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Abstract

In [Rao 1999], it is shown that every n-point Euclidean metric with polynomial
aspect ratio admits a Euclidean embedding with k-dimensional distortion bounded
by O(

√
log n log k), a result which is tight for constant values of k. We show that

this holds without any assumption on the aspect ratio, and give an improved bound of
O(
√

log n(log k)1/4). Our main result is an upper bound of O(
√

log n log log n) indepen-
dent of the value of k, nearly resolving the main open questions of [Dunagan-Vempala
2001] and [Krauthgamer-Linial-Magen 2004]. The best previous bound was O(log n),
and our bound is nearly tight, as even the 2-dimensional volume distortion of an n-
vertex path is Ω(

√
log n).

1 Introduction

In the geometry of finite metric spaces, bi-Lipschitz mappings between pairs of metric spaces
play a central role. Given metric spaces (X, dX), (Y, dY ), and a map f : X → Y , one defines
the Lipschitz norm of f by

‖f‖Lip = sup
x6=y∈X

dY (f(x), f(y))

dX(x, y)
,

i.e. the maximum amount by which distances are expanded under f . If f is injective, we
define the distortion by Dst(f) = ‖f‖Lip · ‖f−1‖Lip. If ‖f‖Lip ≤ 1, we say that f is non-
expansive. In the present paper, we will be concerned primarily with the case when Y = L2

and X is finite. In this case, one defines c2(X) = inff :X↪→L2 Dst(f), where the infimum is over
all injective maps from X into a Hilbert space. This quantity is referred to as the Euclidean
distortion of X. In his study of the graph bandwidth problem, Feige [Fei00] introduced a
higher-dimensional analogue of distortion for maps into Euclidean spaces which is useful for
controlling the behavior of finite subsets under random projections (for a nice discussion of
this and its application to bandwidth, see [Mat02, Ch. 15]).

∗This research was done while the author was a postdoctoral fellow at the Institute for Advanced Study,
Princeton, NJ.
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For a k-point subset T ⊆ Rk−1, let conv(T ) denote the convex hull of T , and define
Evol(T ) = volk−1(conv(T )), where volk−1 denotes the (k− 1)-dimensional Lebesgue measure
The volume of an arbitrary k-point metric space S, denoted Vol(S), is then defined as the
supremum of Evol(Ψ(S)) over all non-expansive maps Ψ : S → Rk−1. Given a non-expansive
map f : X → L2, we define the (k − 1)-dimensional distortion of f by

Dstk−1(f) = sup
S⊆X:|S|=k

[
Vol(S)

Evol(f(S))

] 1
k−1

.

In words, we measure how well f achieves the maximal Euclidean volume simultaneously
for all subsets of size k. Observe that the 1-dimensional distortion corresponds with the
standard notion, i.e. Dst1(f) = Dst(f), which considers only pairs of points. For larger
values of k, Dstk measures the distortion of higher-order structures in X. We define ck

2(X) =
inff :X→L2 Dstk(f), where the infimum is over all injective, non-expansive maps f . This
quantity is called the k-dimensional volume distortion of X.

For a non-expansive map f : X → L2, we define the rigidity of f , written rigidity(f) as
the minimum value R such that the following holds: For every x ∈ X, Y ⊆ X, we have

dist2
(
f(x), span{f(y)}y∈Y

)
≥ d(x, Y )

R
.

We call such a map R-rigid. Finally, define r2(X) = inf {rigidity(f) | f : X ↪→ L2}. It is an
easy (but non-trivial) observation that ck

2(X) ≤ r2(X) for any k ≤ |X| (see, e.g. [KLM04,
Sec. 2]).

Previous work. The asymptotics of ck
2(X) and r2(X) as a function of n = |X| are well-

studied, because of their intrinsic geometric appeal, and the application of bounds on ck
2(X)

to graph-theoretic layout problems [Fei00, Vem98, DV01]. The first bounds, given by Feige
[Fei00], were based on a new analysis of Bourgain’s embedding [Bou85] and showed that
ck
2(X) ≤ O(log n +

√
k log k log n) for any n-point metric space X. Later, Rao [Rao99]

showed that ck
2(X) ≤ O(log n)3/2, for any 1 ≤ k ≤ n. (Rao’s paper does not contain this

result, but as observed by A. Gupta, it follows from his work in combination with known
metric partitioning techniques [LS93, Bar96]). In fact, using Rao’s technique one obtains
the stronger bound r2(X) ≤ O(log n)3/2. Finally, Krauthgamer, et. al. [KLMN05] gave
the optimal bound r2(X) ≤ O(log n). (We remark that this bound is a special case of our
analysis for the Euclidean subsets, see Corollary 3.6.) The matching lower bound (based on
expander graphs) is proved in [KLM04, Sec. 3.5].

The Euclidean case. One natural case, which arises in the analysis of a semi-definite
program for bandwidth [DV01], occurs when X is an n-point subset of some Euclidean
space. The rounding algorithm of [DV01] proceeds in three steps (following Feige’s original
algorithm [Fei00]):

1. Solve an SDP for the graph bandwidth problem, applied to a graph on n vertices. This
yields an n-point subset S ⊆ Rn.
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2. Embed the subset S back into Rn using an embedding f with small volume distortion.

3. Project the subset f(S) ⊆ Rn onto a random line, and output the induced linear
ordering.

Step (2) is a pre-processing step used to ensure that the set of points behaves well un-
der random projection. We refer to [Vem98, Fei00, DV01, Mat02] for details about graph
bandwidth, and how volume distortion relates to random projections.

For the Euclidean case, Rao [Rao99] exhibited a bound of ck
2(X) ≤ O(

√
log n log k), with

the caveat that the ratio of the maximum to minimum pairwise distance in X must be
bounded by some polynomial in n. Furthermore, this bound is essentially tight for constant
values of k, as exhibited independently by Dunagan and Vempala [DV01], and Krauthgamer,
Linial, and Magen [KLM04]: If Pn is the path metric on n-points, then c2

2(Pn) = Ω(
√

log n).
In those papers, it is asked whether ck

2(X) ≤ O(
√

log n) for every n-point subset of some
Euclidean space and every value 1 ≤ k ≤ n. In the present work, we nearly resolve this open
problem.

Theorem 1.1. For any n-point subset X ⊆ Rn, we have r2(X) = O(
√

log n log log n). In
particular, ck

2(X) = O(
√

log n log log n) for any 1 ≤ k ≤ n.

Furthermore, for constant values of k, we achieve the optimal distortion without requiring
bounds on the ratio of maximum to minimum distance in X.

Theorem 1.2. For any n-point subset X ⊆ Rn, and 1 ≤ k ≤ n, ck
2(X) = O(

√
log n (log k)

1
4 ).

Clearly this result is dominated by the preceding theorem for k À 2(log log n)4 . These
theorems are proved in sections 4.1 and 4.2, respectively. We remark that every step of
the proofs can be made algorithmic (i.e. can be carried out in time polynomial in n) in a
straightforward way. Using the latter theorem in the algorithm of [DV01] yields a marginal
improvement of O(log log n)1/4 to the best-known approximation ratio for graph bandwidth.
We obtain only this small improvement because in their analysis, one takes k = Θ(log n).

Our approach makes a connection between the value of r2(X) and a seemingly simpler
parameter which we now define.

Definition 1.3. For a number d ∈ N, let h(d) be the smallest value such that there exists a
non-expansive map Fd : Rd → L2 satisfying the following conditions for every x ∈ Rd.

1. ‖Fd(x)‖2 ≤ 30/h(d).

2. If B(x, 1) is the ball of radius 1 around x, then

dist2
(
Fd(x), span{Fd(y)}y∈Rd\B(x,1)

)
≥ 1

h(d)
,

where dist2(x, S) = infy∈S ‖x− y‖2 for a subset S ⊆ L2.

The value 30 is somewhat arbitrary (as any large enough constant would suffice).
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Observe that h(·) is monotone in the sense that h(d + 1) ≥ h(d) for all d ≥ 1, since
Rd ⊆ Rd+1 with the canonical identification. The connection between h(d) and r2(X) is
contained in the following theorem.

Theorem 1.4. If h(d) ≤ O(dε) for some ε ≥ 1
2
, then

sup
{

r2(X) : X ⊆ L2, |X| = n
}
≤ O(log n)ε log log n.

At the highest level, the proof of Theorem 1.4 constructs a rigid embedding for X ⊆ Rn

by decomposing it into various subsets (these subsets are formed from a combination of
random partitioning and variable-rate random sampling), projecting such a subset into a
low-dimensional subspace, and then applying a variant of an appropriate map Fd : Rd → L2

from the family defined above. The different embeddings are then glued together using
smooth partitions of unity; see Section 1.2 for a more detailed proof overview.

Our second contribution, which completes the proof, is a bound on the value of h(d).

Theorem 1.5. h(d) = O(
√

d).

Theorem 1.5 is proved in Section 2, while the transference argument of Theorem 1.4
combines results from Sections 2 and 3, and is completed in Section 4. After introducing
some preliminaries, we present an overview of the proof in Section 1.2. Finally, in Section
4.3, we outline an approach which might achieve the optimal bound of O(

√
log n).

1.1 Preliminaries

For a metric space (X, d) and a subset S ⊆ X, we write Nδ(S) = {x ∈ X : d(x, S) ≤ δ}.
We write B(x, r) = {x ∈ X : d(x, y) ≤ r} for the closed ball of radius R about x, and
A(x, r1, r2) = B(x, r2) \B(x, r1).

Hilbert spaces and random mappings. Throughout the paper, L2 represents a separa-
ble, infinite-dimensional Hilbert space. Given a Hilbert space Z, and two maps f, g : X → Z,
we define the map f ⊕ g : X → (Z ⊕ Z) by (f ⊕ g)(x) = (f(x), g(x)). We extend this def-
inition to more than two maps (and even countably infinite sums) in the obvious way. If
Z = L2, we will routinely view f ⊕g as a function taking values in L2 (under some canonical
isomorphism). Of course if X is finite (as will usually be the case), one can assume that
Z = R|X|−1.

Often, it will be useful to construct embeddings into Hilbert spaces of random variables.
Given a probability space (Ω, Pr), we let L2(Ω, Pr) denote the space of all L2-valued random
variables defined (and measurable) with respect to (Ω, Pr). Given such an A ∈ L2(Ω, Pr),
one has ‖A‖L2(Ω,Pr) =

√
EΩ‖A‖2

2. If X is finite, then one can often convert a mapping
f : X → L2(Ω, Pr) to a map f ′ : X → Rd by randomly sampling coordinates from the
distribution of the embedding. In all of our constructions, poly(k, log |X|) random samples
suffice when trying to preserve the k-dimensional volume distortion achieved by f .

Decomposability. We now recall the notion of padded decomposability. Given a partition
P of X and x ∈ X we denote by P (x) ∈ P the unique element of P to which x belongs.
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In what follows we sometimes refer to P (x) as the cluster of x. Following [KLMN05] we
define the modulus of padded decomposability of X, denoted αX , as the least constant α > 0
such that for every τ > 0 there is a distribution ν over partitions of X with the following
properties.

1. For all P ∈ supp(ν) and all C ∈ P we have that diam(C) < τ .

2. For every x ∈ X we have that

ν{P : B(x, τ/α) ⊆ P (x)} ≥ 1
2
.

The results of [LS93, Bar96] imply that αX = O(log |X|), and this will be used in our proof.

1.2 Proof overview

We recall that our goal is to prove that for every n-point subset X ⊆ Rn, we have r2(X) ≤
O(
√

log n log log n). Our approach breaks into three steps.

1. Handling a single scale.
We show that there exists a constant C > 0 such that for every finite subset S ⊆ L2, and
every τ ≥ 0, there exists a non-expansive map fS,τ : S → L2 such that for every x ∈ S,

dist2
(
fS,τ (x), span {fS,τ (y)}y∈S\B(x,τ)

)
≥ τ

C
√

log |S| . (1)

This is done by first obtaining a bi-Lipschitz projection of S into a k = O(log |S|)-dimensional
Euclidean space [JL84]. Once in Rk, we ignore the set S, and concentrate on proving (1) for
all x ∈ Rk. This is crucial since our bound on the Lipschitz constant of fS,τ will depend on
the fact that Rk is a geodesic space (or at least “coarsely” geodesic at scales smaller than
τ/k.).

Our construction then proceeds using a method of “local random projections” introduced
by Rao [Rao99]. Essentially, using Rao’s method, we are able to enjoy the benefits of
random projection for close pairs of points, while maintaining complete independence for
pairs x, y ∈ Rk with ‖x − y‖2 À τ . This independence is necessary to achieve the strong
lower bound required by (1). We remark that Rao’s analysis is only able to obtain the bound

(1) with
√

log |S| replaced by (log |S|) 3
4 .

2. Passing to a dependence on the local growth ratio.
The next goal is to obtain, for every τ ≥ 0, a non-expansive map ϕτ : X → L2 which satisfies

dist2
(
ϕτ (x), span {ϕτ (y)}y∈X\B(x,τ)

)
≥ τ

C
√

log |B(x,τ)|
|B(x,τ/4)|

. (2)

The actual lower bound we obtain is slightly weaker (this is one source of the extra O(log log n)
term in our result).
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This is done by extending the framework of [ALN08] for smoothly piecing together global
single-scale maps from maps defined only on small subsets (these subsets are formed out
of a combination of random partitioning and random sampling). There are a number of
difficulties involved in extending this to the domain of volume distortion (as opposed to
one-dimensional distortion). In applying the method of [ALN08], we are confronted with
the problem of extending non-expansive maps f : S → L2 from a subset S ⊆ X to maps
f̃ : X → L2 which are non-expansive on the whole space. One difference from [ALN08] is our
use of Kirszbraun’s extension theorem [Kir34] for extending Lipschitz maps between Hilbert
spaces. This is necessary in our setting because the maps produced by step (1) above are
not of Fréchet type, and thus extension is a non-trivial issue.

A more serious difficulty arises in the process of extension: We must not only maintain
a Lipschitz bound (i.e. an upper bound on ‖ϕt‖Lip), but we must also extend the lower
bound of (1) to apply to the span of larger sets of points. (Observe that in (2) we consider
y ∈ X\B(x, τ), while in (1), we have only a guarantee for y ∈ S\B(x, τ).) Here, we make use
of the power of rigid embeddings: they behave particularly nicely under partitions of unity.
By a partition of unity on a metric space (X, d), we mean a family of maps {ρt : X → [0, 1]}
such that for every x ∈ X,

∑
t ρt(x) = 1. Such a family is distinguished from an arbitrary

set of weight functions on X by the fact that we usually require some smoothness condition
from each ρt : X → [0, 1]. In our case, all partitions of unity will be Lipschitz, and we will
care greatly about the norms ‖ρt‖Lip.

In order to apply the techniques of [Lee05, ALN08], given a function φ : X → L2, we are
often confronted with the problem of analyzing the product function g(x) = ρt(x) ·φ(x) (this
is the map φ “localized” under the partition of unity ρt). Bounds on ‖g‖Lip are controlled
in the usual way (the chain rule) via the quantities supx∈X ‖φ(x)‖2, ‖φ‖Lip, and ‖ρt‖Lip.
However, providing good control on the lower bounds becomes more delicate.

Fortunately, the simple inequality (where {cy} ⊆ R are real constants),

∥∥∥∥∥φ(x)−
∑
y∈Y

cyg(y)

∥∥∥∥∥
2

=

∥∥∥∥∥φ(x)−
∑
y∈Y

cyρt(y)φ(y)

∥∥∥∥∥
2

≥ dist2
(
φ(x), span{φ(y)}y∈Y

)
(3)

allows us to freely use well-behaved partitions of unity since the {ρt(y)} multipliers are
absorbed into the span.

In particular, this allows us to “dampen” the map ϕτ away from various subsets S ⊆ X,
while absorbing this dampening into the span (see Claim 3.7).

3. Gluing for volume distortion. The last step in the proof is to establish an analogue
of the scale gluing methodology of [Lee05, KLMN05] for embeddings with small volume
distortion, as opposed to bi-Lipschitz embeddings. This is taken up in Section 3. Since our
embeddings are not of Fréchet type, our starting point is the author’s work [Lee05], based
on combining single-scale embeddings under partitions of unity. We are able to adapt those
techniques to our setting by again using the observation (3) above (see Theorem 3.5).

This allows us to transform the ensemble of maps {ϕτ}τ≥0 from (2) into a genuine rigid
embedding that simultaneously handles all the scales.
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2 Local random projections

This section contains most of our results specifically about the geometry of finite-dimensional
Euclidean spaces. First, we prove Theorem 1.5, yielding the estimate h(d) = O(

√
d). In fact,

for simplicity, we will only prove it for compact subsets Z ⊆ Rd. The general case follows by
a standard argument which we omit for the sake of simplicity. We remark that the compact
case is all that is required for applications throughout the paper.

Lemma 2.1. There exists a constant β ∈ (0, 1) such that the following holds. Let τ ≥ 0, d ∈
N be given, and let Z ⊆ Rd be a compact subset. Then there exists a map F : Rd → L2 such
that

1. ||F ||Lip ≤ 1,

2. ‖F (x)‖2 ≤ 28βτ/
√

d for all x ∈ Z,

3. For all x ∈ Z, denoting C(x) = Z \B(x, τ),

dist2
(
F (x), span{F (y)}y∈C(x)

)
≥ βτ√

d
.

Proof. Without loss of generality, we assume that d ≥ 3. We may assume that Z is convex
by simply replacing Z with the closure of its convex hull. Clearly we may also assume that
Nτ (Z) ⊆ B for some closed ball B of radius R, for some sufficiently large value R > 0. Let
vold denote the d-dimensional Lebesgue measure, normalized so that vold(B) = 1. Let T be a
uniformly random m-point subset of B, where m = vold(B)/vold(B(x, τ/4)) (we may assume
that m is an integer by enlarging B). Thus for every z ∈ Z, we have E |T ∩B(z, τ/4)| = 1.

We now define the random mapping γ : Z → R by

γ(x) = min

(
max

{
0, dist2(x, T )− τ

4

(
1− 2

d

)}
,

τ

2d

)
(4)

By standard volume arguments, we have

vold
(
B

(
x, τ

4

) \B
(
x,

(
1− 1

d

)
τ
4

)) ≈ vold
(
B

(
x,

(
1− 2

d

)
τ
4

))
,

up to constant factors (independent of the dimension d). So for x ∈ Z, we expect γ(x)
to take each of the values 0 and τ

4d
, with constant probability (corresponding to the events

dist2(x, T ) ≤ (1− 2
d
) τ

4
and dist2(x, T ) ≥ (1− 1

d
) τ

4
, respectively). Furthermore, if ‖x−y‖2 ≥ τ ,

we expect that γ(x) and γ(y) behave essentially independently. The truncation of γ(x)
at τ

2d
ensures that, conditioned on the value |B(x, τ/4) ∩ T |, γ(x) and γ(y) are indeed

independent. We will use this independence between γ(x) and {γ(y)}y∈Z\B(x,τ) to achieve a
good embedding.

Define Γ : Z → L2(Bm) by Γ(x) = γ(x), so that

||Γ(x)||L2(Bm) =

√
E |γ(x)|2.
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Fix some x ∈ Z and values {cy}y∈C(x) ⊆ R. Let Eclose be the event that |B(x, τ/4)∩T | = 1,
and note that Pr(Eclose) ≥ 1

5
. Now observe that after conditioning on Eclose, the values

{γ(y)}y∈C(x) are mutually independent of γ(x). This follows because if dist2(y, T ) ≥ τ/2,
then γ(y) = τ/(2d). Since ‖x − y‖2 ≥ τ for every y ∈ C(x), the value of dist2(x, T ) cannot
affect γ(y), conditioned on Eclose. Thus we will be able to establish a lower bound if we can
exhibit some variation in the value of γ(x), conditioned on Eclose. Define Ein = {dist2(x, T ) ≤(
1− 2

d

)
τ
4
} and Eout = {dist2(x, T ) ≥ (

1− 1
d

)
τ
4
}. Simple volume computations show that

Pr[Ein | Eclose], Pr[Eout | Eclose] ≥ 1
8
. Finally, note that if Ein occurs, then γ(x) = 0 and if Eout

occurs, then γ(x) ≥ τ/(4d).
It follows that

∥∥∥Γ(x)−∑
y∈Y cyΓ(y)

∥∥∥
2

L2(Bm)
= E

∣∣∣γ(x)−∑
y∈Y cyγ(y)

∣∣∣
2

≥ Pr[Eclose] · E
[∣∣∣γ(x)−∑

y∈Y cyγ(y)
∣∣∣
2 ∣∣∣ Eclose

]

≥ Pr[Eclose] ·min {Pr[Ein | Eclose], Pr[Eout | Eclose]} ·
(

1

2
· τ

4d

)2

≥
( τ

56 d

)2

,

where the penultimate inequality follows from the fact that
∑

y∈Y cyγ(y) is independent of
γ(x) when conditioned on Eclose. We conclude that

dist2
(
Γ(x), span{Γ(y)}y∈C(x)

)
≥ τ

56 d
. (5)

For every x ∈ Z, we have

‖Γ(x)‖L2(Bm) ≤ τ

2d
, (6)

since γ(x) ≤ τ
2d

with probability 1. We will now establish the following claim.

Claim 2.2. For some constant C ≥ 1, ‖Γ‖Lip ≤ C/
√

d.

Assuming the claim, we finish the proof using the following classical theorem of Kirszbraun
[Kir34].

Theorem 2.3. Let H, H ′ be Hilbert spaces, S ⊆ H, and f : S → H ′ a Lipschitz map. Then
there exists an extension f̃ : H → H ′ such that f̃ |S = f , and ‖f̃‖Lip ≤ ‖f‖Lip.

Using Theorem 2.3, we obtain a map Γ̃ : Rd → L2 such that ‖Γ̃‖Lip = ‖Γ‖Lip and

Γ̃|Z = Γ, Finally, we set F = (
√

d/C) · Γ̃. Observe that this rescaling satisfies ‖F‖Lip ≤ 1,
and improves the lower bound (5) to satisfy condition (3) of Lemma 2.1 with β = 1

56·C . We
now move onto the proof of the claim.

Proof of Claim 2.2. In what follows, we use ‖ · ‖ = ‖ · ‖2 to denote the 2-norm on Rd. Recall
that, for x, y ∈ Z, we wish to prove that ‖Γ(x) − Γ(y)‖L2(Bm) ≤ C√

d
‖x − y‖ for some fixed

constant C > 0. The idea is that we can think of the map x 7→ dist2(x, T ) like a “local”
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projection onto a randomly oriented direction (indeed, the closest point to x from T has
a spherically symmetric distribution about x, conditioned on dist2(x, T ) ≤ τ). If x, y ∈ Z
share the same closest point, then they experience the same “projection.” The only caveat
is that, conditioned on x and y sharing the same closest point, the distribution of that point
is no longer spherically symmetric with respect to x or y.

In proving the claim, we may assume that ||x − y|| ≤ δ for any δ > 0. If the Lipschitz
condition holds for such x, y, then it holds for all pairs as follows. Let x′, y′ ∈ Z be arbitrary,
and let ` be the line connecting x′, y′. Since Z is convex, we have ` ⊆ Z. Let x′ =
x1, x2, . . . , xk = y′ be a subdivision of ` such that ‖xi − xi+1‖ ≤ δ for every 1 ≤ i ≤ k − 1.
Observe that under our assumptions,

‖Γ(x′)− Γ(y′)‖L2(Bm) ≤
k−1∑
i=1

‖Γ(xi)− Γ(xi+1)‖L2(Bm) ≤ C√
d

k−1∑
i=1

‖xi − xi+1‖ =
C√
d
‖x′ − y′‖.

Before proceeding, we need to apply the following standard volume estimate.

Lemma 2.4. If u, v ∈ Rd, and s > 0, then

vold (B(u, s) ∩B(v, s))

vold(B(u, s))
≥ 1− 4

√
d‖u− v‖

s
.

Let Eshare be the event that x and y share the same closest point in T , i.e. there exists
z ∈ T such that ||x− z|| = dist2(x, T ) and ||y− z|| = dist2(y, T ) (having a non-unique closest
point is an event of measure zero, which we ignore). Using Lemma 2.4, there exists some
δ > 0 such that if ‖x−y‖ ≤ δ, then Pr(Eshare) ≥ 1− 1

d
. To see this, observe that for any R > 0,

if dist2(x, T ) = R, then Eshare happens unless there is a sample point in B(y, R) \ B(x,R),
and the probability of this can be bounded using Lemma 2.4.

Proposition 2.5. For δ > 0 small enough, for every x, y ∈ Z with ‖x− y‖ ≤ δ, we have

E
[
|γ(x)− γ(y)|2

∣∣∣ Eshare, dist2(x, T ), dist2(y, T ) ≤ τ
]
≤ ‖x− y‖2

Ω(d)
.

Proof. Let z ∈ T be the closest point to x from T , and assume without loss that z /∈ {x, y}.
Let u ∈ Sd−1 be a uniformly chosen unit vector. By standard arguments, we have the bound

Pr

[
|〈x− y, u〉|2 > t

‖x− y‖2

d

]
≤ 2 e−t/2,

see e.g. [Mat02, Ch. 14]. Observe that when z ∈ B(x, τ), the random vector x−z
‖x−z‖ is

distributed identically to u, so using the fact that Pr(Eshare) ≥ 1
2

(assuming δ small enough),

Pr

[∣∣∣∣
〈

x− y,
x− z

‖x− z‖
〉∣∣∣∣

2

> t
‖x− y‖2

d

∣∣∣ Eshare, dist2(x, T ) ≤ τ

]
≤ 4 e−t/2. (7)
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Indeed, the same bound holds with the role of x and y exchanged. Finally, we observe that
if Eshare occurs, then

|γ(x)− γ(y)| ≤ |dist2(x, T )− dist2(y, T )| = | ‖x− z‖ − ‖y − z‖ |
≤

∣∣∣∣
〈

x− y,
x− z

‖x− z‖
〉∣∣∣∣ +

∣∣∣∣
〈

x− y,
y − z

‖y − z‖
〉∣∣∣∣ .(8)

The last inequality may be easily checked for z = (0, 0), x, y ∈ R2. Combining (7) and (8),
and integrating over t easily yields the desired expectation bound.

Let E = {Eshare, dist2(x, T ), dist2(y, T ) ≤ τ}, and note that Pr(E) ≥ 1 − 1
2d

using the fact
that Pr(B(x, τ) ∩ T = ∅) ≤ 4−d (and a similar bound holds for y, even conditioned on
dist2(x, T ) ≤ τ). Now, observe that

|γ(x)− γ(y)| ≤ |dist2(x, T )− dist2(y, T )| ≤ ‖x− y‖,
hence using Proposition 2.5,

‖Γ(x)− Γ(y)‖2
L2(Bm) = E |γ(x)− γ(y)|2

≤ Pr(E) · E
[
|γ(x)− γ(y)|2

∣∣∣ E
]

+ (1− Pr(E)) · ‖x− y‖2

≤ ‖x− y‖2

Ω(d)
.

It follows that ‖Γ‖Lip ≤ 1/Ω(
√

d).

Our bound on ‖Γ‖Lip completes the proof.

3 Gluing for volume-preserving embeddings

This sections concerns the following two theorems. First, we need a definition. Given a
metric space (X, d) and a 1-Lipschitz map ϕ : X → L2, we define rigidity≤k(ϕ) to be the
smallest value R ≥ 0 such that for every S ⊆ X with |S| ≤ k, we have

dist2
(
ϕ(x), span{ϕ(y)}y∈S

)
≥ d(x, S)

R
.

For a space X, we define rigidity≤k(X) to be the infimal value of rigidity≤k(ϕ) over all 1-
Lipschitz maps ϕ : X → L2. We recall that ck

2(X) ≤ rigidity≤k(X) (see [Fei00, KLM04]).

Theorem 3.1. Let (X, d) be an n-point metric space, let A be a collection of subsets of X,
and let R ≥ 1. Suppose that for every τ ≥ 0, there exists a 1-Lipschitz map ψτ : X → L2

which satisfies the following.

1. For every x ∈ X, ‖ψτ (x)‖2 ≤ τ .

10



2. For every x ∈ X, and every subset S ∈ A,

dist2
(
ψτ (x), span {ψτ (y)}y∈S\B(x,τ)

)
≥ τ/R.

Then there exists a 1-Lipschitz map ϕ : X → L2 such that for every x ∈ X, and every
S ∈ A,

dist2
(
ϕ(x), span{ϕ(y)}y∈S

)
≥ d(x, S)

O(
√

R log n)
.

In particular, if A = {S ⊆ X : |S| ≤ k}, then rigidity≤k(ϕ) = O(
√

R log n), hence also
ck
2(X) ≤ O(

√
R log n).

The next theorem is more technical, so we begin with an informal description. We assume
the existence of maps ψS,τ : X → L2 which are “volume-preserving” for points in S ⊆ X
at scale τ , where the volume distortion depends only on |S|. The theorem glues these maps
together to obtain a map which is volume-preserving for all points at all scales.

Theorem 3.2. Let X be an n-point metric space. Let L > 0, ε ∈ [1
2
, 1], β ≤ 1

2
be constants.

Suppose that for every τ ≥ 0, and every subset S ⊆ X there is a 1-Lipschitz map ψS,τ : X →
L2 satisfying the following. Let δS = β(log |S|)−ε.

1. For every x ∈ X, ||ψS,τ (x)||2 ≤ LδSτ.

2. For every x ∈ S,

dist2
(
ψS,τ (x), span {ψS,τ (y) : y ∈ NLδSτ (S) \B(x, τ)}

)
≥ δSτ.

Then there exists a map ϕ : X → L2 with rigidity(ϕ) = O ((log n)ε log log n).

3.1 Proof of Theorem 3.1

3.1.1 The quotient-decomposition technique

In this section, we handle a base case. First, we recall a result that follows from the techniques
of [Rao99], together with the decomposition theorem of [CKR01, FRT03], and which first
appeared in [KLMN05]. We say that a measure µ on a finite space X is non-degenerate if
µ(x) > 0 for every x ∈ X.

Theorem 3.3. Let X be an finite metric space, let µ be a non-degenerate measure on X,
and let τ > 0. Then there exists a 1-Lipschitz map γτ : X → L2 such that for every x ∈ X,
‖γτ (x)‖2 ≤ τ , and

dist2
(
γτ (x), span{γτ (y)}y∈X\B(x,τ)

)
≥ τ

O
(
1 + log µ(B(x,τ))

µ(B(x,τ/4))

) .

11



For a metric space (X, d), we define the ε-path quotient of X to be the metric space
(Xε, dε) which is defined as follows. Xε is the set of equivalence classes of X under the
transitive closure of the relation defined by x ∼ε y ⇐⇒ d(x, y) ≤ ε, while dε is the path
metric in Xε (with respect to d): For x ∈ X, let x̄ ∈ Xε represent the equivalence class of x,
then for x, y ∈ X, we define

dε(x̄, ȳ) = inf

{
k−1∑
i=0

d(xi, xi+1) : k ∈ N, x0 ∈ x̄, xk ∈ ȳ, xj ∈ X, 0 ≤ j ≤ k

}
,

where as usual for A,B ⊆ X, d(A,B) = infa∈A,b∈B d(a, b). Also, starting from a measure µ
on X, there is natural induced measure µε on Xε defined by µε(x̄) =

∑
x∈x̄ µ(x).

We now prove the main theorem of this section. The result is essentially known, but has
not appeared anywhere previously. The proof relies on quotients to retain a bound on the
Lipschitz constant of the embedding (see e.g., [Bar96, Mat02]), and the observation from
[GKL03] that “volume growth” at one scale is roughly maintained under path-quotients.

Theorem 3.4. Let (X, d) be an n-point metric space. Then there exists a map Φ : X → L2

satisfying ‖Φ‖Lip ≤ O(
√

log n), and for every x ∈ X, for every k ∈ Z,

dist2
(
Φ(x), span{Φ(y)}y∈X\B(x,2k)

)
≥ 2k

O
(
1 + log

[
|B(x,2k)|
|B(x,2k−3)|

]) .

Proof. For each k ∈ Z, define εk = 2k−1/n. Letting Bε(·, ·) represent balls in (Xε, dε), we
have the following two sets of inequalities.

1. For every x ∈ X, µεk
(Bεk

(x̄, 2k−1)) ≤ µ(B(x, 2k)).

This follows from the fact that for x, y ∈ X, one has

dεk
(x̄, ȳ) ≥ d(x, y)− (n− 1) · εk ≥ d(x, y)− 2k−1, (9)

because every shortest path in X has at most n− 1 steps (thus at most (n− 1) · εk distance
is contracted in the quotient). The second family of inequalities follows trivially:

2. For every x ∈ X, µεk
(Bεk

(x̄, R)) ≥ µ(B(x,R)) for every R ≥ 0.

In particular, combining (1) and (2), we see that for x ∈ X,

log

[
µεk

(Bεk
(x̄, 2k−1))

µεk
(Bεk

(x̄, 2k−3))

]
≤ log

[
µ(B(x, 2k))

µ(B(x, 2k−3))

]
.

Now, let µ(·) = | · | be the counting measure on X. Applying Theorem 3.3 to (Xεk
, dεk

), µεk

with τ = 2k−1, we obtain a 1-Lipschitz map γk : Xεk
→ L2. We may clearly think of γk as a

map also on X by defining γk(x) = γk(x̄). Finally, we define Φ : X → `2(L2) by

Φ(x) =
⊕

k∈Z
[γk(x)− γk(x0)],
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where x0 ∈ X is some fixed basepoint.
To see that Φ is well-defined (i.e. that the 2-norm of Φ(x) is bounded for every x ∈ X),

let x, y ∈ X be fixed, and let k0 ∈ Z be such that d(x, y) ∈ [2k0 , 2k0+1], then
∑

k∈Z
‖γk(x)− γk(y)‖2

2 =
∑

k≤dlog2 ne+k0+2

‖γk(x)− γk(y)‖2
2 (10)

≤
∑

k<k0

22k +

dlog2 ne+k0+2∑

k=k0

d(x, y)2 (11)

≤ O(log n) · d(x, y)2, (12)

where in (10) we have used the fact that for k ≥ dlog2 ne+k0+2, we have εk ≥ 2k0+1 ≥ d(x, y),
hence γk(x) = γk(y) because x and y belong to the same equivalence class of Xεk

, in (11) we
have used ‖γk(x)‖2 ≤ 2k−1 and ‖γk‖Lip ≤ 1 from Theorem 3.3, and in (12) we evaluated a
geometric sum. It follows that ‖Φ‖Lip ≤ O(

√
log n).

Now, fix x ∈ X, and k ∈ Z. Observe that by (9), we have d(x, y) ≥ 2k =⇒ dεk
(x̄, ȳ) ≥

2k−1. It follows that

dist2
(
Φ(x), span{Φ(y)}y∈X\B(x,2k)

)
≥ dist2

(
γk−1(x), span{γk−1(y)}y∈X\B(x,2k)

)

≥ dist2
(
γk−1(x̄), span{γk−1(ȳ)}ȳ∈Xεk

\Bεk
(x̄,2k−1)

)

≥ 2k

O
(
1 + log

[
µεk

(Bεk
(x̄,2k−1))

µεk
(Bεk

(x̄,2k−3))

])

≥ 2k

O
(
1 + log

[
|B(x,2k)|
|B(x,2k−3)|

]) .

3.1.2 Multi-scale gluing

In this section, we prove some multi-scale gluing lemmas for volume-preserving embeddings,
and finish the proof of Theorem 3.1. The following theorem adapts a construction of the
author [Lee05] to the case of volume-preserving maps.

Theorem 3.5 (Gluing for rigidity). Let (X, d) be an n-point metric space and A,B ≥ 1,
η > 0, and for every m ∈ Z, let φm : X → L2 be a 1-Lipschitz map such that ||φm(x)||2 ≤
η · 2m/B for every x ∈ X. Then there is a map ϕ : X → L2 satisfying

1. ||ϕ||Lip ≤ O(η
√

log n log(AB)).

2. For every x ∈ X, m ∈ Z, and Y ⊆ X,

dist2
(
ϕ(x), span {ϕ(y)}y∈Y

) ≥
√⌊

log
|B(x, 2m+1A)|
|B(x, 2m/B)|

⌋
·dist2

(
φm(x), span {φm(y)}y∈Y

)
.
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Proof. First, we restate the construction of [Lee05] in a slightly modified form. Let ρ : X →
R≥0 be any 2B-Lipschitz map with ρ ≡ 1 on [1/B, 2A], and ρ ≡ 0 outside [1/2B, 4A]. For
x ∈ X and t ≥ 0, define

R(x, t) = sup{R : |B(x,R)| ≤ 2t},
and observe that R(·, t) is 1-Lipschitz for every value of t. And for each m ∈ Z, define

ρm,t(x) = ρ

(
R(x, t)

2m

)
.

Now, for each t ∈ {1, 2, . . . , dlog2 ne}, define ψt : X → `2(L2),

ψt(x) =
⊕

m∈Z
ρm,t(x) · φm(x).

Finally, let ϕ = ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψdlog2 ne.
First, we bound ||ψt||Lip as follows.

||ψt(x)− ψt(y)||22 =
∑

m∈Z
ρm,t(x)+ρm,t(y)>0

||ρm,t(x)φ̂m(x)− ρm,t(y)φ̂m(y)||22.

The number of non-zero summands above is at most O(log A + log B). Furthermore, each
summand can be bounded as follows.

||ρm,t(x)φ̂m(x)− ρm,t(y)φ̂m(y)||2 ≤ ||φ̂m(x)||2|ρm,t(x)− ρm,t(y)|+ ||φ̂m(x)− φ̂m(y)||2|ρm,t(y)|
≤

(
||ρm,t||Lip

η · 2m

B
+ ||φm||Lip

)
d(x, y)

≤ (2η + 1) d(x, y),

where we have used ‖ρm,t‖Lip ≤ 2−m‖ρ‖Lip ≤ 2−m+1B. Thus ||ψt||Lip ≤ O(η
√

log(AB)). It

follows that ||ϕ||Lip ≤ O(η
√

log n log(AB)), as claimed.
To verify (2), fix x ∈ X, m ∈ Z, and real constants cy for y ∈ Y . Then,

∥∥∥∥∥ϕ(x)−
∑
y∈Y

cyϕ(y)

∥∥∥∥∥

2

2

=

dlog ne∑
t=1

∥∥∥∥∥ψt(x)−
∑
y∈Y

cyψt(y)

∥∥∥∥∥

2

2

≥
dlog ne∑

t=1

∥∥∥∥∥ρm,t(x)φm(x)−
∑
y∈Y

cyρm,t(y)φm(y)

∥∥∥∥∥

2

2

.

Now observe that when ρm,t(x) = 1, we have

∥∥∥∥∥ρm,t(x)φm(x)−
∑
y∈Y

cyρm,t(y)φm(y)

∥∥∥∥∥
2

≥ dist2
(
φm(x), span {φm(y)}y∈Y

)
. (13)
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Hence it suffices to count the number of values of t for which ρm,t(x) = 1. By our
definitions we have that

ρm,t(x) = 1 ⇐⇒ 2m

B
≤ R(x, t) ≤ 2m+1A ⇐⇒ t ∈ [log |B(x, 2m/B)|, log |B(x, 2m+1A)|].

This completes the proof since the lower bound (13) holds for
⌊
log |B(x,2m+1A)|

|B(x,2m/B)|

⌋
values of t.

Now we complete the proof of Theorem 3.1, along the lines of [KLMN05].

Proof of Theorem 3.1. In the applications of Theorem 3.5 that follow, we set A = 2, B = 8,
and η = 16. Let {ψτ}τ≥0 be as in the statement of the theorem, and let Ψ : X → L2

be the map resulting from the application of Theorem 3.5 to the ensemble {ψ2m}m∈Z. Let
γτ : X → L2 be the maps from Theorem 3.3 applied to X, and let Γ : X → L2 be the result
of applying Theorem 3.5 to {γ2m}m∈Z. Finally, let Φ : X → L2 be the map from Theorem
3.4. Consider ϕ = Ψ⊕ Γ⊕ Φ.

First, we have ‖ϕ‖Lip ≤ ‖Ψ‖Lip + ‖Γ‖Lip + ‖Φ‖Lip ≤ O(
√

log n). Now fix x ∈ X, and

Y ∈ A. Let m ∈ Z be such that d(x, Y ) ∈ (2m, 2m+1]. Observe that if log |B(x,2m+3)|
|B(x,2m−3)| ≤ 1,

then

dist2

(
ϕ(x), span{ϕ(y)}y∈Y

)
≥ dist2

(
Φ(x), span{Φ(y)}y∈Y

)
≥ Ω(1) · 2m = Ω(1) · d(x, Y ).

So we may assume that log |B(x,2m+3)|
|B(x,2m−3)| ≥ 1 in the arguments that follow. In this case,

dist2
(
ϕ(x), span{ϕ(y)}y∈Y

)2

≥ dist2
(
Ψ(x), span{Ψ(y)}y∈Y

)2
+ dist2

(
Γ(x), span{Γ(y)}y∈Y

)2

≥
⌊
log

|B(x, 2m+3)|
|B(x, 2m−3)|

⌋[
dist2

(
ψ2m(x), span{ψ2m(y)}y∈Y

)2
+ dist2

(
γ2m(x), span{γ2m(y)}y∈Y

)2
]

≥
⌊
log

|B(x, 2m+3)|
|B(x, 2m−3)|

⌋


(
2m

R

)2

+


 2m

O
(
1 + log |B(x,2m+3)|

|B(x,2m−3)|
)




2


≥ Ω(1) · d(x, Y )2


 log |B(x,2m+3)|

|B(x,2m−3)|
R2

+
1

log |B(x,2m+3)|
|B(x,2m−3)|


 ≥ Ω(1) · d(x, Y )2

R
,

where the last line follows from the AM-GM inequality. If we now replace ϕ by 1
‖ϕ‖Lip

ϕ,

where ‖ϕ‖Lip ≤ O(
√

log n), then ϕ becomes 1-Lipschitz, and the proof is complete.

One corollary of Theorem 3.1 is the optimal bound for general n-point metric spaces.

Corollary 3.6. For any n-point metric space (X, d), one has r2(X) ≤ O(log n).

Proof. Apply Theorem 3.1 with A = 2X to the ensemble of maps {γτ} from Lemma 3.3
(with the counting measure µ(·) = | · |).
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3.2 Proof of Theorem 3.2

The proof of Theorem 3.2 requires most of the results of the previous section, along with a
number of other ideas. Our approach follows [ALN08], but with new machinery to deal with
volume-preserving embeddings. The following claim gives a way of extending our embeddings
to larger distances by dampening out the effects of distant points.

Claim 3.7. Let (X, d) be a metric space, and suppose that for some number ε > 0, we have
a map ψ : X → L2 such that ‖ψ‖Lip ≤ 1, and ‖ψ(x)‖2 ≤ εL for all x ∈ X. Let S, U ⊆ X,
and suppose that for x ∈ S, we have

dist2
(
ψ(x), span{ψ(y)}y∈U

)
≥ ε.

Define U ′ = U ∪ (X \ NεL(S)). Then there exists a map ϕ : X → L2 which satisfies
||ϕ||Lip ≤ 1, ‖ϕ(x)‖2 ≤ εL for every x ∈ X, and for any x ∈ Nε/4(S),

dist2
(
ϕ(x), span{ϕ(y)}y∈U ′

)
≥ ε/4.

Proof. Let ρ(x) = max (0, 1− d(x, S)/(εL)) so that ‖ρ‖Lip ≤ 1/εL, and define ϕ(x) =
1
2
ρ(x)ψ(x). Then for every x, y ∈ X,

||ϕ(x)− ϕ(y)||2 ≤ 1
2

(
|ρ(x)| · ||ψ||Lip + ||ψ(y)||2 · ||ρ||Lip

)
d(x, y) ≤ d(x, y).

Now, suppose that x ∈ Nε/4(S), and {cy}y∈U ′ ⊆ R. Let x′ ∈ S be such that d(x, x′) ≤ ε/4,
and recall that y /∈ NεL(S) implies ρ(y) = 0, hence

∥∥∥ϕ(x)−∑
y∈U ′ cyϕ(y)

∥∥∥
2
≥

∥∥∥ϕ(x′)−∑
y∈U ′ cyϕ(y)

∥∥∥
2
− ||ϕ(x)− ϕ(x′)||2

≥ 1
2

∥∥∥ψ(x′)−∑
y∈U cyρ(y)ψ(y)

∥∥∥
2
− ε/4

≥ 1
2
dist2

(
ψ(x′), span{ψ(y)}y∈U

)
− ε/4

≥ ε/2− ε/4 = ε/4.

The first step is to reduce the number of points we need to embed by randomly sampling
a reasonably dense subset of our space. We will need to use different sampling rates in
different regions of the space (depending upon the local volume growth), and thus we arrive
at different guarantees corresponding to the various subsets Tτ (A; k) defined below.

Lemma 3.8. Assume that X satisfies the conditions of Theorem 3.2, and suppose that
A ⊆ X and k ≥ 2. Define

Tτ (A; k) =

{
x ∈ A : |A| ≤ k

∣∣∣∣B
(

x,
βτ

4(log k)ε

)∣∣∣∣
}

. (14)
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Then there exists a 1-Lipschitz map λA,k : X → L2 such that

dist2

(
λA,k(x), span{λA,k(y)}y∈X\B(x,τ)

)
≥ βτ

8(log k)ε
,

whenever x ∈ Tτ (A; k). Furthermore, for all x ∈ X, ‖λA,k(x)‖2 ≤ LδSτ .

Proof. Let S be a uniformly random subset S ⊆ A with |S| = min{|A|, k}. Let hS : X → L2

be the map defined by applying Claim 3.7 to the map ψS,τ : X → L2. Let µ be the
distribution over which the random subsets S ⊆ A are defined, and let λA,k : X → L2(µ) be
given by λA,k(x) = hS(x). Observe that ‖λA,k‖Lip ≤ 1 because this is true of each ψS,τ , and
hence by Claim 3.7, it is also true of each hS.

Fix x ∈ Tτ (A; k). Then by the definition of Tτ (A; k), with probability at least 1/e, we
have

S ∩B

(
x,

βτ

4(log k)ε

)
6= ∅. (15)

Letting ε = δSτ , we see that conditioned on (15), x ∈ Nε/4(S). Setting U = NεL(S)\B(x, τ),
we have in this case (by assumption (2) on the map ψS,τ in Theorem 3.2),

dist2
(
ψS,τ (x), span {ψS,τ (y)}y∈U

)
≥ δSτ = ε.

It follows that in the statement of Claim 3.7, U ′ = U ∪ (X \NεL(S)) = X \B(x, τ). So that
with probability 1/e, we have

dist2

(
hS(x), span{hS(y)}y∈X\B(x,τ)

)
≥ βτ

4(log k)ε
.

Hence for any x ∈ Tτ (A; k),

dist2

(
λA,k(x), span{λA,k(y)}y∈X\B(x,τ)

)
≥ 1√

e
· βτ

4(log k)ε
≥ βτ

8(log k)ε
.

Our next step is to construct embeddings separately for different localities of the space.
These local embeddings are stitched together in a smooth way using partitions of unity
derived from random partitions of the space.

Fix a finite metric space (X, d), and for K ≥ 1, τ ≥ 0, define

Sτ (K) =

{
x ∈ X : |B (x, 8ταX)| ≤ K

∣∣∣∣B
(

x,
βτ

4(log K)ε

)∣∣∣∣
}

,

where we recall that αX is the modulus of decomposability of X.
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Lemma 3.9 (Localization). Assume that X satisfies the conditions of Theorem 3.2. Then
for every τ ≥ 0, k ≥ 1, there exists a 1-Lipschitz map Λτ,k : X → L2 such that for every
x ∈ Sτ (k),

dist2

(
Λτ,k(x), span{Λτ,k(y)}y∈X\B(x,τ)

)
≥ βτ

24(log k)ε
,

and ‖Λτ,k(x)‖2 ≤ LδSτ for all x ∈ X.

Proof. Let D = 4ταX and take PD to be a random partition from the αX-padded bundle
for X with diameter bound D. Define a random mapping ρ : X → R by

ρ(z) = min

{
1,

d(z, X \ PD(z))

τ

}
.

Clearly ‖ρ‖Lip ≤ 1/τ . For each U ∈ PD, let λU,k : X → L2 be the corresponding map from
Lemma 3.8. Also, for every such U , let σU be a {0, 1}-valued Bernoulli random variable
independent of all other variables in the proof. Finally, define a random map Λτ,k : X → L2

by
Λτ,k(z) = 1

2
ρ(z) · σPD(z) · λPD(z),k(z).

Clearly ‖Λτ,k(x)‖2 ≤ ‖λPD(x),k(x)‖2 ≤ LδSτ for every x ∈ X. Moreover, we claim that
‖Λτ,k‖Lip ≤ 1. Indeed, fix u, v ∈ X. If PD(u) = PD(v) = U then

||Λτ,k(u)− Λτ,k(v)||2 ≤ 1
2
|ρ(u)− ρ(v)| · ||λU,k(u)||2 + 1

2
||λU,k(u)− λU,k(v)||2 · |ρ(v)|

≤ 1
2
(τ ||ρ||Lip + ||λU,k||Lip) d(u, v)

≤ d(u, v).

Otherwise, assume that PD(u) 6= PD(v). In particular,

d(u, v) ≥ max{d(u,X \ PD(u)), d(v,X \ PD(v))}.

It follows that

||Λτ,k(u)− Λτ,k(v)||2 ≤ ||Λτ,k(u)||2 + ||Λτ,k(v)||2
≤ d(u,X \ PD(u))

2τ
· τ +

d(v, X \ PD(v))

2τ
· τ

≤ d(u, v).

Now suppose that x ∈ Sτ (k). Observe that since diam(PD(x)) ≤ D, we have PD(x) ⊆
B(x, 2D). It follows that since x ∈ Sτ (k), we have x ∈ Tτ (PD(x); k) (recall equation (14)).
Moreover, using the defining property of the αX-padded bundle, with probability at least 1

2
,
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we have d(x,X \ PD(x)) ≥ τ , which implies ρ(x) = 1. If {cy}y∈X\B(x,τ) ⊆ R, then

E

∥∥∥∥∥Λτ,k(x)−
∑

y

cyΛτ,k(y)

∥∥∥∥∥
2

2

≥ 1
2 E




∥∥∥∥∥Λτ,k(x)−
∑

y

cyΛτ,k(y)

∥∥∥∥∥
2

2

∣∣∣ ρ(x) = 1




= 1
2 E

′




∥∥∥∥∥∥
σPD(x)


λPD(x),k(x)−

∑

y∈PD(x)

cyρ(y)λPD(x),k(y)


−

∑

y/∈PD(x)

σPD(y) cyρ(y)λPD(y),k(y)

∥∥∥∥∥∥

2

2


 ,

where E′[·] = E[· | ρ(x) = 1], and we recall that y ∈ PD(x) =⇒ PD(y) = PD(x). Now,
observe that the values

{
σPD(y), ρ(y), λPD(y),k(y)

}
y/∈PD(x)

are independent of the random vari-

able σPD(x). We use the following simple fact: If A,B are (possibly dependent) real-valued
random variables and σ is an independent {0, 1}-valued Bernoulli random variable, then
E|σA − B|2 ≥ 1

4
E|A|2 (in particular, by integrating, the same holds if A,B are random

elements in some Hilbert space). It follows that the last line of the above expression is at
least

1
8
E′

∥∥∥∥∥∥
λPD(x),k(x)−

∑

y∈PD(x)

cyρ(y)λPD(x),k(y)

∥∥∥∥∥∥

2

2

≥ 1
8
E′

[
dist2

(
λPD(x),k(x), span{λPD(x),k(y)}y∈X\B(x,τ)

)2
]
≥ 1

8

(
βτ

8(log k)ε

)2

,

where the final line follows from Lemma 3.8.
Denoting by (Ω, µ) the probability space on which Λτ,k is defined, we can think of Λτ,k

as a mapping of X into the Hilbert space L2(L2, µ) for which we have just argued that

dist2

(
Λτ,k(x), span{Λτ,k(y)}y∈X\B(x,τ)

)
≥ βτ

8
√

8(log k)ε
≥ βτ

24(log k)ε
.

Now we complete the proof of Theorem 3.2 along the lines of [ALN08].

Proof of Theorem 3.2. We claim that for every K ∈ [2, n] there exists a map fK : X → L2

which satisfies

1. ||fK ||Lip ≤ O(L
√

log n · log log n).

2. For every m ∈ Z and x ∈ S2m(K), we have

dist2
(
fK(x), span {fK(y)}y∈X\B(x,2m)

)
≥

√⌊
log

|B(x, 2m+3αX)|
|B(x, β2m−2/(log K)ε)|

⌋
· β2m

24(log K)ε
.
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Indeed, fK is obtained from an application of Theorem 3.5 to the mappings {Λ2m,K}m∈Z from
Lemma 3.9 with A = 4αX and B = 4(log K)ε/β (and using the fact that αX = O(log n)).

Observe that for every m ∈ Z, S2m(n) = X. Hence, defining K0 = n and Kj+1 =
√

Kj,
as long as Kj ≥ 4, we obtain mappings f0, . . . , fj : X → L2 satisfying

1. ‖fj‖Lip ≤ O(L
√

log n · log log n).

2. For all x ∈ S2m(Kj) \ S2m(Kj+1), we have

dist2
(
fj(x), span {fj(y)}y∈X\B(x,2m)

)
≥

√⌊
log

|B(x, 2m+3αX)|
|B(x, β2m−2/(log Kj)ε)|

⌋
· β2m

24(log Kj)ε

≥
√
blog Kj+1c · β2m

24(log Kj)ε
(16)

≥ β2m

48(log Kj)ε− 1
2

, (17)

where in (16) we used the fact that x /∈ S2m(Kj+1), and in (17) we used the fact that
Kj+1 =

√
Kj ≥ 2.

This procedure ends after N steps, where N ≤ O(log log n). Every x ∈ S2m(KN) satisfies

|B(x, 2m+3αX)| ≤ 4|B(x, β2m/[4(log K)ε])|.
In particular, |B(x, 2m)| ≤ 4|B(x, 2m−3)|. By Theorem 3.4, there is a mapping fN+1 : X →
L2 with ‖fN+1‖Lip ≤ O(

√
log n) and such that for x ∈ S2m(KN), we have

dist2
(
fN+1(x), span {fN+1(y)}y∈X\B(x,2m)

)
≥ 2m/O(1).

(This follows because, for such x, we have log |B(x,2m)|
|B(x,2m−3)| = O(1).)

Let M = maxj=1,...,N+1 ‖fj‖Lip. Consider the map Φ = 1
M
√

N+1

⊕N+1
j=0 fj, which has

‖Φ‖Lip ≤ 1. Recall that M
√

N + 1 ≤ O(
√

log n log log n). Let x ∈ X, Y ⊆ X be arbitrary,
and choose m ∈ Z such that d(x, Y ) ∈ (2m, 2m+1]. If x ∈ S2m(KN), then

dist2
(
Φ(x), span {Φ(y)}y∈Y

)
≥ dist2

(
Φ(x), span {Φ(y)}y∈X\B(x,2m)

)

≥ 1
M
√

N+1
dist2

(
fN+1(x), span {fN+1(y)}y∈X\B(x,2m)

)

≥ 2m

O(1)M
√

N + 1
≥ d(x, Y )

O(
√

log n log log n)
.

Otherwise, without loss of generality there is j ∈ {0, . . . , N − 1} such that x ∈ S2m(Kj) \
S2m(Kj+1), in which case by (17)

dist2
(
Φ(x), span {Φ(y)}y∈Y

)
≥ dist2

(
Φ(x), span {Φ(y)}y∈X\B(x,2m)

)

≥ 1
M
√

N+1
dist2

(
fj(x), span {fj(y)}y∈X\B(x,2m)

)

≥ d(x, Y )

O(log n)ε log log n
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It follows that rigidity(Φ) ≤ O(log n)ε log log n.

4 Upper bounds for rigid embeddings

4.1 The transference theorem

Now we finish our proof of the transference theorem (Theorem 1.4). For the sake of simplicity,
we may assume that h(d) ≥ 50 for all d ≥ 1.

Lemma 4.1. There exists a constant C ≥ 1 such that the following holds. Let H be a Hilbert
space, and suppose that S ⊆ H with |S| = k. Let τ ≥ 0 be given and let δ = τ/(4·h(C log k)),
where h(·) is from Definition 1.3. Then there exists a map ϕ : H → L2 such that ||ϕ||Lip ≤ 1
and ‖ϕ(x)‖2 ≤ 30δ for all x ∈ H, and such that for all x ∈ S, we have

dist2
(
ϕ(x), span {ϕ(y) : y ∈ N30δ(S) \B(x, τ)}

)
≥ δ.

Proof. Using the Johnson-Lindenstrauss flattening lemma [JL84], there exists a map g : S →
Rd with d = C log k such that ||g||Lip ≤ 1 and ||g−1||Lip ≤ 2, where C ≥ 1 is a universal
constant. By the Kirszbraun extension theorem [Kir34], there exists g̃ : H → Rd with
||g̃||Lip ≤ 1 and g̃(x) = g(x) for x ∈ S.

Now, let Z ⊆ Rd be a compact set which contains Nτ (Im(g)) (this set is bounded because
S, and hence Im(g), is finite). Let F : Rd → L2 be a 1-Lipschitz map satisfying the following.

1. For every x ∈ Rd, ‖F (x)‖2 ≤ 30τ
4h(d)

= 30δ.

2. For every x ∈ Z,

dist2
(
F (x), span{F (y)}y∈Z\B(x,τ/4)

)
≥ τ

4h(d)
= δ. (18)

Such a map follows immediately from the definition of h(·) after scaling by τ/4. Finally,
define ϕ : H → L2 by ϕ(x) = F (g̃(x)). We now make the following observations.

1. ||ϕ||Lip ≤ ||F ||Lip · ||g̃||Lip ≤ 1.

2. For every x ∈ H, ||ϕ(x)||2 = ||F (g̃(x))||2 ≤ 30δ.

3. For every x ∈ S,

dist2

(
ϕ(x), span{ϕ(y) : y ∈ N30δ(S) \B(x, τ)}

)
≥ δ

To see this, fix x ∈ S, and suppose that y ∈ N30δ(S) \ B(x, τ). Let y′ ∈ S satisfy
‖y − y′‖H ≤ 30δ. Then clearly ‖g̃(y) − g̃(y′)‖2 ≤ ‖y − y′‖H ≤ τ , implying that
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g̃(y) ∈ Nτ (Im(g)) ⊆ Z. Furthermore,

‖g̃(x)− g̃(y)‖2 ≥ ‖g̃(x)− g̃(y′)‖2 − ‖g̃(y)− g̃(y′)‖2

≥ 1
2
‖x− y′‖H − 30δ (19)

≥ 1
2
(‖x− y‖H − ‖y − y′‖H)− 30δ

≥ τ/2− 45δ > τ/4, (20)

where in (19), we use the fact that ‖g−1‖Lip ≤ 2, and in (20), we use the assumption
that h(d) ≥ 50.

To finish, write

dist2

(
ϕ(x), span{ϕ(y) : y ∈ N30δ(S) \B(x, τ)}

)

= dist2

(
F (g̃(x)), span{F (g̃(y)) : y ∈ N30δ(S) \B(x, τ)}

)

≥ dist2

(
F (g̃(x)), span{F (y) : y ∈ Z \B(g̃(x), τ/4)}

)
≥ δ,

where in the final line, we use the fact that for every y ∈ N30δ(S) \ B(x, τ), we have
shown above that g̃(y) ∈ Z \ B(g̃(x), τ/4), and to finish we have employed estimate
(18).

Now we can finish the proof of Theorem 1.4.

Proof of Theorem 1.4. Suppose that h(d) ≤ C · dε for some constant C ≥ 1 and ε ≥ 1
2
, and

let X ⊆ L2 with |X| = n. In this case, applying Lemma 4.1 to a subset S ⊆ X and a value
τ ≥ 0 yields a 1-Lipschitz map ψS,τ : X → L2 satisfying ‖ψS,τ (x)‖2 ≤ 30δSτ and

dist2
(
ψS,τ (x), span {ψ(y) : y ∈ N30δSτ (S) \B(x, τ)}

)
≥ δSτ

for x ∈ S, and some δS ≥ 1/O(log |S|)ε. Applying Theorem 3.2 to this ensemble of maps
shows that rigidity(X) ≤ O(log n)ε log log n.

Applying Theorem 1.4 with the result of Theorem 1.5 immediately yields our desired
bound.

Corollary 4.2. For any n-point subset X ⊆ L2, rigidity(X) ≤ O(
√

log n log log n).

4.2 Optimal bounds for constant values of k

Now we prove Theorem 1.2. In fact, we prove a slightly stronger estimate (see the beginning
of Section 3 for the definition of rigidity≤k). We recall that for k = O(1), the theorem is
optimal up to a universal constant since rigidity≤2(Pn) ≥ c2

2(Pn) ≥ Ω(
√

log n) where Pn is
the path metric on an n-point path [DV01, KLM04], and clearly rigidity≤1(Pn) = c2(Pn) = 1.
(Map the kth point of Pn to (k, `) ∈ R2 and let ` →∞. The rigidity goes to 1.)

22



Theorem 4.3. For any n-point subset X ⊆ L2, we have rigidity≤k(X) ≤ O(
√

log n(log k)1/4).

Proof. We may clearly assume that X ⊆ Rn. Let P̃n,d : Rn → Rd be a projection onto
a random d = O(log k)-dimensional subspace, let Pn,d =

√
n
d
· P̃n,d, and let Zn,d ⊆ Rd a

compact set such that Pn,d(X) ⊆ Zn,d. Let Fd,τ : Rd → L2 be a random 1-Lipschitz map

satisfying the following conditions for some 1
30
≥ δ ≥ 1/O(

√
d).

1. For every x ∈ Rd, ‖Fd,τ (x)‖2 ≤ 30δτ ≤ τ.

2. For every x ∈ Zn,d,

dist2
(
Fd,τ (x), span{Fd,τ (y)}y∈Zn,d\B(x,τ/4)

)
≥ δτ.

The existence of such a map follows from Theorem 1.5. (For those worried about
measurability, note that since X is finite, we may actually choose a finite collection of
projections P

(1)
n,k , . . . , P

(N)
n,k in the arguments that follow. In fact, N = O(log n) suffices;

see [JL84, MS86]. In this case, choosing a random projection consists of choosing some

P
(i)
n,k uniformly at random.)

Observe that for every x ∈ X, Fd,τ (Pn,d(x)) is an L2-valued random variable. Let H
be the Hilbert space of L2-valued random variables over the probability space on which
{Fd,τ (Pn,d(x))}x∈X is defined, equipped with norm ‖X‖H =

√
E ‖X‖2

2. We define ψτ :
X → H by ψτ (x) = Fd,τ (Pn,d(x)). First, we have, for every x ∈ X, ‖ψτ (x)‖H ≤ τ since
‖Fd,τ (y)‖2 ≤ τ for every y ∈ Rd. Secondly, for x, y ∈ X,

‖ψτ (x)− ψτ (y)‖2
H = E ‖Fd,τ (Pn,d(x))− Fd,τ (Pn,d(y))‖2

2

≤ E ‖Pn,d(x)− Pn,d(y)‖2
2

= ‖x− y‖2
2,

implying that ‖ψτ‖Lip ≤ 1.
Now, fix x ∈ X, and consider any subset S ⊆ X with |S| = k. From [JL84], by choosing

d = O(log k) large enough, we know that with probability at least 1
2

over the choice of
Pn,d : Rn → Rd, we have, for every y ∈ S, ‖Pn,d(x)− Pn,d(y)‖2 ≥ 1

2
‖x− y‖2. Call this event

Ex,S. It follows that

dist2
(
ψτ (x), span{ψτ (y)}y∈S\B(x,τ)

)2

= E
[
dist2

(
Fτ,d(Pn,d(x)), span{Fτ,d(Pn,d(y))}y∈S\B(x,τ)

)2
]

≥ 1
2
E

[
dist2

(
Fτ,d(Pn,d(x)), span{Fτ,d(Pn,d(y))}y∈S\B(x,τ)

)2 ∣∣∣ Ex,S

]

≥ 1
2
E

[
dist2

(
Fτ,d(Pn,d(x)), span{Fτ,d(z)}z∈Zn,d\B(Pn,d(x),τ/4)

)2 ∣∣∣ Ex,S

]

≥ 1
2
δ2τ 2,
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where the penultimate line follows from the fact that, conditioned on Ex,S, y ∈ S\B(x, τ) =⇒
Pn,d(y) ∈ Z \B(Pn,d(x), τ/4). We conclude that

dist2
(
ψτ (x), span{ψτ (y)}y∈S\B(x,τ)

)
≥ τ

O(
√

log k)
.

Applying Theorem 3.1 to the ensemble {ψτ : X → L2}τ≥0, with A = {S ⊆ X : |S| ≤ k}, we
conclude the existence of a map ϕ : X → L2 with rigidity≤k(ϕ) ≤ O(

√
log n(log k)1/4).

4.3 Discussion

We remark that to prove r2(X) ≤ O(
√

log |X|) for any finite subset X ⊆ L2, it suffices to
show the existence of the following ensemble of maps. For every τ ≥ 0, there should exist a
1-Lipschitz map ψτ : X → L2 satisfying both ‖ψτ (x)‖2 ≤ O(1)τ for all x ∈ X, and

dist2
(
ψτ (x), span{ψτ (y)}y∈S\B(x,τ)

)
≥ Ω(1) · τ√

1 + log |B(x,α τ)|
|B(x,β τ)|

,

for every x ∈ X, and with α > β > 0 two fixed constants. One may now apply Theorem 3.5
to finish.
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