
Homework #2: Quantum entropy CSE 599I, Spring 2021
Due: May 12, 2021

Problem 1: Strong subadditivity of the quantum entropy

We have established that the quantum relative entropy is monotone decreasing under partial trace:
For bipartite states �, � ∈ D(ℋ1 ⊗ ℋ2), it holds that

S(Trℋ1(�) ‖ Trℋ1(�)) 6 S(� ‖ �). (0.1)

Let ���� ∈ D(ℋ� ⊗ ℋ� ⊗ ℋ�) be a tripartite state, and denote the partial traces

��� = Tr�(����), ��� = Tr�(����), �� = Tr��(����), �� = Tr��(����).

Using (0.1) with the states � = ���� and � = �� ⊗ ��� , prove that strong subadditivity holds:

S(����) + S(��) 6 S(���) + S(���), (0.2)

where S denotes the von Neumann entropy.
Remark 0.1. Recall from Lecture 9 that (0.2) can be interpreted as establishing nonnegativity of the
quantum conditional mutual information:

I(�, � | �)� := S(���) + S(���) − S(����) − S(��).

Problem 2: Monotonicity of relative entropy under quantum channels

Suppose that ℰ : M=(ℂ) → M:(ℂ) is a quantum channel (i.e., a CPT map). Use Theorem 1.3 in
Lecture 10, along with (0.1), to prove that for all �, � ∈ D(M=(ℂ)),

S(ℰ(�) ‖ ℰ(�)) 6 S(� ‖ �).

Problem 3: Quantum Pinsker inequality

Here you will prove the quantum Pinsker inequality, that for any density matrices �, �, we have

S(� ‖ �) > 1
2 ‖� − �‖

2
1 , (0.3)

where ‖ · ‖1 is the Schatten 1-norm:

‖�‖1 = Tr(|�|) = Tr(
√
�∗�).

You can assume the classical Pinsker inequality for probability distributions ?, @ which asserts that

D(? ‖ @) > 1
2 ‖? − @‖

2
1 ,

and here ‖ · ‖1 is the standard ℓ1 norm.

1. Prove that for any density matrices � and �, it holds that S(�� ‖ ��) 6 S(� ‖ �), where �� and
�� are � and � with the off-diagonal entries zeroed out. [Hint: It may help to recall Problem
2(a) on the first homework.]

2. Prove (0.3). [Hint: First reduce to the case when � − � is diagonal.]
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Problem 4: Squashed entanglement

Denote a bipartite systemℋ� ⊗ ℋ� . For a given state ��� ∈ D(ℋ� ⊗ ℋ�), consider all extensions
���� ∈ D(ℋ� ⊗ ℋ� ⊗ ℋ�) for some auxiliary Hilbert spaceℋ� such that ��� = Tr�(����). Define
the squashed entanglement of ��� by

Esq(���) := 1
2 inf
����

(
S(���) + S(���) − S(����) − S(��)

)
,

where the infimum is over extensions ���� of ��� (in particular, over all finite-dimensional Hilbert
spacesℋ�). Note that this quantity is nonnegative by Problem 1.

For intuition, one can use the quantum conditional mutual information (introduced in Lecture
9) to recast this as

Esq(���) := 1
2 inf

�
I(�, � | �)� ,

where the infimum is again over all extensions � of ��� . Thus this captures the amount of “mutual
quantum information” across the �-� partition that is not explained by some larger environment.

1. Show that if ��� is pure, then Esq(���) = S(��).

2. An entanglement measure E is called faithful if E(���) = 0 if and only if ��� is separable
(across the �-� partition). Show one direction (the easier one) for squashed entanglement: If
��� is separable, then Esq(���) = 0.

[Remark: It is also true that if ��� is not separable, then Esq(���) > 0, but this is more difficult,
and it was an open question for a while.]

3. Show that Esq is additive in the sense that

Esq(��� ⊗ ��′�′) = Esq(���) + Esq(��′�′),

where we think of ��� ⊗ ��′�′ as a bipartite state inD
(
(ℋ� ⊗ ℋ�′) ⊗ (ℋ� ⊗ ℋ�′)

)
.

For guidance, the proof can be broken into parts:

(a) Prove that Esq(��� ⊗ ��′�′) 6 Esq(���) + Esq(��′�′).
(b) Prove the following chain rule: For any �-./* ∈ D(ℋ- ⊗ ℋ. ⊗ ℋ/ ⊗ ℋ* ),

I(-., / | *)� = I(-, / | *)� + I(., / | *-)� .

(c) Use the chain rule, along with nonnegativity of the quantum conditional mutual informa-
tion to show that for any state ���′��′ ∈ D((ℋ� ⊗ ℋ�′) ⊗ (ℋ� ⊗ ℋ�′)), we have

Esq(���′��′) > Esq(���) + Esq(��′�′).
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