Dynamic Programming

—

.'1
9

Algorithmic Paradigms

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution fo original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
. Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

. Bioinformatics.

. Control theory.

. Information theory.

. Operations research.

. Computer science: theory, graphics, AT, systems,

Some famous dynamic programming algorithms.
. Viterbi for hidden Markov models.
. Unix diff for comparing two files.
. Smith-Waterman for sequence alignment.
. Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

J .

> Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

,» Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requestsi,?2, .., |.

. Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) +1,p(j)+ 2, ..., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) ~

optimal substructure

. Case 2: OPT does not select job j. d

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

o if j=0
OPT(j)=
T(J) {max {v;+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

demo-activity-selection.ppt

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

10

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
heeded.

1

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n) after sorting by start time.

. M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (ii) fills in one new entry M[j1 and makes two recursive calls
. Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

. Overall running time of M-Compute-0pt (n) is O(h). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

12

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution(n)

Find-Solution(j) {
if (3 = 0)
output nothing
else if (vy; + M[p(3)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

. # of recursive calls <n = O(n).

13

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

14

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
. Foundational problem in statistic and numerical analysis.
. Given n points in the plane: (xi, 1), (X2,Y¥2), (Xp Yp)-
. Find a liney = ax + b that minimizes the sum of the squared error:

SSE = 3. (y; ~ax, ~by

i=1

Solution. Calculus = min error is achieved when

a:nZiXiyi — (2 %) (2 Y)) b:ziyi —aY. X
n2; X~ (%) ’ n

16

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
- Given n points in the plane (x4, y1), (X2, ¥2), (X, Y,) with
. X{< X5<..< Xy, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

. 5 T
par'?lmony. goodness of fit

number of lines

17

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
- Given n points in the plane (x4, y1), (X2, ¥2), (X, Y,) with
- X{< X< .. <X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
. Tradeoff function: E + c L, for some constant ¢ > 0.

18

Dynamic Programming: Multiway Choice

Notation.
. OPT(j) = minimum cost for points py, Pis1 - - - . P;-
- e(i,) =minimum sum of squares for points p;, pi.1 , . . ., Pj-

To compute OPT(j):
. Last segment uses points p;, pi.1 .- - -, p; for some i.
. Cost =e(i, j)+c+ OPT(i-1).

(o if j=0
OPT(j)= min { e(i,j) +c+OPT(i—1)} otherwise

1<i<j

19

Segmented Least Squares: Algorithm

. . can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

20

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of a molecule.

C— A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A / N\ A
N\ /
A---U 6— ¢
| | / \
C---6——U—A— A G
/ I I I I
G I I I
U I A—U—U A
7~ I N~
A C G C U
I I I I G
l | | | | /
C G C G A G--¢C
N 7 | |
G
A--U
|
G

complementary base pairs: A-U, C-G

22

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b)) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-6, or G-C.
. [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b;,b;) e S, theni<j-4.
- [Non-crossing.] If (b;, b;) and (b, b)) are two pairs in S, then we
cannot have i< k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.

23

RNA Secondary Structure: Examples

Examples.

6—6 /G\ 6—6
/7 N\ G G /7 N\
C U \ / C)
N\ /7 N\ /

C---6 C---6 C. /U

| | | >< |

A---U A---U A G

| | | | | |

U---A U---A U---A

\ .
base pair

>
C
®
C e
D
D
ae
(9}
>
(=
>
C
®
(XK,
'_/,;G\;o
D e
(9}
>
C
>
®
C
C e
D
D
ae
(9}
>
C

ok sharp turn crossing

24

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bib,...b.

match b, and b,

Difficulty. Results in two sub-problems.
. Finding secondary structure in: b;b,...b, ;. — OPT(+-1)
. Finding secondary structure in: b,,;b,,,...b, ;. +—— need more sub-problems

25

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bb,,;...b;.
. Casel Ifi>j-4.

- OPT(i, j) = 0 by no-sharp turns condition.

. Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

. Case 3. Base b, pairs with b, for some i <1< j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(, j) = 1 + max, { OPT(i, t-1) + OPT(1+1, j-1) }
!

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

26

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A.

Do shortest intervals first.

j=1i+%k
Compute M[i, j]

\

return M[1l, n] using recurrence

Running time. O(n3).

= N W DN

27

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.
. . Viterbi algorithm for HMM also uses
. Multi-way choice: segmented least squares. «—— DP to optimize a maximum likelihood

tradeoff between parsimony and accuracy

. Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

28

