
Lectures 14-15: Random walks on graphs and electrical networks CSE 525, Spring 2019
Instructor: James R. Lee

1 Random walks

Let G � (V, E) be an undirected graph. The random walk on G is a Markov chain on V that, at each
time step, moves to a uniformly random neighbor of the current vertex.

For x ∈ V , use dx to denote the degree of vertex x. Then more formally, random walk on G is the
following process {Xt}. We start at at some node X0 � v0 ∈ V . Then if Xt � v, we put Xt+1 � u
with probability 1/dv for every neighbor u of v.

1.1 Hitting times and cover times

One can study many natural properties of the randomwalk. For two vertices u , v ∈ V , we define the
hitting time Huv from u to v as the expected number of steps for the randomwalk to hit v when started
at u. Formally, define the random variable T � min{t > 0 : Xt � v}. Then Huv � E[T | X0 � u].

The cover time of G starting from u is the quantity covu(G) which is the expected number of
steps needed to visit every vertex of G started at u. Again, we can define this formally: Let
T � min{t > 0 : {X0 ,X1 , . . . ,Xt} � V}. Then covu(G) � E[T | X0 � u]. Finally, we define the cover
time of G as cov(G) � maxu∈V covu(G).

1.2 Random walks and electrical networks

It turns out that randomwalks (on undirected graphs) are very closely related to electrical networks.
We recall the basics of such networks now. Again, we let G � (V, E) be a connected, undirected
graph which we think of as an electrical circuit with unit resistors on every edge.

If we create a potential difference at two vertices (by, say, connecting the positive and negative
terminals of a battery), then we induce an electrical flow in the graph. Between every two nodes
u , v there is a potential φu ,v ∈ R. Electrical networks satisfying the following three laws.

(K1) The flow into every node equals the flow out.

(K2) The sum of the potential differences around any cycle is equal to zero.

(Ohm) The current flowing from u to v on an edge e � {u , v} is precisely φu ,v
ruv

where ruv is the
resistance of {u , v}. [In other words, V � iR.]

In our setting, all resistances are equal to one, but one can define things more generally: If we put
conductances cuv on the edges {u , v} ∈ E, then the corresponding random walk would operate as
follows: If Xt � u then Xt+1 � v with probability cuv∑

v∈V cuv
for every neighbor v of u. In that case, we

would have ruv � 1/cuv .
Remark 1.1. In fact, (K2) is related to a somewhat more general fact. The potential differences
are given—naturally—by differences in a potential. There exists a map ϕ : V → R such that
φu ,v � ϕ(u) − ϕ(v). If G is connected, then the potential ϕ is uniquely defined up to a tranlation.

To define the potential ϕ, put ϕ(v0) � 0 for some fixed node v0. Now for any v ∈ V and any
path γ � 〈v0 , v1 , v2 , . . . , vk � v〉 in G, we can define ϕ(v) � φv0 ,v1 + φv1 ,v2 + · · · + φvk−1 ,vk . This is
well-defined—independent of the choice of path γ—since by (K2), the potential differences around
every cycle sum to zero.
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Finally, we make an important definition: The effective resistance Reff(u , v) between two nodes
u , v ∈ V is defined to be the necessary potential difference created between u and v to induce a
current of one unit to flow between them. If we imagine the entire graph G acting as a single “wire”
between u and v, then Reff(u , v) denotes the effective resistance of that single wire (recall Ohm’s
law). We now prove the following.

Theorem 1.2. If G � (V, E) has m edges, then for any two nodes u , v ∈ V , we have

Huv + Hvu � 2mReff(u , v) .

In order to prove this, we will set up four electrical networks corresponding to the graph G. We
label these networks (A)-(D).

(A) We inject dx units of flow at every vertex x ∈ X, and extract
∑

x∈V dx � 2m units of flow at
vertex v.

(B) We inject dx units of flow at every vertex x ∈ X, and extract 2m units of flow at vertex u.

(C) We inject 2m units of flow at vertex u and extract dx units of flow at every vertex x ∈ X.

(D) We inject 2m units of flow at vertex u and extract 2m units of flow at vertex v.

We will use the notation φ(A)x ,y , φ
(B)
x ,y , etc. to denote the potential differences in each of these

networks.

Lemma 1.3. For any vertex u ∈ V , we have Huv � φ(A)u ,v .

Proof. Calculate: For u , v,

du �

∑
w∼u

φ(A)u ,w

�

∑
w∼u

(
φ(A)u ,v − φ(A)w ,v

)
� duφ

(A)
u ,v −

∑
w∼u

φ(A)w ,v ,

where we have first use (K1), then (K2). Rearranging yields

φ(A)u ,v � 1 +
1
du

∑
w∼u

φ(A)w ,v .

Now observe that the hitting times satisfy the same set of linear equations: For u , v,

Huv � 1 +
1
du

∑
w∼u

Hwv .

We conclude that Huv � φ(A)u ,v as long as this system of linear equations has a unique solution.
But consider some other solution H′uv and define f (u) � Huv−H′uv . Plugging this into the preceding
family of equations yields

f (u) � 1
du

∑
w∼u

f (w) .

Such a map f is called harmonic, and it is a well-known fact that every harmonic function f on a
finite, connected graph is constant. Since f (v) � Hvv � 0, this implies that f ≡ 0, and hence the
family of equations has a unique solution, completing the proof. �
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Remark 1.4. To prove that every harmonic function on a finite, connected graph is constant, we
can look at the corresponding Laplace operator: (L f )(u) � du f (u) −∑

w∼u f (u). A function f is
harmonic if and only if L f � 0. But we have already seen that, on a connected graph, the Laplacian
has rank n − 1 and ker(L) � span(1, . . . , 1), i.e., the only harmonic functions on our graph are
multiples of the constant function.

Define now the commute time between u and v as the quantity Cuv � Huv + Hvu . We restate and
prove Theorem 1.2.

Theorem 1.5. In any connected graph with m edges, we have Cuv � 2mReff(u , v) for every pair of vertices
u , v ∈ V .

Proof. From Lemma 1.3, we have Huv � φ(A)u ,v . By symmetry, Hvu � φ(B)v ,u as well Since network C is
the reverse of network B, this yields Hvu � φ(C)u ,v . Finally, since network D is the sum of networks A
and C, by linearity we have

φ(D)u ,v � φ(C)u ,v + φ
(A)
u ,v � Huv + Hvu � Cuv .

Finally, note that Reff(u , v) � 2mφ(D)u ,v by definition, since network D has exactly 2m units of current
flowing from u to v. This yields the claim of the theorem. �

1.3 Cover times

We can now use Theorem 1.5 to give a universal upper bound on the cover time of any graph.

Theorem 1.6. For any connected graph G � (V, E), we have cov(G) 6 2|E |(|V | − 1).

Proof. Fix a spanning tree T of G. Then we have

cov(G) 6
∑

{x ,y}∈E(T)
Cx y .

The right-hand side can be interpreted as a very particular way of covering the graph G: Start at
some node x0 and “walk” around the edges of the spanning tree in order x0 , x1 , x2 , . . . , x2(n−1) �
x0. If we require the walk to first go from x0 to x1, then from x1 to x2, etc., we get the sum∑2(n−1)−1

i�0 Hxi xi+1 �
∑
{x ,y}∈E(T) Cx y . This is one particular way to visit every node of G, so it gives an

upper bound on the cover time.
Finally, we note that if {x , y} is an edge of the graph, then by Theorem 1.5, we have Cx y �

2|E |Reff(x , y) 6 2|E |. Here we use the fact that for every edge {x , y} of a graph, the effective
resistance is at most the resistance, which is at most one. This completes the proof. �

Remark 1.7. The last stated fact is a special case of the Rayleigh monotonicity principle. This states
that adding edges to the graph (or, more generally, decreasing the resistance of any edge) cannot
increase any effective resistance. In the other direction, removing edges from the graph (or, more
generally, increasing the resistance of any edge) cannot decrease any effective resistance. A similar
fact is false for hitting times and commute times, as we will see in the next few examples.
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Examples.

1. The path. Consider first G to be the path on vertices {0, 1, . . . , n}. Then H0n + Hn0 � C0n �

2nReff(0, n) � 2n2. Since H0n � Hn0 by symmetry, we conclude that H0n � n2. Note that
Theorem 1.6 implies that cov(G) 6 2n2, and clearly cov(G) > H0n � n2, so the upper bound is
off by at most a factor of 2.

2. The lollipop. Consider next the “lollipop graph” which is a path of length n/2 from u to v
with an n/2 clique attached to v. We have Huv + Hvu � Cuv � Θ(n2)Reff(u , v) � Θ(n3). On
the other hand, we have already seen that Huv � Θ(n2). We conclude that Hvu � Θ(n3), hence
cov(G) > Ω(n3). Again, the bound of Theorem 1.6 is cov(G) 6 O(n3), so it’s tight up to a
constant factor here as well.

3. The complete graph. Finally, consider the complete graph G on n nodes. In this case,
Theorem 1.6 gives cov(G) 6 O(n3)which is way off from the actual value cov(G) � Θ(n log n)
(since this is just the coupon collector problem is flimsy disguise).

1.4 Matthews’ bound

The last example shows that sometimes Theorem 1.6 doesn’t give such a great upper bound.
Fortunately, a relatively simple bound gets us within an O(log n) factor of the cover time.

Theorem 1.8. If G � (V, E) is a connected graph and Rmax :� maxx ,y∈V Reff(x , y) is the maximum effective
resistance in G, then

|E |Rmax 6 cov(G) 6 O(log n)|E |Rmax .

Proof. One direction is easy:

cov(G) > max
u ,v

Huv >
1
2 max

u ,v
Cuv �

1
22|E |max

u ,v
Reff(u , v) � |E |Rmax .

For the other direction, we will examine a random walk of length 2c |E |Rmax log n divided into
log n epochs of length 2c |E |Rmax. Note that for any vertex v and any epoch i, we have

P[v unvisited in epoch i] 6 1
c
.

This is because no matter what vertex is the first of epoch i, we know that the hitting time to v is at
most maxu Huv 6 maxu Cuv 6 2|E |Rmax. Now Markov’s inequality tells us that the probability it
takes more than 2c |E |Rmax steps to hit v is at most 1/c.

Therefore the probability we don’t visit v in any epoch is at most c− log n � n− log c , and by a union
bound, the probability that there is some vertex left unvisited after all the epochs is at most n1−log c .

We conclude that
cov(G) 6 2c |E |Rmax log n + n1−log c2n3 ,

where we have used the weak upper bound on the cover time provided by Theorem 1.6. Choosing
c to be a large enough constant makes the second term negligible, yielding

cov(G) 6 O(|E |Rmax log n) ,

as desired. �

One can make some improvements to this “soft” proof, yielding the following stronger bounds.
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Theorem 1.9. For any connected graph G � (V, E), the following holds. Let thit denote the maximum
hitting time in G. Then

cov(G) 6 thit

(
1 +

1
2 + · · · + 1

n

)
.

Moreover, if we define for any subset A ⊆ V , the quantity tA
min � minu ,v∈A,u,v Huv , then

cov(G) > max
A⊆V

tA
min

(
1 +

1
2 + · · · + 1

|A| − 1

)
. (1.1)

For the proofs, consult Chapter 11 of the Levin-Peres-Wilmer book http://pages.uoregon.
edu/dlevin/MARKOV/markovmixing.pdf.

Kahn, Kim, Lovász, and Vu showed that the best lower bound in (1.1) is within an O(log log n)2
factor of cov(G), improving over the O(log n)-approximation in Theorem 1.8. In a paper with Jian
Ding and Yuval Peres, we showed that one can compute an O(1) approximation using a multi-scale
generalization of the bound (1.1) based on Talagrand’s majorizing measures theory.
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