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Abstract

In the survivable network design problem (SNDP), the goal is to find a minimum-cost span-
ning subgraph satisfying certain connectivity requirements. We study the vertex-connectivity
variant of SNDP in which the input specifies, for each pair of vertices, a required number of
vertex-disjoint paths connecting them.

We give the first strong lower bound on the approximability of SNDP, showing that the
problem admits no efficient 2log1−ε

n ratio approximation for any fixed ε > 0, unless NP ⊆
DTIME(npolylog(n)). We show hardness of approximation results for some important special
cases of SNDP, and we exhibit the first lower bound on the approximability of the related
classical NP-hard problem of augmenting the connectivity of a graph using edges from a given
set.

1 Introduction

A basic problem in network design is to find, in an input graph G = (V,E) with nonnegative
edge costs, a spanning subgraph of minimum cost that satisfies certain connectivity requirements,
see, for example, the surveys [Fra94, Khu96]. A fundamental problem in this area is the vertex-
connectivity variant of the survivable network design problem (SNDP). Here, the input also specifies
a connectivity requirement ku,v for every pair of vertices {u, v}, and the goal is to find a minimum-
cost spanning subgraph with the property that, between every pair of vertices {u, v}, there are at
least ku,v vertex-disjoint paths.

Many network design problems (including SNDP) are NP-hard, and a significant amount of
research is concerned with approximation algorithms for these problems, i.e., polynomial-time al-
gorithms that find a solution whose value is guaranteed to be within some factor (called the ap-
proximation ratio) of the optimum. A notable success is the 2-approximation of Jain [Jai01] for the
edge-connectivity version of SNDP, in which the paths are only required to be edge-disjoint. (See
also [JMVW99, FJW01] for an extension to a more general version of SNDP.) However, for the
vertex-connectivity variant of SNDP, no algorithm that achieves a sublinear (in |V |) approximation
ratio has been found, despite a considerable amount of study.
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This disparity between the known approximations for different variants of SNDP might sug-
gest a lack in our understanding of vertex-connectivity network design or, perhaps, that vertex-
connectivity problems are inherently more difficult to approximate. Resolving this question (see
e.g. [Vaz01, Section 30.2]) is one of the important open problems in the field of approximation
algorithms. We provide an answer by showing that there is a striking difference between the ap-
proximability of the edge and vertex-connectivity variants of SNDP. Specifically, we show that it
is hard to approximate the vertex-connectivity variant of SNDP within a factor of 2log1−ε |V | for
any fixed ε > 0.

In general, we address the hardness of approximation of vertex-connectivity problems by pre-
senting relatively simple variants of SNDP that are nevertheless hard to approximate. Therefore,
unless stated otherwise, connectivity means vertex-connectivity, disjoint paths means vertex-disjoint
paths, and all graphs are assumed to be undirected. (For a more in-depth account of approximation
algorithms for edge-connectivity problems, see [Fra94, Khu96].)

Two special cases of SNDP for which we show hardness of approximation are the subset con-
nectivity problem and the outconnectivity to a subset problem (OSP). In the first problem, the
input contains a subset S of the vertices and a number k, and the goal is to find a minimum-cost
subgraph that contains at least k vertex-disjoint paths between every pair of vertices in S. This
is SNDP with ku,v = k for all u, v ∈ S and ku,v = 0 otherwise. In the second problem, the input
contains a special vertex r (called the root), a subset S of the vertices and a number k, and the goal
is to find a minimum-cost subgraph that contains at least k vertex-disjoint paths between r and
any vertex in S. In other words, this is SNDP with kr,v = k for all v ∈ S and ku,v = 0 otherwise.

A related problem is the vertex-connectivity augmentation problem (VCAP`,k), where the goal
is to find a minimum-cost set of edges that augments an `-connected graph into a k-connected
graph. We exhibit the first hardness of approximation results for this problem.

1.1 Previous work

Throughout, let n = |V | denote the number of vertices in the input graph G.
A classical and well-studied special case of SNDP is the problem of finding a minimum-cost

k-vertex connected spanning subgraph, i.e., the special case where ku,v = k for all vertex pairs
{u, v}. This is called the k-vertex connected spanning subgraph problem (k-VCSS). k-VCSS is
NP-hard even for k = 2 and uniform costs (i.e., when all edges have the same cost), as this problem
already generalizes the Hamiltonian cycle problem (note that a 2-connected subgraph of G has n
edges if and only if it is a Hamiltonian cycle). By a similar argument, the outconnectivity to a
subset problem is also NP-hard, even for k = 2 and S = V \ {r} [CJN01]. It immediately follows
that SNDP (which is a more general problem) is also NP-hard. VCAP0,2 is NP-hard by a similar
argument [ET76], and VCAP1,2 is proved to be NP-hard in [FJ81].

Most previous work on approximating vertex-connectivity problems concentrated on upper
bounds, i.e., on designing approximation algorithms. An approximation ratio of 2k for k-VCSS

was obtained in [CJN01] by a straightforward application of [FT89], and the approximation ratio
was later improved to k in [KN00]. Recently, Cheriyan, Vempala and Vetta [CVV02] devised im-
proved approximation algorithms for the problem. For the case where k ≤

√

n/6, they achieve
approximation ratio 6H(k) = O(log k), where H(k) is the kth harmonic number. For the case
where k ≤ (1 − ε)n, they achieve approximation ratio

√

n/ε, which was very recently improved to
O(1

ε log2 k) by Kortsarz and Nutov [KN03]. (An approximation ratio of O(log k) claimed in [RW97]
was found to be erroneous, see [RW02].)

Better approximation ratios are known for several special cases of k-VCSS. For k ≤ 7 an
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approximation ratio of d(k + 1)/2e is known (see [KR96] for k = 2, [ADNP99] for k = 2, 3, [DN99]
for k = 4, 5, and [KN00] for k = 6, 7). For metric costs (i.e., when the costs satisfy the triangle

inequality) an approximation ratio 2 + (k−1)
n is given in [KN00] (building on a ratio 2 + 2(k−1)

n
previously shown in [KR96]). For uniform costs, an approximation ratio of 1 + 1/k is obtained in
[CT00]. For k-VCSS in a complete Euclidean graph in R

O(1), a polynomial time approximation
scheme (i.e., factor 1 + ε for any fixed ε > 0) is devised in [CL99]. For 2-VCSS in dense graphs
and graphs with maximum degree 3, improved approximations are given in [CKK02].

The connectivity augmentation problem has also attracted a lot of attention. A 2-approximation
for VCAP1,2 is shown in [FJ81, KT93]. In the case where every pair of vertices in the graph forms
an augmenting edge of unit cost, VCAPk,k+1 is not known to be in P nor to be NP-hard. For the
latter problem, a k − 2 additive approximation is presented in [Jor95], and optimal algorithms for
small values of k are shown in [ET76, WN93, HR91, Hsu92].

The special case of OSP with S = V \ {r} (called the k-outconnectivity problem), can be ap-
proximated within ratio 2, see for example [KR96]. Approximation algorithms for related problems
are given in [CJN01].

In contrast, there are few lower bounds for approximating vertex-connectivity problems. It is
shown in [CL99] that 2-VCSS is APX-hard (i.e., there exists some fixed ε > 0 such that approxi-
mation within ratio 1 + ε is NP-hard) even for bounded-degree graphs with uniform costs and for
complete Euclidean graphs in R

log n. In [CKK02], APX-hardness is shown for instances of 2-VCSS

on dense graphs and graphs of degree at most 3. No stronger lower bound is known for the more
general SNDP.

1.2 Our results

We show hardness of approximation for several of these vertex-connectivity network design prob-
lems. In Section 2, we show that SNDP cannot be approximated within a ratio of 2log1−ε n for any
fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)). This hardness of approximation result extends also
to the subset k-connectivity problem which is a special case of SNDP. The lower bound holds for
k = nρ where 0 < ρ < 1 is any fixed constant. It follows that when k/n is bounded away from 1,
SNDP is provably harder to approximate than k-VCSS, unless NP ⊆ DTIME(npolylog(n)).

In Section 3, we show that the outconnectivity to a subset problem (OSP) cannot be approx-
imated within a ratio of (1

2 − ε) ln n for any fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)). This
hardness contrasts other simple cases of SNDP. First, OSP with a general subset S is much harder
to approximate than the special case S = V \{r} (which can be approximated within ratio 2). Sec-
ond, this special case of SNDP is already much harder to approximate than the edge-connectivity
variant of (general) SNDP (which can be approximated within ratio 2). Both claims assume, of
course, that NP 6⊆ DTIME(nO(log log n)).

In Section 4, we exhibit APX-hardness for VCAP1,2, even in the case where every pair of vertices
in the graph forms an augmenting edge of cost 1 or 2. From this, it follows that VCAPk,k+1 with
uniform costs is APX-hard for every k ≥ 2. For fixed k, this hardness result matches, up to constant
factors, the approximation algorithms mentioned in Section 1.1.

Remark. SNDP with integer costs bounded by a polynomial in n can be reduced to SNDP with
uniform costs. Indeed, one can replace every edge of cost c > 0 with a path consisting of c unit-cost
edges, letting the new vertices have no connectivity requirement, i.e., ku,v = 0 if {u, v} contains
a new vertex. Edges of cost 0 can be handled by changing their cost to (say) 1/n3, and then the
reduction above is applicable (with a suitable scaling). It is straightforward that the argument
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above regarding SNDP holds also for OSP and for the subset k-connectivity problem, thus our
hardness of approximation results for these three problems hold even in the case of uniform costs.

1.3 Preliminaries

For an arbitrary graph G, let V (G) denote the vertex set of G and let E(G) denote the edge set
of G. For a nonnegative cost function c on the edges of G and a subgraph G′ = (V ′, E′) of G we
use the notation cost(G′) = cost(E′) =

∑

e∈E′ c(e). We denote the set of neighbors of a vertex v in
W ⊂ V (namely, the vertices w ∈ W such that (v,w) ∈ E) by N(v,W,G). When W = V (G) we
omit W and write N(v,G), and when G is clear from the context, we use simply N(v).

A set W of k vertices in a graph G = (V,E) is called a k-vertex-cut (or just a vertex-cut) if
the subgraph of G induced on V \ W is not connected. A vertex w ∈ V is called a cut-vertex if
W = {w} is a vertex-cut. A graph is k-vertex-connected if there are k vertex-disjoint paths between
every pair of vertices. We will use the following classical result.

Theorem 1.1 (Menger’s Theorem, see e.g. [Die00]).

(a). A graph G contains at least k vertex-disjoint paths between two non-adjacent vertices u, v if
and only if every vertex-cut that separates u from v must be of size at least k.

(b). A graph G is k-vertex-connected if and only if it has no (k − 1)-vertex cut.

2 Survivable network design and subset connectivity

In this section, we exhibit a hardness result for approximating the subset connectivity problem,
and thus also for SNDP, within a ratio of 2log1−ε n for any fixed ε > 0. The lower bound is proven
by a reduction from a graph-theoretic problem called MinRep, which is defined in [Kor01]. This
problem is closely related to the LabelCovermax problem of [AL96] and to the parallel repetition
theorem of [Raz98]. We first describe the MinRep problem and the hardness results known for it
in Section 2.1. We then give a reduction from MinRep to SNDP in Section 2.2. Finally, we adapt
this reduction to the subset connectivity problem in Section 2.3.

2.1 The MinRep problem

Arora and Lund [AL96] introduced the LabelCovermax problem as a graph-theoretic description
of one-round two-prover proof systems for which the parallel repetition theorem of Raz [Raz98]
applies. The MinRep problem described below is closely related to LabelCovermax and was
defined in [Kor01] for the same purpose.

The input to the MinRep problem consists of a bipartite graph G(A,B,E), with an explicit
partitioning of each of A and B into equal-sized subsets, namely A =

⋃qA

i=1 Ai and B =
⋃qB

j=1 Bj ,
where all the sets Ai have the same size mA = |A|/qA and all the sets Bj have the same size
mB = |B|/qB . The bipartite graph G induces a super-graph H as follows. The super-vertices (i.e.,
the vertices of H) are the qA + qB sets Ai and Bj. A super-edge (an edge in H) connects two
super-vertices Ai and Bj if there exist some a ∈ Ai and b ∈ Bj which are adjacent in G.

A pair (a, b) covers a super-edge (Ai, Bj) if a ∈ Ai and b ∈ Bj are adjacent in G. Let S ⊆ Ai∪Bj .
(The vertices of S can be thought of as representatives from Ai and from Bj .) We say that S covers
the super-edge (Ai, Bj) if there exist two vertices a, b ∈ S such that the pair (a, b) covers the
super-edge (Ai, Bj).
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The goal in the MinRep problem is to select representatives from each set Ai and each set
Bj such that all the super-edges are covered and the total number of representatives selected is
minimal. That is, we wish to find subsets A′ ⊆ A and B′ ⊆ B with minimal total size |A′| + |B′|,
such that for every super-edge (Ai, Bj) there exist representatives a ∈ A′ ∩Ai and b ∈ B′ ∩Bj that
are adjacent in G.

For our purposes, it is convenient (and possible) to restrict the MinRep problem so that for
every super-edge (Ai, Bj), each vertex in Bj is adjacent to at most one vertex in Ai. We call this
additional property of G the star property because it is equivalent to saying that for every super-
edge (Ai, Bj) the subgraph of G induced on Ai ∪ Bj is a collection of vertex-disjoint stars whose
centers are in Ai.

1 See Figure 1 for an illustration.

B1

. . .

Bj

. . .

BqB

AqA

. . .

Ai

. . .

A1

Figure 1: An instance of MinRep with the star property

The next theorem follows by a straightforward application of the parallel repetition theorem
of Raz [Raz98], since the MinRep problem is a graph-theoretic description of two-prover one-
round proof systems. The additional star property is achieved by using a specific proof system. A
description can be found in [Fei98, Section 2.2].

Theorem 2.1. Let L ∈ NP and fix ε > 0. Then there exists an algorithm (a reduction), whose
running time is quasi-polynomial, namely npolylog(n), and that given an instance x of L produces an
instance G(A,B,E) of the MinRep problem with the star property, such that the following holds.

• If x ∈ L then the MinRep instance G has a solution of value qA + qB (namely, with one
representative from each Ai and one from each Bj).

• If x 6∈ L then the value of any solution of the MinRep instance G is at least (qA + qB) ·
2log1−ε |V (G)|.

Hence, MinRep cannot be approximated within ratio 2log1−ε n, for any fixed ε > 0, unless NP ⊆
DTIME(npolylog(n)).

2.2 Hardness of survivable network design

Theorem 2.2. SNDP cannot be approximated within ratio 2log1−ε n, for any fixed ε > 0, unless
NP ⊆ DTIME(npolylog(n)).

1A star is a graph all of whose vertices have degree 1, except for one vertex that may have degree larger than 1.
This vertex is called the center of the star, and the other vertices are called leaves of the star.
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The reduction. The proof of Theorem 2.2 is by a reduction whose starting point is Theorem 2.1.
Specifically, given the instance G(A,B,E) of the MinRep problem as described in Section 2.1,
create an instance Ḡ(V̄ , Ē) of SNDP as follows. (See Figure 2 for illustration.)

1. Take G and let all its edges have cost 0.

2. For each i = 1, . . . , qA create a new vertex ui that is connected to every vertex in Ai by an
edge of cost 1. Similarly, for each j = 1, . . . , qB create a new vertex wj that is connected
to every vertex in Bj by an edge of cost 1. (Informally, these edges correspond to choosing
representatives from Ai and Bj.) Let U = {u1, . . . , uqA

} and W = {w1, . . . , wqB
}.

3. For every super-edge (Ai, Bj) create two new vertices xj
i and yi

j. For every i, let Xi = {xj
i :

(Ai, Bj) is a super-edge}, and connect every vertex of Xi to ui by edges of cost 0. Similarly,
for every j let Yj = {y i

j : (Ai, Bj) is a super-edge} and connect every vertex in Yj to wj by

an edge of cost 0. (Informally, the connectivity requirement between xj
i and yi

j “guarantees”
that the super-edge (Ai, Bj) is covered.)

4. For every super-edge (Ai, Bj) connect every vertex in {xj
i , y

i
j} to every vertex in (A \ Ai) ∪

(B \ Bj) by an edge of cost 0.

5. Let X = ∪qA

i=1Xi and Y = ∪qB

j=1Yj . Connect every two vertices in X ∪ Y by an edge of cost 0.

6. Finally, require k = |X|+ |Y |+ (qA − 1)mA + (qB − 1)mB vertex-disjoint paths from xj
i to yi

j

for every super-edge (Ai, Bj).

W . . .
wj

. . .

1 yi
j0

0 BqB

AqA0

. . .

0

. . .

Bj0B1

. . .

. . .

0
A1

U . . .
ui

. . .

0
xj

i

1

Ai

Figure 2: The vertices xj
i , y

i
j in the SNDP instance Ḡ

The analysis. Suppose x ∈ L and then by Theorem 2.1 there exists a choice of qA + qB repre-
sentatives (one representative from each Ai and one from each Bj) that cover all the super-edges.
Let G′ be the subgraph of Ḡ that contains an edge between each ui and the representative chosen
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in Ai, an edge between each wj and the representative chosen in Bj , and all the edges of cost 0
in Ḡ. Clearly, cost(G′) = qA + qB. Let us now show that G′ is a solution to the instance Ḡ of
the SNDP problem. Consider a pair of vertices xj

i , y
i
j such that (Ai, Bj) is a super-edge in G.

Each vertex in Fi,j = (X \ {xj
i}) ∪ (Y \ {yi

j}) ∪ (A \ Ai) ∪ (B \ Bj) defines a path of length 2

in G′ between xj
i and yi

j, and the edge (xj
i , y

i
j) defines a path of length 1, so we get a total of

|X| − 1 + |Y | − 1 + (qA − 1)mA + (qB − 1)mB + 1 = k − 1 vertex-disjoint paths between xj
i and

yi
j. There is an additional path that goes through V \ Fi,j = U ∪ W ∪ Ai ∪ Bj ∪ {xj

i , y
i
j}, namely,

xj
i −ui−ai−bj−wj−yi

j where ai and bj are the representatives chosen from Ai and Bj , respectively.
This path is clearly vertex-disjoint from the other k − 1 paths, yielding a total of k vertex-disjoint
paths between xj

i and yi
j.

The next lemma will be used to complete the proof of Theorem 2.2. Let G′ be a feasible solution
to the instance Ḡ of SNDP, i.e., a subgraph of Ḡ in which for every super-edge (Ai, Bj) there are

k vertex-disjoint paths between xj
i and yi

j.

Lemma 2.1. For every super-edge (Ai, Bj), the subgraph G′ contains an edge connecting ui to
some ai ∈ Ai, and an edge connecting wj to some bj ∈ Bj, such that (ai, bj) ∈ E (i.e., the pair
(ai, bj) covers the super-edge).

Proof. Since G′ is a feasible solution, it contains k vertex-disjoint paths between xj
i and yi

j. Let

Fi,j = (X \ {xj
i}) ∪ (Y \ {yi

j}) ∪ (A \ Ai) ∪ (B \ Bj). At most |Fi,j | = |X| − 1 + |Y | − 1 + (qA −
1)mA +(qB−1)mB = k−2 of these k paths can visit vertices of Fi,j, and at most one of these paths

can use the edge (xj
i , y

i
j). Hence, G′ contains a path between xj

i and yi
j , that visits only vertices of

V̄ \ Fi,j = U ∪ W ∪ Ai ∪ Bj ∪ {xj
i , y

i
j} and whose length is at least two.

Observe that in the subgraph of G′ induced on V̄ \ Fi,j the following holds. (Assume without

loss of generality that G′ contains all the edges of cost 0 in Ḡ.) The only neighbor of xj
i is ui, so

the vertices at distance 2 from xj
i (i.e., the neighbors of ui except for xj

i ) form a subset A′
i of Ai.

Thus, the vertices at distance 3 from xj
i (i.e., all the neighbors of A′

i except for ui) are all from
Bj. Similarly, the only neighbor of yi

j is wj , so vertices at distance 2 from yi
j form a subset B′

j of

Bj, and all vertices at distance 3 from yi
j are from Ai. Note that the subgraph of Ḡ induced on

Ai ∪ Bj is a collection of vertex-disjoint stars, whose centers are in Ai and whose leaves are in Bj .

The aforementioned path in G′ between xj
i and yi

j (that visits only vertices of V̄ \ Fi,j) then must

be of the form xj
i − ui − ai − bj −wj − yi

j with ai ∈ A′
i and bj ∈ B′

j (note that the other vertices of

U ∪ W are unreachable from xj
i and yi

j), and the lemma follows.

We now complete the proof of Theorem 2.2. Suppose that x /∈ L and let G′ be a feasible solution
to the instance Ḡ of the SNDP problem. Let A′

i be the set of neighbors of ui among Ai (in G′), and
let B′

j be the set of neighbors of wj among Bj (in G′). By Lemma 2.1 the representatives A′ = ∪iA
′
i

and B′ = ∪jB
′
j cover all the super-edges (Ai, Bj), thus forming a feasible solution to the MinRep

instance G. By Theorem 2.1 the value of this MinRep solution, which is |A′| + |B′|, is at least

(qA+qB)·2log1−ε n, where n denotes the number of vertices in G. Observe that cost(G′) = |A′|+|B′|.
Since |V (Ḡ)| = |V (G)|O(1), we get that cost(G′) ≥ (qA + qB) · 2log1−ε |V (Ḡ)|, proving Theorem 2.2.

2.3 Hardness of subset k-connectivity

We can adapt the reduction of Theorem 2.2 to the subset k-connectivity problem as follows. We
require that the subset S = X ∪ Y is k-vertex connected. For this S to be k-vertex connected in
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the case x ∈ L, we add, for every z, z′ ∈ S that are not a pair xj
i , y

i
j, a set Qz,z′ of k new vertices

that are all connected to z and to z′ by edges of cost 0. It can be seen that the analysis of the case
x /∈ L (including the proof of Lemma 2.1) remains valid, and the number of vertices in the graph
is still |V (G)|O(1). We thus obtain the following hardness of approximation result for the subset
k-connectivity problem.

Theorem 2.3. The subset k-connectivity problem cannot be approximated within ratio 2log1−ε n, for
any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Note that in the reduction above |X| = |Y | is the number of super-edges in G, and thus
k = Θ(|A ∪ B|+ |X|) while the number of vertices is Θ(|A ∪ B| + k|X|2). Therefore, our hardness
result for the subset k-connectivity applies for k ≥ Ω(n1/3), where n denotes the number of vertices
in the input graph. In this problem, it is straightforward to achieve k = nα for any fixed 0 < α < 1
by adding sufficiently many vertices that are either isolated or connected to all other vertices by
edges of cost 0. It follows that the min-cost subset k-connectivity problem is provably harder
to approximate than the min-cost k-connectivity problem (for values of k as above). Indeed, it is
shown in [CVV02] that the latter problem can be approximated within ratio O(log k) for k ≤

√

n/6.

3 Outconnectivity to a subset

In this section we show a lower bound of Ω(log n) for approximating the outconnectivity from a
root to a subset problem (OSP).

Theorem 3.1. The outconnectivity to a subset problem cannot be approximated within a ratio of
(1
2 − ε) ln n for any fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)).

For ease of exposition, we present the reduction to the OSP problem in stages by going through
an intermediate problem which is easier to deal with. The 3-OSP problem is defined as OSP with
the additional restriction that the k vertex-disjoint paths between r and each s ∈ S are required
to have length at most 3. Note that 3-OSP is not a special case of the SNDP problem. We give a
hardness of approximation result for the 3-OSP problem in Section 3.2 and for the OSP problem
in Section 3.3. The starting point for these reductions is a gap shown in [FHKS03] for the problem
of packing set-covers, as described in Section 3.1.

3.1 The set-cover packing problem

Let G(V1, V2, E) be a bipartite graph. We say that a vertex v1 ∈ V1 covers a vertex v2 ∈ V2 if the
two vertices are adjacent, i.e., (v1, v2) ∈ E. A set-cover (of V2) in G(V1, V2, E) is a subset S ⊆ V1

such that every vertex of V2 is covered by some vertex from S. Throughout, we assume that the
intended bipartition (V1, V2) is given explicitly as part of the input, and that every vertex in V2 can
be covered (i.e., has at least one neighbor in V1).

A set-cover packing in the bipartite graph G is a collection of pairwise-disjoint set-covers of
V2. The set-cover packing problem is to find in an input bipartite graph G (as above), a maximum
number of pairwise-disjoint set-covers of V2. We denote by sc∗(G) the minimum size of a set-
cover of V2 in G, and by scp∗(G) the maximum size of a set-cover packing of G. Note that
scp∗(G) ≤ |V1|/sc∗(G). Feige, Halldórsson, Kortsarz, and Srinivasan [FHKS03] give a hardness of
approximation result for the set-cover packing problem by proving the following theorem.

8



Theorem 3.2 ([FHKS03]). Let L ∈ NP and fix ε > 0. Then there exists an algorithm (a
reduction), whose running time is nearly polynomial, namely nO(log log n), and that given an instance
x (for L) produces an instance G(V1, V2, E) of the set-cover packing problem (and a number d ≤ |V1|)
such that |V1| ≤ |V2|ε and the following holds.

• If x ∈ L then V1 can be partitioned into d equal-sized set-covers of V2. (Therefore, scp∗(G) ≥
d.)

• If x 6∈ L then the size of any set-cover of V2 is at least (|V1|/d) · (1− ε) ln |V1∪V2|. (Therefore,
scp∗(G) ≤ d/[(1 − ε) ln |V1 ∪ V2|].)

It is straightforward from this reduction that for any fixed ε > 0, the set-cover packing problem
cannot be approximated within ratio (1 − ε) ln n (where n is the number of vertices in the graph),
unless NP ⊆ DTIME(nO(log log n)).

3.2 Hardness of outconnectivity to a subset with path length 3

We prove the following theorem as an intermediate step towards proving hardness of approximation
for the OSP problem.

Theorem 3.3. 3-OSP cannot be approximated within ratio (1− ε) ln n, for any fixed ε > 0, unless
NP ⊆ DTIME(nO(log log n)).

The reduction. The proof of Theorem 3.3 is by a reduction whose starting point is Theorem 3.2.
Specifically, given the set-cover packing instance G(V1, V2, E) we construct from G a new graph
Ḡ as follows. (See Figure 3 for illustration.) Add to G a set A of d new vertices (where d is the
number from the reduction), and form a complete bipartite graph between A and V1. Let all the
edges of G have cost 0, and all the edges between A and V1 have cost 1. Now add a new vertex r
that will be the root, and connect it to each vertex of A by an edge of cost 0. Finally, set S = V2

and k = d. That is, a feasible solution is a subgraph of Ḡ that contains at least d vertex-disjoint
paths of length at most 3 between r and each s ∈ S.

cost = 0

A complete

cost = 1

V1

E

cost = 0

V2

graph
bipartite

r

Figure 3: The graph Ḡ of the reduction from set-cover packing to 3-OSP

The analysis. Suppose x ∈ L and then by Theorem 3.2 the set-cover packing graph G(V1, V2, E)
has a set-cover packing of size d. Let G′ be a subgraph of Ḡ that contains all the edges of cost 0,
and that connects each a ∈ A to (all the vertices of) a set-cover Na of V2, such that the set-covers
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{Na}a∈A are pairwise-disjoint. Such a subgraph G′ exists since |A| = d ≤ scp∗(G). Since the edges
of cost 1 in G′ are incident at distinct vertices of V1, we get that cost(G′) ≤ |V1|.

To prove that G′ is a feasible solution to 3-OSP we show d vertex-disjoint paths between r and
any v2 ∈ V2. For every a ∈ A we have that Na = N(a, V1, G

′) is a set-cover of V2 and thus contains
a neighbor of v2. Therefore, a defines a path of length 3 in G′ between r and v2. The |A| = d paths
that we obtain are vertex-disjoint because each vertex a ∈ A is contained in exactly one of these
paths, and because each vertex of V1 belongs to at most one set-cover Na.

The next lemma will be used to complete the proof of Theorem 3.3. Let G′ be a feasible solution
to the above described instance Ḡ of the 3-OSP problem.

Lemma 3.1. For every a ∈ A, the set Na = N(a, V1, G
′) is a set-cover (in G) of V2. (I.e., every

a ∈ A is at distance 2 in G′ from every v2 ∈ V2.)

Proof. Let a ∈ A and v2 ∈ V2; we will show that Na covers v2. Since N(r, Ḡ) = A and the distance
in Ḡ between r and v2 is 3, any path of length at most 3 between r and v2 in G′ must contain at
least one vertex of A. Since G′ is a feasible solution, it contains d = |A| vertex-disjoint such paths,
and so exactly one of these d paths must contain the vertex a ∈ A. In this path a is at distance 2
from v2, implying that Na covers v2.

We now complete the proof of Theorem 3.3. Suppose x /∈ L. Let G′ be a feasible solution to
Ḡ and let Na = N(a, V1, G

′), as above. Clearly, cost(G′) =
∑

a∈A |Na|. By Lemma 3.1, each set
Na forms a set-cover (in G) of V2. By Theorem 3.2 (and since |A| = d) we get that cost(G′) ≥
|A| · sc∗(G) ≥ (1− ε)|V1| · ln |V1 ∪V2|. Note that |V (Ḡ)| = |V1 ∪V2|+ d+1 ≤ 2|V1 ∪V2| and thus the
gap between the case x ∈ L and the case x /∈ L is at least (1 − ε) ln |V1 ∪ V2| ≥ (1 − 2ε) ln |V (Ḡ)|,
proving Theorem 3.3.

3.3 Hardness of outconnectivity to a subset

We now prove Theorem 3.1, i.e., that OSP cannot be approximated within ratio (1
2 −ε) ln n, for any

fixed ε > 0, unless NP ⊆ DTIME(nO(log log n)). Observe that the reduction to 3-OSP (in Section 3.2)
might not work for OSP because in the case x /∈ L, a feasible solution G′ might connect r and
v2 ∈ V2 by d long paths (namely, of length more than 3), where each path contains one (distinct)
vertex of A. However, each of these paths must contain at least one vertex of V2 \ {v2}, so at
most |V2| such paths are vertex-disjoint. Here we use the special properties of the set-cover packing
problem; by duplicating V1 sufficiently many times, we increase scp∗(G) and, accordingly, the
connectivity requirement k, so that they are both much larger than |V2|, ensuring that paths of
length more than 3 have only a negligible effect in any feasbile solution.

The reduction. Define a copy of a vertex v in a graph as a new vertex v′ that is connected by
edges to the same vertices as v, and with the same edge costs. In the reduction below, we replace
certain vertices by many copies of them. Let us denote by ṽ the set of all copies of v. Note that no
two vertices in ṽ are connected by an edge. For a set of vertices W = {w1, w2, . . .}, let W̃ =

⋃

i w̃i

be the set of all copies of all vertices in W .
The proof of Theorem 3.3 is by a reduction whose starting point is Theorem 3.2. Specifically,

given the set-cover packing instance G(V1, V2, E) construct a new graph G̃ as follows. First, add
to G a set A = {a1, . . . , ad} of d new vertices that are connected by a complete bipartite graph to
V1, letting all the edges of G have cost 0 and all the edges between A and V1 have cost 1. Next,
add a new vertex r that will be the root, and connect it to each vertex of A by an edge of cost 0.

10



(So far, this graph is Ḡ from Section 3.2.) Now, replace each vertex of A∪ V1 by |V2|2 copies of it.
Thus, Ã =

⋃d
i=1 ãi where ãi is the set of |V2|2 copies of ai, and Ṽ1 =

⋃

v∈V1
ṽ, where ṽ is the set of

|V2|2 copies of v. Finally, set S = V2, k = |V2|2d. That is, a feasible solution is a subgraph of G̃
that contains at least k vertex-disjoint paths between r and each s ∈ S.

The analysis. Throughout the proof, let set-cover in G̃ refer to a set-cover of V2 by vertices of Ṽ1

in the bipartite graph that G̃ induces on Ṽ1 ∪ V2. Observe that the minimum size of a set-cover of
V2 in G̃ is the same as in G, i.e., sc∗(G̃) = sc∗(G). Also, scp∗(G̃) ≥ |V2|2 · scp∗(G) since a set-cover
packing of G has |V2|2 pairwise-disjoint copies in G̃.

Suppose x ∈ L and then by Theorem 3.2 the set-cover packing graph G(V1, V2, E) has a set-
cover packing of size d. It follows that scp∗(G̃) ≥ |V2|2d. Now an argument identical to the one
in Section 3.2 shows a subgraph G′ that is a feasbile solution to OSP and with cost(G′) ≤ |Ṽ1| =
|V2|2|V1|.

The next lemmata will be used to complete the proof of Theorem 3.1. They are essentially
analogous to Lemma 3.1. Let G′ be a feasible solution to the instance G̃ of the OSP problem.

Lemma 3.2. For every v2 ∈ V2, less than |V2| vertices of Ã are not at distance 2 in G′ from v2.

Proof. Since G′ is a feasible solution to the OSP instance G̃, it must contain at least k vertex-
disjoint paths between v2 and r. The k = |Ã| paths are disjoint but they all have to go through Ã,
and thus each vertex of Ã must belong to exactly one of these paths. Now, if a vertex of Ã is not
at distance 2 from v2, then the path containing it must visit at least one additional vertex of V2.
But since the paths are disjoint, this event happens less than |V2| times.

Lemma 3.3. There exists a feasible solution G′
+ with cost(G′

+) ≤ cost(G′) + |V2|2, such that for

every a ∈ Ã the set N(a, Ṽ1, G
′
+) is a set-cover (in G̃) of V2.

Proof. Augment the feasible solution G′ to a graph G′
+ as follows. For every v2 ∈ V2 and every

a ∈ Ã, if a is not at distance 2 in G′ from v2 then add to G′ an edge between a and an arbitrary
vertex in N(v2, G̃). By Lemma 3.2, every v2 ∈ V2 causes the addition of at most |V2| edges. Since
each added edge has cost 1, the resulting G′

+ is a feasible solution with cost(G′
+) ≤ cost(G′)+ |V2|2.

Furthermore, every a ∈ Ã is at distance 2 in G′
+ from every vertex v2 ∈ V2, i.e., the set N(a, Ṽ1, G

′
+)

is a set-cover (in G) of V2.

We now complete the proof of Theorem 3.1. Suppose x /∈ L and let G′ be a feasible solution
to G̃, as above. By Theorem 3.2 we have sc∗(G̃) = sc∗(G) ≥ (|V1|/d) · (1 − ε) ln |V1 ∪ V2|. Let
G′

+ be the augmented solution that follows from Lemma 3.3. Then for every a ∈ Ã, the set

N(a, Ṽ1, G
′
+) is a set-cover (in G̃) of V2. Therefore, cost(G′

+) =
∑

a∈Ã |N(a, Ṽ1, G
′
+)| ≥ |Ã|·sc∗(G̃) ≥

|V2|2|V1|·(1−ε) ln |V1∪V2|. It follows that cost(G′) ≥ cost(G′
+)−|V2|2 ≥ |V2|2|V1|·(1−2ε) ln |V1∪V2|.

Since d ≤ |V1| ≤ |V2|ε, we have that |V (G̃)| = |V2| + (|V1| + d) · |V2|2 ≤ 3|V1| · |V2|2 ≤ |V2|2+2ε.
Thus, the gap between the case x ∈ L and the case x /∈ L is at least (1 − 2ε) ln |V1 ∪ V2| ≥
1−2ε
2+2ε ln |V (G̃)| ≥ (1

2 − 2ε) ln |V (G̃)|, proving Theorem 3.1.

4 Vertex-connectivity augmentation

In this section we show APX-hardness for the following vertex-connectivity augmentation problem
(VCAP`,k): Given a k-connected graph G0 = (V,E0) and a cost function c : V × V → N, find
a set E1 ⊆ V × V of minimum cost so that G1 = (V,E0 ∪ E1) is `-connected. Since all graphs
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considered here are simple, we will not allow G1 to contain self-loops. VCAPk,`(a, b) will represent
a version of the problem where edges have only cost a or b (so that c : V × V → {a, b}). The
main result of this section is that for some fixed ε > 0 and for every k ≥ 1, it is NP-hard to
approximate VCAPk,k+1(1, 2) within a factor of 1 + ε; this holds even in the case of uniform costs,
i.e., VCAPk,k+1(1,∞).

It is possible to convert any instance of VCAPk0,k0+α to an “equivalent” instance of VCAPk0+1,k0+1+α

by adding to G0 a new vertex that is connected to every old vertex. In addition, it will be immediate
that our proof extends to edge costs from the set {1,∞}. It thus suffices to prove the following.

Theorem 4.1. For any k ≥ 1 and some fixed ε > 0 (independent of k), it is NP-hard to approximate
VCAP1,2(1, 2) within a factor of 1 + ε.

The proof of Theorem 4.1 employs a reduction from 3-dimensional matching (3DM) that was
used in [FJ81] to prove that solving VCAP1,2(1, 2) (optimally) is NP-hard. We obtain a stronger
result (hardness of approximation) by a more involved analysis of the reduction and by relying on
the hardness of approximating a bounded version of the 3-dimensional matching problem shown in
[Pet94].

3-dimensional matching (3DM) is the following problem. Given three (disjoint) sets W,X, Y ,
with |W | = |Y | = |Z|, and a set of hyperedges M ⊆ W × Y × Z, find the largest subset M ′ ⊆ M
which is a matching, i.e., if (w, x, y), (w′, x′, y′) ∈ M ′ then w 6= w′, x 6= x′, and y 6= y′. For any
z ∈ W ∪ X ∪ Y , let deg(z) be the number of hyperedges in M that contain z. We define the
maximum degree of an instance to be ∆ = maxz∈W∪X∪Y deg(z). For an instance I of 3DM, let
3DM(I) be the size of an optimal matching. For an instance J of VCAP1,2(1, 2), let VCAP(J )
be the cost of an optimal augmentation.

The reduction. Let I = (M,W,X, Y ) be an instance of 3DM with |M | = p and |W | = |X| =
|Y | = q. We create an instance J of VCAP1,2 as follows. (See Figure 4 for illustration.) Let
G0 = (V,E0) with

V = {r, r̄} ∪ {wi, w̄i, xi, yi : i = 1, 2, . . . , q} ∪ {aijk, āijk : (wi, xj , yk) ∈ M},

E0 = {(r, r̄)} ∪ {(wi, w̄i), (wi, r), (xi, r̄), (yi, r) : i = 1 . . . , q}
∪ {(aijk, wi), (w̄i, āijk) : (wi, xj , yk) ∈ M}.

We will define cost(āijk, aijk) = cost(xj , āijk) = cost(yk, aijk) = 1 if (wi, xj , yk) ∈ M and cost(u, v) =
2 for all other (u, v) ∈ V × V .

Lemma 4.1. If 3DM(I) = q, then VCAP(J ) = p + q.

Proof. Let M ′ ⊆ M be a matching of size q, we will construct an augmenting set E1 consisting of
p + q edges of cost 1. These edges will be (xj , āijk) and (yk, aijk) for every (wi, xj , yk) ∈ M ′ and
(aijk, āijk) for (wi, xj , yk) ∈ M − M ′. We must show that G1 = (V,E0 ∪ E1) is 2-connected. By
Menger’s Theorem (see Section 1.3) it suffices to show that G1 contains no cut-vertex.

Notice that G0 is a tree with the 2(p + q) leaves X ∪ Y ∪ {aijk, āijk : (wi, xj, yk) ∈ M}. Neither
of these leaves is a cut-vertex in G0, and hence the same is true in G1. So it remains to verify that
also each of r, r̄, wi, and w̄i is not a cut-vertex in G1. It is easy to see that this indeed holds; for
instance, if we remove some w̄i from the graph, we may risk cutting off the vertices {āijk}, but
there is always some edge, either to aijk or to xj (depending on whether (wi, xj , yk) ∈ M ′ or not),
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r̄ r

wiw̄i

aijkāijk

yk

...
...

. . .
w1

y1

yq

x1

xj

xq

...
...

· · ·· · ·
āij′k′ aij′k′

Figure 4: An instance of VCAP produced by the reduction. The solid lines represent edges of G0.
Some cost one edges are represented by dashed lines.

which leads back to the rest of the graph. Similar arguments hold for r, r̄, and wi. It follows that
G1 is 2-connected.

Hence E1 is an augmenting set of cost p + q. To see that this is the cheapest such set, notice
that for G1 to be 2-connected, each leaf of G0 must be incident to at least one edge from E1. Since
there are 2(p + q) leaves and a single edge is incident to at most two of them, it follows that at
least p + q edges are necessary.

Lemma 4.2. If VCAP(J ) ≤ (p + q)(1 + ε), then 3DM(I) ≥ q − (2 + 10∆)(p + q)ε.

Proof. Let E1 ⊆ E be a set of augmenting edges of cost at most (p + q)(1 + ε) such that G1 =
(V,E0∪E1) is 2-connected. As in Lemma 4.1, G0 is a tree with the 2(p+q) leaves X∪Y ∪{aijk, āijk :
(wi, xj, yk) ∈ M}. Each leaf of G0 must be adjacent to at least one edge of E1 for G1 to be 2-
connected. Call a leaf permissible if it is adjacent to exactly one edge of E1 and that edge has cost
1. Call a leaf impermissible otherwise (i.e., it is incident upon at least one edge of E1 of cost 2 or
upon more than one edge of E1).

We first claim that at most 2(p + q)ε leaves are impermissible. Indeed, for every impermissible
leaf, the total cost of edges of E1 that are incident at this leaf is at least 2. Similarly, for every
permissible leaf this cost is exactly 1. The sum of these costs over all leaves is at most 2 · cost(E1),
since the cost of every edge of E1 is counted at most twice (once from every end). Thus,

#{permissible leaves} + 2 · #{impermissible leaves} ≤ 2 · cost(E1) ≤ 2(p + q)(1 + ε).

The claim follows by observing that the lefthand side is just 2(p + q) + #{impermissible leaves}.
We now construct a set M ′ which is almost a matching. Initially, let M ′ = ∅. Then iteratively

for j = 1, 2, . . . , q we try to find a hyperedge (in M) that contains xj and add it to M ′, as follows.
If xj is permissible, then it is adjacent to a cost 1 edge of E1, hence it is adjacent to some leaf āijk.
If both āijk and aijk are permissible, then the latter is adjacent (via a cost 1 edge) to some leaf yk.
If this leaf yk is permissible, then add the hyperedge (wi, xj , yk) to M ′. Notice that M ′ ⊆ M since
the above process relies on cost 1 edges.
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We next claim that |M ′| ≥ q − 2∆(p + q)ε. Indeed, an impermissible xj , aijk or āijk can cause
only one iteration (namely, the one with the corresponding value of j) to fail. An impermissible yk

can cause at most ∆ iterations to fail, since it can be connected by edges of cost 1 to at most ∆
leaves aijk. Denoting the number of impermissible yk by ny, we have that the number of iterations
that fail is at most 2(p + q)ε−ny + ny∆. Since our claim shows that ny ≤ 2(p + q)ε, this is at most
2∆(p + q)ε.

By our construction, M ′ is almost a matching; its hyperedges have distinct elements from X and
from Y , but its elements from W might be repeated, i.e., not distinct. For every element wi that
belongs to more than one hyperedge in M ′, let us remove from M ′ all but one of the hyperedges
that contain wi. The resulting set of hyperedges, denoted M ′′, is thus a matching. Let µ = q−|M ′′|
be the number of vertices wi that do not appear in any hyperedge of M ′ (or equivalently, of M ′′).
Notice that |M ′| − |M ′′| ≤ q − |M ′′| = µ, so an upper bound on µ yields a lower bound on the size
of the matching M ′′.

We now show that µ ≤ (2 + 8∆)(p + q)ε. Let E′
1 be the edges of E1 that correspond to

hyperedges in M ′, namely those edges {(xj , āijk) and (yk, aijk)} for (wi, xj , yk) ∈ M ′. We have that
cost(E′

1) ≥ 2|M ′| ≥ 2q − 4∆(p + q)ε, hence

cost(E1 \ E′
1) ≤ (p + q)(1 + ε) − 2q + 4∆(p + q)ε = p − q + (1 + 4∆)(p + q)ε. (1)

Recall that each leaf (of G0) aijk or āijk must be incident to an edge of E1. The edges of E′
1 are

incident, by their definition, to at most 2|M ′| ≤ 2q distinct such leaves; thus, the edges of E1 \ E′
1

must be incident to the (at least) 2p − 2q remaining leaves aijk and āijk. If we split the cost of
every edge in E1 \ E′

1 (evenly) between its two endpoints, then we get that at least 2p − 2q leaves
are each charged a cost of at least 1/2. It follows that

cost(E1 \ E′
1) ≥ (2p − 2q) · (1/2). (2)

We shall now improve over the lower bound (2) by considering the µ vertices wi which do not make
an appearance in M ′. Each such wi is a cut-vertex of (V,E0 ∪ E′

1) (by definition of E′
1), since its

removal disconnects Wi = {w̄i} ∪ {aijk, āijk : (wi, xj , yk) ∈ M} from the rest of the graph. But wi

cannot be a cut-vertex of G1, and thus E1 \ E′
1 must contain an edge that connects Wi to the rest

of the graph. We have three cases for this edge: (i) if it is incident (in Wi) to w̄i, then the edge’s
cost is at least 2 and w̄i is charged at least 1; (ii) if the edge is incident (in Wi) to some aijk or āijk

and (in the rest of the graph) to some ai′j′k′ or āi′j′k′ (with i 6= i′) then the edge’s cost is 2, and
the endpoint in Wi is actually charged 1/2 more than in the lower bound (2); or (iii) this edge is
incident (in Wi) to some aijk or āijk and (in the rest of the graph) to a vertex that is not ai′j′k′ or
āi′j′k′ , and then the edge’s cost is at least 1, so the endpoint not in Wi is charged at least 1/2. In
all three cases, the fact that wi is a cut-vertex in (V,E0 ∪E′

1) implies that the lower bound (2) can
be increased by 1/2. It is easy to see that the increases corresponding to different wi’s are distinct,
and thus,

cost(E1 \ E′
1) ≥ (2p − 2q) · (1/2) + µ · (1/2). (3)

Combining equations (1) and (3) we indeed get that µ ≤ (2 + 8∆)(p + q)ε. We conclude that I
contains a matching M ′′ of size

|M ′′| ≥ |M ′| − µ ≥ q − 2∆(p + q)ε − (2 + 8∆)(p + q)ε = q − (2 + 10∆)(p + q)ε,

which completes the proof of Lemma 4.2.
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3DM-5 is a bounded version of the 3-dimensional matching problem in which every element of
W ∪ Y ∪ Z can appear at most 5 times in a triple of M , i.e. one in which ∆ = 5. It is shown in
[Pet94] that this variant is Max SNP-hard. In particular, the following theorem is proved.

Theorem 4.2 (Petrank [Pet94]). For some fixed ε0 > 0, it is NP-hard to distinguish whether an
instance of 3DM-5 with |W | = |X| = |Y | = q has a perfect matching (of size q) or every matching
has size at most (1 − ε0)q.

If |M | = p and |W | = |X| = |Y | = q, then in any instance of 3DM-5, we must have p ≤ 5q. This
observation, together with Lemmas 4.1 and 4.2, and Theorem 4.2, yield a proof of Theorem 4.1.

Proof of Theorem 4.1. We will show that our reduction above is gap-preserving. Specifically, we
will show that if I is an instance of 3DM-5 and J is the corresponding instance of VCAP1,2(1, 2),
then

3DM(I) = q =⇒ VCAP(J ) = p + q

3DM(I) < q(1 − ε0) =⇒ VCAP(J ) > (p + q) (1 + ε0/312) .

The first implication follows directly from Lemma 4.1. The second one is the contrapositive of
Lemma 4.2 with when setting ε = ε0

312 , and then 3DM(I) ≥ q− (2+ 10∆)(5q + q)ε = q(1− 312ε) =
q(1 − ε0).

Remark. A similar analysis can be applied to the NP-hardness reduction of [FJ81] for the
edge-connectivity augmentation problem (ECAP). This would prove that for any k ≥ 1 and some
fixed ε > 0 (independent of k), it is NP-hard to approximate ECAPk,k+1(1, 2) within a factor of
1 + ε. The same holds for a model with uniform edge costs.

5 Discussion

We have shown that, in terms of approximation, the vertex-connectivity variant of SNDP differs
significantly from the edge-connectivity variant, and that this holds even in relatively simple special
cases. But there are a few important special cases which remain open. Most notably, for k-VCSS

there is still a large gap between the known upper and lower bounds. It is particularly interesting
that no result is known to exclude a 2-approximation; such a result would separate this problem from
its edge-connectivity counterpart. The techniques that we relied on in Section 3 were successfully
applied to various problems to achieve (roughly) logarithmic hardness of approximation. It was
our hope that these powerful techniques might also be applied to k-VCSS, but we were not able
to do so.

An important observation to keep in mind is that the approximation ratio of SNDP and of
k-VCSS are non-decreasing with the maximum requirement kmax := max{ku,v : u, v ∈ V }. Indeed,
given an instance graph with n vertices and maximum requirement kmax, one can add a new vertex
that is connected to all the existing vertices with zero-cost edges and increase all the existing
requirements by 1. It is easy to see that any feasible solution to the original instance corresponds
to a feasible solution with the same cost in the new instance, while kmax is increased by 1. It follows
that any approximation ratio f(k) (that is independent of n) must be non-decreasing with k. This
argument extends also to the uniform cost case of SNDP by the remark at the end of Section 1.2.

This observation may underlie two perplexing aspects of k-VCSS: (i) The known approximation
ratio significantly degrades (approaches

√
n) as k gets closer to n, and one may suspect that this

is not a coincidence. (ii) An interesting open question is the asymptotic approximation ratio of
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uniform cost k-VCSS—is 1 + Θ(1/k) the right answer? Such an approximability threshold is
known to exist for the Max k-Cut problem [KKLP97]. Nevertheless, general cost k-VCSS has
completely different asymptotics; the result of [CL99] in conjunction with the observation above
show that there is a fixed ε > 0, such that for all k ≥ 2, it is NP-hard to 1+ ε approximate k-VCSS

with edge costs 0 and 1.
Finally, we stress that our reduction in Section 2.2 relies on what we call the star property (in our

graph-theoretic description) and which some literature refers to as the projection test. The hardness
result of [DS99] improves over Theorem 2.1 by achieving a slightly larger inapproximability factor
and by assuming the weaker complexity assumption P 6= NP. However, it lacks the star property
that we require, and thus cannot be used to stregnthen our result for SNDP.
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