
Lecture 18: Eigenvalues, expansion, and rapid mixing CSE 525, Spring 2019
Instructor: James R. Lee

1 Eigenvalues, conductance, and flows

Let P be the transition kernel of a reversible, irreducible, aperiodic Markov chain on the state space
Ω. Suppose that P has stationary measure π (this exists and is unique by the Fundamental Theorem
of Markov Chains). Let us also assume that all the eigenvalues of P lie in [0, 1]. In the last lecture,
we proved that they must lie in [−1, 1]. Now by replacing P with P′ � 1

2 I + 1
2 P, we can ensure that

all eigenvalues are nonnegative while only changing the mixing time by a factor of 2.
Suppose the eigenvalues of P are 1 � λ1 > λ2 > · · · > λ |Ω| > 0. In the last lecture, we defined

τmix and showed that
1

1 − λ2
− 1 6 τmix 6 O(log(1/πmin))

1
1 − λ2

,

where πmin :� min{π(x) : x ∈ Ω} is the minimum stationary probability. In other words, up to a
factor of O(log(1/πmin)), the mixing time is controlled by the inverse spectral gap of P.

The Gibbs distribution on matchings. To understand the phrase “rapid mixing,” let us consider
sampling from a particular measure on an exponentially large state space. Fix an n-vertex graph
G � (V, E) and consider the setM(G) of all matchings in G; these are precisely subsets of the edges
E in which every vertex has degree at most one. It is clear thatM(G) can be very large; for instance,
in the complete graph on 2n vertices, we have log |M(G)| � n log n.

For a parameter λ > 1, let πλ denote the measure onM(G)where a matching m has probability
proportional to λ |m |. Here, |m | denotes the number of edges in m. Thus πλ(m) � λ |m |/Z, where

Z �

∑
m∈M(G)

λ |m |

is the corresponding partition function, which can itself be very difficult to compute. (In fact, the
ability to approximate Z efficiently is essentially equivalent to the ability to sample efficiently from
πλ.)

Our goal is to produce a sample from a distribution that is very close to πλ. To do this, we
will define a Markov chain onM(G)whose stationary distribution is πλ. We will then show that
τmix 6 nO(1), implying that there is a polynomial-time algorithm to sample via simulating the chain
for nO(1) steps. In general, for such an exponentially large state space indexed by objects of size n,
we say that the chain is “rapidly mixing” if the mixing time is at most nO(1).

1.1 Conductance

For a pair of states x , y ∈ Ω, define Q(x , y) � π(x)P(x , y) and note that since P is reversible, the
detailed balance conditions give us Q(x , y) � Q(y , x). For two sets S, T ⊆ Ω, define Q(S, T) �∑

x∈S
∑

y∈T Q(x , y). Finally, given a subset A ⊆ Ω, we define its conductance as the quantity

Φ(A) � Q(A, Ā)
π(A) .

Note that Q(A, Ā) represents the “ergodic flow” from A to Ā—this is the probability of a transition
going betweenA and Ā at stationarity. This quantity has a straightforward operational interpretation:
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It is precisely the probability that one step of the Markov chain leaves A when we start from the
stationary measure restricted to A. Note that if Φ(A) is small, we expect that the chain might get
“trapped” inside A, and thus perhaps such a “bottleneck” could be an obstruction to mixing. In fact,
we will see momentarily that this is true, and moreover, these are the only obstructions to rapid
mixing.

We define the conductance of the chain P to capture the conductance of the “worst” set

Φ∗ � max
π(A)6 1

2

Φ(A) .

Then we have the following probabilistic version of the discrete Cheeger inequality (proved
independently by Jerrum-Sinclair and Lawler-Sokal in the context of Markov chains on discrete
spaces).

Theorem 1.1. It always holds that
1
2 (Φ

∗)2 6 1 − λ2 6 2Φ∗ .

This is a basic fact in spectral graph theory; wewill not prove it here. Let usmention, though, that
the right-hand side is straightforward—it verifies that indeed a low-conductance set is an obstruction
to rapid mixing. The left-hand side, which claims that those are the only such obstructions, is more
subtle.

The best way to prove the right-hand side is as follows: Recall the inner product

〈u , v〉`2(π) �
∑
x∈Ω

π(x)ux vx

and the associated Euclidean norm ‖v‖`2(π) �
√
〈v , v〉`2(π). Then using the variational principle for

eigenvalues, we have
λ2 � max

v:〈v ,1〉`2(π)�0
〈v , vP〉 ,

where 1 denotes the all-ones vector. Consider now any A ⊆ Ωwith π(A) 6 1
2 , and define

vx �


√

1−π(A)
π(A) x ∈ A

−
√

π(A)
1−π(A) x < A .

Note that 〈v , 1〉`2(π) � π(A)
√

1−π(A)
π(A) − (1 − π(A))

√
π(A)

1−π(A) � 0, and

‖v‖2`2(π) � 1 − π(A) + π(A) � 1 .

Therefore
1 − λ2 � 〈v , v(I − P)〉`2(π) �

1
2

∑
x ,y

Q(x , y)(vx − vy)2 ,

where the last equality is the usual one we have done with Laplacian matrices (like I − P) in
preceding lectures. But the latter quantity is precisely

Q(A, Ā) ©«
√

1 − π(A)
π(A) +

√
π(A)

1 − π(A)
ª®¬

2

6 2Q(A, Ā)
π(A) � 2Φ(A) ,

where the inequality uses the fact that π(A) 6 1
2 .
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1.2 Multi-commodity flows

Although Theorem 1.1 gives a nice characterization of rapid mixing in terms of conductance, the
quantity Φ∗ is NP-hard to compute, and can be difficult to get a handle on for explicit chains. Thus
we now present another connection between conductance and multi-commodity flows.

We consider a multi-commodity flow instance on a graph with vertices corresponding to states
Ω and edges {x , y} with capacity Q(x , y). The demand between x and y is π(x)π(y). Let C∗ be the
optimal congestion that can be achieved by a multi-commodity flow satisfying all the demands
(recalling that the congestion of an edge in a given flow is the ratio of the total flow over the edge to
its capacity).

Theorem 1.2. It holds that
1

2C∗
6 Φ∗ 6

1
C∗

O(log |Ω|) .

The right-hand side is due to Leighton and Rao (1988). We will only need the much simpler
left-hand side inequality which can be proved as follows. Suppose there exists a flow achieving
congestion C and consider some A ⊆ Ω. Then

C · Q(A, Ā) > π(A)π(Ā) .

This is because the left-hand side represents an upper bound on the total flow going across the
cut—Q(A, Ā) is the capacity across the cut (A, Ā), and we have to rescale by C to account for the
congestion. On the other hand, π(A)π(Ā) represents the amount of flow that must be traveling
across the cut to satisfy the demand. If π(A) 6 1

2 , we conclude that

Q(A, Ā) > π(A)π(Ā)
C

>
π(A)
2C

,

completing the proof.
Remark 1.3 (Proof sketch of RHS of Theorem 1.2). (This is related to HW#4(c), which would give
the worse bound O((log |Ω|)2).) If we use linear programming duality to characterize C∗, it has the
following dual representation:

1
C∗

� min
d

∑
{x ,y} Q(x , y)d(x , y)∑

x ,y∈Ω π(x)π(y)d(x , y) , (1.1)

where the minimum is over all symmetric distance functions d(x , y) on Ω × Ω that satisfy the
triangle inequality d(x , y) 6 d(x , z) + d(z , y) for all x , y , z ∈ Ω.

Recall that every finite metric space (X, d) admits a mapping F : X → Rn with distortion
D 6 O(log n), i.e.,

d(x , y)
D

6 ‖F(x) − F(y)‖2 6 d(x , y) x , y ∈ X.

Now let us decompose the Euclidean distance on Rn into a convex combination over cuts. First,
note that for any a , b ∈ R, we have

|a − b | �
∫ ∞

−∞
|χs(a) − χs(b)| ds ,

where χs :� 1(−∞,s]. In other words, χs(a) � 1 if a 6 s and χs(a) � 0 otherwise.
Let 1 denote a random n-dimensional Gaussian vector, i.e., 1 � (11 , . . . , 1n) where {1i} are i.i.d.

N(0, 1) random variables. Recall that for u , v ∈ Rn , we have ‖u − v‖22 � E[〈u − v , 1〉2], because
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〈u − v , 1〉 is an N(0, ‖u − v‖22) random variable (by the 2-stability property of normal random
variables). One can also calculate: If 10 is an arbitrary normal random variable with mean zero,
then

E[|10 |] �
√

2
π

√
E[12

0].

Therefore:

‖u − v‖2 �

√
E[〈u − v , 1〉2] �

√
π
2 E [|〈u − v , 1〉|]

We thus arrive at the following “cut decomposition” for all of Rn :

‖u − v‖2 � E
1

[∫ ∞

−∞
|χs(〈u , 1〉) − χs(〈v , 1〉)| ds

]
Suppose now that d is the optimal metric in (1.1) and let F : Ω → Rn denote a distortion

D 6 O(log n) embedding. The distortion condition yields

1
C∗
>

1
D

∑
{x ,y} Q(x , y)‖F(x) − F(y)‖2∑
x ,y π(x)π(y)‖F(x) − F(y)‖2

�

E1

[∫ ∞
−∞

∑
{x ,y} Q(x , y)

��χs(〈F(x), 1〉) − χs(〈F(y), 1〉)
�� ds

]
E1

[∫ ∞
−∞

∑
x ,y π(x)π(y)

��χs(〈F(x), 1〉) − χs(〈F(y), 1〉)
�� ds

]
Finally, we observe that ∫

f (x) dx∫
1(x) dx

> min
x

f (x)
1(x) .

Thus there exists some choice of 1 ∈ Rn and s ∈ R such that

1
C∗
>

1
D

∑
{x ,y} Q(x , y)|χs(〈F(x), 1〉) − χs(〈F(y), 1〉)|∑
x ,y π(x)π(y)|χs(〈F(x), 1〉) − χs(〈F(y), 1〉)|

,

but the latter ratio is precisely 1
D

Q(A,Ā)
π(A)π(Ā) for the set A � {x ∈ Ω : 〈F(x), 1〉 6 s}, hence

1
C∗
>

1
D

Q(A, Ā)
π(A)π(Ā)

>
1

2D
Q(A, Ā)

min(π(A), π(Ā))
>
Φ∗

2D
,

verifying the RHS of Theorem 1.2.

1.3 The Markov chain

Recall now that our goal is to sample from the Gibbs measure πλ introduced earlier. The following
Markov chain is due to Jerrum and Sinclair. If we are currently at a matching m ∈ M(G), we define
our local transition as follows.

1. With probability 1/2, we stay at m.

2. Otherwise, choose an edge e � {u , v} ∈ E(G) uniformly at random and:

(a) If both u and v are unmatched in m, set m :� m ∪ {e}.
(b) If e ∈ m, then with probability 1/λ, put m :� m \ {e}, and otherwise stay at m.
(c) If exactly one of u or v is matched in m, then let e′ be the unique edge that contains one

of u or v and put m :� m \ {e′} ∪ {e}.
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(d) If both u and v are matched, stay at m.

Exercise: Show that this chain is reversible with respect to the measure πλ.

Now we would like to prove that this chain is rapid mixing by giving a low-congestion multi-
commodity flow in the corresponding graph. In fact, we will give an “integral flow,” i.e. we will
specify for every pair of matchings x , y ∈ M(G), a path γx y .

To do this, consider the edges of x to be colored red and the edges of y to be covered blue. Then
the colored union x ∪ y is a multi-graph where every node has degree at most 2. It is easy to see
that every such graph breaks into a disjoint union of paths and even-length cycles. (Note also the
trivial cycles of length two when x and y share an edge.)

The path γx y will “fix” each of these components one at a time (in some arbitrary order). The
trivial cycles are already fine (we don’t have to move those edges). To explain how to handle the
path components, we look at a simple example. Suppose the path is e1 , e2 , e3 , e4 , e5 , e6. Then we
define a path from the red matching to blue the matching (in this component as follows):

e1 , e3 , e5 → e3 , e5 → e2 , e5 → e2 , e4 → e2 , e4 , e6 .

Note that each transition is a valid step of the chain. We can do a similar thing for a cycle by first
deleting a red edge so that it becomes a path.

Congestion analysis. So now we have given a path γx y between every pair of states x , y ∈ M(G).
In the flow, this path should have flow value πλ(x)πλ(y) so that is satisfies the corresponding
demand. We are left to analyze the weight of paths that use a given “edge” (a transition) of the
chain. The interested reader is referred to the beautiful argument at its original source [JS89].
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