;) . (5)
e¢F
Define
W:{vev : |Fmr(v)|>d/3}. (6)

Since 2|F| > |W]d/B,£We have |W| < 2“;‘3 < 55.- We can now apply Corollary 7 with a choice of
¢ that satisfies (W) < nd < n?, and conclude that

_ _2log(1/p)
> @z M > a @ (7)
eg E(W)

We have the chain of inequalities
2¥ w2 = llrnrells = D lerepels = 0° Y lerwls = p* Y a2, (8)
e¢F veV vgW vg¢W e¢E(W)

where the last but one step follows since L is (d/B, p)-spread, and |I'(v) N F| < d/B when v ¢ W.
Combining (7) and (8) gives our desired goal (5). O



The main application of the above theorem is the following result.

Corollary 9 (Constant distortion with sub-linear randomness). For every d,m > 0 and every

N > 1, there is a randomized (Monte Carlo) construction of a subspace X C RN using N° random

0(1/9)
bits that has dimension at least (1 —n)N and distortion A(X) < (%) .

Proof. For every N’ > 1, it is known how to construct an explicit (n, d, \)-expander, with X\ < d%9,
n%/4 < d < n%? such that N’ < N < 10N’, where N = nd/2 [LPS88] (also see [HLWO06, §2.6.3] for
a discussion of explicit constructions of expander graphs).

Let L C R be the kernel of a random (17/2)d x d sign matrix. Constructing L requires at most
nd random bits, and by Theorem 3, L is (n O)g, 77*0(1)) spread with high probability. When this
happens, the subspace T'(G, L) C RN has distortion at most ( )0(1/9) by Theorem 8.

The above description only works for (infinitely many) values N of a certain form. With some
combinatorial manipulations, it can be made to work for all N; see [GLRO0S, §2.2.2]. O

2.2 Optimality of myopic analysis

The analysis of the previous section is myopic in the sense that it only cares about the expansion
properties of GG, and the spreading properties of the local subspace L. The following construction,
suggested to us by Noga Alon, shows that if we only use the fact that G is an expander, and that
every vector induced on the neighbors of a vertex is well-spread, then asymptotically our analysis is
tight. The point is that, unlike in the boolean setting, real numbers come in scales, allowing them
to decay slowly while still satisfying the local constraints.

Theorem 10 ([Alo08]). For every d > 4, and infinitely many n € N, there exists an (n,d, O(\/d))-
exzpander G = (V, E) with N = |E|, and a point x € RN, x # 0, such that

Vd

lzr@lls 2 - ller)ll2
1 1
for every v € V, but ||z||; < NE_Q(@)H.THQ.

Proof. Let n = 2(d — 1)* for some k € N, and let H be an (n,d — 1, 0(v/d))-expander. Let T and
T" be two disjoint, complete (d — 1)-ary rooted trees of depth k. Let T be the tree that results
from adding an edge ey between the roots of 7" and T”. Finally, define G = (V, E) as the d-regular
graph that results from identifying the n leaves of T in an arbitrary way with the nodes of H. It
is easy to check that G is an (n',d, O(v/d))-expander with n’ = ©(d¥) and N = |E| = ©(d**1).

We may think of z € RV as indexed by edges e € E. For e € E, let h(e) be the distance from
e to eg, and put x, = (2¢/d) ). Tt is straightforward to verify that, for every v € V, one has

[Eave \\1_2\/3+d—1>ﬁ
[EE VBd—1 = 2

Clearly we have ||z|l2 > 1, whereas

k

h k+1
Z <d— 1) ] + (d_ 1) _ 0(2—kd(k‘+1)/2) ( k\/7) S % Q loglzd).
h=1

i1 =1+2
] i N




O]

We remark that the vector z € RY exhibited in the preceding theorem lies in T'(G, L), where L =
span(1, #, een 2%/8)’ as long as we choose the ordering of the neighborhoods I'(v) appropriately
(recall that one has to fix such an ordering in defining 7'(G, L)). In light of this obstruction to our
analysis, the following question seems fundamental.

N« N

Question: Is there a number K € N such that for infinitely many N, there exists an o

{0, 1}-matrix A, with at most K ones per row, and such that A(ker(A)) = O(1)?
Theorem 8 shows that one can take K = N for any § > 0, but this is the best current bound.

3 Error-correction over reals

In this section, we discuss connections of our work to compressed sensing, or equivalently to error-
correcting codes over reals. We will use the coding terminology to describe these connections.

An w-error-correcting code of dimension m and block length N over the reals is given by a
linear map C : R™ — RN such that for each f € R™, f #0, |Cfl|lo > 2w. The rate of the code is
the ratio m/N. Given a received word y = C'f + e with ||e]|p < w, one can recover the message f
as the solution x to optimization problem:

in [y — Callo -
min [ly — Czllo

The above non-convex optimization problem is NP-hard to solve in general. Quite remarkably, if
the code C' meets certain conditions, one can recover f by solving the convex program

min |y — Cx||1 .

min 1y — Cal

(The above ¢;-minimization task, which is also called basis pursuit, can easily be written as a linear
programming formulation.) Note that we are not restricting the magnitude of erroneous entries in
e, only that their number is at most w.

Candes and Tao [CT05] studied the above error-correction problem and proved that ¢1-minimization
works if the code has a certain restricted isometry property. A sufficient condition for ¢1-minimization
to work is also implied by the distortion property of the image of C.

Lemma 11 ([KT07]). Let X = {Cz | x € R™} C RV be the image of C. Then C is a w-error-
correcting code provided w < ﬁ, and moreover, given y € RN such that ||y — Cfllo < w for
some f € R™, the signal f can be recovered efficiently by solving the LP  mingcgm ||y — Cx|1.

By picking X to be the kernel of a random yvN x N sign matrix, and plugging in the distortion
bound of Theorem 3, gives codes of rate at least (1 — «y) that are, w.h.p, w-error-correcting with
an efficient algorithm for w = @(%). This is not far from the best possible bound, achieved
non-constructively, of w = O(yN). The ¢;-minimization decoding algorithm, while polynomial
time, requires solving a dense linear program of size N. It is of interest to develop faster methods

for decoding, ideally with near-linear complexity.



We now turn to such algorithms for our construction X = T'(G, L). For technical reasons that
help with the decoding, we will take G = (Vg, Vg, E) to be a d-regular n x n bipartite graph.
Specifically, we will take G to be the double cover of an (n,d, \)-expander, and L C R? to be the
kernel of a random vd/2 x d matrix (for a constant 4 > 0). With this choice, X C R¥ satisfies
dim(X) > (1 — )N where N = nd, and our code has rate at least (1 —«). With high probability,

L will be (d-error-correcting via ¢;-minimization for { = @(m), and we will assume this is the
case.

There is a natural iterative algorithm for Tanner codes [SS96], specifically for the version when
the underlying graph is bipartite [Z01] (see also [GI05, Sec. 2.2]), which can be adapted in a
straightforward manner to the coding over reals setting. An adaptation of the related sequential
“bit-flipping” algorithm for expander based low-density parity-check codes appears in [XH07].

Our algorithm for decoding T'(G, L) proceeds in several rounds, alternating between “left” and
“right” rounds. In a left round, on input a string y € RY from the previous decoding round (or the
noisy codeword at the start of decoding), we locally decode yr,,) for each u € V7, to its closest vector
in L in ¢1-sense. In a “right” round, we do the same for each v € Vr. The decoding terminates
when all the local projections yp(,), u € V, U Vg, belong to L (so that globally we have decoded to

a codeword of T'(G, L)). Arguing as in [Z01], one can show the following:

Theorem 12. If G is an (n,d, \)-expander with X < v2d, and N = nd/2, then there is an algorithm
2

for decoding T(G, L) that can correct w = O(WN) errors, and which runs in O(Nt(d)) time
(or in O(t(d)log N) parallel time with O(N) processors), where t(d) is the time to perform (-

minimization for L (and is thus a constant if d is a constant).

Thus if we settle for a slightly worse fraction w/N of errors, namely @( ) instead of

72
log*(1/7)
@(W), then the decoding can be performed in linear time.

A L. X X O(log(l/v))

n argument similar to the one in Section 2.1 can be used to show that A(X) < N7 leed /. In
fact, the sequence of sets that arise in the repeated application of Lemma 6, starting from the set
W defined in (6), would correspond to the subsets of vertices, alternating between the left and right
sides, that arise in decoding a vector supported on F' C E to the all-zeroes vector. Note that by the
connection mentioned in Lemma 11, this would only enable correcting w errors for w < N1—$(1/logd)
via global ¢;-minimization, compared to the () errors handled by the iterative decoder.

However, there is a substantial shortcoming of the error model used in Theorem 12. In practice,
it is not reasonable to assume that the error is only supported on w positions. It is more reasonable
to allow small non-zero noise even in the remaining positions (recall that we assume no bound
on the magnitude of noise in the w erroneous positions). The ¢;-minimization works also in this
setting; specifically, if the error vector e satisfies ||e — oy (e)|[1 < € where o,,(e) is the vector with
the w largest components of e, then it recovers a string z such that ||z — Cf||2 < %6.

Extending iterative decoding to the above setting, if at all possible, is an interesting challenge
which we hope to study in future work. We close with the remark that in the compressed sensing
setting, since T'(G, L) is the kernel of a relatively sparse matrix (with at most N % non-zero entries
per row), the sensing can be done in O(N'*9) time. This sparsity also makes interior point methods
for basis pursuit more efficient by a similar factor.
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