Define the language
Prove that for some $k \geq 1$, the language $A_{TM}^k$ is undecidable.
Consider two undirected graphs $H$ and $G$. Say that $H$ injects into $G$ if there is an injective map $f : V(H) \to V(G)$ such that $\{x,y\} \in E(H) \iff \{f(x),f(y)\} \in E(G)$. Here, $V(H), V(G)$ and $E(H), E(G)$ denote the vertex and edge sets of $H$ and $G$, respectively.
Consider the language
Show that $\mathrm{INJECTS}$ is NP-complete.
Recall the classes $\mathsf{EXPTIME} = \bigcup_{k \geq 1} \mathrm{TIME}(2^{n^k})$ and $\mathsf{NEXPTIME} = \bigcup_{k \geq 1} \mathrm{NTIME}(2^{n^k})$. Show that $\mathsf{EXPTIME} \neq \mathsf{NEXPTIME} \implies \mathsf{P} \neq \mathsf{NP}$.
Define the complexity class $\mathsf{E} = \mathrm{TIME}(2^{O(n)})$. Prove that $\mathsf{E} \neq \mathsf{NP}$.