
Lecture 1: First moments CSE 525, Spring 2019
Instructor: James R. Lee

1 The probabilistic method

An old math puzzle goes: Suppose there are six people in a room; some of them shake hands.
Prove that there are at least three people who all shook each others’ hands or three people such that
no pair of them shook hands.

Generalized a bit, this is the classic Ramsey problem. The diagonal Ramsey numbers R(k) are
defined as follows. R(k) is the smallest integer n such that in every two-coloring of the edges of the
complete graph Kn by red and blue, there is a monochromatic copy of Kk , i.e. there are k nodes
such that all of the

(k
2
)
edges between them are red or all of the edges are blue. A solution to the

puzzle above asserts that R(3) 6 6 (and it is easy to check that, in fact, R(3) � 6).
In 1929, Ramsey proved that R(k) is finite for every k. We want to show that R(k)must grow

pretty fast; in fact, we’ll prove that for k > 3, we have R(k) > b2k/2c. This requires finding a coloring
of Kn that doesn’t contain any monochromatic Kk . To do this, we’ll use the probabilistic method:
We’ll give a random coloring of Kn and show that it satisfies our desired property with positive
probability. This proof appeared in a paper of Erdös from 1947, and this is the example that starts
Alon and Spencer’s famous book devoted to the probabilistic method.

Lemma 1.1. If
(n

k

)
21−(k2) < 1, then R(k) > n. In particular, R(k) > b2k/2c for k > 3.

Proof. Consider a uniformly random 2-coloring of the edges of Kn . Every edge is colored red or
blue independently with probability half each. For any fixed set of k vertices H, let EH denote the
event that the induced subgraph on H is monochromatic. An easy calculation yields

P(EH) � 2 · 2−(k2) .

Since there are
(n

k

)
possible choices for H, we can use the union bound:

P(exists R such that EH) 6 2 · 2−(k2) ·
(
n
k

)
.

Thus if 21−(k2) (n
k

)
< 1, then with positive probability, no event EH occurs. Thus there must exist at

least one coloring with no monochromatic Kk . One can check that if k > 3 and n � b2k/2c, then this
is satisfied. �

We have employed the following basic tool.

Tool 1.2 (Union bound). If A1 ,A2 , . . . ,Am are arbitrary events, then

P(A1 ∪ A2 ∪ · · · ∪ Am) 6 P(A1) + P(A2) + · · · + P(Am)

2 Linearity of expectation

Let’s look at a couple more examples of the probabilistic method in action. We’ll use a basic fact in
probability: Linearity of expectation.
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Tool 2.1 (Linearity of expectation). If X1 ,X2 , . . . ,Xn are discrete real-valued random variables, then

E[X1 + X2 + · · · + Xn] � E[X1] + E[X2] + · · · + E[Xn]

The great fact about this inequality is thatwe don’t need to know anything about the relationships
between the random variables; linearity of expectation holds no matter what the dependence
structure.

MAX-3SAT. Let’s consider a 3-CNF formula over the variables x1 , x2 , . . . , xn . Such a formula
has the form ϕ � C1 ∧ C2 ∧ · · · ∧ Cm where each clause is an OR of three literals involving
distinct variables: Ci � zi1 ∨ zi2 ∨ zi3 . A literal is a variable or its negation. For instance,
(x2 ∨ x̄3 ∨ x̄4) ∧ (x3 ∨ x̄5 ∨ x̄1) ∧ (x1 ∨ x5 ∨ x4) is a 3-CNF formula.

Claim 2.2. If ϕ is a 3-CNF formula with m clauses, then there exists an assignment that makes at
least 7

8 m clauses evaluate to true.

Proof. We will prove this using the probabilistic method. For every variable independently, we
choose a uniformly random truth assignment: true or false each with probability 1/2. Let Ai equal
1 if clause Ci is satisfied by our random assignment, and equal 0 otherwise. Then P(Ai � 1) � 7/8
because there are 7 ways to satisfy a clause out of the 8 possible truth values for its literals.

Let A � A1 + · · · + Am denote the total number of satisfied clauses. By linearity of expectation,
we have

E[A] �
m∑

i�1
E[Ai] �

7
8 m . (2.1)

Since a randomassignment satisfies 7
8 m clauses in expectation, theremust exist at least one assignment

that satisfies this many clauses. �

MAX-CUT. Consider an undirected graph G � (V, E). A cut is a subset S ⊆ V , and we use E(S, S̄)
to denote the set of edges crossing the cut S. This is the set of edges with one endpoint in S and one
not in S.

Claim 2.3. In any graph G � (V, E), there exists a cut S ⊆ V that cuts at least half the edges, i.e.,
|E(S, S̄)| > |E |2 .

Proof. We construct a random set S ⊆ V by including every vertex in S independently with
probability 1/2. For an edge e ∈ E, let Ae � 1 if e crosses the cut S, and 0 otherwise. First, it should
be apparent that P(Ae � 1) � 1/2. Therefore by linearity of expectation,

E
[
|E(S, S̄)|

]
�

∑
e∈E

E[Ae] �
|E |
2 .

Thus there must exist at least one cut S that has at least half the edges crossing it. �

2.1 The method of conditional expectation

Claim 2.2 asserts that there exists an assignment satisfying at least 7
8 m clauses, but what if we wish

to actually find one? One way is to randomly sample from the underlying distribution and then
check the resulting assignment. Analyzing the probability of success will require our first tail bound;
we’ll get there in the next section.
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Let’s examine another way that actually results in a deterministic algorithm. Let S(x1 , x2 , . . . , xn)
denote the expected number of satisfied clauses given a partial truth assignment to the input
variables, where we choose the unassigned variables uniformly at random. We will use T to denote
true, F to denote false, and? to denote that no assignment has been chosen for that variable.

For instance, S(?,?, . . . , ?) denotes the expected number of satisfied clauses in a random
assignment, and we have already seen (cf. (2.1)) that

S(?,?, . . . , ?) � 7
8 m.

Note that a simple linear-time algorithm can estimate S(x1 , x2 , . . . , xn) for any partial assignment
x1 , . . . , xn ∈ {T, F, ?} by simply going through the clauses one by one.

As an example, consider the clause x1 ∨ x̄2 ∨ x̄4. The probability that a random assignment
satisfies this is 7/8. If we assign x1 � F, then the probability becomes 3/4, and if we set x1 � T, then
the probability becomes 1.

Observe that
S(?,?, . . . , ?) � 1

2S(F, ?, . . . , ?) + 1
2S(T, ?, . . . , ?) .

Since S(?,?, . . . , ?) > 7
8 m, it must hold that S(F, ?, . . . , ?) > 7

8 m or S(T, ?, . . . , ?) > 7
8 m. As we

have just argued, it’s possible to compute both these quantities and figure out which is larger. We
can then set x1 to the corresponding value and keep assigning truth values recursively. Eventually,
this process ends at a full assignment to the variables that satisfies at least 7

8 m clauses. The key
property we employed here is the ability to efficiently compute the conditional expectation of the
underlying random variable under a partial assignment.

2.2 Markov’s inequality

The probabilistic method shows the existence of an object, but it doesn’t necessarily give us a
randomized algorithm to construct it. If we just know that the probability of an event is non-zero, it
could still be very tiny; we might need to do an arbitrarily large number of random experiments
before we get a positive outcome. Sometimes we can say more.

Tool 2.4 (Markov’s inequality). Let X be a non-negative random variable. Then for any α > 0, we
have

P[X > α] 6 EX
α

.

The proof of this lemma is easy; we leave it as an exercise.

Consider now our MAX-3SAT example above. Let X denote the number of unsatisfied clauses
in a random truth assignment. We know from the preceding analysis that E[X] 6 1

8 m. Markov’s
inequality tells us that for any ε > 0,

P

[
X >

(
1
8 + ε

)
m

]
6

m/8
(1/8 + ε)m �

1
1 + 8ε 6 1 − ε .

The last inequality is only true if we assume ε 6 7/8, but for any value ε > 7/8, the probability is
clearly zero.

This means that, with probability at least ε, we will get an assignment that satisfies at least
(7/8 − ε)-fraction of clauses. So in expectation, after 1/ε samples, we will get an assignment that is
very close to the one guaranteed to exist. The same kind of reasoning applies to our MAX-CUT
analysis.
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3 Crossing number inequalities

Let’s look at one more application of the linearity of expectation. It is almost as elementary as the
examples above, but has some powerful consequences in incidence geometry and sum-product
estimates.

If G � (V, E) is an undirected graph, we use the notation cr(G) to denote the crossing number of
G. This is the minimum number of edge crossings required to draw G in the plane. A drawing of
the graph means that the vertices are mapped to distinct points, and each edge is drawn as a closed,
continuous curve of bounded length. The following result is due independently to Leighton and
Atjai-Chvatal-Newborn-Szemeredi.

Theorem 3.1. If G is a graph with n vertices and m edges, and m > 4n, then

cr(G) > m3

64n2 .

Note that for dense graphs, i.e. those with m � Ω(n2), we getΩ(n4) crossings (the most possible
up to a constant factor). We start with a basic fact: Euler’s formula implies that, in every planar
graph (a planar graph G is one for which cr(G) � 0), we have m 6 3n − 6.

Thus if m > 3n, we must have cr(G) > 1. Since we can always remove one crossing from a
drawing by removing one edge from the underlying graph, this gives us

cr(G) > m − 3n . (3.1)

This is still pretty weak. But now we will use random sampling to do seriously heavy amplification.

Proof of Theorem 3.1. Suppose we have a drawing of G in the plane. Wewill make some assumptions
about this drawing (which are without loss of generality). We may assume that every edge crossing
involves four distinct vertices. If an edge crosses itself, that can be fixed by short-circuiting the loops.
If two edges emanating from the same vertex cross each other, they can be uncrossed without
affecting the rest of the drawing (draw a picture to convince yourself). So we may assume that the
only crossings are between edges {x , y} and {u , v} where x , y , u , v are all distinct vertices.

Now we will construct a (random) graph Gp by keeping every vertex of G independently with
probability p. The value of p will be chosen soon. Let np and mp denote the number of edges and
vertices remaining in Gp , and let cp denote the number of crossings remaining in our drawing (after
the edges and vertices not remaining in Gp are removed).

Every vertex remains with probability p. By independence, an edge remains with probability p2.
Finally, a crossing remains with probability p4 since we said that every crossing has to involve four
distinct vertices. In order for a crossing to remain, all of those four vertices must be in Gp . Thus
linearity of expectation gives us:

E[np] � pn (3.2)
E[mp] � p2m (3.3)
E[cp] � p4cr(G) . (3.4)

But from (3.1), we know that cp > mp − 3np , and thus E[cp] > E[mp] − 3E[np]. Plugging in our
values above yields

p4cr(G) > p2m − 3pn ,

4



or equivalently

cr(G) > m
p2 −

3n
p3 .

Finally, we set p �
4n
m (p 6 1 since we have assumed m > 4n). This yields

cr(G) > m3

16n2 −
3m3

64n2 �
m3

64n2 ,

completing our proof. �
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