Homework #2: Quantum entropy CSE 5991, Spring 2021
Due: May 12, 2021

Problem 1: Strong subadditivity of the quantum entropy

We have established that the quantum relative entropy is monotone decreasing under partial trace:
For bipartite states p, 0 € D(H; ® Ha), it holds that

S(Tr (p) [ Tra, (0)) < S(p |l o). ©0.1)
Let pABC € D(H4 ® Hg ® Hc) be a tripartite state, and denote the partial traces

ABC)’ PBC ABC)/ ,OA ABC)/ pB ABC)‘

p*? =Trc(p =Tra(p = Trpc(p = Trac(p
Using (0.1) with the states p = p8¢ and ¢ = p? ® pBC, prove that strong subadditivity holds:
S(p*) +S(p®) < S(p™") + S(p*°), (0.2)

where § denotes the von Neumann entropy:.

Remark 0.1. Recall from Lecture 9 that (0.2) can be interpreted as establishing nonnegativity of the
quantum conditional mutual information:

I(A, C | B), := S(p™P) + S(p"°) = S(p**) = S(p”).

Problem 2: Monotonicity of relative entropy under quantum channels

Suppose that & : M,,(C) — Mi(C) is a quantum channel (i.e., a CPT map). Use Theorem 1.3 in
Lecture 10, along with (0.1), to prove that for all p, ¢ € D(M,(C)),

S(&(p) |1 &(0)) < S(p |l o).

Problem 3: Quantum Pinsker inequality
Here you will prove the quantum Pinsker inequality, that for any density matrices p, o, we have

1
S(pllo) > 5llp - ol 03)
where || - ||1 is the Schatten 1-norm:
lAllL = Te(JA]) = Tr(VA*A).

You can assume the classical Pinsker inequality for probability distributions p, g4 which asserts that

1
D(pllq) > 5lip - qllt,
and here || - ||1 is the standard ¢; norm.

1. Prove that for any density matrices p and o, it holds that S(D,, || D;) < S(p || o), where D, and
D, are p and o with the off-diagonal entries zeroed out. [Hint: It may help to recall Problem
2(a) on the first homework.]

2. Prove (0.3). [Hint: First reduce to the case when p — ¢ is diagonal.]

1



Problem 4: Squashed entanglement

Denote a bipartite system H4 ® Hc. For a given state pi¢ € D(Hu ® Hc), consider all extensions
pABC € D(H ® Hg ® Hc) for some auxiliary Hilbert space Hp such that pAC = Trp(pAEC). Define
the squashed entanglement of p*C by

Esq(pAC) — %plﬂsi(:: (S(pAB) +S(pBC) —S(pABC) —S(pB)) ,

where the infimum is over extensions pBC of pA€ (in particular, over all finite-dimensional Hilbert

spaces Hg). Note that this quantity is nonnegative by Problem 1.
For intuition, one can use the quantum conditional mutual information (introduced in Lecture
9) to recast this as

Es9(pAC) := %irplfI(A,c | B),,

where the infimum is again over all extensions p of pA€. Thus this captures the amount of “mutual
quantum information” across the A-C partition that is not explained by some larger environment.

1. Show that if pA€ is pure, then E*1(pA€) = S(p?).
2. An entanglement measure E is called faithful if E(pAC) = 0 if and only if p/€ is separable
(across the A-C partition). Show one direction (the easier one) for squashed entanglement: If

pAC is separable, then E*1(pA€) = 0.

[Remark: Itis also true that if pAC is not separable, then E9( pAC) > 0, but this is more difficult,
and it was an open question for a while.]

3. Show that E%4 is additive in the sense that
E9(p"C @ o) = E9(p") + BI(p" ),

where we think of pA€ ® p”'C" as a bipartite state in D ((Ha ® Ha') ® (Hc ® Hcr)).

For guidance, the proof can be broken into parts:

(a) Prove that Esq(pAC ® pA,C/) < ESQ(pAC) + Esq(pA’C’)_
(b) Prove the following chain rule: For any oXY?Y € D(Hyx @ Hy ® Hz ® Hy),

IXY,Z|U); =IX,Z|U);+I(Y,Z | UX),.

(c) Use the chain rule, along with nonnegativity of the quantum conditional mutual informa-
tion to show that for any state pA4'cC" € D(Ha ® Ha') ® (Hc ® Hcr)), we have

Esq(pAA’CC’) > Esq(pAC) + Esq(pA’C’).



