
Lecture 12: Compressive sensing and the RIP CSE 525, Winter 2015
Instructor: James R. Lee

1 Compressive sensing

The reason that extreme compression of photographs is possible is the corresponding images are
often sparse in the correct basis (e.g., the Fourier or wavelet basis). Thus one can take a very detailed
photo and then zero out all the small Fourier coe�cients, vastly compressing the image while also
preserving the bulk of the important information.

Problematically, despite only recording a small amount of information at the end (say, s large
Fourier coe�cients), in order to �gure out which coe�cients to save, we had to perform a very
detailed measurement (making our camera pretty expensive). Compressive sensing is the idea that,
if we do a few random linear measurements, then we capture the large coe�cients without �rst
knowing what they are.

Sparse recovery. Let us formalize the sparse recovery problem. Our signal will be a point x ∈ �n ,
and we will have a linear measurement map Φ : �n

→ �m that makes m linear measurements,
where hopefully m � n.

Say that a signal x ∈ �n is s-sparse if ‖x‖0 6 s, where ‖ · ‖0 denotes the number of non-zero
coordinates in its argument. For s-sparse signals x to be uniquely recoverable from themeasurements
Φ(x), the following property is necessary and su�cient: For every pair of s-sparse vectors x , y ∈ �n ,
it holds that Φ(x) , Φ(y).

On the other hand, given the measurements M � Φ(x), we might want to recover the unique
corresponding s-sparse vector x. It would be natural to solve the following optimization: min ‖y‖0
subject to Φ(y) � M. Clearly ‖y‖0 6 ‖x‖0, so by the unique decoding property for s-sparse vectors
and the fact that Φ(x) � Φ(y), it must be that x � y. Unfortunately, `0 optimization subject to linear
constraints is an NP-hard problem.

Instead, one often solves the problem min ‖y‖1 subject to Φ(y) � M. This is a linear program
and can thus be solved e�ciently. It is often referred to as basis pursuit. Remarkably, if we choose
the map Φ appropriately, then the optimum solution y∗ will satisfy x � y∗, yielding an e�cient
procedure for sparse recovery.

1.1 The restricted isometry property

We will now formalize the properties of the map Φ : �n
→ �m that makes e�cient sparse recovery

possible. For s > 1, let δs � δs(Φ) be the smallest number such that for every s-sparse vector x ∈ �n ,
we have

(1 − δs)2‖x‖22 6 ‖Φ(x)‖22 6 (1 + δs)2‖x‖22 . (1.1)

It will help to think about this parameter in a slightly di�erent way as well. Let T ⊆ [n] be a
subset of s columns of Φ (thought of as an m × n matrix). Let ΦT : �s

→ �m be the linear map
corresponding to the matrix which consists of the columns of Φ indexed by T. Then the above
property is equivalent to the property that, for every |T | � s and x ∈ �s , we have

(1 − δs)2‖x‖22 6 ‖ΦT(x)‖22 6 (1 + δs)2‖x‖22 . (1.2)

Theorem 1.1. If δ2s(Φ) < 1, thenΦ has the unique recovery property for s-sparse vectors. If δ2s(Φ) <
√
2−1,

then the basis pursuit algorithm performs s-sparse recovery.
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Proof. We will only prove the �rst assertion. If x and x′ are s-sparse vectors with Φ(x) � Φ(x′), then
x − x′ is a 2s-sparse vector with Φ(x − x′) � 0. But (1.1) yields

0 � ‖Φ(x − x′)‖22 > (1 − δ2s)2‖x − x′‖22 .
So for δ2s < 1, we conclude that x � x′. �

1.2 Random construction of RIP matrices

Let us de�ne the m × n random matrix Φ by setting Φi j �
1
√

m
X( j)

i where {X( j)
i } is a family of i.i.d.

N(0, 1) random variables. With high probability, this matrix will have the RIP for the parameters
chosen appropriately.

Theorem 1.2. For every n > s > 1 and 0 < δ < 1, there is an m � O
� s
δ log

� n
δs

��
such that with high

probability, δs(Φ) 6 δ.

Proof. Fix a subset T ⊆ [n] with |T | � s. We will show that

� (∀x ∈ �s s.t. ‖x‖2 � 1, ‖ΦT(x)‖2 ∈ [1 − δ, 1 + δ]) > 1 − 2
(16
δ

)m
e−δm/12 . (1.3)

Assuming this is true, we can take a union bound over all |T | � s, yielding

�
�
∀s-sparse x ∈ �n s.t. ‖x‖2 � 1, ‖Φ(x)‖2 ∈ [1 − δ, 1 + δ]� > 1 − 2

(16
δ

)m
e−δm/12

(
n
s

)
.

Using the fact that log
�n

s

�
� O(s log(n/s)), we can conclude that choosing m � O

� s
δ log

� n
δs

��
, this

probability is at least, say, 1 − 1/n, and in this case δs(Φ) 6 δ.
Thus we are left to prove (1.3). Let N be a δ/4-net on the unit sphere in �s . This means that for

every x ∈ �n with ‖x‖2 � 1, there is an x′ ∈ N with ‖x − x′‖ 6 δ/4. A simple volume argument
shows that we can choose such a net N with |N | 6 (4/δ)s .

Now using Claim 1.2 from Lecture 11 (and a union bound over N), we have

�

(
∀x ∈ N, ‖ΦT(x)‖2 ∈

[
1 − δ4 , 1 +

δ
4

])
> 1 − 2

( 4
δ

)m
e−δm/48 .

We are left to show that ‖ΦT(x)‖2 ∈ �1 − δ
4 , 1 +

δ
4
�
for all x ∈ N implies ‖ΦT(x)‖2 ∈ [1 − δ, 1 + δ] for

all x ∈ �s with ‖x‖2 � 1.
This involves another very clever trick. We will de�ne a sequence of points {xi} ⊆ N . For any

y ∈ �s , let Γ(y) � y′‖y‖2 where y′ ∈ N is the closest point to y/‖y‖2. Note that by the net property,
we have ‖y − Γ(y)‖2 6 δ

4 ‖y‖2.
Consider ‖x‖2 � 1. De�ne x0 � Γ(x). We can then write x � x0 + (x − x0). Now x0 ∈ N , so we can

control Φ(x0). Also, ‖x − x0‖2 6 δ/4. But problematically, we don’t have any control on Φ(x − x0)
(maybe the map Phi expands distances a lot in the direction of x − x0). But the idea is that we can
again use the net: Let x1 � Γ(x − x0). Then x1/‖x1‖2 ∈ N, so we can control Φ(x1). Moreover, we
have made progress: ‖(x − x0) − x1‖2 6 (δ/4)2.

In the line with the preceding sketch, inductively put xi+1 � Γ(x − (x0 + x1 + · · · + xi)). Note that

x � x0 + (x − x0) � x0 + x1 + (x − x0 − x1) � · · · �
∞∑

i�0
xi ,
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and by induction, ‖xi‖2 6 �
δ
4
�i , and by construction, xi/‖xi‖2 ∈ N .

Now we can use our assumption that ‖ΦT(y)‖2 ∈ [1 − δ/4, 1 + δ/4] for y ∈ N to say that

‖ΦT(x)‖2 6
∞∑

i�0
‖ΦT(xi)‖2 6

(
1 + δ4

) ∞∑
i�0

(
δ
4

) i
�

(
1 + δ4

)
/
(
1 − δ4

)
6 1 + δ ,

where the last inequality follows from δ < 1. On the other hand,

‖ΦT(x)‖2 > ‖ΦT(x0)‖ −
∞∑

i�1
‖ΦT(xi)‖2 >

(
1 − δ4

)
−
δ
4

(
1 + δ4

) ∞∑
i�0

(δ/4)i

� 1 − δ4 −
δ(1 + δ

4 )
4(1 − δ/4) > 1 − δ ,

where again we have used δ < 1. We have thus con�rmed (1.3), completing the proof. �

Remark 1.3. Note that we must always perform s “measurements” even if we know exactly the s
important coordinates. The preceding theorems says that we can do unique (and e�cient) recovery
with only O(s log(n/s))measurements without knowing anything about the input signal except
that it’s s-sparse.

Remark 1.4. In a more realistic model, we might expect that our signal is of the form x � xs + y
where xs is s-sparse and ‖y‖2 6 ε‖x‖2. In other words, the signal has s large coordinates plus lower
order “noise.” The RIP and basis pursuit algorithms can also be used to provide guarantees in this
setting.
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