
1

Dynamic Programming

2

Algorithmic Paradigms

Divide-and-conquer. Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping

sub-problems, and build up solutions to larger and larger sub-problems.

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in

the 1950s.

Etymology.

 Dynamic programming = planning over time.

 Secretary of Defense was hostile to mathematical research.

 Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"

– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.

 Bioinformatics.

 Control theory.

 Information theory.

 Operations research.

 Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

 Viterbi for hidden Markov models.

 Unix diff for comparing two files.

 Smith-Waterman for sequence alignment.

 Bellman-Ford for shortest path routing in networks.

 Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

 Job j starts at sj, finishes at fj, and has weight or value vj .

 Two jobs compatible if they don't overlap.

 Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1  f2  . . .  fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

8

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

 Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

 Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1



OPT(j)
0 if j 0

max v j  OPT(p(j)), OPT(j1)  otherwise





optimal substructure

9

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

 if (j = 0)

 return 0

 else

 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

demo-activity-selection.ppt

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems  exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

11

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

 M[j] = empty

M[j] = 0

M-Compute-Opt(j) {

 if (M[j] is empty)

 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

 return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

 Sort by finish time: O(n log n).

 Computing p() : O(n) after sorting by start time.

 M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure  = # nonempty entries of M[].

– initially  = 0, throughout   n.

– (ii) increases  by 1  at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

 # of recursive calls  n  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

 if (j = 0)

 output nothing

 else if (vj + M[p(j)] > M[j-1])

 print j

 Find-Solution(p(j))

 else

 Find-Solution(j-1)

}

14

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

 M[0] = 0

 for j = 1 to n

 M[j] = max(vj + M[p(j)], M[j-1])

}

6.3 Segmented Least Squares

16

Segmented Least Squares

Least squares.

 Foundational problem in statistic and numerical analysis.

 Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

 Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus  min error is achieved when



SSE  (yi  axi b)2

i1

n





a 
n xi yi  (xi)i (yi)ii

n xi
2
 (xi)

2

ii
, b 

yi  a xiii

n

x

y

17

Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

 x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

18

Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

 x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

 Tradeoff function: E + c L, for some constant c > 0.

x

y

19

Dynamic Programming: Multiway Choice

Notation.

 OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

 e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

 Last segment uses points pi, pi+1 , . . . , pj for some i.

 Cost = e(i, j) + c + OPT(i-1).



OPT(j)
0 if j 0

min
1 i  j

e(i, j)  c  OPT(i1)  otherwise







20

Segmented Least Squares: Algorithm

Running time. O(n3).

 Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

 M[0] = 0

 for j = 1 to n

 for i = 1 to j

 compute the least square error eij for

 the segment pi,…, pj

 for j = 1 to n

 M[j] = min 1  i  j (eij + c + M[i-1])

 return M[n]

}

can be improved to O(n2) by pre-computing various statistics

6.5 RNA Secondary Structure

22

RNA Secondary Structure

RNA. String B = b1b2bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back

and form base pairs with itself. This structure is essential for

understanding behavior of a molecule.

G

U

C

A

G A

A

G

C G

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

23

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:

 [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

 [No sharp turns.] The ends of each pair are separated by at least 4

intervening bases. If (bi, bj)  S, then i < j - 4.

 [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2bn, find a secondary structure S

that maximizes the number of base pairs.

approximate by number of base pairs

24

RNA Secondary Structure: Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossing ok

G

G

4

base pair

25

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring b1b2bj.

Difficulty. Results in two sub-problems.

 Finding secondary structure in: b1b2bt-1.

 Finding secondary structure in: bt+1bt+2bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

26

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bibi+1bj.

 Case 1. If i  j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

 Case 2. Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

 Case 3. Base bj pairs with bt for some i  t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i  t < j-4 and
bt and bj are Watson-Crick complements

27

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

Running time. O(n3).

RNA(b1,…,bn) {

 for k = 5, 6, …, n-1

 for i = 1, 2, …, n-k

 j = i + k

 Compute M[i, j]

 return M[1, n]

}
using recurrence

0 0 0

0 0

0 2

3

4

1

i

6 7 8 9

j

28

Dynamic Programming Summary

Recipe.

 Characterize structure of problem.

 Recursively define value of optimal solution.

 Compute value of optimal solution.

 Construct optimal solution from computed information.

Dynamic programming techniques.

 Binary choice: weighted interval scheduling.

 Multi-way choice: segmented least squares.

 Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

