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ABSTRACT
We consider questions about vertex cuts in graphs, random
walks in metric spaces, and dimension reduction in L1 and
L2; these topics are intimately connected because they can
each be reduced to the existence of various families of real-
valued Lipschitz maps on certain metric spaces. We view
these issues through the lens of shortest-path metrics on
series-parallel graphs, and we discuss the implications for
a variety of well-known open problems. Our main results
follow.

—Every n-point series-parallel metric embeds into `dom
1 with

O(
√

log n) distortion, matching a lower bound of Newman
and Rabinovich. Our embeddings yield an O(

√
log n) ap-

proximation algorithm for vertex sparsest cut in such graphs,
as well as an O(

√
log k) approximate max-flow/min-vertex-

cut theorem for series-parallel instances with k terminals,
improving over the O(log n) and O(log k) bounds for gen-
eral graphs.

—Every n-point series-parallel metric embeds with distor-

tion D into `d
1 with d = n1/Ω(D2), matching the dimension

reduction lower bound of Brinkman and Charikar.

—There exists a constant C > 0 such that if (X, d) is a
series-parallel metric then for every stationary, reversible
Markov chain {Zt}∞t=0 on X, we have for all t ≥ 0,

E
[
d(Zt, Z0)

2] ≤ Ct · E [
d(Z0, Z1)

2] .

More generally, we show that series-parallel metrics have
Markov type 2. This generalizes a result of Naor, Peres,
Schramm, and Sheffield for trees.
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1. INTRODUCTION
In the past 15 years, low-distortion metric embeddings—

following the initial work of Linial, London, and Rabinovich
[20]—have become an integral part of theoretical computer
science, and the geometry of metric spaces seems to lie at the
heart of some of the most important open problems in ap-
proximation algorithms (for some recent examples see, e.g.
[3, 2, 1, 10, 8] and the discussions therein). For background
on the field of metric embeddings and their applications in
computer science, we refer to Matoušek’s book [22, Ch. 15]
and Indyk’s survey [15].

In the present work, we consider phenomena related to
finding sparse vertex cuts in graphs, the nature of dimension
reduction in L1 and L2, and random walks on metric spaces.
These seemingly disparate topics are related by a common
theme: The desire to compute faithful 1-dimensional rep-
resentations of a given metric space. Stated differently, our
study concerns the existence of certain families of real-valued
Lipschitz maps.

We first present some notation. If (X, d) is a metric space

and s ≥ 1, we use c
dom(s)
1 (X) to denote the minimum distor-

tion of any 1-Lipschitz embedding from X into L1, subject
to the constraint that every coordinate of the embedding is
s-Lipschitz. In other words, we require a random mapping
F : X → R such that for every x, y ∈ X, we have

1. Pr (|F (x)− F (y)| ≤ s · d(x, y)) = 1, and

2. d(x,y)
D

≤ E|F (x)− F (y)| ≤ d(x, y).

Matoušek and Rabinovich [23] initiated the study of this pa-
rameter in the case s = 1, based on the fact that Bourgain’s
embedding applied to an n-point metric space satisfies these
constraints for s = 1 and D = O(log n) [5]. For this special

case, we denote cdom
1 (X) = c

dom(1)
1 (X).



Applications of `dom
1 embeddings. To understand the

importance of studying this parameter, we mention the fol-
lowing results. The first two are algorithmic reductions due
to Feige, Hajiaghayi, and Lee [10] which show that these
types of embeddings can be used to find sparse vertex cuts
in graphs.

Theorem 1.1. (Sparse vertex cuts and multi-flows)
If F is a family of graphs such that for every n-point shortest-
path metric (X, d) arising from assigning edge weights to the
graphs in F , we have cdom

1 (X) ≤ D(n), then there is an
O(D(n)) approximation to the Vertex Sparsest Cut Problem
on arbitrary n-node graphs from F .

Furthermore, the gap between the vertex sparsest cut and
the maximum vertex-capacitated multi-commodity flow on
any instance coming from F is at most O(D(k)) where k
is the number of flow types.

We recall that the Vertex Sparsest Cut Problem is simply
the variant of Sparsest Cut where vertices are cut instead of
edges: Given a graph G = (V, E), with weights w : V → R+

on the vertices and demands dem : V × V → R+, find a
partition V = A ∪ S ∪ B of the vertex set such that there
are no edges between A and B, and the following ratio is
minimized ∑

v∈S w(v)∑
u∈A∪S

∑
v∈B∪S dem(u, v)

.

In [10], it is shown that these embeddings can be used to
round the vertex Sparsest Cut SDP—we refer to [10] for a
discussion of negative type metrics.

Theorem 1.2 (SDP rounding for vertex cuts, [10]).
If for every n-point metric of negative type (X, d) one has
cdom
1 (X) ≤ D(n), then there is an O(D(n)) approximation

to Vertex Sparsest Cut in general graphs.

The next application of `dom
1 embeddings concerns dimen-

sion reduction in L1, via the following theorem of Brinkman
and Charikar [6] (restated in our notation). The idea is that
control on the Lipschitz constant of each coordinate gives
one the ability to do sparse random sampling.

Theorem 1.3 (Dimension reduction in L1, [6]). If

one has c
dom(s)
1 (X) ≤ D for some metric space (X, d). Then

there exists a distortion O(D) embedding of X into `
O(sD log n)
1 .

Intrinsic dimension and subsets of L2. There is a well-
known “intrinsic” dimension reduction question for doubling
subsets of L2, apparently first asked by Lang and Plaut [17]
(see also [12]): If X ⊆ L2 is doubling with constant λ, does
there exist an embedding of X into Rk with k and the distor-
tion depending only on λ? (We refer to [14] for a discussion
of doubling spaces and the doubling constant.)

We now outline how `dom
1 embeddings might be used to

give a negative answer to this question. From [12], we know
that every n-point doubling metric embeds in L2 with dis-
tortion O(

√
log n). It is also easy to see that cdom

1 (Rk) ≤ k,
since the coordinate projections are 1-Lipschitz. Thus we
pose the following.

Question 1. If (X, d) is an n-point doubling metric, do
we have cdom

1 (X) ≤ O(
√

log n)?

If the answer to this question is negative, it would yield
a negative answer to the problem of dimension reduction
for doubling metrics as long as the violating space has an
O(
√

log n)-embedding into L2 where the image is doubling
(this condition does not seem particularly strong). Thus we
see that both upper and lower bounds for embeddings into
`dom
1 are interesting. The preceding remark raises another

question.

Question 2. If (X, d) is an n-point doubling metric, does
there exist an O(

√
log n)-embedding into L2 for which the

image is doubling (with constant independent of n)?

Markov type of metric spaces. Finally, we consider
Ball’s notion [4] of Markov type for metric spaces. A metric
space (X, d) is said to have Markov type p if there exists a
constant C such that for every stationary, reversible Markov
chain {Zt}∞t=0 on {1, . . . , n} and every map f : {1, . . . , n} →
X, we have

E d(Zt, Z0)
p ≤ Cpt · E d(Z0, Z1)

p

The smallest constant C for which this holds is denoted by
Mp(X) and called the Markov type p-constant of X. Al-
though we do not yet know of any algorithmic application
of Markov type, it is a notion that seems to fit in well with
the questions addressed in the present paper, due to the fol-
lowing lemma (which is a straightforward generalization of
the “potential function” approach of Naor, Peres, Schramm,
and Sheffield [25]). We recall that, in general (i.e. for fam-
ilies of spaces which contain arbitrarily long path metrics),
p = 2 is the best-possible Markov type.

Proposition 1.4. Let G = (X, E) be a weighted graph
with shortest path metric d. If there exists a map ψ : X → R
such that, for every path P = 〈v0, v1, . . . , vm〉 in G, one has

d(v0, vm) ≤ max {|ψ(v0)− ψ(vt)| : 0 ≤ t ≤ m}
then X has Markov type 2, and M2(X) ≤ O(‖ψ‖Lip).

The existence of a such a map ψ : X → R seems very pow-
erful; in particular, it suggests that the space (X, d) is “one
directional” (in the sense of the geodesic structure of trees
or hyperbolic spaces). The follow question seems intriguing.

Question 3. If G = (X, E) is a weighted graph metric
and ψ : X → R satisfies the condition of Proposition 1.4,
does there exist a constant C = C(‖ψ‖Lip) such that c1(X) ≤
C?

1.1 Results and related work
In general, little is known about the construction of `dom

1

embeddings. Bourgain’s theorem [5] shows that every n-
point metric space (X, d) has cdom

1 (X) ≤ O(log n). Further-
more, it is easy to see (via Cauchy-Schwartz) that cdom

1 (X) ≥
c2(X) where c2(X) represents the distortion required to em-
bed X into L2. In this paper, we study the previously men-
tioned notions, in particular `dom

1 embeddings, through the
lens of shortest-path metrics on series-parallel graphs.

Such graphs and their associated metrics lie at the precipice
of a number of embedding questions. This is due largely to
the fact that they can exhibit non-trivial multi-scale struc-
ture. For instance, they embed uniformly into L1 [13], but
not into L2 [26], though they do admit L2 embeddings bet-
ter than the worst case [27]. They exhibit the worst-possible



distortion for embedding n-point metric spaces into distribu-
tions over dominating trees [13], and although they embed
in L1, the required dimension of the embedding is very large
[6]. Furthermore, there are interesting examples of doubling,
series-parallel metrics that, e.g. disprove Assouad’s conjec-
ture for doubling metrics [16]. We give tight bounds on

`
dom(s)
1 embeddings for the class of series-parallel metrics.

Theorem 1.5. Let (X, d) be any n-point series-parallel
metric, then for every s ≥ 1,

c
dom(s)
1 (X) = O

(√
log n

log s

)
,

and this bound is tight for every s ≥ 1.

Vertex Sparsest Cut. Our embeddings yield an O(
√

log n)-
approximation algorithm for vertex sparsest cut in such graphs,
as well as an O(

√
log k)-approximate max-flow/min-vertex-

cut theorem for series-parallel instances with k terminals,
improving over the O(log n) and O(log k) bounds for general
graphs [10]. Our study of such graphs is partially motivated
by the following open problem.

Question 4. Is it true that c
dom(s)
1 (X) = o(log n) when

(X, d) is an n-point planar metric, or an n-point metric
space of negative type?

Dimension reduction in L1. We show that every n-
point series-parallel metric embeds with distortion D into

`d
1 with d = n1/Ω(D2), matching the dimension reduction

lower bound of Brinkman and Charikar [6] (see also [18]).
Given that the only dimension reduction lower bounds for
L1 are based on series-parallel graphs, the next question is
quite natural.

Question 5. Does every n-point subset of L1 admit a D-

embedding into `d
1 with d = n1/Ω(D2)?

We remark that for, say, constant values of D, it is not
known how to reduce the dimension past d = O(n) for gen-
eral n-point subsets. For D = O(

√
log n log log n), the re-

sults of [2] can achieve d = O(log n).

Markov type 2. We show that series-parallel metrics have
Markov type 2 (with uniformly bounded type 2 constant).
This generalizes the result of [25] for trees. We recall that the
authors of that paper asked whether every doubling metric
or every planar metric has Markov type 2 with uniformly
bounded constant.

1.2 Techniques & proof overview
Structure theorem. Our approach begins with a basic
structure theorem for metrics on series-parallel graphs. We
show that every such metric embeds into the product of
two (perhaps slightly larger) metric spaces called bundle
trees. These are shortest path metrics on a graph whose
2-connected components are bundles. A bundle is a series-
parallel metric with two distinguished points s, t such that
every simple s-t path has the same length.

A related structure theorem was given by Gupta et. al.
[13], but their embedding is into a distribution over bundle
trees, and there is no bound on the variance of the Lipschitz

constant (they only a require a bound which holds in ex-
pectation). To overcome this, we combine the techniques of
[13] with the low-variance approach of Charikar and Sahai
[7] for outerplanar graphs. This is carried out in Section 4.
The structure theorem reduces problems for general series-
parallel metrics, to the cases of trees and series-parallel bun-
dles.

Distributions over Lipschitz maps and dimension re-
duction in L1. Recall that we are trying to construct L1

embeddings where we have some control on the Lipschitz
constant of every coordinate. Consider first the problem
of “converting” an `2 embedding into an `dom

1 embedding.
Given an embedding f : X → `n

2 , we can think of the lat-
ter space as having a basis of n i.i.d. ±1 Bernoulli random
variables {εi}n

i=1 (with inner product 〈x, y〉 = E(xy)). Thus
for every x ∈ X, f(x) =

∑n
i=1 ci(x)εi for some coefficients

{ci(x)}.
In this sense, we can think about the embedding as a ran-

dom walk; to get an embedding into `
dom(s)
1 , we have to

truncate the walk if it starts to wander too far. Unfortu-
nately, the walks corresponding to distinct points are corre-
lated, and any straightforward approach ends up destroying
all the variance in the embedding very quickly (roughly be-
cause every point is participating in n− 1 different random
walks, one for every other y ∈ X, and we have to “stop” if
any of these walks becomes violated).

Thus we have to redesign our embeddings so they allow
for “local” truncation rules that still allow the image of x to
vary significantly (within the standard deviation). In order
to get a tight result for the whole range s ∈ [1,∞), we also
need to have a method for slowly increasing the variance (as
in Corollary 3.2, we can think of this as losing control on the
pth moments as p decays from 2 to 1, much as in the lower
bound proof of [18]).

In Section 3, we give `dom
1 embeddings for bundles and

trees, and a reduction of bundle trees to these two cases.
arbitrary L1 embeddings, this reduction is non-trivial). For
trees, we use a simple edge-by-edge random walk based on
the standard caterpillar decomposition approach (see [21,
12, 19, 11]). The main technical component of the proof
is the embedding for series-parallel bundles. We use a lo-
cal truncation strategy given by the tree-like nature of their
construction sequence (see Section 2.1). We are careful to
main two properties: monotonicity (Lemma 3.5) and unbi-
asedness (Lemma 3.6) that allow us to view the stretch of
an edge as a martingale—we then bound the effect of trun-
cation using Doob’s maximal inequality. We suspect that
these two properties will play an essential role in future `dom

1

embeddings, as well as in the proof of lower bounds.

Markov type 2. To prove that series-parallel metrics have
Markov type 2, there are three steps, which occur in Section
5. The first is a straight-forward generalization of the result
of [25] which reduces the problem to the construction of
appropriate Lipschitz maps on our space. The second step
is the structure theorem of Section 4, which allows us to
pass to a bundle tree. The final step is to prove that bundle
trees themselves have Markov type 2.

2. PRELIMINARIES
We briefly review some general facts and notation. If

(X, dX), (Y, dY ) are metric spaces, and f : X → Y , then



we write ‖f‖Lip = supx6=y∈X
dY (f(x),f(y))

dX (x,y)
. If f is injective,

then the distortion of f is ‖f‖Lip · ‖f−1‖Lip. We will of-
ten encounter the product metric space X × Y which we
always equip with the `1 distance dX×Y ((x, y), (x′, y′)) =
dX(x, x′) + dY (y, y′). If Z is a real-valued random variable,

we write ‖Z‖p = (E|Z|p)
1
p , for p < ∞, and ‖Z‖∞ = inf{C :

Pr(Z ≤ C) = 1}.
If G is a graph, we use V (G) and E(G) to denote its

vertex and edge set, respectively. For weighted graphs, we
use len(e) to denote the length of an edge, and for a path P
consisting of edges e1, . . . , em, we write len(P ) for len(e1) +
· · · len(em). We use the notation (u, v) throughout the paper
for an undirected edge (thus the ordering does not matter).
If E1, E2 are two expressions, we sometimes write E1 . E2

for E1 = O(E2), and E1 ≈ E2 if both E1 . E2 and E2 . E1.

2.1 Series-parallel metrics
In this section, we give a quick review of series-parallel

graphs and their shortest-path metrics. For more informa-
tion, we refer to [13].

Series-parallel graphs, metrics, and bundles. A series-
parallel graph (SP graph) G = (V, E) has endpoints s, t ∈ V .
The class of SP graphs can be constructed inductively as fol-
lows. A single edge (s, t) is an SP graph with endpoints s, t.
Given two SP graphs H and H ′ with endpoints s, t ∈ V (H)
and s′, t′ ∈ V (H ′), we can form a new SP graph by taking
the disjoint union of H and H ′ and then (1) identifying t
with s′ (called series composition) or (2) identifying s with s′

and t with t′ (called parallel composition). It is well-known
that the class of treewidth-2 graphs is precisely the class of
graphs whose 2-connected components are SP graphs.

A series-parallel metric space (SP metric) is a metric space
(X, d) which arises from the shortest-path distance on an SP
graph G = (V, E), where each edge e ∈ E is assigned a non-
negative length len(e). We say that (X, d) has an associated
(weighted) SP graph G = (V, E) (where the edge weights are
naturally given by d(u, v) for (u, v) ∈ E). We will sometimes
refer to the endpoints of G as the endpoints of X. An SP
bundle metric is an SP metric space (X, d) with endpoints
s, t ∈ X such that every simple s-t path in the associated
graph G has the same length, and such that G is 2-edge-
connected.

Series-parallel bundle construction. We can specify
an alternate inductive construction sequence for SP bun-
dle metrics. The two-point metric space {s, t} with any
value d(s, t) ∈ R+ is an SP bundle metric with the ob-
vious associated graph. Given any SP bundle metric X
with associated graph G = (V, E), we can choose an edge
e = (s, t) ∈ E and consider the new graph G′ specified as
follows. For some k ∈ N, V (G′) = V ∪ {x1, . . . , xk} and
E(G′) = E ∪ {(s, xi), (xi, t)}k

i=1 \ (s, t). Furthermore, we
construct a new metric (X ′, d) on X ′ = V (G′) by extend-
ing the distance function d to X ′ \X as follows: For some
numbers d1, . . . , dk ∈ R+ with di ≤ d(s, t) for every i ∈ [k],
we set d(s, xi) = di and d(xi, t) = d(s, t)− di. The vertices
x1, . . . , xk are called the children of the edge (s, t) ∈ E(G).

Thus for any SP bundle metric (X, d), we have a construc-
tion sequence G = 〈G0, G1, . . . , Gm〉, where Gm is the graph
associated to X. We say that the construction sequence is
ε-regular if

(
1
2
− ε

)
d(s, t) ≤ d(s, x) ≤ (

1
2

+ ε
)

d(s, t) when-
ever x ∈ V (Gj+1) is a child of the edge (s, t) ∈ E(Gj).

We can naturally associate a rooted tree TG with the con-
struction sequence G = 〈G0, G1, . . . , Gm〉 as follows. First,
we have V (TG) = V (Gm). Now, for any v /∈ V (G0), there
exists a unique number lev(v) ∈ {1, . . . , m} so that v ∈
V (Glev(v)) but v /∈ V (Glev(v)−1). If V (G0) = {s0, t0} then
we assign arbitrarily lev(s0) = −1, lev(t0) = 0. We define s0

as the root of TG , and

E(TG) = {(s, x) : (s, t) ∈ E(Gj), x ∈ V (Gj+1) is a child

of (s, t), and lev(s) > lev(t)}.
Observe that this is well-defined since, for any (s, t) ∈ E(Gj),
we have lev(s) 6= lev(t). Finally, for v ∈ V (TG), we define
AG(v) ⊆ V (TG) to be the set of ancestors of v in TG , and we
define ∆G(v) ⊆ V (TG) as the set of descendants of v in TG .

3. EMBEDDINGS
In this section, we prove Theorem 1.5. The proof proceeds

over the next four sections. In Sections 3.1 and 3.2, we prove
the theorem for regular SP bundle metrics. In Section 3.3,
we prove the theorem for tree metrics, and in Section 3.4, we
combine all these results with the Structure Theorem (Thm
4.1) to obtain Theorem 1.5.

We now discuss the consequences. The algorithmic appli-
cations of these theorems are addressed in Section 1. First,
we show that the lower bound of Newman and Rabinovich
[26, 23] is tight for series-parallel graphs. This follows im-
mediately by setting s = 1 above.

Corollary 3.1. (Dominated L1 embeddings) For any
n-point series-parallel metric (X, d), one has cdom

1 (X) =
O(
√

log n).

Next, we show that the Lp distortion lower bound of Lee
and Naor [18] is also tight. The correspondence with Lp

embeddings also shows that the upper bound of Theorem
1.5 is tight.

Corollary 3.2. (Lp embeddings, 1 < p < 2) There
exists a constant K ≥ 1 such that for any n-point series-
parallel metric and any number p = p(n) ∈ [1, 2], we have

cp(X) ≤ K
√

(p− 1) log n.

Proof. Setting s = exp(1/(p − 1)) in Theorem 1.5, we
have

‖F (x)− F (y)‖p ≥ ‖F (x)− F (y)‖1 ≥ d(x, y)

O(
√

(p− 1) log n)
.

On the other hand,

‖F (x)− F (y)‖p = ‖(F (x)− F (y))p‖1/p
1

≤ ‖F (x)− F (y)‖1/p
1 · ‖F (x)− F (y)‖(p−1)/p

∞

≤ d(x, y)1/p · s(p−1)/p · d(x, y)1−1/p

≤ exp(1) · d(x, y).

Finally, we match the dimension reduction lower bound
of Brinkman and Charikar [6]. This follows from combining
Theorem 1.5 with Theorem 1.3.

Corollary 3.3. (Dimension reduction in L1) Let (X, d)
be any n-point series-parallel metric. Then for every D ≥ 1,

there exists a D-embedding f : X → `d with d = n1/Ω(D2).



3.1 Bundles: Basic construction
Let D ≥ 2 be given. Let (X, d) be an n-point SP bun-

dle metric, with an associated weighted series-parallel graph
G = (X, E), and endpoints s0, t0 ∈ X.

Let G = 〈G0, G1, . . . , Gm = G〉 be the construction se-
quence for G, and let TG be the corresponding construction
tree. Throughout this section, we use Γ(TG) to denote the
set of nodes in TG with more than one child, and we write
Φ = Φ(TG) = |Γ(TG)| for the number of such nodes.

We will specify a set RG and a random mapping F : X →
R inductively. G0 has two nodes s0, t0 ∈ V (G0), and a single
edge (s0, t0). We let F (s0) = 0 and F (t0) = d(s0, t0).

Now, given a mapping F : V (Gk−1) → R, we randomly
extend it to a map on V (Gk) ⊇ V (Gk−1). One forms Gk

from Gk−1 by selecting a single edge (s, t) ∈ E(Gk), and
adding child vertices x1, x2, . . . , xr for some r ≥ 1. We
recall that to every child xi is associated a set of descen-
dent vertices ∆G(xi). By reordering, we may assume that
|Γ(TG) ∩∆G(x1)| ≥ |Γ(TG) ∩∆G(xi)| for all 1 ≤ i ≤ r. We
put RG ← RG ∪ {x2, x3, . . . , xr}. Assume, without loss of
generality, that F (s) ≤ F (t).

Now, we set S = ∅ if

|F (s)− F (t)| > d(s, t)

(
4 · exp

(
1 + log2 Φ

D2

))

Otherwise, S = {2, 3, . . . , r}. For i /∈ S, we define

F (xi) = F (s) +
d(s, xi)

d(s, t)
|F (s)− F (t)|. (1)

If i ∈ S, letting {ε(xi)}i∈S be a system of i.i.d. uniform ±1
random variables, we define

F (xi) =





F (s) + d(s,xi)
d(s,t)

|F (s)− F (t)|
(
1 + ε(xi)

D

)

if d(s, xi) ≤ d(t, xi)

F (t)− d(t,xi)
d(s,t)

|F (s)− F (t)|
(
1 + ε(xi)

D

)

if d(t, xi) < d(s, xi)

(2)

3.2 Bundles: Analysis
We now analyze the random map F : X → R defined in

Section 3.1. We start with some simple observations.

Lemma 3.4. If x ∈ X, and AG(x) are the ancestors of x,
then |AG(x) ∩RG | ≤ 1 + log2 Φ.

Proof. Recall that there is a rooted tree TG associated to
the construction sequence G such that AG(x) lists precisely
the vertices from the root to x in TG . If y ∈ RG , then it was
chosen because y had at least one distinct sibling z with
|Γ(TG) ∩ ∆G(z)| ≥ |Γ(TG) ∩ ∆G(y)|. Furthermore, if p is
the parent of y, then p ∈ Γ(TG). This implies (inductively)
that if |AG(x) ∩ RG | = k, then Φ = |Γ(TG)| ≥ 2k−1, hence
k ≤ 1 + log2 Φ.

Lemma 3.5. (Monotonicity) If x, y ∈ X are two ver-
tices lying along a simple s0-t0 path in G for which d(x, s0) ≤
d(y, s0), then F (x) ≤ F (y) holds.

Proof. This follows by verifying that for any edge (s, t) ∈
E(Gk) with F (s) ≤ F (t), and any child vertex x ∈ V (Gk+1),
we have F (s) ≤ F (x) ≤ F (t). If F (x) is defined accord-
ing to equation (1), this is immediate. Otherwise F (x) is
defined according to (2); consider, for instance, the case

d(s, x) ≤ d(t, x). In this case, d(s,x)
d(x,t)

≤ 1
2

and since D ≥ 1,

we have 1 + 1
D
≤ 2. It follows that F (s) ≤ F (x) ≤ F (t).

The other case is similar.

We now define a random process with respect to a set of
h numbers {δ1, δ2, . . . δh} and a truncation point T . The
process is defined inductively as follows Y0 = 1, and for
1 ≤ t ≤ h,

Yt =

{
Yt−1 Yt−1 > T

(1 + εtδt)Yt−1 otherwise,

where {εt}h
t=1 is a system of i.i.d. uniform ±1 random vari-

ables. We define Yt = Yh for t ≥ h, and denote the random
variable Yt by Yt(δ1, . . . , δh; T ). Observe that Yt(δ1, . . . , δh; T )
= Yt(δ1, . . . , δt; T ). We first argue that this process controls
the distribution of edge lengths under F .

For two random variables A, B (defined on possibly differ-
ent probability spaces), we use the notation A ∼ B to mean
that A and B are equal in distribution.

Lemma 3.6 (Edge distribution). If (s, t) ∈ E(Gk) is
any edge, then

|F (s)− F (t)| ∼ d(s, t) ·Yh(δ1, . . . , δh; T ),

where 0 ≤ δi ≤ 1
D

for 1 ≤ i ≤ h, h ≤ 1 + log2 Φ, and

T = 4 · exp
(

1+log2 Φ

D2

)
.

Proof. Inductively, we assume that |F (s)−F (t)| ∼ d(s, t)·
Yh−1(δ1, . . . , δh−1; T ), and let x ∈ V (Gk+1) be a child of the
edge (s, t) ∈ E(Gk). If F (x) is defined according to (1), then

|F (x)− F (s)| ∼ d(x, s) ·Yh−1(δ1, . . . , δh−1; T )

|F (x)− F (t)| ∼ d(x, t) ·Yh−1(δ1, . . . , δh−1; T ).

In particular, this happens if Yh−1(δ1, . . . , δh−1; T ) > 4 ·
exp

(
1+log2 Φ

D2

)
= T .

Otherwise, assume that d(x, s) ≤ d(x, t). Then we have

|F (x)− F (s)| =
d(x, s)

d(s, t)
|F (s)− F (t)|

(
1 +

ε(x)

D

)

∼ d(x, s)

(
1 +

ε(x)

D

)
Yh−1(δ1, . . . , δh−1; T )

∼ d(x, s) ·Yh(δ1, . . . , δh−1,
1
D

; T ).

Additionally,

|F (x)−F (t)|
= |F (s)− F (t)| − |F (s)− F (x)|

= |F (s)− F (t)|
(

1− d(s, x)

d(s, t)

(
1 +

ε(x)

D

))

∼ d(x, t)

(
1− ε(x)

D

d(s, x)

d(x, t)

)
Yh−1(δ1, . . . , δh−1; T )

∼ d(x, t) ·Yh(δ1, . . . , δh−1, δh; T ),

where δh = 1
D

d(s,x)
d(s,t)

≤ 1
D

. The case where d(x, s) > d(x, t)

is identical.
Finally, the preceding proof shows that

h ≤ |AG(x) ∩RG | ≤ 1 + log2 Φ

by Lemma 3.4.



Corollary 3.7. If x, y ∈ X lie on a simple s0-t0 path in
G, then E |F (x) − F (y)| = d(x, y). In particular, for every
x, y ∈ X, we have E |F (x)− F (y)| ≤ d(x, y).

Proof. If x, y lie on a simple s0-t0 path x = v0, . . . , vq =
y then, because (X, d) is an SP bundle, this is also a shortest
path. Applying Lemma 3.5 and using linearity of expecta-
tion yields

E |F (x)− F (y)| =
q−1∑
i=0

E |F (vi)− F (vi+1)|.

For any edges (u, v) ∈ E(G) = E(Gm), applying Lemma
3.6, we see that

|F (u)− F (v)| ∼ d(u, v) ·Yh(δ1, . . . , δh; T )

for some choice of parameters {δi}, T . But the process
{Yt(δ1, . . . , δh; T )}t≥0 is easily seen to be a martingale, hence
EYh(δ1, . . . , δh; T ) = EY0(δ1, . . . , δh; T ) = 1. Since (vi, vi+1)
is an edge for 0 ≤ i ≤ q − 1, we conclude that E |F (x) −
F (y)| = ∑q−1

i=0 d(vi, vi+1) = d(x, y). The final remark of the
corollary follows from the fact that every edge in G lies along
a simple s0-t0 path.

We come now to our main probabilistic lemma.
Let Y∗

t (δ1, . . . , δh; T ) = max0≤i≤t Yt(δ1, . . . , δh; T ).

Lemma 3.8. Suppose that for every i ∈ [h], δi ∈ [0, 1
2
],

and T ≥ 4 · e
∑h

i=1 δ2
i . Then,

Pr
(
Y∗

h(δ1, . . . , δh; T ) < T
)
≥ 1

2
and

E
[
Yh(δ1, . . . , δh; T )

∣∣∣Y∗
h(δ1, . . . , δh; T ) < T

]
≥ 1

2
.

Proof. We begin by setting Yt = Yt(δ1, . . . , δh; T ) and
Y∗

t = Y∗
t (δ1, . . . , δh; T ) for t ≥ 0. Since {Yt}t≥0 is a mar-

tingale, Doob’s maximal inequality (see e.g. [9, §4.4]) yields

Pr(Y∗
h ≥ T ) ≤ EYh

T
=

1

T
≤ 1

2
,

proving the first claim of the lemma.
Next, we note that EY2

h ≤
∏h

i=1(1 + δ2
i ), since EY2

t ≤
(1 + δ2

t )EY2
t−1. Moreover, {Y2

t }t≥0 is a sub-martingale;
employing Doob’s inequality again,

Pr
(
Y∗

h ≥ T
)
≤ EY2

h

T 2
≤

∏h
i=1(1 + δ2

i )

T 2
≤ e

∑h
i=1 δ2

i

T 2
. (3)

Thus we have

E [Yh |Y∗
h < T ] ≥ E [Yh]− Pr (Y∗

h ≥ T ) · E [Yh |Y∗
h ≥ T ]

≥ 1− e
∑h

i=1 δ2
i

T 2
· E[Yh |Y∗

h ≥ T ]

≥ 1− e
∑h

i=1 δ2
i

T 2
· (2T )

≥ 1− 2 · e
∑h

i=1 δ2
i

T

≥ 1

2
.

where in the penultimate line, we have used the fact that
Pr(Yh < 2T ) = 1.

We now show a lower bound on E |F (x)−F (y)| for x, y ∈
X.

Lemma 3.9 (Lower bound for regular bundles). If
the construction sequence G is 1

4
-regular, then for any x, y ∈

X, we have E |F (x)− F (y)| ≥ d(x,y)
128D

.

Proof of Lemma 3.9. If x, y ∈ X lie along a simple s0-
t0 path, then we are done by Corollary 3.7. Otherwise, there
is a distinct pair of vertices u ∈ AG(x) and v ∈ AG(y), a
value 0 ≤ k ≤ m, and an edge (s, t) ∈ E(Gk) such that u
and v are children of (s, t) (one of s or t is the least common
ancestor of u and v in TG). Without loss of generality, we
may assume that F (s) ≤ F (t).

First, we can assume that that |d(x, s)− d(y, s)| ≤ d(x,y)
4D

and |d(x, t) − d(y, t)| ≤ d(x,y)
4D

since using Corollary 3.7, we
have the inequalities

E |F (x)− F (y)| ≥
∣∣∣E |F (x)− F (s)| − E |F (y)− F (s)|

∣∣∣
= |d(x, s)− d(y, s)|,

E |F (x)− F (y)| ≥
∣∣∣E |F (x)− F (t)| − E |F (y)− F (t)|

∣∣∣
= |d(x, t)− d(y, t)|.

By construction, at least one of u or v is in RG . Without
loss of generality, suppose u ∈ RG . Since F (x) and F (y)
are independent conditioned on {F (s), F (t)}, we need only
exhibit some variance in F (x) conditioned on {F (s), F (t)}
in order to prove a lower bound on E |F (x)−F (y)|. Since G
is 1

4
-regular, we have 1

4
d(s, t) ≤ d(s, u) ≤ 3

4
d(s, t). Let Erand

be the event that F (u) is determined by line (2). Letting

T = 4 · exp
(

1+log2 Φ

D2

)
, and recalling that u ∈ RG , we see

that Erand occurs precisely when the event Eshort = {|F (s)−
F (t)| ≤ T · d(s, t)} occurs. Applying Lemma 3.6, we see
additionally that |F (s) − F (t)| ∼ Y (δ1, . . . , δh; T ) for some
sequence {δi}h

i=1 satisfying the conditions of the lemma.
In particular, applying Lemma 3.8, we see that Pr(Erand) ≥

1
2
, and

E
[
|F (s)− F (t)|

∣∣∣ Erand

]
≥ 1

2
E |F (s)− F (t)| = d(s, t)

2
.

Assuming that Erand occurs, we have two cases.

1. d(u, s) ≤ d(u, t): In this case,

|F (u)− F (s)|
d(u, s)

=
|F (s)− F (t)|

d(s, t)

(
1 +

ε(u)

D

)
(4)

2. d(u, t) < d(u, s): In this case,

|F (u)− F (s)|
d(u, s)

=
|F (s)− F (t)|

d(s, t)

(
1− d(u, t)

d(u, s)

ε(u)

D

)
(5)

In this second case, observe that since G is 1
4
-regular, we have

d(u,t)
d(u,s)

≥ 1
4
. Symmetric statements hold for |F (u)− F (t)|.

Assume without loss of generality that d(x, s) ≤ d(u, s).
In this case, using the same reasoning as in Corollary 3.7,
we have

E
[
|F (s)− F (x)|

∣∣∣ F (s), F (t)
]

=
d(x, s)

d(u, s)
E

[
|F (s)− F (u)|

∣∣∣ F (s), F (t)
]
.

Using (4) or (5), along with E
[
|F (s)− F (t)|

∣∣∣ Erand

]
≥ 1

2
d(s, t),

we have

E
[
|F (s)− F (x)|

∣∣∣ Erand, ε(u) = ε
]

= ρ d(x, s)
(
1 + λ

ε

D

)
,



where |λ| ≥ 1
4
, and ρ ≥ 1

2
, where we have used the fact that

|F (s)−F (t)| and ε(u) are independent, even conditioned on
Erand. Since ε(u) ∈ {−1, 1} uniformly at random and F (x)
and F (y) are independent conditioned on {F (s), F (t)}, this
variance in |F (s) − F (x)| due to ε(u) translates to a lower
bound for F (x) and F (y), i.e.

E |F (x)−F (y)| ≥ Pr(Erand) · 1
2
· |λ|

D
·ρ d(x, s) ≥ d(x, s)

32D
. (6)

Now, if d(x, y) = d(x, s) + d(s, y), then from our as-

sumption |d(x, s) − d(y, s)| ≤ d(x,y)
4D

, we see that d(x, s) ≥
d(x, y)/4, and (6) finishes the proof. Otherwise, d(x, y) =
d(x, t)+d(t, y). In this case, we know that d(x, s) ≥ 1

4
d(s, t),

else |d(x, s)−d(y, s)| ≤ d(x,y)
4D

would imply that the shortest
x-y path goes through s which we have assumed is not the
case. So again, d(x, s) ≥ 1

4
d(x, y), and again (6) finishes the

proof.

Combining Lemma 3.9 and Corollary 3.7, we arrive at the
main result of this section.

Theorem 3.10. If (X, d) is a 1
4
-regular SP bundle with

construction tree TG and Φ = Φ(TG), then for every s ≥ 1,
there exists a random mapping F : X → R which satisfies
the following for every x, y ∈ X,

1. ‖F (x)− F (y)‖∞ ≤ s · d(x, y).

2. min
{

1,
√

log s
log Φ

}
d(x, y) . ‖F (x)− F (y)‖1 ≤ d(x, y).

Proof. Observe that for any D ≥ 2, setting T = 4 ·
exp

(
1+log2 Φ

D2

)
, the random map F : X → R defined in this

section satisfies ‖F (x)−F (y)‖∞ ≤ 2T · d(x, y) and d(x,y)
128D

≤
‖F (x)− F (y)‖1 ≤ d(x, y). The first inequality follows from
Lemma 3.6 and the fact that ‖Yh(δ1, . . . , δh; T )‖∞ ≤ 2T as
long as δi ≤ 1

2
for every i ∈ [h] (which holds by construc-

tion). The second set of inequalities follows from Lemma
3.9 and Corollary 3.7.

Choosing D ≈ max
{

2,
√

log Φ
log s

}
yields ‖F (x)−F (y)‖∞ =

O(s) · d(x, y), in addition to (2) above. Rescaling the map
F by a constant yields condition (1) exactly, finishing the
proof.

3.3 Embeddings for trees
We now handle the case of trees.

Theorem 3.11. If (X, d) is the shortest-path metric on
an n-point weighted tree, then for every s ≥ 1, we have

c
dom(s)
1 = O

(√
log n

s

)
.

Proof. Let T = (X, E) be the associated weighted tree,
and orient T according to an arbitrary root r ∈ X. An
edge coloring of T is a map χ : E → N. We recall that
a monotone path in T is a contiguous subset of some root-
leaf path. An edge coloring χ : E → N is called monotone
if every color class χ−1(c) is a monotone path in T . The
following lemma is well-known (see, e.g. [21, 19]—our notion
is a generalization of the “caterpillar dimension” of T ).

Lemma 3.12. Every n-point tree T admits a monotone
edge coloring such that every root-leaf path contains at most
O(log n) colors.

Let χ : E → N be the coloring guaranteed by Lemma 3.12,
and let s ≥ 1 be given. Let {εi}∞i=1 be a set of i.i.d. random
variables satisfying Pr(εi = 0) = 1 − 1

s
, Pr(εi = 1) = 1

2s
,

and Pr(εi = −1) = 1
2s

. We define a random embedding
F : X → R as follows. For a point x ∈ X, let s1, s2, . . . , sk

be the set of maximal χ-monochromatic segments on the
path from the root to x. Then we set

F (x) = s ·
k∑

i=1

len(si) · εχ(si),

where we have extended χ to the monochromatic segments
{si}k

i=1 in the natural way.
First, it is easy to see that ‖F‖Lip ≤ s with probability

1. Now, fix x, y ∈ X with least common ancestor u ∈ X,
and let s1, . . . , sk and t1, . . . , th be the set of maximal χ-
monochromatic segments on the path from u to x and y,
respectively. Note that since χ is monotone, the color classes
of these segments are all pairwise disjoint. First, we have

E [|F (x)− F (y)|]

≤ s ·
(

k∑
i=1

len(si)E|εχ(si)|+
h∑

i=1

len(ti)E|εχ(ti)|
)

=

k∑
i=1

len(si) +

h∑
i=1

len(ti) = d(x, y).

On the other hand, observe that εi ∼ |εi|·σi where {σi}∞i=1

is a family of i.i.d. ±1 Bernoulli random variables indepen-
dent from the family {εi}∞i=1. We use Eσ and Eε, respec-
tively, to denote expectations over these random variables.
Using Fubini’s theorem and Khintchine’s inequality (see e.g.
[24, §5.5]), we have

E [|F (x)− F (y)|]

= s · E
∣∣∣∣∣

k∑
i=1

len(si)εχ(si) +

h∑
i=1

len(ti)εχ(ti)

∣∣∣∣∣

= s · EεEσ

∣∣∣∣∣
k∑

i=1

len(si)|εχ(si)|σχ(si) +

h∑
i=1

len(ti)|εχ(ti)|σχ(ti)

∣∣∣∣∣

≈ s · Eε

√√√√
k∑

i=1

len(si)2 ε2
χ(si)

+

h∑
i=1

len(ti)2 ε2
χ(ti)

Now, we let M = |{i ∈ [k] : εχ(si) 6= 0}| + |{i ∈ [h] :
εχ(ti) 6= 0}|. Observe that EM = (k + h)/s. Let E be the

event that M ≤ max
{

1, 2(k+h)
s

}
, and note that Pr(E) ≥ 1

2
.

Using Cauchy-Schwartz and k, h ≤ O(log n), we have

E [|F (x)− F (y)|]

& s · Pr [E ] · E



√√√√
k∑

i=1

len(si)2 ε2
χ(si)

+

h∑
i=1

len(ti)2 ε2
χ(ti)

∣∣∣ E



& s

max{1,
√

(log n)/s} ·
(

k∑
i=1

len(si)E
[
ε2

χ(si) | E
]
+

h∑
i=1

len(ti)E
[
ε2

χ(ti) | E
]
)

& min

{
1,

√
s

log n

}
d(x, y),

noting that E [ε2
χ(si)

| E ] = E [ε2
χ(ti)

| E ] ≈ 1/s.
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Figure 1: An SP bundle tree and the corresponding
oriented tree

We end this section with the follow question.

Question 6. What is the right bound for c
dom(s)
1 (X) when

X is an n-point tree metric?

If the answer is, say, O
(√

log log n
log s

)
, this would show (via

Theorem 1.3) that every n-point tree metric admits an O(1)-

distortion embedding into `
O(log n)1+δ

1 for every δ > 0, im-
proving over the O(log n)2 bound of [7].

3.4 Reduction to regular SP bundles
In this section, we complete the proof of Theorem 1.5.

First, we define an oriented SP bundle tree as a metric
space (X, d) with an associated graph G satisfying the fol-
lowing property. There exists a set of SP bundle metrics
VΛ = {X1, X2, . . . , Xk} with |Xi∩Xj | ≤ 1 for every i, j ∈ [k]
and a tree ΛG = (VΛ, DΛ) oriented with respect to a fixed
root rΛ ∈ VΛ (i.e. with all arcs pointing away from rΛ).

Furthermore, X =
⋃k

i=1 Xi and the bundles X1, . . . , Xk

satisfy the following property: |Xi ∩ Xj | = 1 if and only
if (Xi, Xj) ∈ DΛ, and in this case Xi ∩Xj contains an end-
point of Xj . See Figure 1. We say that the oriented SP
bundle tree is ε-regular if every Xi has an ε-regular con-
struction sequence.

By applying the Structure Theorem (stated and proved in
Section 4), it suffices to prove Theorem 1.5 for a 1

4
-regular

oriented SP bundle tree (X, d) where each bundle component
Xi has a construction sequence Gi satisfying Φ(Gi) = O(n)
and an oriented tree ΛG with |ΛG| = O(n).

We first define a tree metric T = (X, ET ). We flatten
every bundle Xi to a single path metric Pi with endpoints
si and ti and such that dPi(x, si) = d(x, si) for every x ∈ Xi.
Then using the node identifications between the Xi’s that
are present in G, we arrive at a (weighted) tree T . Let s ≥ 1
be given and let FT : X → R be the random map guaranteed
by Theorem 3.11 applied with parameter s.

Now let s1 ∈ X1, s2 ∈ X2, . . . , sk ∈ Xk be chosen so that
for every (Xi, Xj) ∈ DΛ, we have sj ∈ Xi ∩ Xj . For each
i ∈ [k], let Fi : Xi → R be the random map guaranteed
by Theorem 3.10 applied with parameter s. We define a
random map FG : X → R inductively on the structure of
ΛG. Assume that X1 is the root of ΛG, and then set FG(x) =
F1(x) for x ∈ X1. Now if (Xi, Xj) ∈ DΛ and FG has already
been defined on Xi, then we extend FG to Xj by setting
FG(x) = εj · [Fj(x)− Fj(sj)] + Fi(sj) for all x ∈ Xj , where
{εj}k

j=1 is a family of i.i.d. uniform ±1 random variables.

It is easily checked that Pr(‖FG‖Lip ≤ s) = 1 since the
same property holds for each Fi. We define a final random
map F : X → R by F = 1

2
FT ⊕ 1

2
FG (in other words, we

choose F to be one of FT or FG each with probability 1
2
).

Obviously Pr(‖F‖Lip ≤ s) = 1.
Now consider any pair u, v ∈ X with u ∈ Xi and v ∈ Xj .

We assume that a shortest path P from u to v in G intersects
at least three distinct bundles (otherwise an easier variant
of the following argument suffices). In this case, let Xk be
the least common ancestor of Xi and Xj in ΛG, and let
au, av ∈ Xk be the two nodes on which any u-v shortest
path P enters and exits Xk (so the nodes are visited by P
in order u, au, av, v). It is not difficult to see that d(u, v) =
dT (u, au)+dXk (au, av)+dT (av, v). As a consequence, we see
that either dT (u, v) ≥ 1

2
d(u, v) or dXk (au, av) ≥ 1

2
d(u, v). In

the former case, we use E |F (u)−F (v)| ≥ E |FT (u)−FT (v)|,
and thus get the necessary contribution from FT . In the
latter case, we get the desired contribution using

E |F (u)− F (v)| ≥ 1

2
E |FG(u)− FG(v)|

≥ 1

2
E |Fk(au)− Fk(av)|,

where the last inequality follows from the fact that E |FG(au)−
FG(u)| = E |FG(av)−FG(v)| = 0 (by our use of the random
variables {εj}), and the fact that {|FG(au)−FG(u)|, |FG(av)−
FG(v)|, |FG(au) − FG(av)|} are mutually independent ran-
dom variables.

4. THE STRUCTURE THEOREM
For any rooted tree T , we recall that Φ(T ) is the number

of nodes in T with more than one child. The main theorem
of this section follows.

Theorem 4.1 (Structure theorem for SP metrics).
Let (X, d) be an arbitrary n-point SP metric, and ε > 0.
Then there exist a pair of metric spaces (X1, d1), (X2, d2)
which satisfy the following conditions.

1. For i = 1, 2, (Xi, di) is an ε-regular oriented SP bun-
dle tree with associated graph Gi and an associated ori-
ented tree Λi

2. For i = 1, 2, |Λi| = O(n).

3. Let F be the collection of all SP bundle metrics oc-
curing as vertices of Λi for i = 1, 2. Then we can
associate to every Y ∈ F a construction tree TGY such
that

∑
Y ∈F

Φ(TGY ) ≤ O(n).

4. X admits an O(1)-embedding into the product metric
X1 ×X2.

The preceding theorem follows from the next two results.

Lemma 4.2 (Regularization). Let (X, d) be an SP bun-
dle metric. Then for every ε > 0, there exists an SP bundle
metric (X ′, d) which contains (X, d) as a sub-metric, such
that (X ′, d) has an associated construction sequence which
is ε-regular. Furthermore, we can associate a construction
tree T ′G to (X ′, d) such that Φ(T ′G) ≤ |X|.



Proof. If, at some point in the construction sequence,
we have an edge (s, t) with child x for which, say, d(s, x) <
εd(s, t), then we simply modify the construction sequence so
that (s, t) has a child m with d(s, m) = d(m, t) = 1

2
d(s, t),

and make x the child of the new edge (m, s). For any fixed
ε > 0, this goes on for only finitely many steps. Further-
more, it is easy to see that Φ(TG) does not increase under
this operation (we are only adding children of degree 1).

Theorem 4.3 (Product embedding). Let (X, d) be
an arbitrary n-point SP metric. Then there exist a pair of
oriented SP bundle trees (X1, d1), (X2, d2) such that |X1|+
|X2| ≤ O(n) and X admits an O(1)-embedding into the prod-
uct metric X1 ×X2.

To prove Theorem 4.3, we need to introduce an additional
type of composition procedure for SP metrics and their as-
sociated graphs. Consider any weighted, 2-connected series-
parallel graph G = (V, E). As discussed in [13], every such
graph has a composition sequence G = 〈G0, G1, . . . , Gm〉
where Gm = G and G0 is a single weighted edge (s0, t0).
One forms Gi+1 from Gi as follows: For some edge (u, v) ∈
E(Gi), we put V (Gi+1) = V (Gi) ∪ {x} and E(Gi+1) =
E(Gi) ∪ {(u, x), (x, v)}, where x is a new node not present
in V (Gi). The new edges (u, x) and (x, v) are allowed to
have arbitrary non-negative weights. We call this a stan-
dard composition.

If the edge weights are such that d(u, v) = d(u, x)+d(x, v),
we call the refer to the new path u-x-v as taut; if d(u, x) +
d(x, v) ≥ α · d(u, v), we refer to the new path as α-slack. A
standard composition G is called α-slack-taut if every newly
created path u-x-v in the composition sequence is either
taut or α-slack. The following is a simple generalization of
a lemma of [13].

Lemma 4.4. Given any 2-connected series-parallel graph
G = (V, E), one may construct a series-parallel graph H =
(V, E′) which satisfies:

• H has an α-slack-taut construction sequence.

• For every x, y ∈ V , 1
α

dG(x, y) ≤ dH(x, y) ≤ dG(x, y),

where dG and dH are the shortest-path metrics on G and H,
respectively. Furthermore, this construction is polynomial
time in the size of G.

Thus, by incurring a distortion of at most 41 we can
assume that G has a 41-slack-taut composition sequence
G = 〈G0, . . . , Gm〉. Next we reduce the case of α-slack-taut
series-parallel graphs to the case of series-parallel bundle
trees.

Lemma 4.5. Given any 2-connected series-parallel graph
G = (V, E) that is 41-slack-taut, one may construct two
oriented SP bundle trees (L, dL) and (R, dR) such that

• V (G) ⊆ V (L) and V (G) ⊆ V (R)

• |V (L)|, |V (R)| = O(|V (G)|)
• For every x, y ∈ V , 1
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dG(x, y) ≤ 1

2
(dL(x, y)+dR(x, y)) ≤

dG(x, y),

• For every x, y ∈ V , dL(x, y) ≤ dG(x, y) and dR(x, y) ≤
dG(x, y)
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Figure 2: The bundle trees L and R with key points
labeled. Note that xi may be positioned anywhere
on the slack loop, and may not necessarily fall where
it is pictured.

Note that in [13] the step of converting a slack-taught
graph to (a distribution over) trees of bundles is accom-
plished by cutting slack bundles. This technique cannot be
used here because we need each of our component maps to be
Lipschitz. Instead, we will proceed by “folding” slack bun-
dles across a diameter, in a procedure similar to Charikar
and Sahai [7]. We describe the folding procedure.

Folding algorithm. We will describe the construction of
L; the construction of R is similar. A basic folding step con-
cerns an edge (s, t) and a node xi for which the edges (s, xi)
and (xi, t) were added in some step of G’s composition se-
quence. We assume inductively that we have oriented SP
bundle trees (Gs, ds) and (Gt, dt) with corresponding ori-
ented trees Λs and Λt. Furthermore, we suppose that s, xi

are the endpoints of the root bundle in Λs and xi, t are the
endpoints of the root bundle in Λt, and that the equalities
ds(xi, s) = d(xi, s) and dt(xi, t) = d(xi, t) are satisfied.

Now we create L′ by gluing Gs and Gt together at xi, and
adding the edge (s, t). If we are in the taut case d(s, t) =
d(s, xi)+d(xi, t), then L′ is itself an oriented SP bundle tree
(where s, t simply join the new root bundle). Otherwise, we
are in the 41-slack case, and L′ needs to be modified by
folding. We refer to Figure 2 in the following description.

1. Let u = d(s, t) and define zi ≥ u s.t. d(s, t)+d(s, xi)+
d(xi, t) = 2u + 40zi. Such a zi is guaranteed to exist
by the 41-slack-taut structure.

2. Consider every simple (s, t) path through xi. Insert
a new point called pL on each path so that it is at
distance 5zi from s and 5zi + u from t. Coalesce all
these new points into a single new point pL.

3. Create another point qL which is diametrically oppo-
site pL. In other words, it is made up of all the points
that are 15zi + u away from s and 15zi away from t.

4. Find all points at distance 10zi from s and 10zi + u
from t, and call them sL. Coalesce all such points with
the point s to form a single vertex.



5. Find all points at distance 10zi+u from s and 10zi+2u
away from t and call them tL. Coalesce all such points
with the point t to form a single vertex.

This produces a new oriented SP bundle tree L. The analysis
is deferred to the full version.

5. MARKOV TYPE
In this section, we will show that every series-parallel met-

ric has Markov type 2. The following lemma is basic, and
we omit its proof.

Lemma 5.1. Let X1, . . . , Xk be metric spaces with Markov
type 2. If X = X1 × · · · × Xk is equipped with the product
metric dX , then X has Markov type 2 as well, and

M2(X) ≤
√

k ·
√

M2(X1)2 + · · ·+ M2(Xk)2.

In light of the preceding lemma and Theorem 4.3, it suf-
fices to prove that every oriented SP bundle tree has Markov
type 2. Using Proposition 1.4, we need to demonstrate the
existence of nice potential functions on such metric spaces.

Lemma 5.2. If (X, d) is an oriented SP bundle tree with
associated weighted graph G = (X, E), then there exists a
9-Lipschitz map ψ : X → R such that, for every path P =
〈v0, v1, . . . , vm〉 in G, one has

d(v0, vm) ≤ max {|ψ(v0)− ψ(vt)| : 0 ≤ t ≤ m}
Proof. Due to lack of space, we defer some details. Let

ΛG = (VΛ, DΛ) be the associated oriented tree (whose ver-
tices are SP bundles in G). Let VΛ = {X1, X2, . . . , Xk}, let
Xr ∈ VΛ be the root of ΛG, and let s be one of the endpoints
of the SP bundle Xr. We consider the map ψ : X → R given
by ψ(x) = d(x, s).

Let u, v ∈ X be arbitrary points with u ∈ Xi, v ∈ Xj . Let
us assume that some u-v path P in G intersects at least three
distinct bundles from VΛ (otherwise, the proof is only sim-
pler). Let Xk be the least common ancestor of Xi and Xj in
ΛG, and let au, av ∈ Xk be the points at which P enters and
exits Xk. Then every u-v path γ = 〈v0, v1, . . . , vm〉 can be
decomposed into three segments γ1, γ2, γ3 which connect u
and au, au and av, and av and v, respectively. Furthermore,
we can pass to a sub-path γ̂2 of γ2 such that γ̂2 connects au

and av and is completely contained in Xk.
Now, it is not difficult to see that d(u, au) = |ψ(u) −

ψ(au)| and d(v, av) = |ψ(v)−ψ(av)|, and using the triangle
inequality, we have |ψ(v) − ψ(av)| + |ψ(u) − ψ(au)| ≤ 3 ·
max {|ψ(u)− ψ(vt)| : 0 ≤ t ≤ m} . On the other hand, if sk

is the endpoint of Xk closest to s, then for every x ∈ Xk, we
have d(x, sk) = d(x, s), hence inside Xk, ψ behaves like the
function ψ′(y) = d(y, sk). Since γ̂2 is contained completely
inside Xk, this reduces to an analysis just for bundles, which
is very similar to the analysis of [25] for the Laakso graphs.

This yields the inequality

d(au, av) ≤ 3 ·max {|ψ(au)− ψ(vt)| : 0 ≤ t ≤ m, vt ∈ γ̂2}
≤ 6 ·max {|ψ(u)− ψ(vt)| : 0 ≤ t ≤ m}

So overall, we have

d(u, v) = d(u, au) + d(au, av) + d(av, v)

≤ 9 ·max {|ψ(u)− ψ(vt)| : 0 ≤ t ≤ m}
To finish, we simply scale ψ by a factor of 9, implying that
‖ψ‖Lip ≤ 9, and completing the proof.
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