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ABSTRACT
We show that there exists a metric space (X, d) such that

(X,
√

d) admits a bilipschitz embedding into L2, but (X, d)
does not admit an equivalent metric of negative type. In
fact, we exhibit a strong quantitative bound: There are n-
point subsets Yn ⊆ X such that mapping (Yn, d) to a metric

of negative type requires distortion Ω̃ (log n)1/4. In a formal
sense, this is the first lower bound specifically against bilip-
schitz embeddings into negative-type metrics, and therefore
unlike other lower bounds, ours cannot be derived from a
1-dimensional Poincaré inequality.

This answers an open question about the strength of strong
vs. weak triangle inequalities in a number of semi-definite
programs. Our construction sheds light on the power of
various notions of “dual flows” that arise in algorithms for
approximating the Sparsest Cut problem. It also has other
interesting implications for bilipschitz embeddings of finite
metric spaces.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Geometrical problems and computations

General Terms
Algorithms, Theory

Keywords
Metric embeddings, Semi-definite programming, Sparsest Cut

1. INTRODUCTION
Beginning with the works [LLR95, AR98], it became ap-

parent that the embeddability of finite metric spaces into
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various normed spaces (predominantly L1 and L2) was inti-
mately tied to the efficacy of certain mathematical programs
for approximating the Sparsest Cut problem in graphs. Sub-
sequently, such tools were used to achieve new approxima-
tion results for an array of well-known problems, many of
which were unapproachable via other methods.

We now recall the Sparsest Cut problem. Given a finite set
V on n points, and two symmetric non-negative functions
cap, dem : V × V → R≥0, one defines the sparsity of the
subset S ⊆ V by

Φcap,dem(S) =
cap(S, S̄)

dem(S, S̄)
,

where we use the notation f(S, S̄) =
∑

x∈S,y /∈S f(x, y) for

f ∈ {cap, dem}. The value of the instance (V, cap, dem) is
then given by Φ(cap, dem) = min{Φcap,dem(S) : S ⊆ V }. We
recall that the instance is said to be uniform if dem(u, v) = 1
for all u, v ∈ V .

It was shown in [LLR95, AR98, GNRS99] that the inte-
grality gap for a natural (and well-studied) linear-programming
relaxation (see [LR99]) is precisely sup {c1(X, d) : (X, d)},
where (X, d) ranges over all metric spaces on n-points, and
c1(X, d) denotes the minimal distortion required to embed
(X, d) into an L1 space (see Section 1.2 for formal defini-
tions). Bourgain’s embedding theorem [Bou85] shows that
this bound is O(log n), and in [LLR95, AR98], it was shown
that this is tight for the path metric on expander graphs.

The Goemans-Linial SDP. In order to achieve better ap-
proximations, one can consider the Goemans-Linial SDP:

min
{ ∑

u,v cap(u, v)‖xu − xv‖22∑
u,v dem(u, v)‖xu − xv‖22

:

{xu}u∈V ⊆ Rn and ‖ · ‖22 is a metric on {xu}u∈V

}
.

In other words, we optimize over sets of n vectors W ⊆ Rn

which satisfy, for every x, y, z ∈ W , the condition

‖x− y‖22 ≤ ‖x− z‖22 + ‖z − y‖22.
In general, we say that a metric space (X, d) is of negative
type if there exist a mapping f : X → L2 such that

‖f(x)− f(y)‖2 = d(x, y)

for all x, y ∈ X.
As before (see [Mat02a, Ch. 15]), the integrality gap of

this relaxation is exactly the solution to an embedding prob-
lem. The gap is precisely the supremum of c1(X, d) over all
n-point metric spaces of negative type. In [ARV04], the
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Goemans-Linial SDP was used to achieve an O(
√

log n)-
approximation for the uniform case of Sparsest Cut, and
building on these techniques as well as various tools from
the theory of metric embeddings, one can obtain c1(X, d) ≤
O(
√

log n log log n) for any n-point space of negative type
([ALN08], following an earlier bound of [CGR05]). This
yields the same bound for approximating the general Spars-
est Cut problem.

Given the effectiveness of this approach, and generally the
power of the ‖ · ‖22 triangle inequality constraints in relax-
ations for other fundamental problems (see e.g. [FHL05,
ACMM05, Kar09, CMM06]), it becomes a matter of funda-
mental importance to understand the geometry of negative-
type metrics, and the effect of the negative-type constraints
on mathematical programming relaxations.

Integrality gaps and the ease of snowflaking. In or-
der to crystalize this goal, Goemans and Linial conjectured
(see [Mat02a, Ch. 15], [Lin02]) that c1(X, d) ≤ O(1) for ev-
ery metric space (X, d) of negative type. Khot and Vishnoi
subsequently disproved this in [KV05]. The most ingenious
part of their work involves the construction of the lower
bound space (X, d), and the most intricate technical analy-
sis goes toward showing that (X, d) is of negative type. Sub-
sequently, [KR06] and [DKSV06] proved a stronger quanti-
tative bound of Ω(log log n), where notably the latter lower
bound holds in the uniform case. The first paper uses ex-
actly the Khot-Vishnoi construction, while the second paper
relies heavily on the analysis techniques of [KV05].

In [LN06], a new integrality gap construction was pro-
posed, based on the 3-dimensional Heisenberg group H3.
Again, the bulk of the work in [LN06] goes into proving that
H3 admits an interesting metric of negative type. The lower
bound analysis uses work of Cheeger and Kleiner [CK06b,
CK06a, CK09]. Building on this analysis, it was recently
proved in [CKN09] that this construction achieves an inte-
grality gap of (log n)δ0 for some small constant δ0 > 0.

We now express a property that all these lower bounds
share. For a metric space (X, d) and a number α ∈ (0, 1], we
use (X, dα) to denote the metric space where X is equipped
with the distance dα(x, y) = d(x, y)α. For values α < 1, such
constructions are commonly referred to as “snowflakes.” Let
us call a metric space (X, d) a D-half-snowflake if c2(X,

√
d) ≤

D, i.e. (X,
√

d) admits a Euclidean embedding with distor-
tion D. It is immediate from the definition that metrics of
negative type are precisely 1-half-snowflakes.

In all the above constructions of integrality gaps, it is rel-
atively easy to show that that space in question is an O(1)-
half-snowflake. In the case of [KV05]-based constructions,
this can be done in a page of analysis (see, e.g. [KL08]).
Since the Heisenberg group H3 (equipped with the Carnot-
Caratheodory metric) is doubling, a classical result of As-
souad [Ass83] shows that it is already an O(1)-half-snowflake.
Indeed, in all these cases, the fact that one could construct
an O(1)-half-snowflake was taken as evidence and motiva-
tion that eventually a negative-type metric could be con-
structed. This leads to the following natural question (see
the“Isometric vs. isomorphic L2 squared”problem [Mat02b]
posed by the first author in 2003) whose affirmative answer
would make the construction of integrality gaps a signifi-
cantly easier process.

Question 1. Can every O(1)-half-snowflake be embedded
into a metric of negative type with O(1) distortion?

The main theorem of this paper shows that the answer is
negative, in a very strong sense.

Theorem 1.1. There exists an O(1)-half-snowflake for
which any embedding into a metric of negative type incurs

distortion Ω̃ (log n)1/4.

The power of snowflakes. To give more motivation for
obtaining an answer to Question 1, we observe the ubiquity
of snowflakes in embeddings and analysis of the Goemans-
Linial SDP and related algorithms. It is a common obser-
vation that the algorithms and analysis of [ARV04, Lee05,
CGR05, ALN08] do not require the vector solution W ⊆ Rn

to actually satisfy the full triangle inequalities, but only the
weaker form: For every sequence w1, w2, . . . , wk ∈ W ,

‖w1 − wk‖22 ≤ C

k−1∑
i=1

‖wi − wi+1‖22,

for some constant C ≥ 1 independent of the sequence. This
is merely the half-snowflake condition in disguise: It sim-
ply says that W is the image of an O(1)-half-snowflake em-
bedding of some metric space. In all known algorithmic
applications, it is only the O(1)-half-snowflake condition
that is needed. Furthermore, results like [LMN05] show e.g.
that planar graphs always admit O(1)-half-snowflake embed-
dings, while the question of whether they admit negative-
type embeddings was posed by Rabinovich, and is still open.
(This is related to another well-known conjecture in the the-
ory of multi-commodity flows: that the shortest-path met-
ric of a planar graph embeds into L1 with O(1) distortion
[GNRS99].)

Far more than being a curiousity of the analysis, the fact
that a weaker condition suffices is actually the basis for al-
gorithmis which find sparse cuts in graphs without solving
a semi-definite program. In [AHK04], the authors give an
O(
√

log n)-approximation to the uniform Sparsest Cut prob-

lem that runs in Õ(n2) time. In [She09], such an approxima-

tion is obtained in Õ(m+n3/2+ε)-time for every ε > 0. Both
of these algorithms are primal-dual, with the algorithm and
analysis being guided by the structure of the Goemans-Linial
SDP and its dual. A key aspect lending to their efficiency
is that they do not need the full power of the dual; indeed,
they operate by finding an “expander flow” [ARV04], which
is a solution that corresponds precisely to a weakening of
the triangle inequalities in the primal. Our lower bound
shows that, in the non-uniform setting, such approaches can
be significantly less powerful than finding full-fledged dual

solutions. In particular, we give an Ω̃ (log n)1/4 lower bound
on the approximation ratio of any algorithm for non-uniform
Sparsest Cut that relies on finding the non-uniform analog
of expander flows. We refer to the full version for a detailed
explanation.

Additional implications in metric embeddings. We
mention two additional consequences of our result for the
theory of bilipschitz metric embeddings, which have played
a fundamental role in approximation algorithms.

Scale gluing for L1. The first application is to “scale-
gluing” results for embeddings into L1. Specifically, sup-
pose that (X, d) is an n-point metric space, and further-
more that for every value k ∈ Z, there exists a 1-Lipschitz
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map ϕk : X → L1 such that for x, y ∈ X satisfying
d(x, y) ≥ 2k, we have

‖ϕk(x)− ϕk(y)‖1 ≥ 2k

α
. (1)

On the one hand, we have the following.

Theorem 1.2. [Lee05] There exists an embedding of (X, d)
into L1 with distortion O(

√
α log n).

Such scale-gluing results have played a central role in
the best-known approximation algorithms for Sparsest Cut
[KLMN05, Lee05, CGR05, ALN08] and Graph Bandwidth
[Rao99, KLMN05, Lee09], and have found applications in
approximate multi-commodity max-flow/min-cut theorems
in graphs [Rao99, KLMN05]. The work of Cheeger and
Kleiner [CK06a] shows that even if α = O(1), the distor-
tion can go to infinity, and [CKN09] gives a definite bound
of Ω(log n)δ0 for some small δ0 > 0. Our construction and
analysis yield the following lower bound.

Theorem 1.3. There exist n-point metric spaces (X, d)
which satisfy (1) with α = 2, but such that c1(X, d) =

Ω̃ (log n)1/4. In fact, we even have cNEG(X, d) = Ω̃ (log n)1/4.

The k-sum embedding conjecture. In [LS09], it is con-
jectured that if a family of finite graphs F is such that every
shortest-path metric supported on a member of F embeds
into L1 with distortion O(1), then the family ⊕kF has the
same property, for every k ∈ N, where the ⊕k(·) notation de-
notes the closure of F under the operation of taking k-sums
along cliques (see [LS09] for a formal description). This au-
thors refer to this as the“k-sum embedding conjecture.” The
conjecture is open even for k = 2. One of the main results
of [LS09] is that the k-sum embedding conjecture, combined
with the well-known planar embedding conjecture, implies
the GNRS max-flow/min-cut conjecture in excluded-minor
families [GNRS99].

Our results show that there exists an unweighted graph
G whose shortest-path metric embeds into L1 with distor-
tion 2, but that by taking repeated 2-sums of G with itself,
one obtains a graph whose L1 distortion becomes arbitrarily
large. This does not disprove the k-sum conjecture, because
we have only considered a single shortest-path metric on G,
but it does show that the proof must use something about
the entire set of embeddings for metrics on G, as opposed to
merely an embedding of the given metric on G.

1.1 Efficiency, embeddings, and iterated graphs
We now describe our main construction, and the steps that

go into a exhibiting a separation between half-snowflakes
and metrics of negative type. Various aspects are simplified
here for the sake of exposition, and some finer points of the
construction are left unmentioned. The analysis is based on
a “differentiation”-type argument. At a very broad level, we
first argue that any low-distortion embedding must be well-
controlled on a small piece of our lower bound space, and
then show that any well-controlled embedding is quite rigid
in structure, allowing us to prove a lower bound.

Generalizations of classical differentiation theory have played
a prominent role in proving the non-existence of bi-Lipschitz
embeddings between various spaces, when the target space
Z is sufficiently nice (e.g. if Z is a Banach space with the

{0, 1}m

m copies

Figure 1: The “string of cubes” graph, which we
recursively compose with itself.

Radon-Nikodym property); see, for instance [Pan89, Che99,
LN06, BL00, CK06c]. But this approach does not apply to
targets like L1 which don’t have the Radon-Nikodym prop-
erty; in particular, even Lipschitz mappings f : R→ L1 are
not guaranteed to be differentiable in the classical sense.

More recently, however, Cheeger and Kleiner [CK06a, CK06b]
have successfully applied weaker notions of differentiability
to the study of L1 embeddings of the Heisenberg group. Sub-
sequent papers [LR07, CK09, CKN09] continue this theme.
Ours is the first work to apply these techniques to lower
bounds against negative-type metrics.

The construction. Let G be an unweighted graph with
two distinguished vertices s, t ∈ V (G). As in [LR07], we use
G®k to denote the following iterated graph: G®0 is a single
edge, and G®k+1 arises by replacing every edge of G®k with
a copy of G, with s and t taking the place of the endpoints
of the edge. See Section 2 for a formal definition.

For a parameter m ∈ N, consider now the graph Hm con-
stucted as follows. Let Qm be the m-dimensional hypercube
graph, and write V (Qm) = Bm ∪ Rm, where Bm and Rm

denote the nodes of even and odd parity, respectively. Then
Qm is bipartite with respect to the partition (Bm, Rm). Hm

is the graph which consists of 2m layers of the form

B(1)
m R(1)

m B(2)
m R(2)

m B(3)
m R(3)

m · · ·B(m)
m R(m)

m , (2)

where B
(i)
m and R

(i)
m denote disjoint copies of Bm and Rm for

i = 1, 2, . . . , m, and hypercube edges are presently between
every pair of adjacent layers.

We also add to Hm two distinguished nodes: s connected

to all the nodes of B
(1)
m by paths of length m and a t con-

nected the nodes of R
(m)
m by paths of length t. We call

Hm the “string of cubes” graph. See Figure 1. Our fi-
nal construction is of the form Gk,m = H®k

m for appro-
priate values of k, m ∈ N. We use dk,m to denote the
shortest-path metric on Gk,m. Our goal is now to show
that Gk,m is an O(1)-half-snowflake for all k, m ∈ N, while
limm→∞ limk→∞ cNEG(Gk,m) = ∞.

Efficiency. A central role will be played by the efficiency of
various “paths” in metric spaces, following [EFW06, LR07].
Consider a finite sequence of points equipped with a non-
negative symmetric function dist (which may not satisfy the
triangle inequality), S = {x1, x2, . . . , xk}. We say that S is
ε-efficient (with respect to dist) if

k−1∑
i=1

dist(xi, xi+1) ≤ (1 + ε) dist(x1, xk).
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Note that if dist is a metric, then the left-hand side is always
at least dist(x1, xk), by the triangle inequality.

The first key aspect of our approach is that we reduce the
embeddability of G®k to the study of specific types of em-
beddings for the base graph G. For a graph G and two nodes
s, t ∈ V (G), let Ps,t(G) denote the set of all s-t shortest-
paths in G. In Section 2, we prove a quantitative variant of
the following theorem, based on the “coarse differentiation”
methodology of [EFW06].

Theorem 1.4. Let (Y, dY ) be any metric space, and sup-
pose that cY (G®k) ≤ D for all k = 1, 2, . . .. Then for every
ε > 0, there exists an embedding f : G → Y with distortion
at most D, and such that for every sequence {x1, x2, . . . , xr} ∈
Ps,t(G), the sequence {f(x1), f(x2), . . . , f(xr)} is ε-efficient
in (Y, dY ).

A more general result was proved in [LR07]. The novel as-
pect of our approach in Section 2, is that in the special case
of iterated graphs, we are able to gain an exponential im-
provement in a quantitative version of this theorem (which
is necessary to obtain our strong lower bounds). In particu-
lar, the dependence of k on D is logarithmic (as opposed to
linear as in [LR07]).

Snowflake embedding: On the other hand, in the setting
of half-snowflakes, we have a partial converse to the preced-
ing theorem. If there is an embedding

f : (G,
√

dG) → L2

with distortion D, and such that for every sequence

{x1, x2 . . . , xr} ∈ Ps,t(G),

the sequence {f(x1), f(x2), . . . , f(xr)} is ε-efficient with re-
spect to the distance ‖f(xi) − f(xj)‖22, then for every k =
O(1/ε), the graph G®k is an O(D)-half-snowflake. (We are
actually only able to prove this for a modification of the
graph G®k.) Due to lack of space, the proof of this fact is
deferred to the full version.

Because of these two results, we are able to focus on
a separation between embeddings of our base graph Hm

into negative-type metrics and half-snowflakes, respectively,
with the additional property that the embeddings are ε-
efficient on s-t shortest-paths. Analyzing efficient (and ap-
proximately efficient embeddings) is the technical core of our
approach, which we now address.

A lower bound for efficient embeddings into NEG:
Poincaré boosting. Recall that Hm consists of m hyper-
cubes C1, C2, . . . , Cm strung together as in (2). First, we
recall the classical Poincaré inequality of Enflo [Enf69] for
the discrete m-cube. For any f : Qm → R, we have

Ex∈Qm |f(x)− f(x̄)|2 ≤
m∑

i=1

Ex∈Qm |f(x)− f(x⊕ ei)|2, (3)

where we use x̄ to denote x with all coordinates flipped,
and x ⊕ ei to denote x with the ith coordinate flipped. By
integrating, we easily conclude that for any f : Qm → L2,

Ex∈Qm‖f(x)−f(x̄)‖2 ≤
m∑

i=1

Ex∈Qm‖f(x)−f(x⊕ei)‖2. (4)

Obviously, this inequality does not yield any lower bound on
the distortion for embedding Qm into NEG (since it embeds
into L1, and hence NEG isometrically).

But suppose we are given an embedding g : Hm → L2

which is an isometric negative-type embedding, in the sense
that ‖g(x)− g(y)‖2 = dHm(x, y) for all x, y ∈ Hm. Now, for
each i, let gi = g|Ci : Qm → L2 be the restriction of g to
the ith copy of Qm in Hm, where we think of all the maps
{gi}m

i=1 as having the same domain. If we simply applied
(4) to each f = gi and summed the resulting inequalities,
we would again achieve no non-trivial lower bound.

Instead, we apply (4) to the mapping f = g1+g2+· · ·+gm.
By the strictness of the property that g is an isometry (when
the range is considered with the squared norm ‖ ·‖2), all the
vectors {gi(x) − gi(x̄)}m

i=1 are colinear, and one concludes
that,

‖f(x)− f(x̄)‖2 =

(
m∑

j=1

‖gj(x)− gj(x̄)‖
)2

. (5)

On the other hand, if we (by abuse of notation) consider a
shortest-path in Hm of the form

x − x⊕ ei − x − x⊕ ei − x − x⊕ ei − · · ·
(where the elements of the path lie in the respective sets

B
(1)
m , R

(1)
m , B

(2)
m , R

(2)
m , . . .), then by the fact that g is an isom-

etry, for any pairs of adjacent nodes x, x′ and y, y′ in such a
path, we have g(x)−g(x′) and g(y)−g(y′) being orthogonal.
This implies that for every x ∈ Qm and i ∈ [m], we have for
every j, k ∈ [m], the property that gj(x) − gj(x ⊕ ei) and
gk(x) − gk(x ⊕ ei) are orthogonal (actually, this only holds
for j and k of the same parity, but ignore this small issue).

We conclude that if f = g1 + g2 + · · · gm, then

‖f(x)− f(x⊕ ei)‖2 =

m∑
j=1

‖gj(x)− gj(x⊕ ei)‖2. (6)

From (5), (6), and (4), we get a “boosted” Poincaré in-
equality of the form

Ex∈Qm

(
m∑

j=1

‖gj(x)− gj(x̄)‖
)2

(7)

≤
m∑

j=1

m∑
i=1

Ex∈Qm‖gj(x)− gj(x⊕ ei)‖2.

Notice that to obtain this inequality, we needed to use the
fully high-dimensional version (4) instead of (3), because we
used the high-dimensional relationship between the various
maps {gi}m

i=1.
Now, if we were told in advance that (7) holds, and also

that each gj has distortion at most D (again, when the range
is considered with the squared distance ‖ · ‖2), it would im-
mediately yield a lower bound of D ≥ m. (Assuming each
gj is 1-Lipschitz, the right-hand side is at most m2, while
the left-hand side is at least m3/D.)

Of course, we started with the assumption that g was
isometric, so this simply proves that Hm does not admit an
isometric negative-type embedding. But now the main point
is that every aspect of the preceding argument is robust. In
Section 3, we prove a stable version of (5) using a distortion
bound for g, and a stable version of (6) using the assumption
that g is ε-efficient on a large fraction of s-t shortest-paths
in Hm.

Combining all this together in Section 3 shows that Hm

does not admit a low-distortion negative-type metric which
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is ε-efficient on most s-t paths (for ε small enough). Com-
bined with a differentiation theorem like Theorem 1.4, this
shows that the iterated graph Gk,m does not admit a low-
distortion negative-type metric for k, m large enough.

An upper bound for efficient embeddings into half-
snowflakes. The preceding discussion yields only part of
the separation between half-snowflakes and negative-type
metrics. For the other side, using the “snowflake embed-
ding”method mentioned earlier for the iterated graph Gk,m,

it suffices to construct an embedding f : (Hm,
√

dHm) → L2

which has small distortion, and such that every s-t shortest-
path in Hm is mapped 0-efficiently, when the range is con-
sidered with the squared distance ‖ · ‖2. To illustrate how
this is done, we will argue for the path metric P on the
points {1, 2, . . . , n}. In the actual construction, the follow-
ing argument is carried out for all the shortest s-t paths
simulataneously.

Suppose that f : P → L2 satisfies, for all x, y ∈ P ,

|x− y|
D

≤ ‖f(x)− f(y)‖2 ≤ |x− y|. (8)

Let v0 = f(n)−f(1)
‖f(n)−f(1)‖ , and put αi = 〈v0, f(i)〉. We will also

need to make the assumption that

α1 ≤ α2 ≤ · · · ≤ αn, (9)

which will be satisfied in our constructions.
Now, write every point i ∈ P in the form

f(i) = αiv0 + vi,

where 〈vi, v0〉 = 0. Consider the mapping g(i) = αiv0 + δvi,
for some δ ∈ [0, 1].

In this case, we have

n−1∑
i=1

‖g(i + 1)− g(i)‖2 =

n−1∑
i=1

(αi+1 − αi)
2 + δ2‖vi+1 − vi‖2

≤
n−1∑
i=1

(αi+1 − αi)
2 + δ2n,

where in the last inequality we have used (8).
Note that ‖f(n) − f(1)‖ =

∑
i+1 |αi+1 − αi| by (9), and

we have |αi+1 − αi| ≤ 1 by (8), hence

n−1∑
i=1

(αi+1 − αi)
2 ≤ ‖f(n)− f(1)‖.

On the other hand, ‖g(n)−g(1)‖2 = ‖f(n)−f(1)‖2 ≥ n/D.

It follows that for some value δ & 1/
√

D, we will have

‖g(n)− g(1)‖2 =

n−1∑
i=1

‖g(i + 1)− g(i)‖2,

i.e. the image will of P will be 0-efficient. This gives
us a general way to obtain 0-efficient embeddings for half-
snowflakes, which would not work for negative-type embed-
dings (because in the process of decreasing δ, triangle in-
equalities that may have been satisfied in the image could
become violated).

1.2 Preliminaries
For a graph G, we will use V (G), E(G) to denote the sets

of vertices and edges of G, respectively. Sometimes we will

equip G with a non-negative length function len : E(G) →
R+, and we let dlen denote the shortest-path pseudo-metric
on G. We refer to the pair (G, len) as a metric graph, and
often len will be implicit, in which case we use dG to denote
the path metric.

Given two expressions E and E′ (possibly depending on
a number of parameters), we write E = O(E′) to mean that
E ≤ CE′ for some constant C > 0 which is independent of
the parameters. Similarly, E = Ω(E′) implies that E ≥ CE′

for some C > 0. We also write E . E′ as a synonym
for E = O(E′). Finally, we write E ³ E′ to denote the
conjunction of E . E′ and E & E′.

Embeddings and distortion. If (X, dX), (Y, dY ) are met-
ric spaces, and f : X → Y , then we write

‖f‖Lip = sup
x6=y∈X

dY (f(x), f(y))

dX(x, y)
.

If f is injective, then the distortion of f is defined by dist(f) =
‖f‖Lip · ‖f−1‖Lip. A map with distortion D will sometimes
be referred to as D-bi-lipschitz. If dY (f(x), f(y)) ≤ dX(x, y)
for every x, y ∈ X, we say that f is non-expansive. If
dY (f(x), f(y)) ≥ dX(x, y) for every x, y ∈ X, we say that f
is non-contracting. For a metric space X, we use cp(X) to
denote the least distortion required to embed X into some
Lp space.

A metric space (X, d) is said to be of negative type if

c2(X,
√

d) = 1. We use cNEG(X, d) to denote the least distor-
tion required to embed X into some metric space of negative
type. We will abuse notation in the following way. We write
f : (X, d) → NEG to denote the fact that f takes values in
L2, and that its image is a metric when equipped with the
distance induced from the square of the L2 norm. In this
case, the image is always thought to be equipped with the
metric ‖f(x)− f(y)‖22, for x, y ∈ X (e.g. for notions like the
distortion of f).

2. ITERATED GRAPHS AND COARSE DIF-
FERENTIATION

In the present section, we define formally a key part of our
graph construction process (marked ® products), and give
a differentiation theorem for iterated product graphs.

2.1 Marked ®-products
An s-t graph G is a graph which has two distinguished

vertices s, t ∈ V (G). For an s-t graph, we use s(G) and
t(G) to denote the vertices labeled s and t, respectively. We
define the length of an s-t graph G as len(G) = dlen(s, t).
Throughout the paper, we will only be concerned with sym-
metric s-t graphs, i.e. graphs for which there is an au-
tomorphism which maps s to t. We assume that all s-t
graphs are symmetric in the following definitions. A marked
graph G = (V, E) is one which carries an additional subset
EM (G) ⊆ E of marked edges. Every graph is assumed to be
equipped with the trivial marking EM (G) = E(G) unless a
marking is otherwise specified.

Definition 2.1 (Composition of s-t graphs). Given
two marked s-t graphs H and G, define H ® G to be the
s-t graph obtained by replacing each marked edge (u, v) ∈
EM (H) by a copy of G. Formally,

• V (H®G) = V (H)∪(EM (H)× (V (G) \ {s(G), t(G)})) .
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• For every edges (u, v) ∈ E(H) \ EM (H), there is a
corresponding edge in H ®G.

• For every edge e = (u, v) ∈ EM (H), there are |E(G)|
edges,
{(

(e, v1), (e, v2)
)
| (v1, v2) ∈ E(G), v1, v2 /∈ {s(G), t(G)}

}

∪
{(

u, (e, w)
)
| (s(G), w) ∈ E(G)

}

∪
{(

(e, w), v
)
| (w, t(G)) ∈ E(G)

}

• The marked edges of H ® G are precisely those intro-
duced in the previous step which correspond to marked
edges in G.

• s(H ®G) = s(H) and t(H ®G) = t(H).

If H and G are equipped with length functions lenH , lenG,
respectively, we define len = lenH®G as follows. Using the
preceding notation, for every edge e = (u, v) ∈ EM (H),

len ((e, v1), (e, v2)) =
lenH(e)

dlenG(s(G), t(G))
lenG(v1, v2)

len (u, (e, w)) =
lenH(e)

dlenG(s(G), t(G))
lenG(s(G), w)

len ((e, w), v) =
lenH(e)

dlenG(s(G), t(G))
lenG(w, t(G)).

This choice implies that H ® G contains an isometric copy
of (V (H), dlenH ).

Definition 2.2 (Recursive composition). Given a
marked s-t graph G and a number k ∈ N, we define G®k

inductively by letting G®0 be a single edge of unit length,
and setting G®k = G®k−1 ®G.

The following result is straightforward.

Lemma 2.3 (Associativity of ®). For any three graphs
A, B, C, we have (A ® B) ® C = A ® (B ® C), both graph-
theoretically and as metric spaces.

Definition 2.4. For two graphs G, H, a subset of ver-
tices X ⊆ V (H) is said to be a copy of G if there exists a
bijection f : V (G) → X with distortion 1.

Now we make the following two simple observations about
copies of H and G in H ®G.

Observation 2.5. The graph H ® G contains |EM (H)|
distinguished copies of the graph G, one copy corresponding
to each edge in H.

Observation 2.6. The subset of vertices V (H) ⊆ V (H®
G) form an isometric copy of H.

2.2 Coarse differentiation
Let G be an s-t graph, (X, d) a metric space, and consider

a mapping f : V (G) → X. Recalling that Ps,t(G) is the
set of s-t shortest-paths in G, let µ be a measure on Ps,t =
Ps,t(G). We say that f is ε-efficient with respect to µ if it
satisfies

Eγ∼µ

∑
uv∈γ

d(f(u), f(v)) ≤ (1 + ε) d(f(s), f(t)).

For a marked s-t graph G, we define its marked length by

lenM (G) = min
γ∈Ps,t

∑

uv∈γ:(u,v)∈EM (G)

lenG(u, v).

Theorem 2.7. Let G be a marked s-t graph. Then for

any D ≥ 1 and ε ≥ 2D
(
1− lenM (G)

len(G)

)
, there exists a k =

O( 1
ε

log D) such that the following holds. For every metric

space (X, d) and mapping f : V (G®k) → X with distortion
D, there exists a copy of G in G®k such that f |G is ε-efficient
with respect to µ.

Proof. Assume, without loss of generality, that f is 1-
Lipschitz. We claim that if f is not ε-efficient with respect
to µ on any copy of G in G®k, then

Eγ∼µ®k

∑
uv∈γ

d(f(u), f(v)) (10)

≥
(
1 +

ε

2

)k

d
(
f(s(G®k)), f(t(G®k))

)
,

where µ®k is the natural iterated measure on s(G®k)-t(G®k)
shortest-paths in G®k. We prove this by induction on k,
where the case k = 0 is trivial.

Now, write G®k+1 = G ® G®k. We have one copy of
G®k in G®k+1 for every marked edge e = (u, v) ∈ EM (G).
Denoting this copy by He, by the induction hypothesis, we
have

Eγ∼(µ®k)e

∑
uv∈γ

d(f(u), f(v)) (11)

≥
(
1 +

ε

2

)k

d (f(s(He)), f(t(He))) ,

where we use (µ®k)e to denote the path measure on He.
Denote now the outer copy of G by G0, and observe that if
it is not mapped ε-efficiently by f , then

Eγ∼µ

∑
uv∈γ

d(f(u), f(v)) ≥ (1 + ε) d(f(s(G0)), f(t(G0)))

= (1 + ε) d
(
f(s(G®k+1)), f(t(G®k+1))

)
,

where the distribution µ here is over s(G0)-t(G0) paths in
G0

∼= G.
Consider now a term of the form

∑
uv∈γ d(f(u), f(v)) on

the left-hand side. Since f is 1-Lipschitz, we have
∑

uv∈γ:(u,v)∈EM (G0)

d(f(u), f(v))

≥
∑

uv∈γ

d(f(u), f(v))−
(

1− lenM (G0)

len(G0)

)
dG(s(G0), t(G0))

≥
∑

uv∈γ

d(f(u), f(v))− ε

2D
d(f(s(G0)), f(t(G0)))

≥
(
1 +

ε

2

)
d(f(s(G0)), f(t(G0))).

But now since each marked edge is replaced by a copy of G®k

in G, every term in the sum
∑

uv∈γ:(u,v)∈EM
d(f(u), f(v))

corresponds to the right-hand side of an instance of (11),
yielding

Eγ∼µ®k+1

∑
uv∈γ

d(f(u), f(v)) (12)

≥
(
1 +

ε

2

)k+1

d
(
f(s(G®k+1)), f(t(G®k+1))

)
.

626



This preceding line completes our proof of (10) by induc-
tion. Now, combining the triangle inequality and the fact
that f is 1-Lipschitz, the left-hand side of (10) is at most
len(G®k), while the right-hand side is at least

len(G®k)

D

(
1 +

ε

2

)k

,

yielding a contradiction for k ³ log D
ε

.

3. LOWER BOUND FOR NEG

We now formally present our lower bound construction
and prove a lower bound on the distortion required to embed
these graphs into NEG.

3.1 Graph construction
We will refer to the graphs Hm described in Section 1.1.

We use [Qm]i to denote the ith copy of Qm in Hm, and
for a vertex x ∈ V (Qm), we use [x]i to denote the copy
of x in [Qm]i. For a directed edge ~e = (u, v), we define
f(~e) = f(u)− f(v).

For m, h ∈ N, we define the graph Im,h as follows. We
begin with a copy of Hm where all the edges are marked.
Then, we relabel the vertices s and t in Hm as s′ and t′.
Next, we add two distinguished vertices s and t and and
connect s to s′ and t to t′ by a path of length 1000d√me.
All the edges in this new path are unmarked. Finally, we
replace each marked edge with a path of length 1000d√meh,
all of whose edges are marked. Our final construction is of
the form I®k

m,h for appropriate choices of m, h, k ∈ N. We
equip these graphs with the unweighted shortest-path met-
ric, which we denote dm,h,k.

3.2 Distortion lower bound
The main result of this section is the following theorem.

Theorem 3.1. For m ≥ 1 and k = dm log2 me, any em-

bedding of I®k
m,m2 into NEG requires distortion Ω̃(log1/4 N)

where N = |V (H®k
m )| ³ 2O(mk).

We will use Theorem 2.7 to reduce our task to proving
lower bounds on efficient embeddings. Let µm be the uni-
form measure over s-t shortest paths in Hm of the form

(s, . . . , [x]1, [x⊕ ek]1, [x]2, [x⊕ ek]2, . . . , [x]m, [x⊕ ek]m, . . . , t),

where k ∈ {1, 2, . . . , m} and x ∈ Qm are chosen uniformly
at random.

Lemma 3.2. For any mapping f : Hm → NEG, if f is
O( 1

m log m
)-efficient with respect to µm, then dist(f) & m1/2.

Using the preceding lemma, the Theorem 3.1 follows quickly.

Proof of Theorem 3.1. Suppose that f : I®k
m,m2 → NEG

has distortion at most
√

m. By Theorem 2.7, there must ex-
ist an isometric copy of (Im,m2 , dm,m2,1), in I®k

m,m2 such that

f |I
m,m2 is 1

m log m
-efficient with respect to µm. Now, Im,m2

possesses an isometric copy of (Hm, dHm) as a subgraph.
We restrict f further to Hm. The map f |Hm : Hm → NEG

is 1
m log m

+O(1/m2)dist(f)-efficient, and is thus O( 1
m log m

)-
efficient. By Lemma 3.2, any such embedding of Hm has dis-
tortion Ω(

√
m). We have log N . m2 log2 m, hence dist(f) &

m1/2 & (log N)1/4

log log N
.

Before we prove Lemma 3.2, we start with a couple of
general lemmas. Let ~E(Qm) be the set of all ordered pairs
(u, v) where {u, v} is an edge of Qm (in other words, replace
every undirected edge by two directed edges).

Lemma 3.3. Let F be a set of functions f : Qm → L2

such that

i) Ef,g∈F,~e∈~E(Qm)[f(~e) · g(~e)] ≤ c1,

ii) Ef,g∈F,x∈V (Qm)[(f(x)− f(x̄)) · (g(x)− g(x̄))] ≥ c2.

Then,

m ≥ c2

c1
.

Proof. Let F (x) = Ef∈Ff(x). Therefore,

c2 ≤ Ef,g∈F,x∈V (Qm)[(f(x)− f(x̄)) · (g(x)− g(x̄))]

= Ex∈V (Qm)[Ef∈F (f(x)− f(x̄)) · Eg∈F (g(x)− g(x̄))]

= Ex∈V (Qm)[(F (x)− F (x̄)) · (F (x)− F (x̄))]

= Ex∈V (Qm)[‖F (x)− F (x̄)‖22].
Therefore (4) implies,

c2 ≤ m · E~e∈~E(Qm)[‖F (~e)‖22]
= m · E~e∈~E(Qm)[(F (~e)) · (F (~e))]

= E~e∈~E(Qm)[Ef∈Ff(~e) · Eg∈Fg(~e)]

= Ef,g∈F,~e∈~E(Qm)[f(~e) · g(~e)]

= m · c1

The main idea in the proof of Lemma 3.2 is to apply
Lemma 3.3 to some family F ⊆ {f |[Qm]i : 1 ≤ i ≤ m}.
In the rest of the section, we are mainly concerned with
bounding the values c1 and c2 based on efficiency and dis-
tortion.

Lemma 3.4. For all i, j ∈ [m], and for any non-expansive
map f : V (Hm) → NEG with distortion at most D, the
following inequality holds,

(f([x]i)− f([x̄]i))(f([x]j)− f([x̄]j)) ≥ m

D
− 4(|j − i|). (13)

Proof. We prove this inequality using the following bounds.

i) Non-expanding property: ‖f([x]j)−f([x]i)‖22 ≤ 2|i−j|
and ‖f([x̄]i)− f([x̄]j)‖22 ≤ 2|i− j|.

ii) Distortion bound:
‖f([x]i)−f([x̄]i)‖22 ≥ m

D
and ‖f([x]j)−f([x̄]j)‖22 ≥ m

D
.

To prove (13),

m

D
− 4|i− j|

≤ m

D
− ‖(f([x]i)− f([x]j))‖22 − ‖(f([x̄]j)− f([x̄]i))‖22

≤ m

D
− ‖(f([x]i)− f([x]j)) + (f([x̄]j)− f([x̄]i))‖22

2

=
m

D
− ‖(f([x]i)− f([x̄]i)− (f([(x]j)− f([x̄]j))‖22

2

≤ m

D
−

m
D

+ m
D
− 2(f([x]i)− f([x̄]i))(f([x]j)− f([x̄]j))

2

= (f([x]i)− f([x̄]i))(f([x]j)− f([x̄]j)).
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Corollary 3.5. For all i, j ∈ [m] such that |i− j| ≤ m
8D

,
and for any non-expansive map f : V (Hm) → NEG with
distortion at most D, the following inequality holds,

(f([x]i)− f([x̄]i)) (f([x]j)− f([x̄]j)) ≥ m

2D
.

Lemma 3.6. Let f : Hm → NEG be a non-expansive map-
ping. Furthermore, suppose that dist(f) ≤ D and f is ε-
efficient with respect to µm, then there exist an index p ∈ [m]
such that,

E~e∈~E(Qm)Ei,j∈{p,··· ,p+`}f([~e]i)f([~e]j) . D

m
+

εm

D
, (14)

where ` = b m
8D
c.

Proof. To prove this lemma first we bound the slack on
sub-paths. Let sp denote the expectation of the following
quantum when x ∈ Qm and k ∈ [m] are chosen uniformly at
random

p+`∑
r=p

(‖f([x]r)− f([x⊕ ek]r)‖22 + ‖f([x]r+1)− f([x⊕ ek]r)‖22
)

− ‖f([x]p)− f([x⊕ ek]p+`)‖22 .

Since f is ε-efficient with respect to µm, we have

Ep∈[m−`]sp . ε`,

and therefore there must exist an index p such that sp . ε`.
We show that any such p satisfies (14).

We bound the sum,

E~e∈~E(Qm)

∥∥∥
p+`∑
i=p

f([~e]i)
∥∥∥

2

2
(15)

³ `2
(
E~e∈~E(Qm)Ei,j∈{p,··· ,p+`}f([~e]i)f([~e]j)

)

by splitting it into two parts:

∥∥∥
p+`∑
i=p

f([~e]i)
∥∥∥

2

2
=

p+`∑
i=p

‖f([~e]i)‖22 +

p+`∑

i,j=p:i6=j

f([~e]i)f([~e]j).

The map f is non-expansive, therefore ‖f([~e]i)‖22 ≤ 1, and

∥∥∥
p+`∑
i=p

f([~e]i)
∥∥∥

2

2
. ` +

p+`∑

i,j=p:i6=j

f([~e]i)f([~e]j).

By bounding,

p+`∑

i,j=p:i 6=j

f([~e]i)f([~e]j), (16)

we can bound the overall sum and complete the proof.
For a given p and e, let

νp,~e = max
i6=j∈{p,...,p+`}

f([~e]i)f([~e]j),

and let i0 < j0 be the indices were the maximum is achieved.
We show that sp . Ee∈E(Qm)νp,~e and then bound (15) by

∥∥∥
p+`∑
i=p

f([~e]i)
∥∥∥

2

2
. ` + sp`2 . `2

(
1

`
+ ε`

)
³ `2

(
D

m
+

εm

D

)
,

to complete the proof.

For an edge ~e = (x, x ⊕ ek), we can write the triangle
inequality for ‖ · ‖22 among [x]i0 , [x]j0 and [x⊕ ek]j0 as

0 ≥ (f([x]i0)− f([x]j0)) · (f([x]j0)− f([x⊕ ek]j0))

= (f([x]i0)− f([x⊕ ek]i0) · (f([x]j0)− f([x⊕ ek]j0)

+ f([x⊕ ek]i0)− f([x]j0)) · (f([x]j0)− f([x⊕ ek]j0))

≥ νp,~e + (f([x⊕ ek]i0)− f([x]j0)) · (f([x]j0)− f([x⊕ ek]j0)),

hence

‖f([x⊕ ek]i0)− f([x]j0)‖22 + ‖f([x]j0)− f([x⊕ ek]j0)‖22 ≥
‖f([x⊕ ek]i0)− f([x⊕ ek]j0)‖22 + 2νp,~e.

Using the triangle inequality, we obtain

‖f([x]p)− f([x⊕ ek]p+`)‖22
≤ ‖f([x]p)− f([x⊕ ek]i0)‖22

+ ‖f([x⊕ ek]i0)− f([x⊕ ek]j0)‖22
+ ‖f([x⊕ ek]j0)− f([x⊕ ek]p+`)‖22

≤ −2νp,~e +

p+`∑
r=p

‖f([x]r)− f([x⊕ ek]r)‖22

+ ‖f([x]r+1)− f([x⊕ ek]r)‖22 .

Therefore, sp & E~e∈~E(Qm)νp,~e and the proof is complete.

Now we can present the proof of Lemma 3.2.

Proof of Lemma 3.2. Let f : Hm → NEG be a non-
expansive map which is ε-efficient with respect to µm, where
ε = O( 1

m log m
). Let p satisfy the conclusion of Lemma 3.6.

Let fi(x) = f([x]i). Furthermore, let

F =
{

fi : p ≤ i ≤ p +
⌊ m

8D

⌋}
.

An immediate application of Lemma 3.6 yields,

Ef,g∈F,~e∈~E(Qm)[f(~e) · g(~e)] . D

m
+

εm

D
.

From Corollary 3.5 we have,

Ef,g∈F,x∈V (Qm)[(f(x)− f(x̄)) · (g(x)− g(x̄))] ≥ m

2D
.

Applying Lemma 3.3 with the given bounds, we must have

m &
m
D

D
m

+ εm
D

& 1

ε + D2

m2

,

therefore

mε +
D2

m
& 1,

and D & m1/2.
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time. In 45th Annual Syposium on Foundations
of Computer Science, pages 238–247. IEEE
Computer Society, 2004.

[ALN08] Sanjeev Arora, James R. Lee, and Assaf Naor.
Euclidean distortion and the Sparsest Cut. J.
Amer. Math. Soc., 21(1):1–21, 2008.

[AR98] Yonatan Aumann and Yuval Rabani. An
O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM
J. Comput., 27(1):291–301 (electronic), 1998.

[ARV04] Sanjeev Arora, Satish Rao, and Umesh
Vazirani. Expander flows, geometric
embeddings, and graph partitionings. In 36th
Annual Symposium on the Theory of
Computing, pages 222–231, 2004.

[Ass83] Patrice Assouad. Plongements lipschitziens
dans Rn. Bull. Soc. Math. France,
111(4):429–448, 1983.

[BL00] Yoav Benyamini and Joram Lindenstrauss.
Geometric nonlinear functional analysis. Vol.
1, volume 48 of American Mathematical
Society Colloquium Publications. American
Mathematical Society, Providence, RI, 2000.

[Bou85] J. Bourgain. On Lipschitz embedding of finite
metric spaces in Hilbert space. Israel J. Math.,
52(1-2):46–52, 1985.

[CGR05] S. Chawla, A. Gupta, and H. Räcke. An
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