
Distance scales, embeddings, and metrics of negative type∗

[preliminary draft]

James R. Lee †

University of California, Berkeley

February 2, 2006

Abstract

We introduce a new number of new techniques for the construction of low-distortion embed-
dings of a finite metric space. These include a generic Gluing Lemma which avoids the overhead
typically incurred from the näıve concatenation of maps for different scales of a space. We also
give a significantly improved and quantitatively optimal version of the main structural theorem
of Arora, Rao, and Vazirani on separated sets in metrics of negative type. The latter result offers
a simple hyperplane rounding algorithm for the computation of an O(

√
log n)-approximation to

the Sparsest Cut problem with uniform demands, and has a number of other applications to
embeddings and approximation algorithms.

1 Introduction

Low distortion embeddings of finite metric spaces into normed spaces (in particular L1 and L2)
have provided an essential tool in the construction and analysis of approximate algorithms for
a variety of fundamental problems (see, e.g. [LLR95, AR98, Rao99, Fei00, ARV04], the surveys
[Ind01, Lin02], and the book chapter [Mat02, Ch. 15]).

A seminal result in this field is the optimal O(log k)-approximate max-flow/min-cut theorem
for multiflow instances with k commodities, discovered independently by Linial, London, and Ra-
binovich [LLR95] and Aumann and Rabani [AR98]. Their arguments are based on a theorem of
Bourgain stating that every n-point metric space embeds into a Euclidean space with distortion at
most O(log n) [Bou85]. These same techniques also yield an O(log n)-approximation algorithm for
the Sparsest Cut problem on graphs with n nodes.

One potential path to better approximations is a well-known semi-definite program (SDP)
relaxation for the Sparsest Cut problem (see, e.g. [Goe97, Lin02, ARV04]). It is known that the
integrality gap of this SDP is equal to the worst distortion required to embed any n-point metric
of negative type into L1 (see [Mat02, Ch. 15]). The primary goal of the present work is to study
the construction of such embeddings. A metric space (X, d) is said to be of negative type1 if there

∗A preliminary version of this paper appeared in the 16th annual Symposium on Discrete Algorithms (SODA
2005).

†Computer Science Division, University of California, Berkeley, CA 94720. Supported by NSF grant CCR-0121555
and an NSF Graduate Research Fellowship. Email: jrl@cs.berkeley.edu

1The name comes from the fact that if (X, d) is a metric space of negative type, then for every {x1, x2, . . . , xk} ⊆ X,
the matrix {d(xi, xj)}i,j is negative definite.
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exists a mapping f : X → L2 such that d(x, y) = ‖f(x) − f(y)‖2
2 for every x, y ∈ X (equivalently,

the metric space (X,
√

d) embeds isometrically into L2).
Until recently, relevant properties of negative-type metrics were poorly understood. In an im-

portant breakthrough, Arora, Rao, and Vazirani [ARV04] obtained deep results about the structure
of such spaces. In particular, they showed that if (X, d) is a negative-type metric on n-points such
that diam(X) ≤ 1 and 1

n2

∑
x,y∈X d(x, y) = Ω(1), then there exist two “well-separated” subsets

A,B ⊆ X with |A|, |B| = Ω(n) and such that d(A,B) = mina∈A,b∈B d(a, b) ≥ 1/O(
√

log n). In
particular, this allows one to obtain an O(

√
log n)-approximation for the Sparsest Cut problem

with uniform demands (i.e. the edge expansion problem in graphs).
Quantitatively, this theorem is tight, but for constructing low-distortion embeddings (and to

handle general demands) it is essential to have more than a single pair of separated sets (A,B). We
show that it is possible to choose these pairs of separated sets in a somewhat “random” manner.
This requires significant changes to the [ARV04] induction argument, which we outline in the next
section.

Another key ingredient in the construction of many embeddings for finite spaces is the ability
to deal with distinct “scales” of a space separately. Recently, Krauthgamer, Lee, Mendel, and
Naor introduced a technique called measured descent [KLMN05] which allows one to do this in a
non-trivial way for special kinds of maps (those produced via Fréchet embeddings). In this work,
we show how appropriately constructed partitions of unity can be used to glue together arbitrary
embeddings. We give an application to non-Fréchet Euclidean embeddings for finite subsets of Lp

with 1 < p < 2, which yields the first non-trivial Euclidean embeddings of such spaces.
Subsequently, many of the questions addressed by the initial version of this paper have been

partially answered, and in some cases rely heavily on the theorems and techniques developed here.
For that reason, we also spend time developing the various corollaries required for these other
results.

Subsequent work. Chawla, Gupta, and Räcke [CGR05] have broken the O(log n) barrier for
embedding n-point negative-type metrics into L2. They achieve a distortion bound of O(log n)3/4

by combining the measured descent technique of [KLMN05] with the strong form of the [ARV04]
geometric structure theorem provided in the present work (Theorem 4.7). Arora, Lee, and Naor
subsequently obtained a near-optimal bound of O(

√
log n log log n). Their approach also requires

Theorem 4.7, as well as a variant of our Gluing Lemma 2.1.
There are a number of other recently developed approximation algorithms that require our

strong version of the [ARV04] techniques in order to obtain better analyses. In these cases, the
approximation ratio obtained using [ARV04] is O(log n)2/3, while O(

√
log n) is achievable using

Theorem 4.7 and its consequences. These include the vanishing term for vertex cover [Kar01],
Min 2CNF Deletion and directed cut problems [ACMM05], and directed vertex ordering problems
[CHKR06]. Finally, in [Lee06], the author constructs embeddings of Euclidean metrics with near-
optimal volume distortion (in the sense of Feige [Fei00]) which crucially require the gluing techniques
introduced in this paper.

1.1 Preliminaries

All logarithms are base 2 unless otherwise specified.

Distortion. A map f : X → Y between two metric spaces (X, dX) and (Y, dY ) is said to be
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L-Lipschitz (or Lipschitz with constant L) if

dY (f(x), f(y)) ≤ L · dX(x, y)

for all x, y ∈ X. One defines

‖f‖Lip = sup
x6=y∈X

dY (f(x), f(y))
dX(x, y)

as the smallest L for which f is L-Lipschitz. If, in addition, f is injective and ‖f−1‖Lip is finite,
we say that f is bi-Lipschitz and denote the distortion of f by distortion(f) = ‖f‖Lip · ‖f−1‖Lip. If
f has distortion D, we refer to it as a D-embedding of X into Y . The least distortion with which
X may be embedded in Y is denoted cY (X). When Y = Lp we use the notation cY (·) = cp(·).
Finally, the parameter c2(X) is called the Euclidean distortion of X.

Concatenation, extension, restriction. Given two maps f1 : X → Y1 and f2 : X → Y2,
we define their direct sum f1 ⊕ f2 as the map f : X → Y1 × Y2 given by f(x) = (f1(x), f2(x)).
This extends naturally to a direct sum of more than two functions, which we sometimes denote by⊕

α∈I fα where I is some index family. For a subset S ⊆ X, and a map f : S → Y , we refer to
the map f̃ : X → Y as an extension of f if f̃(x) = f(x) for all x ∈ S. In general, we denote the
restriction of f̃ to S by f̃ |S .

Subsets. We denote by B(x, r) = {y ∈ X : dX(x, y) ≤ r} and B◦(x, r) = {y ∈ X : dX(x, y) < r}
the closed ball and open ball of radius r about x, respectively. For a subset S ⊆ X, we write
dX(x, S) = infy∈S dX(x, y), and define diam(S) = supx,y∈S dX(x, y).

Finally, we say that a subset N of X is an ε-net if it satisfies (1) For every x, y ∈ N, d(x, y) ≥ ε
and (2) X ⊆ ⋃

y∈N B(y, ε). Such nets always exist for any ε > 0. For finite metrics, they can be
constructed greedily. For arbitrary metrics, proof of their existence is an easy application of Zorn’s
lemma.

1.2 Results and techniques

We now discuss briefly the main results of the paper, and the techniques involved in their proof.
For two metric spaces X and Y , we define Dn(X,Y ) = sup{cY (A) : A ⊆ X, |A| = n}. In words,
Dn(X, Y ) describes the distortion required to embed every n-point subspace of X into Y . Addition-
ally, for a family of metric spaces F , we define Dn(F , Y ) = sup{Dn(X,Y ) : X ∈ F}. If we denote by
NEG the family of all negative-type metrics, then our main object of study becomes Dn(NEG, L1).
We recall that since L2 embeds isometrically into L1, we have Dn(X, L1) ≤ Dn(X,L2) for any
metric space X (see, e.g. [BL00]).

Gluing single-scale embeddings. In Section 2, we reduce the problem of constructing a non-
trivial embedding of a finite metric space to that of “handling a single scale.” Let (X, dX) and
(Y, dY ) be metric spaces, and let τ ∈ R+ be a positive real number. If f : X → Y is a 1-Lipschitz
map such that for every x, y ∈ X with d(x, y) ∈ [τ, 2τ ], we have

dY (f(x), f(y)) ≥ τ

K
,

then we will call f a scale-τ embedding with deficiency K. Analogous to Dn(·, ·), we define Kτ
n(X,Y )

to be the infimal value K such that for every n-point subset A ⊆ X, there exists a scale-τ map
from A into Y with deficiency at most K. Finally, we define Kn(X,Y ) = supτ>0 Kτ

n(X, Y ).
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Certainly one has Dn(X,Y ) ≥ Kn(X,Y ) for any pair of spaces X, Y , but a priori it is not clear
whether any meaningful relationship holds in the other direction, even for Y = L2. We exhibit
such a relationship.

Lemma 1.1 (Gluing Lemma). For any metric space X, one has

Dn(X, L2) ≤ O(
√

Kn(X,L2) · log n).

Related theorems hold when L2 is replaced by Lp for any p ∈ [1,∞). By Bourgain’s embedding
theorem, we know that Dn(X, L2) = O(log n) for any X, and the above theorem characterizes
spaces which admit better embeddings than the general case: Dn(X,L2) = o(log n) if and only if
Kn(X, L2) = o(log n). We remark that bounding Kn(X,L2) is often much easier than bounding
Dn(X, L2), and we will see examples of this in Section 3.

In some sense, Lemma 1.1 is tight. If planar denotes the family of all planar graph metrics,
then Kn(planar, L2) = O(1) by a result of Rao [Rao99] (see also [KPR93]). On the other hand,
Dn(planar, L2) = Θ(

√
log n) (the upper bound is from [Rao99], and the lower bound is from Newman

and Rabinovich [NR03]). Additionally, if F denotes a family of shortest-path metrics on O(1)-
degree expander graphs, then one has both Kn(F , L2) = Θ(log n) and Dn(F , L2) = Θ(log n) (see
[LLR95, AR98] and also [Mat02, Ch. 15]). On the other hand, for values of Kn(·, L2) strictly
between O(1) and Θ(log n), the correct asymptotic dependence in Lemma 1.1 is unknown. We
conjecture the optimal bound:

Conjecture 1. For any metric space X, Dn(X, L2) = O
(
Kn(X,L2) +

√
log n

)
.

We remark that if we replace L2 by L1, then much less is known. Our results imply that
Dn(X, L1) = O(

√
Kn(X, L1) · log n), but there is no lower bound ruling out a statement such as

Dn(X, L1) = O(Kn(X, L1)). If such a result were true, it would imply, e.g. that every planar graph
metric embeds into L1 with O(1)-distortion, resolving a long-standing open problem [GNRS99].

The main technical contribution which allows us to concentrate on single scale embeddings
throughout is the Gluing Lemma proved in Section 2. Our approach to proving Lemma 1.1 is
based on the ideology of measured descent, but is technically quite different. In particular, the
authors of [KLMN05] proved a version of the Lemma 1.1 when the single scale maps are of a
special form known as Fréchet embeddings.

For general embeddings, we use a standard analytical tool called a partition of unity. If X
is a metric space, then a family of maps {ρt : X → [0, 1]}t∈T (for some countable index set T )
is called a partition of unity if

∑
t∈T ρt(x) = 1 for every x ∈ X. Such families are distinguished

from arbitrary probability measures on X because we will often require the constituent functions
ρt : X → [0, 1] to be smooth in some sense. In this present context, we will be chiefly concerned
with quantitative bounds on ‖ρt‖Lip. Given a family of embeddings, e.g. {ft : X → L2}t∈T , we can
glue them together in two different ways, by defining

F+(x) =
∑

t∈T

ρt(x)ft(x) or F⊕(x) =
⊕

t∈T

ρt(x)ft(x),

depending on the intended use.

The Euclidean distortion of Lp spaces, 1 < p < 2. One of the most natural questions about
finite metrics that arises when one searches for analogues with the local theory of Banach spaces
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involves the distortion required to embed n-point subsets of Lp into Lq for p 6= q. In other words,
given n-points represented in some Lp norm, what is the distortion required to represent them under
the Lq norm? (By changing their coordinate representations, of course.) Previous knowledge can
be summarized by the following results. We discuss first the known upper bounds (the notations
O(·) and Ω(·) may hide a multiplicative factor which depends on p). The last three hold for all
p ∈ [1,∞].

1. Dn(Lp, Lq) = 1 for 1 ≤ q ≤ p ≤ 2.

2. Dn(Lp, L∞) = 1.

3. Dn(L2, Lp) = 1.

4. Dn(Lp, L2) = O(log n).

(2) follows because Dn(X, L∞) = 1 for any metric space X, using Fréchet’s embedding (see, e.g.
[Mat02]); (1) and (3) follow from the existence of symmetric p-stables (see, e.g. [BL00]); and (4)
follows because Dn(X, L2) = O(log n) for any metric space X by Bourgain’s theorem [Bou85]. Thus
the only previous upper bounds either hold for general metric spaces (and thus don’t depend on
the properties of n-point subsets of Lp), or involve isometric embeddability.

In Section 3, we prove that, for 1 ≤ p ≤ 2,

Dn(Lp, L2) ≤ (log n)
1
2
+ 1

p
( 1

p
− 1

2
)
.

Note that this bound is better than O(log n) whenever p > 1.
Our embedding constructs a scale-1 map, but unlike many embedding theorems (e.g. [Bou85,

Rao99, KLMN05]), is not based on piece-wise line embeddings. To counter this, a sophisticated
extension lemma of Marcus and Pisier [MP84] is used. We proceed by first embedding the p/2
power of the Lp metric into L2. (It is well known that the metric ‖x − y‖p/2

p is isometric to a
subset of L2). Then, we use a lemma of [MN04] to “truncate” all the distances in the image to
be at most 1, incurring only bounded distortion. After restricting the embedding to an ε-net,
the distortion is εp/2−1. The Marcus-Pisier lemma is used to extend the map to the rest of the
space, and one can prove that all pairs with ‖x− y‖p ∈ [1, 2) are mapped far apart as long as ε is
sufficiently small. After calculating the optimal value of ε, we obtain a scale-1 map with deficiency
K = O(log n)

2
p
( 1

p
− 1

2
), and applying the Gluing Lemma completes the proof (by scale invariance of

Lp spaces, we need only generate a map for some fixed scale).

Other bounds from recent work. In an earlier version of this paper, we showed the following:
For every ε > 0 there exists a δ > 0 such that

Dn(L1, L2+ε) ≤ O(log n)1−δ.

This proof was based on the Gluing Lemma, along with our improved structure theorem for NEG-
metrics, and a rather inefficient induction argument. Subsequently, the papers [CGR05, ALN05]
have replaced the induction argument with a far more sophisticated approach. Arora, Lee, and
Naor achieve an upper bound of Dn(NEG, L2) ≤ O(

√
log n log log n). Since L1 ∈ NEG, this implies

that √
log n ≤ Dn(L1, L2) ≤ O(

√
log n log log n),

where the lower bound is due to Enflo [Enf69]. We remark that our argument for Lp, 1 < p < 2

yields the bound Kn(Lp, L2) ≤ O(log n)
2
p
( 1

p
− 1

2
), which remains the best-known for certain values of
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p (i.e. the exponent approaches 0 as p → 2). For completeness, we summarize the known bounds
when the target space is L2. For 1 ≤ p ≤ 2,

(log n)
1
p
− 1

2 ≤ Kn(Lp, L2) ≤ Dn(Lp, L2) ≤ O(
√

log n log log n),

where the lower bound is from [Enf69]. And for p ≥ 2,

Ω
(

log n

log log n

) 1
2
− 1

p

≤ Kn(Lp, L2) ≤ Dn(Lp, L2) ≤ O(log n),

where the lower bound follows from differentiation and cotype considerations (see, e.g. [BL00] or
[MN06] for a “non-linear” proof based on metric cotype).

We also mention one case where one has nearly tight bounds. For any 1 ≤ p < ∞, we have

Ω(
√

log n) ≤ Kn(L1, Lp) ≤ Dn(L1, Lp) ≤ Dn(L1, L2) ≤ O(
√

log n log log n).

The lower bound is due to [LN04] for 1 ≤ p < 2 and to [NS02] for 2 < p < ∞.

Random projections and metrics of negative type. Our final ingredient is an improved
structure theorem for metrics of negative type. In fact, the technical core of the argument contains
a deep fact about configurations of finite sets of points in Euclidean spaces.

In Section 4, we obtain the “Big Core” Theorem, which is a quantitatively optimal version of
the main geometric lemma of [ARV04] (it shows that a certain geometric object we call a core must
be composed of many points). The beautiful induction employed in [ARV04] degrades with each
step, and this bounds the number of iterations for which the induction can be carried out. Here,
we show how to avoid this degradation by performing the time-honored technique of region growing
as a phase of every induction step.

One benefit of the improved core theorem is that it allows one to significantly simplify the
O(
√

log n)-approximation for the Sparsest Cut problem obtained in [ARV04]. In that paper, the
authors present a simple hyperplane rounding algorithm which they show achieves an approximation
ratio of O(log2/3 n). A more complicated algorithm is used to obtain the O(

√
log n)-approximation.

The Big Core Theorem (Theorem 4.7) shows that the [ARV04] hyperplane rounding algorithm
already achieves O(

√
log n). This is discussed in Section 4.3, along with corollaries required for

other applications that cannot rely on [ARV04].

2 Single-scale embeddings and the Gluing Lemma

Let (X, d) be an n-point metric space. The goal of this section is to prove the following lemma
which shows that the ideology of [KLMN05] can be extended beyond Fréchet embeddings, to any
collection of single-scale embeddings. The lemma is stated for the case of Euclidean embeddings,
but after the proof we discuss the extension to any p ∈ [1,∞).

Lemma 2.1 (Gluing Lemma). Suppose that for each m ∈ Z, there exists a scale-2m embedding
φm : X → L2 with deficiency K. Then c2(X) ≤ O(

√
K log n).

For applications to L1 (and hence NEG), using the Gluing Lemma as a black box can never
yield a result stronger than Dn(L1, L2) = O(log n)3/4. It suffices to show that for τ = k, any scale-τ
map for the k-dimensional cube requires deficiency Ω(

√
k). To see this, let Qk = ({0, 1}k, d) be the
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cube with the L1 metric, and suppose that f : Qk → L2 is a scale-k map with deficiency K, then
using the standard Poincaré inequality for the cube (see, e.g. [Mat02]),

2k−1 · k2

K2
≤

∑

x,y∈Qk:d(x,y)=k

‖f(x)− f(y)‖2
2 ≤

∑

x,y∈Qk:d(x,y)=1

‖f(x)− f(y)‖2
2 ≤ k · 2k−1,

so that K ≥
√

k. We now proceed with the proof of Lemma 2.1.

Proof of Lemma 2.1. Let ‖ · ‖ = ‖ · ‖2, and for x, y ∈ X, define

ρm(x, y) =

{
x if |B(x, 2m)| ≥ |B(y, 2m)|
y otherwise.

The following lemma forms the technical core of our argument.

Lemma 2.2. Given, for every m ∈ Z, a 1-Lipschitz map hm : X → L2, there exists a map
H : X → L2 which satisfies

1. ‖H‖Lip ≤ O(
√

log n).

2. For every m ∈ Z, and every x, y ∈ X with d(x, y) ∈ [2m, 2m+1), we have

‖H(x)−H(y)‖2 ≥
√⌊

log
|B(ρm−3(x, y), 2m+1)|
|B(ρm−3(x, y), 2m−3)|

⌋
· ‖hm(x)− hm(y)‖2.

Before we prove the preceding lemma, let us see that it suffices to complete the proof of Lemma
2.1. First, we need the following two results. The first theorem uses Rao’s technique [Rao99]
applied to the decomposition theorem of [FRT03] to construct a map for each scale, and is a
standard construction; see, e.g. [KLMN05]. Our intention is to apply Lemma 2.2 to this ensemble
of maps.

Theorem 2.3. For every m ∈ Z, there exists a map fm : X → L2 with ‖fm‖Lip ≤ 1 and such that
for all x, y ∈ X with d(x, y) ∈ [2m, 2m+1],

‖fm(x)− fm(y)‖ ≥ d(x, y)

1 + O
(
log |B(x,2m+1)|

|B(x,2m−3)|
)

The next map handles the case where

log
|B(x, 2m+1)|
|B(x, 2m−3)| < 1.

We use a simple variant of Bourgain’s argument [Bou85].

Proposition 2.4. There exists a map M : X → L2 such that

1. ‖M‖Lip = O(
√

log n).

2. For all m ∈ Z, for all x, y ∈ X satisfying d(x, y) ∈ [2m, 2m+1] and log |B(x,2m−1)|
|B(x,2m−2)| < 1,

‖M(x)−M(y)‖ ≥ Ω(1) d(x, y).
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Proof. For each t ∈ {1, 2, . . . , dlog ne}, let Wt ⊆ X be a random subset which contains each point
of X independently with probability 2−t. Let gt(x) = d(x,Wt), and consider the random map
f = g1 ⊕ · · · ⊕ gdlog ne. Finally, we define F : X → L2(`n

2 , µ) by F (x) = f(x), where µ is the
distribution over which the random subsets {Wt} are defined. Observe that ‖F‖Lip ≤ O

(√
log n

)
.

Fix x, y ∈ X such that d(x, y) ∈ [2m, 2m+1] and with log |B(x,2m−1)|
|B(x,2m−2)| < 1. Let t ∈ N be such

that 2t ≤ |B(x, 2m−1)| ≤ 2t+1. Let Efar be the event
{
d(x,Wt) ≥ 2m−1

}
and let Eclose be the event{

d(x,Wt) ≤ 2m−2
}
. Also, define the event Ey

close = {d(y, Wt) < 2m−1}. Observe that each of the
events Eclose, Efar are independent of Ey

close since the former events depend only on Wt∩B◦(x, 2m−1),
and the latter on Wt ∩B◦(y, 2m−1). It follows that

‖F (x)− F (y)‖2
L2(µ) = Eµ ‖f(x)− f(y)‖2

2

≥ Eµ |gt(x)− gt(y)|22
≥ Pr(Ey

close) ·min
{
Pr(Efar), Pr(Eclose)

} ·
(

1
2
· 2m−2

)2

+ Pr(¬Ey
close) · Pr(Eclose) ·

(
2m−2

)2

≥ Ω(1) · (2m)2.

The final inequality holds true because log |B(x,2m−1)|
|B(x,2m−2)| < 1 implies that Pr(Efar), Pr(Eclose) = Ω(1).

Let F : X → L2 and Φ : X → L2 be the maps obtained by applying Lemma 2.2 to the
collections {fm} and {φm}, respectively. Let M : X → L2 be the map from Proposition 2.4. Let
Ψ = F ⊕ Φ⊕M be our final embedding.

Using property (1) of Lemma 2.2 and property (1) of Proposition 2.4, we see that

‖Ψ‖Lip ≤ ‖F‖Lip + ‖Φ‖Lip + ‖M‖Lip = O(
√

log n).

For the lower bound, fix x, y ∈ X. Assume without loss that x = ρm−3(x, y), and set A =
log |B(x,2m+1)|

|B(x,2m−3)| . In this case, we have

‖Ψ(x)−Ψ(y)‖2 = ‖F (x)− F (y)‖2 + ‖Φ(x)− Φ(y)‖2 + ‖M(x)−M(y)‖2

≥ Ω(1) d(x, y)2
( bAc

(1 + A)2
+
bAc
K2

+ 1{A<1}

)

≥ Ω(1)
d(x, y)2

K
,

where we observe that bAc = 0 implies 1{A<1} = 1. We conclude that distortion(Ψ) = O(
√

K log n).
Now we move onto the proof of Lemma 2.2.

Proof of Lemma 2.2. For every t ∈ {1, 2, . . . , dlog2 ne} we produce a map ψt : X → L2. Our final
map will be

H = ψ1 ⊕ · · · ⊕ ψdlog2 ne.

We now show how to construct the map ψt.
First, we need to “truncate” the maps {hm} so that they glue properly. This is done using the

following observation from [MN04]. Let `≤D
2 be the metric space (`2, d̂) where

d̂(x, y) = min{‖x− y‖2, D}.
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Lemma 2.5 ([MN04]). There exists a map G : `≤D
2 → `2 with distortion 2 and such that for every

x ∈ `2, ‖G(x)‖2 ≤ 2D. In particular,

1
2 min{D, ‖x− y‖2} ≤ ‖G(x)−G(y)‖2 ≤ min{D, ‖x− y‖2}. (1)

Proof (sketch). It suffices to prove the lemma for D = 1. See [BL00] for the appropriate background
on positive and negative definite kernels and their relation to isometric embeddings in a Hilbert
space. We assume the terminology used there. Observe that (x, y) 7→ ‖x−y‖2

2 is a negative definite
kernel, hence e−‖x−y‖22 is positive definite and thus 1− e−‖x−y‖22 is negative definite. It follows that
there exists a map G : `2 → `2 such that

‖G(x)−G(y)‖2 =
√

1− e−‖x−y‖22 .

Now (1) follows by observing that for a < 1,
√

1− e−a2 ≈ a. Clearly we may translate G so that
‖G(x)‖ ≤ 2 for every x ∈ `2.

Using the above lemma, for every map hm : X → L2, we may pass to a map ĥm : X → L2

which satisfies

1
2 min{2m, ‖hm(x)− hm(y)‖} ≤ ‖ĥm(x)− ĥm(y)‖ ≤ ‖hm(x)− hm(y)‖,

and ‖ĥm(x)‖ ≤ 2m+1 for every x ∈ X. Now we continue with the construction of the map ψt.

Constructing the partition of unity. Define R(x, t) = sup{R : |B(x,R)| ≤ 2t}. Let ρ : R→ R+

be any O(1)-Lipschitz map with supp(ρ) ⊂ [2−4, 24], ρ ≡ 1 on [2−3, 23], and ρ ≤ 1 everywhere.
Define

ρm,t(x) = ρ

(
R(x, t)

2m

)
,

and set
ψt(x) =

⊕

m∈Z
ρm,t(x)ĥm(x).

Bounding the Lipschitz constant. Observe that for every t, the map x 7→ R(x, t) is 1-Lipschitz.
It follows from the above lemma and the definition of ρ that

|ρm,t(x)− ρm,t(y)| ≤ O(1)
2m |R(x, t)−R(y, t)| ≤ O(1)

d(x, y)
2m

.

Now we write

‖ψt(x)− ψt(y)‖2 =
∑

m∈Z
‖ρm,t(x)ĥm(x)− ρm,t(y)ĥm(y)‖2.

Notice that there are only O(1) non-zero terms in this sum because we have ρm,t(x) 6= 0 or
ρm,t(y) 6= 0 only for O(1) values of m ∈ Z. To bound a non-zero summand, we use the chain
rule:

‖ρm,t(x)ĥm(x)− ρm,t(y)ĥm(y)‖ ≤ ‖ĥm(x)‖ · |ρm,t(x)− ρm,t(y)|+ |ρm,t(y)| · ‖ĥm(x)− ĥm(y)‖
≤ 2m+1 ·O(1)

d(x, y)
2m

+ d(x, y) ≤ O(1) · d(x, y),

9



where in the last line we have use the fact that hm, and hence ĥm is 1-Lipschitz for every m ∈ Z.
The upper bound of ‖H‖Lip ≤ O(

√
log n) follows immediately.

Obtaining a lower bound. To prove the lower bound, we fix x, y ∈ X with d(x, y) ∈ [2m, 2m+1).
Notice that if ρm,t(x) = ρm,t(y) = 1, then we have

‖ψt(x)− ψt(y)‖ ≥ ‖ĥm(x)− ĥm(y)‖ ≥ 1
2‖hm(x)− hm(y)‖.

Now we are left to count the number of values t ∈ {1, 2, . . . , dlog2 ne} for which ρm,t(x) = 1 =
ρm,t(y).

Notice that ρm,t(x) = 1 if and only if R(x, t) ∈ [2m−3, 2m+3], which happens if and only if

t ∈ [
log |B(x, 2m−3)|, log |B(x, 2m+3)|] .

Similarly, ρm,t(y) = 1 if and only if

t ∈ [
log |B(y, 2m−3)|, log |B(y, 2m+3)|] .

Assume without loss of generality that x = ρm−3(x, y) so that |B(x, 2m−3)| ≥ |B(y, 2m−3)|, then

t ∈ [log |B(x, 2m−3)|, log |B(x, 2m+1)|]
implies ρm,t(x) = ρm,t(y) = 1 (recalling that R(x, t) ≤ 2m+1 implies R(y, t) ≤ 2m+3 since R(·, t) is
1-Lipschitz and d(x, y) ≤ 2m+1). Hence the number of values of t for which ρm,t(x) = ρm,t(y) = 1
is at least ⌊

log
|B(x, 2m+1)|
|B(x, 2m−3)|

⌋
.

We conclude that

‖H(x)−H(y)‖2 ≥ 1
2

⌊
log

|B(ρm−3(x, y), 2m+1)|
|B(ρm−3(x, y), 2m−3)|

⌋
· ‖hm(x)− hm(y)‖2,

completing the proof.

Remark 2.1. A simple modification of the proof shows that for any p ∈ [1,∞), a similar lemma
holds with the conclusion that

cp(X) ≤ O(K1−1/q log1/q n)

where q = max{2, p}, though there is one caveat: For p 6= 2, one must also assume that ‖φm(x)‖p ≤
O(2m) for every x ∈ X, since an analogue of Lemma 2.5 does not hold.

3 An application to Dn(Lp, L2)

In this section, we apply the Gluing Lemma to obtain improved Euclidean embeddings of n-point
subsets of Lp for p ∈ (1, 2). The main theorem follows.

Theorem 3.1 (Embedding Lp spaces). For 1 < p ≤ 2,

Dn(Lp, L2) ≤ O(log n)
1
2
+ 1

p
( 1

p
− 1

2
)
.

10



Proof. Let X ⊆ Lp be an n-point subset. It suffices to construct a scale-1 map f : X → L2 (because

Lp is scale invariant) with deficiency K = O(log n)
2
p
( 1

p
− 1

2
), and then apply the Gluing Lemma. It

is well-known that there exists a map T : X → L2 with ‖T (x) − T (y)‖2 = ‖x − y‖p/2
p . Applying

Lemma 2.5, we also obtain a map G : L≤1
2 → L2.

Now we define T̂ : X → L2 by T̂ (x) = G(T (x)), so that

1
2 min{1, ‖x− y‖p/2

p } ≤ ‖T̂ (x)− T̂ (y)‖2 ≤ min{1, ‖x− y‖p/2
p }.

Observe that we can truncate the image like this because we are only concerned with constructing a
scale-1 embedding. Such an approach would fail if we were also required to preserve larger distances.

In order that ‖x− y‖p/2
p not be too much larger than ‖x− y‖p, we need to ensure that ‖x− y‖p

is sufficiently large. To do this, we take an ε-net N in X, where ε < 1
4 will be determined shortly.

Observe that the function T̂ |N is Lipschitz with constant εp/2−1. In order to extend T̂ |N to all of
X, we will need the following lemma.

Lemma 3.2 (Marcus-Pisier). For any 1 < p ≤ 2, let X ⊆ Lp be an n-point subset, and let
f : X → L2 be any map, then there exists an extension f̃ : Lp → L2 with

‖f̃‖Lip ≤ C(p)(log n)
1
p
− 1

2 ‖f‖Lip,

where C(p) is a constant depending only on p.

It follows that we can extend T̂ |N to all of X, obtaining an extension T̃ with

‖T̃‖Lip ≤ C(p)(log n)
1
p
− 1

2 εp/2−1.

Now, fix a pair x, y ∈ X with ‖x−y‖p ∈ [1, 2], and let x′, y′ ∈ N be such that ‖x−x′‖p, ‖y−y′‖p ≤
ε, then

‖T̃ (x)− T̃ (y)‖2 ≥ ‖T̂ (x′)− T̂ (y′)‖2 − ‖T̃‖Lip · (‖x− x′‖p + ‖y − y′‖p)
≥ 1

4 − 2ε‖T̃‖Lip.

Now choosing

ε =
[

1
16C(p)

(log n)
1
2
− 1

p

]2/p

so that ε ≤ 1/(16‖T̃‖Lip) implies ‖T̃ (x)− T̃ (y)‖ ≥ 1
16 . A calculation shows that

‖T̃‖Lip ≤ O(log n)
2
p
( 1

p
− 1

2
)
.

After scaling T̃ to be 1-Lipschitz, we obtain a scale-1 embedding with deficiency O(‖T̃‖Lip), com-
pleting the proof.
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4 The Big Core Theorem

In this section, we study various properties of “covers” and random projections in Euclidean spaces.
Our eventual goal is to provide an optimal version of the [ARV04] chaining argument, which is
embodied in the “Big Core” Theorem of Section 4.2. In Section 4.3, we present an application to
rounding the SDP for Sparsest Cut with uniform demands.

4.1 Covers, matchings, and cores

We consider the space Rd equipped with the 2-norm ‖·‖ = ‖·‖2. For a subset S ⊆ Rd, we sometimes
write dist2(x, S) = infy∈S ‖x− y‖. Let Sd−1 denote the (d− 1)-dimensional unit sphere. When we
talk about a random vector u ∈ Sd−1, we are referring to the (unique) uniform surface measure.
We will require a large deviation bound for random projections (see, e.g. [Led96]).

Lemma 4.1. If z ∈ Rd, then

Pr
u∈Sd−1

[
〈z, u〉 ≥ σ√

d

]
≤ exp

( −σ2

2 ‖z‖2

)
.

Euclidean covers. We will say that a point x ∈ Rd is (σ, δ, `)-covered by a set C ⊆ Rd if the
following two conditions are satisfied.

1. For every y ∈ C, ‖x− y‖ ≤ `.

2. Pru∈Sd−1

[
∃ y ∈ C : 〈x− y, u〉 ≥ σ√

d

]
≥ δ.

We also say that a set of points S ⊆ Rd is (σ, δ, `)-covered by a set C ⊆ Rd if every x ∈ S is
(σ, δ, `)-covered by BC(x, `) = B(x, `) ∩ C.

We now give three lemmas dealing with the structural properties of covers (each of these claims
appears, in some form, in [ARV04]). First, we have the following simple estimate on the size of
covers.

Lemma 4.2. If x is (σ, δ, `)-covered by a set C, then

|C| ≥ δ · exp
(

σ2

2 `2

)
.

Proof. For any y ∈ C, apply Lemma 4.1 with z = x− y. Since ‖x− y‖ ≤ `, y can “cover” x in at
most an exp(−σ2/(2`2)) fraction of directions.

The next lemma shows that if x is covered by C, then the cover can be extended to a nearby
point y with only a small loss in the parameters.

Lemma 4.3. Suppose that x is (σ, δ, `)-covered by C, and z ∈ Rd. Then for every t ≥ 0, z is(
σ − t · ‖x− z‖, δ − exp(−t2/2), ` + ‖x− z‖)-covered by C.

Proof. In order to have 〈x− y, u〉 ≥ σ/
√

d for some y ∈ C, but 〈z− y, u〉 < [σ − t · ‖x− y‖] /
√

d, it
must be the case that 〈x− z, u〉 ≥ t · ‖x− z‖/

√
d. But by Lemma 4.1, the probability of this (over

a random choice of u ∈ Sd−1) is at most exp(−t2/2). In addition, clearly ‖y− z‖ ≤ ` + ‖x− z‖ for
every y ∈ C.
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Corollary 4.4. If a subset S ⊆ Rd is (σ, δ, `)-covered by C, then for every ε, t ≥ 0, the neighborhood
Nε(S) = {z ∈ Rd : dist2(x, S) ≤ ε} is (σ − εt, δ − exp(−t2/2), ` + ε)-covered by C.

Our final lemma concerns the tradeoff between the different parameters of a cover. In particular,
by paying slightly in σ (the length of the projection), we can boost δ very close to 1, as long as ` is
small enough. The lemma follows immediately from Levy’s isoperimetric inequality for Sd−1. Our
lemma is just a restatement of Lemma 9 in [ARV04], so we omit its proof.

Lemma 4.5. Suppose that x is (σ, δ, `)-covered by C, then for any γ >
√

2 log(2/δ) + t, x is also
(σ − 2`γ, 1− exp(−t2/2), `)-covered by C.

Matching covers and cores. For a finite set X, let M(X) denote the set of partial matchings
on X (i.e. the set of partial matchings in the complete graph on X). Given a subset Y ⊆ X, we
say that Y is (σ, δ, `)-matching covered by X if there exists a map

M : Sd−1 →M(X)

such that the following conditions hold.

1. For every u ∈ Sd−1 and (x, y) ∈ M(u), we have 〈x− y, u〉 ≥ σ√
d
, and ‖x− y‖ ≤ `.

2. For every y ∈ Y ,
Pr

u∈Sd−1
[∃x ∈ X : (x, y) ∈ M(u)] ≥ δ.

We refer to M as the matching cover of Y (where the set X here is implicit). If Y is (σ, δ, `)-matching
covered by itself, then we call Y a (σ, δ, `)-core.

In the next section, we will use a modification of the [ARV04] chaining argument to give optimal
lower bounds on the size of a core in terms of the structural properties of the set Y . First, we show
how to do one step of the “chaining.” This is where our approach departs from that of [ARV04].
From now on, all covers, matching covers, and cores are assumed to be finite subsets of Rd.

For subsets S ⊆ Y ⊆ Rd, define

ΓY (S, r) = {y ∈ Y : dist2(y, S) ≤ r}.

Additionally, for k ∈ N, define Γk
Y (S, r) inductively by

Γk
Y (S, r) = ΓY (Γk−1

Y (S, r), r),

with Γ1
Y (S, r) = ΓY (S, r). Note that Γk

Y (S, r) is not necessarily the (k · r)-neighborhood of S in Y .
This will become very important in the next section.

Proposition 4.6 (One step). Suppose that C ⊆ Rd is a (σ0, δ0, `0)-core. Additionally, suppose that
S ⊆ C is (σ, 1− δ0

2 , `)-covered by C. Let β = |S|/|ΓC(S, `0)|. Then there exists a subset S′ ⊆ ΓC(S, `0)
with the following properties.

1. |S′| ≥ δ0
4 |S|.

2. S′ is
(
σ + σ0,

δ0β
4 , ` + `0

)
-covered by C.

13



Proof. Let M : Sd−1 → M(C) be the matching cover of C by itself. Consider a point x ∈ S.
Since S is (σ, 1 − δ0

2 , `)-covered by C, for a 1 − δ0
2 fraction of directions u ∈ Sd−1, there exists

some yu ∈ BC(x, `) such that 〈x− yu, u〉 ≥ σ√
d
. In addition (since C is a core), for a δ0 fraction of

u ∈ Sd−1, there exists a point zu such that (zu, x) ∈ M(u), which implies that 〈zu−x, u〉 ≥ σ0√
d

and
z ∈ BC(x, `0) (in particular, z ∈ ΓC(S, `0)).

By a trivial intersection bound, for a δ0
2 fraction of u ∈ Sd−1, both events happen simultaneously,

and we have 〈zu − yu, u〉 ≥ σ+σ0√
d

. In this case, we define A(zu, u) = yu. Observe that this is
well-defined; since M(u) is a matching, A(zu, u) is assigned at most once. Doing this for every
x ∈ S, u ∈ Sd−1 defines a partial assignment A : C × Sd−1 → C.

Define a measure µA on C by

µA(z) = Pr
u∈Sd−1

[A(z, u) is defined] .

First, we have µA(C) ≥ δ0
2 |S| by construction. Secondly, we have µA(z) > 0 only if z ∈ ΓC(S, `0),

and trivially µA(z) ≤ 1 for every z ∈ C. Define

S′ =
{

z ∈ C : µA(z) ≥ δ0β

4

}
,

and observe that
δ0

2
|S| = µA(C) ≤ |ΓC(S, `0)| · δ0β

4
+ |S′| = δ0

4
|S|+ |S′|.

We conclude that |S′| ≥ δ0
4 |S|. Additionally, every z ∈ C is (σ + σ0, µA(z), ` + `0)-covered by the

set {A(z, u) : A(z, u) is defined}, so S′ is itself (σ + σ0,
δ0β
4 , ` + `0)-covered by C.

4.2 NEG metrics, chaining, and the size of a core

In this section, we seek to lower bound the size of a core C ⊆ Rd in terms of its structural properties.
First of all, if C is a (σ, δ, `)-core, then one can apply the (trivial) bound of Lemma 4.2 to conclude
that (for σ, δ fixed constants), |C| ≥ exp(Ω(1/`2)). And unless one knows more about the structure
of C, this bound is asymptotically the best possible.

Recall the definition of an NEG metric: This is a metric space (X, dX) for which their exists a
map f : X → L2 with dX(x, y) = ‖f(x)− f(y)‖2. We will study cores which are the images of such
embeddings. In other words, subsets S ⊆ Rd for which the distance function (x, y) 7→ ‖x − y‖2 is
a metric on S. Such a set S ⊆ Rd must have a very restricted structure. For instance, it is an easy
observation that every triple in S subtends an angle of at most 90 degrees. Our main theorem is
that, for sets of this type, the size of a core must be significantly larger.

Theorem 4.7 (Big Core Theorem). Suppose that C ⊆ Rd is a (σ, δ, `)-core for some σ, δ ∈ (0, 1
2 ].

Suppose furthermore that the distance function dC(x, y) = ‖x− y‖2 is a metric on C. Then

|C| ≥ exp
(

Ω
(

σ6

`4 log2(1/δ)

))
.

We remark that for σ, δ > 0 fixed, the authors of [ARV04] obtain a weaker core theorem:
|C| ≥ exp(Ω(1/`3)). Theorem 4.7 is optimal in terms of the asymptotic dependence on `. To see
this, observe that the set C = {−1, 1}d is an

(
Ω(1), Ω(1), d−1/4

)
core. (We leave this as an exercise

to the reader. It follows easily from the consequences of Theorem 4.7 given in Section 4.3.)
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Proof of Theorem 4.7. Let

R =
⌊

σ2

211 · `2 log(8/δ2)

⌋
.

We claim the following.

Claim 4.8. There exists a subset SR ⊆ C such that SR is (σ
4 R, 1− δ

2 , 1)-covered by C.
To see that this claim finishes the proof, observe that Lemma 4.2 implies that

|C| ≥ exp(Ω(σR)2) ≥ exp(Ω(σ6/[`4 log2(1/δ)])).

We move on to a proof of the claim.

Proof of Claim 4.8. The proof is by induction on r.

Inductive assumption. For 0 ≤ r ≤ R, there exists a subset Sr ⊆ C satisfying the following
conditions.

1. Sr is (σ
4 r, 1− δ

2 , 2`
√

r)-covered by C.

2. |Sr| ≥
(

δ
4

)r |C|
3. |Sr| ≥ δ|ΓC(Sr, `)|.

The base case. Let S0 = Y . Then since S0 is trivially (0, 1, 0)-matching covered (every point
covers itself in all directions), the inductive assumption is satisfied.

Now assume that Sr−1 satisfies the inductive assumption and that r ≤ R. The construction of
Sr proceeds in three steps.

(S1) Use the core to extend the set Sr−1 to S′r ⊆ ΓC(Sr−1, `).

We apply Proposition 4.6 to the set Sr−1 and the core C to obtain S′r. Observe that by
property (3) of the inductive assumption, the value of β in Proposition 4.6 is at least δ. It
follows that S′r is (σ

4 (r−1)+σ, δ2

4 , `′)-covered by C for some `′ (the value of which we address
in step (S3)). Additionally, using property (1) of Proposition 4.6, |S′r| ≥

(
δ
4

) |Sr−1| ≥
(

δ
4

)r |C|.
(S2) Grow S′r until it stops expanding.

Let k ≥ 0 be the first value for which |Γk
C(S

′
r, `)| ≥ δ|Γk+1

C (S′r, `)|. Let Sr = Γk
C(S

′
r, `). Notice

that the neighborhood condition (3) is satisfied by construction, i.e. |Sr| ≥ δ|ΓC(Sr, `)|.
Condition (2) is satisfied since Sr ⊇ S′r.

We claim that Sr is (σ
4 (r− 1) + σ

2 , δ2

8 , `′′) covered by C (for some `′′ addressed in (S3)). First,
since we had |S′r| ≥

(
δ
4

)r |C|, it follows that

k ≤ log1/δ

(
4
δ2

)r

≤ 3r. (4)
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It follows that for every a ∈ Sr, there exists a b ∈ S′r and a sequence a = a0, a1, . . . , ak = b
of points in C such that ‖ai − ai+1‖ ≤ ` for i = 0, 1, . . . , k − 1. Now use the fact that
dC(x, y) = ‖x− y‖2 is a metric on C to conclude that

‖x− y‖2 ≤
k−1∑

i=0

‖ai − ai+1‖2 ≤ 3r`2, (5)

i.e. ‖x − y‖ ≤ `
√

3r, i.e. Sr ⊆ Nε(S′r) for ε = `
√

3r. Applying Corollary 4.4 to S′r with
t = σ/(2ε), we conclude that Sr is

(
σ
4 (r − 1) + σ

2 , δ2

4 − exp(−t2/2), `′′
)
-covered by C. This

yields our desired conclusion as long as exp(−t2/2) ≤ δ2

8 . This is true as long as

r ≤ σ2

24 `2 log(8/δ2)
, (6)

which holds since r ≤ R.

(S3) Bounding `′′ and boosting the cover to 1− δ
2 .

First we consider the size of `′′. Observe that in (S1), in augmenting our cover with Proposition
4.6, we go at most “one step” (along some “edge” of the matching cover) when passing from
Sr−1 to S′r (this corresponds to the fact that in property (2) of Proposition 4.6, the set S′ is
covered by vectors of length at most `+ `0, where `0 is the length of a vector in the matching
cover). Additionally, using the bound (4), we see that the total number of steps taken by (S2)
is at most 3r. Using a similar calculation to the one in line (5), we conclude that `′′ ≤ 2`

√
r.

It follows that Sr is
(

σ
4 (r − 1) + σ

2 , δ2

8 , 2`
√

r
)
-covered by C. Now we would like to apply

Lemma 4.5 with γ = σ/(8`′′) and t =
√

2 log(2/δ) to conclude that Sr is also
(

σ
4 r, 1− δ

2 , 2`
√

r
)
-

covered by C. This is possible as long as

γ >
√

2 log(2/δ) + t = 2
√

2 log(2/δ),

which holds whenever

r <
σ2

211 · `2 log(2/δ)
, (7)

which is true since r ≤ R.

This completes the induction.

4.3 Applications

In this section, we present some applications of Theorem 4.7.

4.3.1 Finding separated sets

We prove the following theorem from [ARV04] about separated sets. Our proof yields a very simple
algorithm to find such sets. Afterward, we mention some extensions which are useful for various
other approximation algorithms, and which require Theorem 4.7.
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Theorem 4.9 (Separated sets, [ARV04]). Let (X, d) be an n-point metric of negative type with
diam(X) ≤ 1 and 1

n2

∑
x,y∈X d(x, y) ≥ α > 0. Then there exist subsets A,B ⊆ X with |A|, |B| =

Ω(αn) and d(A, B) ≥ 1/O(
√

log n), where the O(·) notations hides some dependence on α.

Proof. Since (X, d) is of negative type, there exists a map f : X → Rn such that d(x, y) =
‖f(x) − f(y)‖2. We will associate X with the image of f . Since diam(X) ≤ 1, we may assume
that X ⊆ B(0, 1) ⊆ Rn. Let σ = σ(α), ` = `(α) be constants to be chosen later. For u ∈ Sn−1, we
define Lu = {x ∈ X : 〈x, u〉 ≤ −σ√

n
} and Ru = {x ∈ X : 〈x, u〉 ≥ σ√

n
}. Using standard estimates,

with probability p = Ω(α), one has |Lu|, |Ru| ≥ α
16n for some choice of σ = Θ(α) (see, e.g. [ARV04,

Lemma 4]).
Define a bipartite graph G = (Lu × Ru, E) with (x, y) ∈ E if x ∈ Lu, y ∈ Ru and ‖x− y‖ ≤ `.

Let M(u) be a maximal matching in G, and let L′u, R′
u be the sets Lu, Ru with the endpoints of

M(u) removed. Then by construction, d(L′u, R′
u) ≥ `2 (since ‖x− y‖ ≥ ` for all x ∈ L′u, y ∈ R′

u).
Let

q = Pr
u∈Sd−1

[
|M(u)| ≥ α

32
n

∣∣∣ |Lu|, |Ru| ≥ α

16
n
]
.

Under this definition, with probability p(1−q), we have |L′u|, |R′
u| ≥ α

32n, hence we can take A = L′u
and B = R′

u. So we are left to show that we can simultaneously choose ` ≥ O(log n)−1/4 and q < 1.
In fact, we will argue that from the matchings {M(u) : u ∈ Sd−1}, we can construct a core C ⊆ X.
Applying Theorem 4.7, we will conclude that |C| À n unless ` is large enough and q is small enough,
yielding a contradiction.

The idea is to define an (infinite) graph H = (X × Sd−1, EH) with an edge {(x, u), (y, u)}
whenever (x, y) ∈ M(u). We define the “degree” of a point x ∈ X by

dH(x) = Pr
u∈Sd−1

[∃ and edge in EH with endpoint (x, u) ].

Observe that since M(u) is a matching, there is at most one edge containing (x, u) as an endpoint.
It follows by construction that

∑
x∈X dH(x) ≥ pqα

32 n.
We now iteratively remove any node x ∈ X (thus removing all nodes (x, u) from H for u ∈ Sd−1

and all edges adjacent to these nodes) that has dH(x) ≤ pqα
64 . Let H ′ be the graph remaining after

all such nodes have been removed, and let C be the set of points not removed from H. Then
dH′(x) ≥ pqα

64 for every x ∈ C, and clearly H ′ is non-empty since the total degree removed is at
most pqα

64 n < pqα
32 n.

It follows that C is a (2σ, pqα/64, `)-core, hence by Theorem 4.7, we have

|C| ≥ exp

(
Ω

(
σ6

`4 log2( 1
pqα)

))
≥ exp

(
Ω

(
α6

`4 log2( 1
qα2 )

))
.

This yields a contradiction when the latter bound exceeds n. Thus for every fixed choice of q,
there exists an ` ≥ O(log n)−1/4 such that with probability p(1 − q), we have d(L′u, R′

u) ≥ `2 ≥
O(log n)−1/2, completing the proof.

In fact, the proof of Theorem 4.9 yields more information which does not follow from [ARV04].
Variants of the following corollary are used in the analysis of SDPs for vertex cover [Kar01] and
the directed sparsest cut problem [ACMM05].
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Corollary 4.10. Let X ⊆ Rn be an 2n-point subset such that the distance function d(x, y) =
‖x− y‖2 is a metric on X. Suppose furthermore that for every x ∈ X, ‖x‖ = 1 and if x ∈ X then
also −x ∈ X (in [ACMM05], this is referred to as a symmetric unit-`2

2 representation). Then there
exist subsets A, B ⊆ X for which A = −B and d(A,B) ≥ 1/O(

√
log n).

Proof. It is easy to check that since X is symmetric and all the points of X lie on the unit sphere,
one has 1

n2

∑
x,y∈X d(x, y) ≥ 1

2 , thus we are in position to apply Theorem 4.9. To ensure that
A = −B, observe that if x ∈ Lu, then −x ∈ Ru. Since we have freedom in choosing the maximal
matching M(u), whenever we add (x, y) to M(u), we can also add (−y,−x). This ensures that
L′u = −R′

u after removing the endpoints of M(u).

The next corollary is useful for the Sparsest Cut problem with general demands, as shown in
[CGR05]. We explain the application to embeddings in Section 4.3.3.

Corollary 4.11. Let (X, d) be an n-point metric space of negative type with diam(X) ≤ 1, and
let ω : X × X → Z+ be a symmetric weight function for which 0 ≤ w(a, b) ≤ poly(n) for all
a, b ∈ X, and such that w(a, b) > 0 only if d(a, b) ≥ α. Then there exist subsets A, B ⊆ X such
that ω(A,B) ≥ Ω(1)ω(X, X) and d(A,B) ≥ 1/O(

√
log n), where we have extended ω(·, ·) to subsets

in the obvious way, and the Ω(·), O(·) notations hides some dependence on α.

Proof. The idea of [CGR05] is to define π : X → N by π(x) =
∑

y∈X ω(x, y), then to replace every
copy of x ∈ X by π(x) copies. Let n′ be the new number of points, and observe that n′ = poly(n)
by assumption. (We allow each copy of x to participate in matchings M(u) as distinct points.) It
is not difficult to see that by choosing parameters appropriately in the proof of Theorem 4.7, for a
random u ∈ Sd−1, with constant probability p we have ω(Lu, Ru) ≥ (

α
16

)2
w(X, X) . Furthermore,

we can ensure that with probability p conditioned on this, we have |M(u)| ≤ (
α
16

)
n′
4 . (Note that

in forming L′u, R′
u from Lu, Ru, we have x ∈ (Lu \L′u)∪ (Ru \R′

u) only if all copies of x participate
in M(u).)

But then pruning out M(u) from Lu ×Ru can remove at most a 1
2

(
α
16

)
fraction of the weight,

hence

ω(L′u, R′
u) ≥

[( α

16

)2
− 1

2

( α

16

)2
]

w(X, X) ≥ 1
2

( α

16

)2
w(X,X).

Furthermore, d(L′u, R′
u) ≥ 1/O(

√
log n′) ≥ 1/O(

√
log n).

4.3.2 Approximating edge expansion in graphs

We now give a simple rounding algorithm for obtaining an O(
√

log n)-approximation for the Sparsest
Cut problem with uniform demands. The same algorithm was analyzed in [ARV04] to give a
guarantee of O(log n)2/3.

Let G = (V, E) be an n-vertex graph. In the Sparsest Cut problem (with uniform demands),
one wishes to find the cut with the smallest edge expansion. This is the cut S ⊆ V which minimizes
|E(S, S̄)|/(|S| · |S̄|), where E(S, S̄) is the set of edges crossing the cut (S, S̄). The edge expansion
of G is defined as

Φ(G) = min
S⊆V

|E(S, S̄)|
|S| · |S̄| .
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Algorithm RoundSDP
0. If for some i ∈ V , |B(i, 1

4)| ≥ n
4 , set L = B(i, 1

4) and go to (5).
1. Let i0 ∈ V be the vertex for which |B(i0, 2)| is maximized.
2. Choose u ∈ Sn−1 uniformly at random (according to the Haar measure).
3. Let L = {j ∈ V : 〈u, vj − vi0〉 ≤ −σ0√

n
} and R = {j ∈ V : 〈u, vj − vi0〉 ≥ σ0√

n
}.

4. As long as there exists (i, j) ∈ L×R with d(i, j) ≤ C0/
√

log n,
set L ← L− {i}, R ← R− {j}.

5. Sort the points i ∈ V according to the value d(i, L): {p1, p2, . . . , pn} = V .
6. Output the sparsest of the n− 1 cuts ({p1, . . . , pk}, {pk+1, . . . , pn}) for 1 ≤ k ≤ n− 1.

Figure 1: Hyperplane rounding algorithm

Consider the following SDP. It is well known that if sdp is the optimal value of this program, then
n2Φ(G) ≥ sdp. (see, e.g. [Goe97]).

min
∑

ij∈E

‖vi − vj‖2

s.t. vi ∈ Rn, ∀i ∈ V,

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2, ∀i, j, k ∈ V,

1
n2

∑

i,j∈V

‖vi − vj‖2 = 1.

Here, we show that the simple rounding procedure of Figure 1 yields an O(
√

log n)-approximation
to the Sparsest Cut. For simplicity, let C0, σ0 > 0 be some fixed constants, and let d(i, j) =
‖vi − vj‖2. We write B(i, r) = {j : d(i, j) ≤ r}, and for L ⊆ V , d(i, L) = minj∈L d(i, j).

Lemma 4.12. For appropriate choices of C0, σ0 > 0, if line (4) is reached, then with constant
probability over the choice of u ∈ Sn−1, |L|, |R| = Ω(n) after line (4).

Proof. Since we have reached line (4), every ball B(i, 1
4) contains less than n/4 points. Also, we

have |B(i0, 2)| ≥ n/2. Otherwise,

n2 =
∑

i,j

d(i, j) =
∑

i


∑

j

d(i, j)


 > n · n

2
· 2

yielding a contradiction. It follows that the set B = B(i0, 2) contains at least n/2 points. Fur-
thermore, since every i ∈ B has |B(i, 1

4)| ≤ n/4, the average distance in B is at least 1/8. It now
follows from applying the proof of Theorem 4.9 to B that, for appropriate choices of σ0, C0, we have
|L|, |R| = Ω(n) with Ω(1) probability after the execution of line (4). (To see that we are simulating
the proof algorithmically, just rescale so that diam(B) ≤ 1, and observe that the average distance
in B is still Ω(1). Notice that the pruning of line (4) is simply removing a maximal matching M(u)
from Lu and Ru in the proof of Theorem 4.9.)

Now we analyze lines (5) and (6).
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Lemma 4.13. Upon reaching line (5), we have

1
n2

∑

i,j

|d(i, L)− d(j, L)| ≥ 1
O(
√

log n)
.

Proof. If line (4) was executed, then using Lemma 4.12, we see that

1
n2

∑

i,j

|d(i, L)− d(j, L)| ≥ 1
n2

∑

i∈L,j∈R

|d(i, L)− d(j, L)| ≥ |L|
n2

∑

j∈R

|d(j, L)| ≥ 1
O(
√

log n)
.

Otherwise, there exists an index i′ for which |B(i′, 1
4)| ≥ n/4, and L = B(i′, 1

4). In this case,

n2 =
∑

i,j

d(i, j) ≤
∑

i,j

(
d(i, i′) + d(j, i′)

)
= 2n

∑

i

d(i, i′) ≤ 2n
∑

i

(
d(i, L) + 1

4

)
,

hence 1
n

∑
i d(i, L) ≥ 1

4 . Therefore,

1
n2

∑

i,j

|d(i, L)− d(j, L)| ≥ 1
n2

∑

j∈L,i/∈L

|d(j, L)| ≥ 1
4n

∑

i/∈L

d(i, L) ≥ 1
16

.

To finish, let Sk = {p1, p2, . . . , pk} (from line (6)) for each 1 ≤ k ≤ n− 1, and observe that for
all i, j ∈ V ,

|d(i, L)− d(j, L)| =
n−1∑

k=1

|1Sk
(i)− 1Sk

(j)| · |d(pi, L)− d(pi+1, L)|,

therefore

min
k

|E(Sk, S̄k)|
|Sk| · |S̄k|

= min
k

∑
ij∈E |1Sk

(i)− 1Sk
(j)|∑

i,j∈V |1Sk
(i)− 1Sk

(j)|

≥
∑n−1

k=1

(∑
ij∈E |1Sk

(i)− 1Sk
(j)| · |d(pi, L)− d(pi+1, L)|

)

∑n−1
k=1

(∑
i,j∈V |1Sk

(i)− 1Sk
(j)| · |d(pi, L)− d(pi+1, L)|

)

=

∑
ij∈E |d(i, L)− d(j, L)|∑
i,j∈V |d(i, L)− d(j, L)|

≤
∑

ij∈E d(i, j)

n2/O(
√

log n)
≤ O(

√
log n) · Φ(G),

where in the final line we employed Lemma 4.13 and sdp/n2 ≤ Φ(G).

4.3.3 Embedding NEG metrics into L1

In this section, we give a self-contained variant of the [CGR05] proof that Dn(NEG, L2) ≤ O(log n)3/4.
The following simple combinatorial lemma is implicit in [CGR05].

20



Lemma 4.14. Let S be any set of size n, let ε > 0 be given, and let F be a family of subsets of S.
Let ω : S → Z+ be a weight function which satisfies 1 ≤ ω(v) ≤ n2/ε for every v ∈ S. If for every
such weight function, there exists a subset T (ω) ∈ F such that ω(T ) ≥ ε · ω(S), then there exists a
family of k = O(log n/ε) subsets T1, T2, . . . , Tk ∈ F such that for every v ∈ S,

|{1 ≤ i ≤ k : v ∈ Ti}| ≥ ε

2
k.

Proof. We define a family of weight functions inductively. Initially, ω0(v) = 1 for every v ∈ S.
Given ωk−1 : S → Z+, we define ωk(v) = 2ωk−1(v) if v /∈ T (ωk−1) and ωk(v) = ωk−1(v) otherwise.

First, observe that ωk(S) ≤ [2(1−ε)]kω0(S) = [2(1−ε)]kn. Furthermore, if some element v ∈ S
has occurred in at most t of the sets {T (ωi) : 1 ≤ i ≤ k}, then ωk(v) ≥ 2k−t. For t = log2 n and
k = 2 log2 n/ε, this is a contradiction because

2k−t > [2(1− ε)]kn.

Finally, observe that the maximum weight of an element in ωk is at most 2k ≤ n2/ε.

We now prove the main theorem of this section.

Theorem 4.15. Let (X, d) be an n-point metric of negative type. Then for every τ ≥ 0, there
exists a family of K = O(log n) pairs of disjoint subsets (A1, B1), . . . , (AK , BK) with Ai, Bi ⊆ X
such that d(Ai, Bi) ≥ τ/O(

√
log n) for every i ∈ [K], and such if x, y ∈ X satisfy d(x, y) ∈ [τ, 2τ ],

then
|{1 ≤ i ≤ K : x ∈ Ai, y ∈ Bi}| = Ω(K).

Proof. First, assume that diam(X) ≤ τ . We will show how to remove this assumption at the end
of the proof. Let S = {(x, y) : d(x, y) ≤ τ}. For a subset T ⊆ S, let T 1, T 2 ⊆ X be the subsets
of points which occur as a first or second coordinate of some pair in T , respectively. We define
F = {T ⊆ S : d(T 1, T 2) ≥ τ/O(

√
log n)}. By Corollary 4.11, for every ω : S → Z+, there exists

a pair (A,B) ∈ F for which ω(A × B) ≥ Ω(1)ω(S) (there is some abuse of notation here, but ω
extends to X ×X because ω(a, b) = 0 unless (a, b) ∈ S, so there is no confusion). Thus by using
Lemma 4.14, the claim follows. (Each set Ti from Lemma 4.14 yields two pairs (Ai, Bi), (A′i, B

′
i)

with Ai = T 1
i , Bi = T 2

i , and A′i = T 2
i , B′

i = T 1
i .)

Now we address the assumption that diam(X) ≤ τ . There are two ways to handle this. One
is carried out in [CGR05], and requires a redefinition of the sets Lu, Ru in the proof of Theorem
4.9. We take an alternate path here. We may assume that X ⊆ Rn and d(x, y) = ‖x− y‖2. Using
Lemma 2.5, there exists a map g : X → Rn such that

1
2 min{τ, ‖x− y‖} ≤ ‖g(x)− g(y)‖ ≤ min{τ, ‖x− y‖}.

We would like to simply apply the above argument to the set g(X) ⊆ Rn with τ replaced by τ/2
since we now have diam(g(X)) ≤ τ . The problem is that the map (x, y) 7→ ‖g(x) − g(y)‖2 may
no longer form a metric. However, for any set of points x1, x2, . . . , xk ∈ g(X), we still have the
inequality ‖x1 − xk‖2 ≤ 2

∑k−1
i=1 ‖xi − xi+1‖2 (where 2 is a universal constant independent of k),

which is the only property needed in the proof of Theorem 4.7 (see equation 5 in that proof).
Further weakenings of the assumption in Theorem 4.7 are discussed in the next section.

If we combine the preceding theorem with the Gluing Lemma, we arrive at an embedding of
NEG metrics into L2.
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Theorem 4.16 ([CGR05]). Every n-point metric of negative type embeds in L2 with distortion
O(log n)3/4.

Proof. Using the Gluing Lemma, we need only show that for any τ ≥ 0, there exists a 1-Lipschitz
map fτ : X → L2 such that for every x, y ∈ X with d(x, y) ∈ [τ, 2τ ], we have ‖fτ (x) − fτ (y)‖ ≥
τ/O(

√
log n). Let (A1, B1), . . . , (AK , BK) be the subsets yielded by applying Theorem 4.15 to X

and τ . Consider the embedding fτ : X → RK given by

fτ (x) = 1√
K

(d(x,A1), d(x, A2), . . . , d(x,AK)) .

Clearly fτ is 1-Lipschitz. Furthermore, for any x, y ∈ X with d(x, y) ∈ [τ, 2τ ], we have

‖fτ (x)− fτ (y)‖2 =
1
K

K∑

i=1

|d(x,Ai)− d(y, Ai)|2 ≥ 1
K
· Ω(K) · d(Ai, Bi)2 ≥ τ

O(
√

log n)
.
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