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Abstract

We give an explicit (in particular, deterministic polynomial time) construction of
subspaces X ⊆ RN of dimension (1− o(1))N such that for every x ∈ X,

(log N)−O(log log log N)
√

N ‖x‖2 6 ‖x‖1 6
√

N ‖x‖2.

If we are allowed to use N1/ log log N 6 No(1) random bits and dim(X) > (1 − η)N for
any fixed constant η, the lower bound can be further improved to (log N)−O(1)

√
N‖x‖2.

Through known connections between such Euclidean sections of `1 and compressed
sensing matrices, our result also gives explicit compressed sensing matrices for low
compression factors for which basis pursuit is guaranteed to recover sparse signals. Our
construction makes use of unbalanced bipartite graphs to impose local linear constraints
on vectors in the subspace, and our analysis relies on expansion properties of the graph.
This is inspired by similar constructions of error-correcting codes.
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1 Introduction

Classical results in high-dimensional geometry [13, 23] state that a random (with respect to
the Haar measure) subspace X ⊆ RN of dimension εN [13] or even (1−ε)N [23] is an almost
Euclidean section in `N

1 , in the sense that
√

N‖x‖1 and ‖x‖2 are within constant factors,
uniformly for every x ∈ X. Indeed, this is a particular example of the use of the probabilistic
method, a technique which is now ubiquitous in asymptotic geometric analysis.

On the other hand, it is usually the case that objects constructed in such a manner
are very hard to come by explicitly. Motivated in part by ever growing connections with
combinatorics and theoretical computer science, the problem of explicit constructions of
such subspaces has gained substantially in popularity over the last several years; see, e.g.
[36, Sec. 4], [30, Prob. 8], [22, Sec. 2.2]. Indeed, such subspaces (viewed as embeddings) are
important for problems like high-dimensional nearest-neighbor search [19] and compressed
sensing [10], and one expects that explicit constructions will lead, in particular, to a better
understanding of the underlying geometric structure. (See also the end of the introduction
for a discussion of the relevance to compressed sensing.)

1.1 Previous results and our contributions

If one relaxes the requirement that dim(X) = Ω(N) or allows a limited amount of randomness
in the construction, a number of results are known. In order to review these, we define the
distortion ∆(X) of X ⊆ RN by

∆(X) =
√

N · max
06=x∈X

‖x‖2

‖x‖1

.

In the first direction, it is well-known that an explicit construction with distortion O(1) and
dim(X) = Ω(

√
N) can be extracted from Rudin [32] (see also [26] for a more accessible ex-

position). Indyk [20] presented a deterministic polynomial-time construction with distortion
1 + o(1) and dim(X) > N

exp(O(log log N)2)
.

Another very interesting line of research pursued by various authors and in quite different
contexts is to achieve, in the terminology of theoretical computer science, a partial deran-
domization of the original (existential) results. The goal is to come up with a “constructive”
discrete probabilistic measure on subspaces X of RN such that a random (with respect to
this measure) subspace still has low distortion almost surely, whereas the entropy of this
measure (that is, the number of truly random bits necessary to sample from it) is also as
low as possible.

Denoting by Ak,N a random k × N sign matrix (i.e. with i.i.d. Bernoulli ±1 entries),
one can extract from the paper [23] by Kashin that ker(Ak,N), a subspace of codimension

at most k has, with high probability, distortion
√

N/k · polylog(N/k). Schechtman [33]
arrived at similar conclusions for subspaces generated by rows of AN−k,N . Artstein-Avidan
and Milman [2] considered again the model ker(Ak,N) and derandomized this further from
O(N2) to O(N log N) bits of randomness. We remark that the pseudorandom generator
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approach of Indyk [19] can be used to efficiently construct such subspaces using O(N log2 N)
random bits. This was further improved to O(N) bits by Lovett and Sodin [27]. Subsequent
to our work, Guruswami, Lee, and Wigderson [16] used the construction approach from this
paper to reduce the random bits to O(N δ) for any δ > 0 while achieving distortion 2O(1/δ).

As far as deterministic constructions with dim(X) = Ω(N) are concerned, we are aware
of only one result; implicit in various papers (see e.g. [11]) is a subspace with dim(X) = N/2
and distortion O(N1/4). For dim(X) > 3N/4, say, it appears that nothing non-trivial was
shown prior to our work.

Our main result is as follows.

Theorem 1.1. For every η = η(N), there is an explicit, deterministic polynomial-time con-
struction of subspaces X ⊆ RN with dim(X) > (1−η)N and distortion (η−1 log log N)O(log log N).

Like in [23, 2, 27], our space X has the form ker(Ak,N) for a sign matrix Ak,N , but in our
case this matrix is completely explicit (and, in particular, polynomial time computable). Its
high-level overview is given in Section 1.2.3 below.

On the other hand, if we allow ourselves a small number of random bits, then we can
slightly improve the bound on distortion.

Theorem 1.2. For every fixed η > 0 there is a polynomial time algorithm using N1/ log log N

random bits that almost surely produces a subspace X ⊆ RN with dim(X) > (1 − η)N and
distortion (log N)O(1).

1.2 Proof techniques

1.2.1 Spreading subspaces

Low distortion of a section X ⊆ RN intuitively means that for every non-zero x ∈ X,
a “substantial” portion of its mass is spread over “many” coordinates, and we formalize
this intuition by introducing the concept of a spread subspace (Definition 2.10). While this
concept is tightly related to distortion, it is far more convenient to work with. In particular,
using a simple spectral argument and Kerdock codes [25], [29, Chap. 15], we initialize our
proof by presenting explicit subspaces with reasonably good spreading properties. These
codes appeared also in the approach of Indyk [20], though they were used in a dual capacity
(i.e., as generator matrices instead of check matrices). In terms of distortion, however, this
construction can achieve at best O(N1/4).

1.2.2 The main construction

The key contribution of our paper consists in exploiting the natural analogy between low-
distortion subspaces over the reals and error-correcting codes over a finite alphabet.

Let G = ({1, 2, . . . , N}, VR, E) be a bipartite graph which is d-regular on the right, and
let L ⊆ Rd be any subspace. Using the notation Γ(j) ⊆ {1, 2, . . . , N} for the neighbor set of
a vertex j ∈ VR, we analyze the subspace

X(G,L) = {x ∈ RN : xΓ(j) ∈ L for every j ∈ VR},
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where for S ⊆ [N ], xS ∈ R|S| represents the vector x restricted to the coordinates lying in
S. In other words, we impose local linear constraints (from L) according to the structure of
some bipartite graph G. As Theorem 4.2 shows, one can in particular analyze the spreading
properties of X(G, L) in terms of those of L and the expansion properties of G.

1.2.3 Putting it together: combinatorial overview

Our final space X will be of the form X =
⋂r−1

i=0 X(Gi, Li) for suitably chosen Gi, Li (see
the proof of Theorem 1.1). Combinatorially this simply means that we take ki × N sign
matrices Ai such that X(Gi, Li) = ker(Ai) and stack them on the top of one another to get
our final matrix Ak,N . Moreover, every Ai is a stack of |VR| copies of the sign matrix A′

i

with ker(A′
i) = Li in which every copy is padded with (N − d) zero columns. The exact

placement of these columns is governed by the graph G that is chosen to satisfy certain
expansion properties (Theorem 2.6), and it is different in different copies.

And then we have one more level of recursion: Every Li has the form X(G′
i, L

′
i), where

G′
i again have certain (but this time different – see Proposition 2.7) expansion properties

and L′i is our initial subspace (see Section 1.2.1).

1.2.4 Connections to discrete codes

Our approach is inspired by Low Density Parity Check Codes (LDPC) introduced by Gallager
[14]. They are particularly suited to our purposes since, unlike most other explicit construc-
tions in coding theory, they exploit a combinatorial structure of the parity check matrix and
rely very little on the arithmetic of the underlying finite field. Sipser and Spielman [35]
showed that one can achieve basically the same results (that is, simple and elegant construc-
tions of constant rate, constant relative minimal distance codes) by considering adjacency
matrices of sufficiently good expanders instead of a random sparse matrix. These codes are
nowadays called expander codes. Using an idea due to Tanner [37], it was shown in [35] (see
also [39]) that even better constructions can be achieved by replacing the parity check by a
small (constant size) inner code. Our results demonstrate that analogous constructions work
over the reals: If the inner subspace L has reasonably good spreading properties, then the
spreading properties of X(G,L) are even better. Upper bounds on distortion follow.

1.3 Organization

In Section 2, we provide necessary background on bipartite expander graphs and define
spread subspaces. In Section 3, we initialize our construction with an explicit subspace
with reasonably good spreading properties. In Section 4, we describe and analyze our main
expander-based construction. Finally, in Section 5, we discuss why improvements to our
bounds may have to come from a source other than better expander graphs.
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1.4 Relationship to compressed sensing.

In [9], DeVore asks whether probabilistically generated compressed sensing matrices can be
given by deterministic constructions.

The note [24] makes the connection between distortion and compressed sensing quite
explicit. If M : RN → Rn satisfies ∆(ker(M)) 6 D, then any vector x ∈ RN with |supp(x)| <
N

4D2 can be uniquely recovered from its encoding Mx. Moreover, given the encoding y =
Mx, the recovery can be performed efficiently by solving the following convex optimization
problem: minv∈RN ‖v‖1 subject to Mv = y.

In fact, something more general is shown. Define, for x ∈ RN , the quantity

σk(x)1 = min
w∈RN :|supp(w)|6k

‖x− w‖1 (1)

as the error of the best sparse approximation to x. Then given Mx, the above algorithm
recovers a vector v ∈ RN such that Mx = Mv and ‖x − v‖2 6 σk(x)1√

k
, for k = Θ(N/D2).

In other words, the recovery algorithm is stable in the sense that it can also tolerate noise
in the signal x, and is able to perform approximate recovery even for signals which are only
approximately sparse.

Thus our results show the existence of a mapping M : RN → Ro(N), where M is given by
an explicit matrix, and such that any vector x ∈ RN with |supp(x)| 6 N

(log N)C log log log N can be

efficiently recovered from Mx (the stable generalization also holds, along the lines of (1)).
This yields the best-known explicit compressed sensing matrices for this range of parameters
(e.g. where n ≈ N/poly(log N)). Moreover, unlike probabilistic constructions, our matrices
are quite sparse, making compression (i.e., matrix-vector multiplication) and recovery (via
Basis Pursuit) more efficient. For instance, when n = N/2, our matrices have only N2−ε

non-zero entries for some ε > 0. We refer to [21] for explicit constructions that achieve a
better tradeoff for n ≈ N δ, with 0 < δ < 1. We remark that the construction of [21] is not
stable in the sense discussed above (and hence only works for actual sparse signals).

2 Preliminaries

2.1 Notation

For two expressions A, B, we sometimes write A & B if A = Ω(B), A . B if A = O(B),
and we write A ≈ B if A = Θ(B), that is A & B and B & A. For a positive integer M , [M ]
denotes the set {1, 2, . . . , M}. The set of nonnegative integers is denoted by N.

2.2 Unbalanced bipartite expanders

Our construction is based on unbalanced bipartite graphs with non-trivial vertex expansion.

Definition 2.1. A bipartite graph G = (VL, VR, E) (with no multiple edges) is said to be an
(N,n, D, d)-right regular graph if |VL| = N , |VR| = n, every vertex on the left hand size VL

has degree at most D, and every vertex on the right hand side VR has degree equal to d.
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For a graph G = (V,E) and a vertex v ∈ V , we denote by ΓG(v) the vertex neighborhood
{u ∈ V | (v, u) ∈ E} of v. We denote by dv = |ΓG(v)| the degree of a vertex v. The
neighborhood of a subset S ⊆ V is defined by ΓG(S) =

⋃
v∈S ΓG(v). When the graph G is

clear from the context, we may omit the subscript G and denote the neighborhoods as just
Γ(v) and Γ(S).

Definition 2.2 (Expansion profile). The expansion profile of a bipartite graph G = (VL, VR, E)
is the function ΛG : (0, |VL|] → N defined by

ΛG(m) = min {|ΓG(S)| : S ⊆ VL, |S| > m} .

Note that ΛG(m) = minv∈VL
dv for 0 < m 6 1.

For our work, we need unbalanced bipartite graphs with expansion from the larger side to
the smaller side. Our results are based on two known explicit constructions of such graphs.
The first one is to take the edge-vertex incidence graph of a non-bipartite spectral expander1

such as a Ramanujan graph. These were also the graphs used in the work on expander
codes [35, 39]. The second construction of expanders is based on a suggestion due to Avi
Wigderson. It uses a result of Barak, et. al. [4] based on sum-product estimates in finite
fields; see [38, §2.8] for background on such estimates.

For our purposes, it is also convenient (but not strictly necessary) to have bipartite
graphs that are regular on the right. We begin by describing a simple method to achieve
right-regularity with minimal impact on the expansion and degree parameters, and then turn
to stating the precise statements about the two expander constructions we will make use of
in Section 4 to construct our explicit subspaces.

2.2.1 Right-regularization

Lemma 2.3. Given a graph H = (VL, VR, E) with |VL| = N , |VR| = n, that is left-regular
with each vertex in VL having degree D, one can construct in O(ND) time an (N, n′, 2D, d)-
right regular graph G with n′ 6 2n and d = dND

n
e such that the expansion profiles satisfy

ΛG(m) > ΛH(m) for all m > 0.

Proof. Let dav = ND/n be the average right degree of the graph H and let d = ddave. Split
each vertex v ∈ VR of degree dv into bdv/dc vertices of degree d each, and if dv mod d > 0,
a “remainder” vertex of degree rv = dv mod d. Distribute the dv edges incident to v to
these split vertices in an arbitrary way. The number of newly introduced vertices is at most∑

v∈VR
dv/d = ndav/d 6 n, so the number n′ of right-side vertices in the new graph satisfies

n′ 6 2n.
All vertices except the at most n “remainder” vertices now have degree exactly d. For

each v ∈ VR, add d − rv edges to the corresponding remainder vertex (if one exists). Since
this step adds at most (d− 1)n 6 davn = ND edges, it is possible to distribute these edges

1That is, a regular graph with a large gap between the largest and second largest eigenvalue of its
adjacency matrix.
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in such a way that no vertex in VL is incident on more than D of the new edges. Therefore,
the maximum left-degree of the new graph is at most 2D.

The claim about expansion is obvious — just ignore the newly added edges, and the
splitting of vertices can only improve the vertex expansion.

2.2.2 Spectral expanders

The next theorem converts non-bipartite expanders to unbalanced bipartite expanders via
the usual edge-vertex incidence construction.

Theorem 2.4. For every d > 5 and N > d, there exists an explicit (N ′ = Θ(N), n, 2, Θ(d))-

right regular graph G whose expansion profile satisfies ΛG(m) > min
{

m
2
√

d
,
√

2mN ′
d

}
.

Proof. Let p, q be any two primes which are both congruent to 1 modulo 4. Then there

exists an explicit (p + 1)-regular graph Y = (V, F ) with q(q2−1)
4

6 |V | 6 q(q2−1)
2

and such
that λ2 = λ2(Y ) 6 2

√
p, where λ2(Y ) is the second largest eigenvalue (in absolute value)

of the adjacency matrix of Y [28]. (See [18, §2] for a discussion of explicit constructions of
expander graphs.)

Letting n = |V |, we define a ( (p+1)n
2

, n, 2, p + 1)-right regular bipartite graph G =
(VL, VR, E) where VL = F , VR = V , and (e, v) ∈ E if v is an endpoint of e ∈ F . To
analyze the expansion properties of G, we use the following lemma of Alon and Chung [1].

Lemma 2.5. If Y is any d-regular graph on n vertices with second eigenvalue λ2, then the
induced subgraph on any set of γn vertices in Y has at most

(
γ2 + γ

λ2

d

)
dn

2

edges.

In particular, if S ⊆ VL satisfies |S| > γ2(p + 1)n and |S| > 2γn
√

p + 1, then |ΓG(S)| >
γn. Stated different, for any S ⊆ VL, we have

|ΓG(S)| >
min

{
2
√
|S|n, |S|

}

2
√

p + 1

Setting N ′ = (p+1)n
2

, we see that ΛG(m) > min
{

m
2
√

d
,
√

2N ′m
d

}
.

Now given parameters d > 5 and N > d, let p be the largest prime satisfying p + 1 6 d

and p ≡ 1 (mod4), and let q be the smallest prime satisfying q(q2−1)(p+1)
8

> N and q ≡
1 (mod 4). The theorem follows by noting that for all integers m > 3, there exists a prime
p ∈ [m, 2m] which is congruent to 1 modulo 4 (see [12]).

The expanders of Theorem 2.4 are already right-regular but they have one drawback;
we cannot fully control the number of left-side vertices N . Fortunately, this can be easily
circumvented with the same Lemma 2.3.
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Theorem 2.6. For every d > 5 and N > d, there exists an explicit (N,n, 4, Θ(d))-right

regular graph G which satisfies ΛG(m) > min
{

m
2
√

d
,
√

2Nm
d

}
.

Proof. Apply Theorem 2.4 to get a graph with N ′ > N , N ′ ≈ N vertices on the left, then
remove an arbitrary subset of N−N ′ vertices from the left hand side. This doesn’t affect the
expansion properties, but it destroys right-regularity. Apply Lemma 2.3 to correct this.

2.2.3 Sum-product expanders

In this section, p will denote a prime, and Fp the finite field with p elements. The following
result is implicit in [4, §4], and is based on a key “sum-product” lemma (Lemma 3.1) from
[3], which is itself a statistical version of the sum-product theorems of Bourgain, Katz, and
Tao [5], and Bourgain and Konyagin [6] for finite fields.

Proposition 2.7. There exists an absolute constant ξ0 > 0 such that for all primes p the
following holds. Consider the bipartite graph Gp = (F3

p, [4] × Fp, E) where a left vertex
(a, b, c) ∈ F3

p is adjacent to (1, a), (2, b), (3, c), and (4, a · b+ c) on the right. Then ΛGp(m) >
min

{
p0.9,m1/3+ξ0

}
.

Note that trivially |ΓGp(S)| > |S|1/3, and the above states that not-too-large sets S
expand by a sizeable amount more than the trivial bound. Using the above construction, we
can now prove the following.

Theorem 2.8. For all integers N > 1, there is an explicit construction of an (N,n, 8, Θ(N2/3))-
right regular graph G which satisfies

ΛG(m) > min
{

1
8
n0.9, m1/3+ξ0

}
.

(Here ξ0 is the absolute constant from Proposition 2.7.)

Proof. Let p be the smallest prime such that p3 > N ; note that N1/3 6 p 6 2N1/3. Construct
the graph Gp, and a subgraph H of Gp by deleting an arbitrary p3 −N vertices on the left.
Thus H has N vertices on left, 4p vertices on the right, is left-regular with degree 4 and
satisfies, by Proposition 2.7, ΛH(m) > min

{
p0.9,m1/3+ξ0

}
. Applying the transformation of

Lemma 2.3 to H, we get an (N,n, 8, d)-right regular graph with d = d4N
4p
e ≈ N2/3 and with

the same expansion property.

2.3 Distortion and spreading

For a vector x ∈ RN and a subset S ⊆ [N ] of coordinates, we denote by xS ∈ R|S| the pro-
jection of x onto the coordinates in S. We abbreviate the complementary set of coordinates
[N ] \ S to S̄.

Definition 2.9 (Distortion of a subspace). For a subspace X ⊆ RN , we define

∆(X) = sup
x∈X
x6=0

√
N‖x‖2

‖x‖1

.
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As we already noted in the introduction, instead of distortion it turns out to be more
convenient to work with the following notion.

Definition 2.10. A subspace X ⊆ RN is (t, ε)-spread if for every x ∈ X and every S ⊆ [N ]
with |S| 6 t, we have

‖xS̄‖2 > ε · ‖x‖2.

Let us begin with relating these two notions.

Lemma 2.11. Suppose X ⊆ RN .

a) If X is (t, ε)-spread then

∆(X) 6
√

N

t
· ε−2;

b) conversely, X is
(

N
2∆(X)2

, 1
4∆(X)

)
-spread.

Proof. a). Fix x ∈ X; we need to prove that

‖x‖1 >
√

tε2‖x‖2. (2)

W.l.o.g. assume that ‖x‖2 = 1 and that |x1| > |x2| > . . . > |xN |. Applying Definition 2.10,
we know that ‖x[t+1..N ]‖2 > ε. On the other hand,

∑t
i=1 |xi|2 6 1, therefore |xt| 6 1√

t
and

thus ‖x[t+1..N ]‖∞ 6 1√
t
. And now we get (2) by the calculation

‖x‖1 > ‖x[t+1..N ]‖1 > ‖x[t+1..N ]‖2
2

‖x[t+1..N ]‖∞ >
√

tε2.

b). Let t = N
2∆(X)2

. Fix again x ∈ X with ‖x‖2 = 1 and S ⊆ [N ] with |S| 6 t. By the

bound on distortion, ‖x‖1 >
√

N
∆(X)

. On the other hand,

‖xS‖1 6
√

t · ‖xS‖2 6
√

t =

√
N/2

∆(X)
,

hence ‖xS̄‖1 = ‖x‖1 − ‖xS‖1 >
√

N
4∆(X)

and ‖xS̄‖2 > ‖xS̄‖1√
N

> 1
4∆(X)

.

Next, we note spreading properties of random subspaces (they will be needed only in the
proof of Theorem 1.2). The following theorem is due to Kashin [23], with the optimal bound
essentially obtained by Garnaev and Gluskin [15]. We note that such a theorem now follows
from standard tools in asymptotic convex geometry, given the entropy bounds of Schütt [34]
(see, e.g. Lemma B in [27]).

Theorem 2.12. If A is a uniformly random k×N sign matrix, then with probability 1−o(1),

∆(ker(A)) .
√

N

k
log

(
N

k

)
.
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Combining Theorem 2.12 with Lemma 2.11(b), we get:

Theorem 2.13. If A is a uniformly random k×N sign matrix, then with probability 1−o(1),

ker(A) is a
(
Ω

(
k

log(N/k)

)
, Ω

(√
k

N log(N/k)

))
-spread subspace.

Finally, we introduce a “relative” version of Definition 2.10. It is somewhat less intuitive,
but very convenient to work with.

Definition 2.14. A subspace X ⊆ RN is (t, T, ε)-spread (t 6 T ) if for every x ∈ X,

min
S⊆[N ]
|S|6T

‖xS̄‖2 > ε · min
S⊆[N ]
|S|6t

‖xS̄‖2.

Note that X is (t, ε)-spread if and only if it is (0, t, ε)-spread, if and only if it is (1/2, t, ε)-
spread. (Note that t, T are not restricted to integers in our definitions.) One obvious
advantage of Definition 2.14 is that it allows us to break the task of constructing well-spread
subspaces into pieces.

Lemma 2.15. Let X1, . . . , Xr ⊆ RN be linear subspaces, and assume that Xi is (ti−1, ti, εi)-
spread, where t0 6 t1 6 · · · 6 tr. Then

⋂r
i=1 Xi is (t0, tr,

∏r
i=1 εi)-spread.

Proof. Obvious.

3 An explicit weakly-spread subspace

Now our goal can be stated as finding an explicit construction that gets as close as possible
to the probabilistic bound of Theorem 2.13. In this section we perform a (relatively simple)
“initialization” step; the boosting argument (which is the most essential contribution of our
paper) is deferred to Section 4. Below, for a matrix A, we denote by ‖A‖ its operator norm,

defined as supx6=0
‖Ax‖2
‖x‖2 .

Lemma 3.1. Let A be any k × d matrix whose columns a1, . . . , ad ∈ Rk have `2-norm 1,

and, moreover, for any 1 6 i < j 6 d, |〈ai, aj〉| 6 τ . Then ker(A) is
(

1
2τ

, 1
2‖A‖

)
-spread.

Proof. Fix x ∈ ker(A) and let S ⊆ [d] be any subset with t = |S| 6 1
2τ

. Let AS be the k × t
matrix which arises by restricting A to the columns indexed by S, and let Φ = AT

SAS. Then Φ
is the t×t matrix whose entries are 〈ai, aj〉 for i, j ∈ S, therefore we can write Φ = I+Φ′ where
every entry of Φ′ is bounded in magnitude by τ . It follows that all the eigenvalues of Φ lie in
the range [1− tτ, 1 + tτ ]. We conclude, in particular, that ‖AS y‖2

2 > (1− tτ)‖y‖2
2 > 1

2
‖y‖2

2

for every y ∈ Rt.
Let AS̄ be the restriction of A to the columns in the complement of S. Since x ∈ ker(A),

we have
0 = Ax = ASxS + AS̄xS̄
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so that

‖AS̄xS̄‖2 = ‖ASxS‖2 > 1√
2
‖xS‖2.

Since ‖AS̄xS̄‖2 6 ‖A‖ · ‖xS̄‖2, it follows that ‖xS‖2 6
√

2‖A‖ · ‖xS̄‖2. Since ‖A‖ > 1, this

implies ‖xS̄‖2 > ‖x‖2
2‖A‖ .

We now obtain matrices with small operator norm and near-orthogonal columns from
explicit constructions of Kerdock codes.

Proposition 3.2. For all positive integers d, k where k is a power of 4 satisfying k 6 d 6
k2/2, there exists an explicit k × d matrix A with the following properties.

1. Every entry of A is either ±1/
√

k, and thus the columns a1, a2, . . . , ad ∈ Rk of A all
have `2-norm 1,

2. For all 1 6 i < j 6 d, |〈ai, aj〉| 6 1/
√

k, and

3. ‖A‖ 6
√⌈

d
k

⌉
.

Proof. The proof is based on a construction of mutually unbiased bases over the reals using
Kerdock codes [25, 7]. First, let us recall that for k a power of 2, the Hadamard code of

length k is a subspace of Fk
2 of size k containing the k linear functions La : Flog2 k

2 → F2,

where for a, x ∈ Flog2 k
2 , La(x) = a · x (computed over F2). A Kerdock code is the union of a

Hadamard code H ⊆ Fk
2 and a collection of its cosets {f + H | f ∈ F}, where F is a set of

quadratic bent functions with the property that for all f 6= g ∈ F , the function f + g is also
bent.2

When k is a power of 4, it is known (see [25] and also [29, Chap. 15, Sec. 5]) that one
can construct an explicit set F of (k

2
− 1) such bent functions. (A simpler construction of

(
√

k − 1) such quadratic functions appears in [7].) The cosets of these functions together
with the Hadamard code (the trivial coset) give an explicit Kerdock code of length k that
has k2/2 codewords. Interpreting binary vectors of length k as unit vectors with ±1/

√
k

entries, every coset of the Hadamard code gives an orthonormal basis of Rk. The k/2 cosets
comprising the Kerdock code thus yield k/2 orthonormal bases B1, B2, . . . , Bk/2 of Rk with

the property that for every pair {v, w} of vectors in different bases, one has |〈v, w〉| = 1/
√

k.
(Such bases are called mutually unbiased bases.)

For any d, k 6 d 6 k2/2, write d = qk + r where 0 6 r < k. We construct our k × d
matrix A to consist of [B1 . . . Bq] followed by, in the case of r > 0, any r columns of Bq+1.
The first two properties of A are immediate from the property of the bases Bi. To bound
the operator norm, note that being an orthonormal basis, ‖Bi‖ = 1 for each i. A simple
application of Cauchy-Schwartz then shows that ‖A‖ 6

√
dd/ke.

Plugging in the matrices guaranteed by Proposition 3.2 into Lemma 3.1, we can conclude
the following.

2A function f : Fa
2 → F2 for a even is said to be bent if it is maximally far from all linear functions, or

equivalently if all its Fourier coefficients have absolute value 1/2a/2.
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Theorem 3.3. For every integer k that is a power of 4 and every integer d such that

k 6 d 6 k2/2, (3)

there exists a
(√

k
2

, 1
4

√
k
d

)
-spread subspace L ⊆ Rd with codim(L) 6 k, specified as the kernel

of an explicit k × d sign matrix.

These subspaces will be used as “inner” subspaces in an expander-based construction
(Theorem 4.3) to get a subspace with even better spreading properties.

4 Boosting spreading properties via expanders

4.1 The Tanner construction

Definition 4.1 (Subspaces from bipartite graphs). Given a bipartite graph G = ({1, 2, . . . , N}, VR, E)
such that every vertex in VR has degree d, and a subspace L ⊆ Rd, we define the subspace
X = X(G,L) ⊆ RN by

X(G,L) = {x ∈ RN | xΓG(j) ∈ L for every j ∈ VR} . (4)

The following claim is straightforward.

Claim 1. If n = |VR|, then codim(X(G,L)) 6 codim(L)n, that is dim(X(G,L)) > N − (d−
dim(L))n.

Remark 1 (Tanner’s code construction). Our construction is a continuous analog of Tanner’s
construction of error-correcting codes [37]. Tanner constructed codes by identifying the
vertices on one side of a bipartite graph with the bits of the code and identifying the other
side with constraints. He analyzed the performance of such codes by examining the girth
of the bipartite graph. Sipser and Spielman [35] showed that graph expansion plays a key
role in the quality of such codes, and gave a linear time decoding algorithm to correct a
constant fraction of errors. In the coding world, the special case when L is the (d − 1)-
dimensional subspace {y ∈ Rd | ∑d

`=1 y` = 0} corresponds to the low-density parity check
codes of Gallager [14]. In this case, the subspace is specified as the kernel of the bipartite
adjacency matrix of G.

4.2 The spread-boosting theorem

We now show how to improve spreading properties using the above construction.

Theorem 4.2. Let G be an (N,n, D, d)-graph with expansion profile ΛG(·), and let L ⊆ Rd

be a (t, ε)-spread subspace. Then for every T0, 0 < T0 6 N , X(G,L) is
(
T0,

t
D

ΛG(T0),
ε√
2D

)
-

spread.
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Proof. Fix x ∈ X(G,L) with ‖x‖2 = 1. Fix also S ⊆ [N ] with |S| 6 T , where T = t
D

ΛG(T0).
We then need to prove that

‖xS̄‖2 > ε√
2D

min
|B|6T0

‖xB̄‖2. (5)

Let
Q = {j ∈ [n] : |Γ(j) ∩ S| > t} ,

and
B = {i ∈ S : Γ(i) ⊆ Q} .

Then
t|Q| < E(S, Γ(S)) 6 D|S| 6 DT,

therefore

|Q| < DT

t
= ΛG(T0) .

On the other hand, we have |Q| > |Γ(B)|, and hence |Γ(B)| < ΛG(T0). By the definition of
the expansion profile, this implies that |B| < T0, and therefore (see (5)) we are only left to
show that

‖xS̄‖2 > ε√
2D

· ‖xB̄‖2 (6)

for our particular B.
Note first that

‖xB̄‖2
2 = ‖xS̄‖2

2 + ‖xS\B‖2
2. (7)

Next, since every vertex in S \B has at least one neighbor in Γ(S) \Q, we have

∑

j∈Γ(S)\Q
‖xΓ(j)‖2

2 > ‖xS\B‖2
2. (8)

Since x ∈ X(G,L), L is (t, ε)-spread, and |Γ(j) ∩ S| 6 t for any j ∈ Γ(S) \Q,

∑

j∈Γ(S)\Q
‖xΓ(j)\S‖2

2 > ε2 ·
∑

j∈Γ(S)\Q
‖xΓ(j)‖2

2. (9)

Finally, ∑

j∈Γ(S)\Q
‖xΓ(j)\S‖2

2 6
∑

j∈[n]

‖xΓ(j)\S‖2
2 6 D · ‖xS̄‖2

2. (10)

(7)-(10) imply

‖xS̄‖2
2 > ε2

D
(‖xB̄‖2

2 − ‖xS̄‖2
2).

Since ε 6 1 and D > 1, (6) (and hence Theorem 4.2) follows.
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4.3 Putting things together

In this section we assemble the proofs of Theorems 1.1 and 1.2 from the already available
blocks (which are Theorems 2.8, 2.6, 2.13, 3.3 and 4.2). Let us first see what we can do using
expanders from Theorem 2.8.

4.3.1 First step: Boosting with sum-product expanders

The main difference between the explicit construction of Theorem 3.3 and the probabilistic
result (Theorem 2.13) is the order of magnitude of t (the parameter from Definition 2.10).
As we will see in the next section, this difference is very principal, and our first goal is to
somewhat close the gap with an explicit construction.

Theorem 4.3. Fix an arbitrary constant β0 < min
{
0.08, 3

8
ξ0

}
, where ξ0 is the constant

from Theorem 2.8. Then for all sufficiently large N ∈ N and η > N−2β0/3 there exists an
explicit subspace X ⊆ RN with codim(X) 6 ηN which is (N

1
2
+β0 , ηO(1))-spread.

Proof. In everything that follows, we assume that N is sufficiently large. The desired X
will be of the form X(G,L), where G is supplied by Theorem 2.8, and L by Theorem 3.3.
More specifically, let G be the explicit (N,n, 8, d)-right regular graph from Theorem 2.8 with

d ≈ N2/3 (and hence n ≈ N1/3). Using Theorem 2.8, one can check that for m 6 N
1
2
+β0 , we

have
ΛG(m) > mdβ0− 1

2 . (11)

Indeed, since n ≈ N1/3 and d ≈ N2/3, the inequality 1
8
n0.9 > mdβ0− 1

2 follows (for large N)

from β0 < 0.08, and the inequality m
1
3
+ξ0 > mdβ0− 1

2 follows from β0 < 3
8
ξ0.

By our assumption η > N−2β0/3 > N−0.1, along with d ≈ N2/3, we observe that d 6
o (ηd)2. Hence (cf. the statement of Theorem 3.3), we can find k 6 ηd

8
, k ≈ ηd that is a

power of 4 and also satisfies the restrictions (3). Let L be an explicit
(
Ω

(√
ηd

)
, Ω

(√
η
))

-
spread subspace guaranteed by Theorem 3.3.

The bound on codimension of X(G,L) is obvious: codim(X(G,L)) 6 kn 6 ηdn
8

6 ηN .
For analyzing spreading properties of X(G, L), we observe that η > N−2β0/3 implies ηd &

d1−β0 , hence L is (Ω(d
1
2
−β0

2 ), ηO(1))-spread. By Theorem 4.2 and (11), for every T 6 N
1
2
+β0 ,

we know that X(G,L) is (T, Ω(d
β0
2 )T, ηO(1))-spread In particular, for such T , X(G,L) is

(T, NΩ(1)T, ηO(1))-spread.
Applying Lemma 2.15 with the same spaces X1 := · · · := Xr := X(G,L) and suitably

large constant r ≈ 1/β0 = O(1), we conclude that X(G,L) is
(

1
2
, N

1
2
+β0 , ηO(1)

)
-spread,

completing the proof.

4.3.2 Second step: Handling large sets based on spectral expanders

The sum-product expanders of Theorem 2.8 behave poorly for very large sets (i.e., as m → N ,
the lower bound on ΛG(m) becomes constant from some point). The spectral expanders of
Theorem 2.6 behave poorly for small sets, but their expansion still improves as m → N .
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In this section, we finish the proofs of Theorems 1.1 and 1.2 by exploring strong sides of
both constructions. We begin with Theorem 1.2 as it is conceptually simpler (we need only
spectral expanders, do not rely on Theorem 4.3, and still use only one fixed space X(G,L)).

Proof of Theorem 1.2. By Theorem 2.6 there exists an explicit (N, n, 4, d)-right regular
graph G with

NΩ( 1
log log N ) 6 d 6 N

1
2 log log N (12)

which has ΛG(m) > min
{

m
2
√

d
,
√

2Nm
d

}
. Let k = bη

4
dc; our desired (probabilistic) space is

then X(G, ker(A)), where A is a uniformly random k × d sign matrix (due to the upper

bound in (12), this uses at most d2 6 N
1

log log N random bits). Recalling that η > 0 is an
absolute constant, by Theorem 2.13 ker(A) is an (Ω(d), Ω(1))-spread subspace almost surely.

The bound on codimension is again simple: codim(X(G, ker(A))) 6 kn 6 ηN .
For analyzing spreading properties of X, let m0 = 8N/d (which is the “critical” point

where m0

2
√

d
=

√
2Nm0

d
.) Then Theorem 4.2 says that X(G,L) is

a.
(
T, Ω(

√
d)T, Ω(1)

)
-spread subspace for T 6 m0, and

b.
(
T, Ω(

√
NT ), Ω(1)

)
-spread subspace for m0 6 T 6 N .

And now we are once more applying Lemma 2.15 with X1 := X2 := . . . := Xr := X(G,L).
In O(logd m0) = O(log log N) applications of (a) with T 6 m0, we conclude that X(G,L) is
(1

2
, m0, (log N)−O(1))-spread. In O(log log N) additional applications of (b) with T > m0, we

conclude that X(G,L) is (1
2
, Ω(N), (log N)−O(1))-spread.

Since X(G, L) is an (Ω(N), (log N)−O(1))-spread subspace, the statement of Theorem 1.2
immediately follows from Lemma 2.11(a).

Proof of Theorem 1.1. This is our most sophisticated construction: we use a series of
X(G,L) for different graphs G, and the “inner” spaces L will come from Theorem 4.3. In
what follows, we assume that N is sufficiently large (obviously for N = O(1), every non-
trivial subspace has bounded distortion).

To get started, let us denote

η̃ =
η

(log log N)2
,

and let us first construct and analyze subspaces X(G,L) needed for our purposes individually.
For that purpose, fix (for the time being) any value of m with

1 6 m 6 δη̃2β0/3N, (13)

δ a sufficiently small constant and β0 is the constant from Theorem 4.3.
Applying Theorem 2.6 (with d := N/m), we get, for some d = Θ(N/m), an explicit

(N,n, 4, d)-right regular graph Gm with ΛGm(m) > Ω(d−1/2)m. Note that (13) implies
η̃ > d−2β0/3 (provided the constant δ is small enough), and thus all conditions of Theorem 4.3
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with N := d, η := η̃ are met. Applying that theorem, let Lm ⊆ Rd be an explicit subspace
with codim(Lm) 6 η̃d that is a (d

1
2
+β0 , (η/ log log N)O(1))-spread subspace. Consider the

space X(Gm, Lm) ⊆ RN .
Since D = 4 is a constant, we have

codim(X(Gm, Lm)) . η̃N =
ηN

(log log N)2
.

And Theorem 4.2 (applied to T := m) implies (recalling ΛGm(m) & d−1/2m, t = d
1
2
+β0 ,

d = Θ(N/m)) that X(Gm, Lm) is a
(
m, Ω

((
N
m

)β0
)

m, (η/ log log N)O(1)
)
-spread subspace.

We note that it is here that we crucially use the fact that Lm has spreading properties for
t À d1/2 (t is the parameter from Definition 2.10) so that we more than compensate for
the factor

√
d loss in Theorem 1.2 caused by the relatively poor expansion rate of spectral

expanders.
We will again apply Lemma 2.15, but the spaces Xi will now be distinct. In particular,

for i ∈ N define Xi = X(Gti , Lti), where

ti = N ·
( ε

N

)(1−β0)i

,

for some sufficiently small constant ε, 0 < ε < 1. It is easy to see that for some r =

O(log log N), we have tr 6 δη̃2β0/3N and tr &
(
δη̃2β0/3

)2
N .

Then for X =
⋂r−1

i=0 Xi we have codim(X) . r ηN
(log log N)2

. ηN
log log N

. In particular,

codim(X) 6 ηN for sufficiently large N .
By the above argument based on Theorem 4.2 and the choice of the ti’s, it is easily

seen that Xi is a (ti, ti+1, (η/(log log N))O(1))-spread subspace. By Lemma 2.15, X is a
(ε, tr, (η/(log log N))O(log log N))-spread subspace, or equivalently a (tr, (η/(log log N))O(log log N))-
spread subspace. Since we also have tr > (η/(log log N))O(1)N , the required bound on ∆(X)
follows from Lemma 2.11(a).

5 Discussion

We have presented explicit subspaces X ⊆ RN of dimension (1 − η)N with distortion
(η−1 log log N)O(log log N) and, using N o(1) random bits, distortion η−O(log log N). It is natu-
ral to wonder whether better explicit constructions of expanders can give rise to better
bounds. We make some remarks about this possibility.

1. The GUV and CRVW expander families. The next two theorems essentially
follow from [17] and [8], respectively (after an appropriate application of Lemma 2.3).

Theorem 5.1 ([17]). For each fixed 0 < c, ε 6 1, and for all integers N, K with K 6
N , there is an explicit construction of an (N, n, D, d)-right regular graph G with D .
((log N)/ε)2+2/c and d > N/(DK1+c) and such that ΛG(m) > (1− ε)D ·min{K, m}.
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Theorem 5.2 ([8]). For every fixed 0 < ε < 1 and all sufficiently large values N and
d there exist n 6 N, D 6 2O((ε−1 log log d)3) and an explicit (N, n,D, d)-right regular
bipartite graph G with ΛG(m) > (1− ε)D ·min {Ω(N/d),m}.

The main problem for us in both these constructions is that D must grow with N and
d, respectively. By plugging in the explicit subspaces of Theorem 3.3 into Theorem
4.2 with the GUV-expanders from Theorem 5.1, one can achieve distortions ∆(X) ≈
exp(

√
log N log log N) for X ⊆ RN with dim(X) > N/2. Using the GUV-expanders (in

place of the sum-product expanders) together with spectral expanders in a construction
similar to the proof of Theorem 1.1 would yield a distortion bound of (log N)O(log log N).

2. Very good expansion for large sets. If it were possible to construct an (N,n, D, d)-
right regular bipartite graph H with D = O(1) and such that for every S ⊆ VL with
|S| > N1−β, we had |Γ(S)| = Ω(n), then we would be able to achieve O(1) distortion
using only O(d2 +N δ) random bits for any δ > 0 (in fact, we could use only O(d+N δ)
random bits with [27]).

The idea would be to follow the proof of Theorem 1.2, but only for O(1) steps to show
the subspace is (N1−β, Ω(1))-spread. Then we would intersect this with a subspace
X(H, L), where L ⊆ Rd, with the latter subspace generated as the kernel of a random
sign matrix (requiring d2 bits). Unfortunately, [31, Th. 1.5] shows that in order to
achieve the required expansion property, one has to take D > Ω(β log N).
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