
1.2 Five Representative Problems

C

1

5

2

A

E

3

B

D 4

6

2

5

1

7

3
4

6

5

1

4

T
i
m
e

0 1 2 3 4 5 6 7 8 9 1
0

1
1

f
g

h

e

a
b

c
d

h

e

b

2

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

3

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

4

Bipartite Matching

Input. Bipartite graph.

Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

5

Independent Set

Input. Graph.

Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

subset of nodes such that no two
joined by an edge

6

Competitive Facility Location

Input. Graph with weight on each each node.

Game. Two competing players alternate in selecting nodes. Not allowed

to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

vs.

7

Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: n log n greedy algorithm.

Weighted interval scheduling: n log n dynamic programming algorithm.

Bipartite matching: nk max-flow based algorithm.

Independent set: NP-complete.

Competitive facility location: PSPACE-complete.

8

Interval Scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

9

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

10

Bipartite Matching

Input. Bipartite graph.

Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

11

Independent Set

Input. Graph.

Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

subset of nodes such that no two
joined by an edge

12

Competitive Facility Location

Input. Graph with weight on each each node.

Game. Two competing players alternate in selecting nodes. Not allowed

to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation.

Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new

light on some aspect of computing." - Francis Sullivan

14

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute

force search algorithm that checks every possible solution.

 Typically takes 2N time or worse for inputs of size N.

 Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm

should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every

input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women

15

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time

of algorithm on input of a given size N.

 Generally captures efficiency in practice.

 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm

on random input as a function of input size N.

 Hard (or impossible) to accurately model real instances by random

distributions.

 Algorithm tuned for a certain distribution may perform poorly on

other inputs.

16

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

 Although 6.02 1023 N20 is technically poly-time, it would be

useless in practice.

 In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.

 Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.

 Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.

 Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.
simplex method

Unix grep

17

Why It Matters

2.2 Asymptotic Order of Growth

19

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0 0

such that for all n n0 we have T(n) c · f(n).

Lower bounds. T(n) is (f(n)) if there exist constants c > 0 and n0 0

such that for all n n0 we have T(n) c · f(n).

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

Ex: T(n) = 32n2 + 17n + 32.

 T(n) is O(n2), O(n3), (n2), (n), and (n2) .

 T(n) is not O(n), (n3), (n), or (n3).

2.4 A Survey of Common Running Times

21

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size

of the input.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max a1
for i = 2 to n {

if (ai > max)

max ai
}

22

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

if (ai bj) append ai to output list and increment i

else(ai bj)append bj to output list and increment j

}

append remainder of nonempty list to output list

23

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform

O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies

of a file arrive at a server, what is largest interval of time when no

copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in

order, identifying the maximum gap between successive time-stamps.

24

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,

(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

for j = i+1 to n {

d (xi - xj)
2 + (yi - yj)

2

if (d < min)

min d

}

}

don't need to
take square roots

25

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of

1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {

foreach other set Sj {

foreach element p of Si {

determine whether p also belongs to Sj

}

if (no element of Si belongs to Sj)

report that Si and Sj are disjoint

}

}

26

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).

 Number of k element subsets =

 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

check whether S in an independent set

if (S is an independent set)

report S is an independent set

}

}

n

k

n (n1) (n 2) (n k 1)

k (k 1) (k 2) (2) (1)

nk

k!

poly-time for k=17,
but not practical

k is a constant

27

Exponential Time

Independent set. Given a graph, what is maximum size of an

independent set?

O(n2 2n) solution. Enumerate all subsets.

S*

foreach subset S of nodes {

check whether S in an independent set

if (S is largest independent set seen so far)

update S* S

}

}

28

The Plan for the rest of the quarter

See some algorithms. Divide and conquer, greedy, dynamic

programming.

NP-completeness. Some problems are so hard, we don’t think they have

any polynomial-time algorithm.

Reductions. A lot of these problems (literally thousands), coming from

every area of science, engineering, technology, industry, medicine, …

are really the same problem in disguise.

More: CSE 421 Algorithms (Winter, Rao)

CSE 431 Complexity (Spring, Lee)

CSE 446 Machine Learning (Winter, Etzioni)

