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Dynamic Programming 
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Algorithmic Paradigms 

Divide-and-conquer.  Break up a problem into two sub-problems, solve 

each sub-problem independently, and combine solution to sub-problems 

to form solution to original problem.  

 

Dynamic programming.  Break up a problem into a series of overlapping 

sub-problems, and build up solutions to larger and larger sub-problems. 
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Dynamic Programming History 

Bellman.  Pioneered the systematic study of dynamic programming in 

the 1950s. 

 

Etymology. 

 Dynamic programming = planning over time. 

 Secretary of Defense was hostile to mathematical research. 

 Bellman sought an impressive name to avoid confrontation. 

– "it's impossible to use dynamic in a pejorative sense" 

– "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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Dynamic Programming Applications 

Areas.  

 Bioinformatics. 

 Control theory. 

 Information theory. 

 Operations research. 

 Computer science:  theory, graphics, AI, systems, …. 

 

Some famous dynamic programming algorithms.  

 Viterbi for hidden Markov models. 

 Unix diff for comparing two files. 

 Smith-Waterman for sequence alignment. 

 Bellman-Ford for shortest path routing in networks. 

 Cocke-Kasami-Younger for parsing context free grammars. 

 



6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 

 Job j starts at sj, finishes at fj, and has weight or value vj .  

 Two jobs compatible if they don't overlap. 

 Goal:  find maximum weight subset of mutually compatible jobs. 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1    f2   . . .  fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 

 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j. 

 

 Case 1:  OPT selects job j. 

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

 

 Case 2:  OPT does not select job j. 

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

 

  



OPT( j)
0 if  j 0

max v j  OPT( p( j)), OPT( j1)  otherwise





optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

 

Compute p(1), p(2), …, p(n) 

 

Compute-Opt(j) { 

   if (j = 0) 

      return 0 

   else 

      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 

} 

Weighted Interval Scheduling:  Brute Force 

Brute force algorithm. 

 

demo-activity-selection.ppt
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems    exponential algorithms.  

 

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence. 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

Compute p(1), p(2), …, p(n) 

 

for j = 1 to n 

   M[j] = empty 

M[j] = 0 

 

M-Compute-Opt(j) { 

   if (M[j] is empty) 

      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 

   return M[j] 

} 

global array 

Weighted Interval Scheduling:  Memoization 

Memoization.  Store results of each sub-problem in a cache; lookup as 

needed. 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 

 Sort by finish time:  O(n log n). 

 Computing p() :  O(n) after sorting by start time. 

 

 M-Compute-Opt(j):  each invocation takes O(1) time and either 

– (i)  returns an existing value M[j] 

– (ii) fills in one new entry M[j] and makes two recursive calls 

 

 Progress measure  = # nonempty entries of M[]. 

– initially  = 0,  throughout   n.  

– (ii) increases  by 1    at most 2n recursive calls. 

 

 Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value.  What if 

we want the solution itself? 

A.  Do some post-processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 # of recursive calls  n    O(n). 

 
Run M-Compute-Opt(n) 

Run Find-Solution(n) 

 

Find-Solution(j) { 

   if (j = 0) 

      output nothing 

   else if (vj + M[p(j)] > M[j-1]) 

      print j 

      Find-Solution(p(j)) 

   else 

      Find-Solution(j-1) 

} 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

 

Compute p(1), p(2), …, p(n) 

 

Iterative-Compute-Opt { 

   M[0] = 0 

   for j = 1 to n 

      M[j] = max(vj + M[p(j)], M[j-1]) 

} 



6.3  Segmented Least Squares 
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Segmented Least Squares 

Least squares. 

 Foundational problem in statistic and numerical analysis. 

 Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn). 

 Find a line y = ax + b that minimizes the sum of the squared error:  

 

 

 

 

 

 

 

 

Solution.  Calculus    min error is achieved when 

  



SSE  (yi  axi b)2

i1

n



  



a 
n xi yi  ( xi )i ( yi )ii

n xi
2
 ( xi )

2

ii
, b 

yi  a xiii

n

x 
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Segmented Least Squares 

Segmented least squares. 

 Points lie roughly on a sequence of several line segments. 

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  

 x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). 

 

Q.  What's a reasonable choice for f(x) to balance accuracy and 

parsimony? 
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Segmented Least Squares 

Segmented least squares. 

 Points lie roughly on a sequence of several line segments. 

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  

 x1 < x2 < ... < xn, find a sequence of lines that minimizes: 

– the sum of the sums of the squared errors E in each segment 

– the number of lines L 

 Tradeoff function:  E + c L, for some constant c > 0. 

 

x 

y 
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Dynamic Programming:  Multiway Choice 

Notation. 

 OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 

 e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj. 

 

To compute OPT(j): 

 Last segment uses points pi, pi+1 , . . . , pj for some i. 

 Cost = e(i, j) + c + OPT(i-1). 

 

 

 

 

   



OPT( j)
0 if  j 0

min
1 i  j

e(i, j)  c  OPT(i1)  otherwise






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Segmented Least Squares:  Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Running time.  O(n3). 

 Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula. 

INPUT: n, p1,…,pN , c 

 

Segmented-Least-Squares() { 

   M[0] = 0 

   for j = 1 to n 

      for i = 1 to j 

         compute the least square error eij for 

         the segment pi,…, pj 

 

   for j = 1 to n 

      M[j] = min 1  i  j (eij + c + M[i-1]) 

 

   return M[n] 

} 

can be improved to O(n2) by pre-computing various statistics 



6.5  RNA Secondary Structure 
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RNA Secondary Structure 

RNA.  String B = b1b2bn over alphabet { A, C, G, U }. 

 

Secondary structure.  RNA is single-stranded so it tends to loop back 

and form base pairs with itself. This structure is essential for 

understanding behavior of a molecule. 
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA 

complementary base pairs:  A-U, C-G 
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RNA Secondary Structure 

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy: 

 [Watson-Crick.]  S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C. 

 [No sharp turns.]  The ends of each pair are separated by at least 4 

intervening bases.  If (bi, bj)  S, then i < j - 4. 

 [Non-crossing.]  If (bi, bj)  and (bk, bl) are two pairs in S, then we 

cannot have i < k < j < l. 

 

 

Free energy.  Usual hypothesis is that an RNA molecule will form the 

secondary structure with the optimum total free energy. 

 

 

Goal.  Given an RNA molecule B = b1b2bn, find a secondary structure S 

that maximizes the number of base pairs. 

approximate by number of base pairs 
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RNA Secondary Structure:  Examples 

Examples. 
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RNA Secondary Structure:  Subproblems 

First attempt.  OPT(j) = maximum number of base pairs in a secondary 

structure of the substring  b1b2bj. 

 

 

 

 

 

 

 

 

 

Difficulty.  Results in two sub-problems. 

 Finding secondary structure in: b1b2bt-1. 

 Finding secondary structure in: bt+1bt+2bn-1. 

 

1 t n 

match bt and bn 

OPT(t-1) 

need more sub-problems 
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Dynamic Programming Over Intervals 

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 

structure of the substring  bibi+1bj. 

 

 Case 1.  If i  j - 4. 

– OPT(i, j) = 0 by no-sharp turns condition. 

 

 Case 2.  Base bj is not involved in a pair. 

– OPT(i, j) = OPT(i, j-1) 

 

 Case 3.  Base bj pairs with bt for some i  t < j - 4. 

– non-crossing constraint decouples resulting sub-problems 

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) } 

 

 

 

Remark.  Same core idea in CKY algorithm to parse context-free grammars. 

take max over t such that i  t < j-4 and 
bt and bj are Watson-Crick complements 
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Bottom Up Dynamic Programming Over Intervals 

Q.  What order to solve the sub-problems? 

A.  Do shortest intervals first. 

 

 

 

 

 

 

 

 

 

 

 

Running time.  O(n3). 

 

 
RNA(b1,…,bn) { 

   for k = 5, 6, …, n-1 

      for i = 1, 2, …, n-k 

         j = i + k 

         Compute M[i, j] 

 

   return M[1, n] 

} 
using recurrence 
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Dynamic Programming Summary 

Recipe. 

 Characterize structure of problem. 

 Recursively define value of optimal solution. 

 Compute value of optimal solution. 

 Construct optimal solution from computed information. 

 

Dynamic programming techniques. 

 Binary choice:  weighted interval scheduling. 

 Multi-way choice:  segmented least squares. 

 Dynamic programming over intervals:  RNA secondary structure. 

 

 

 

Top-down vs. bottom-up:  different people have different intuitions. 

Viterbi algorithm for HMM also uses 
DP to optimize a maximum likelihood 
tradeoff between parsimony and accuracy 

CKY parsing algorithm for context-free 
grammar has similar structure 


