1 Golden-Thompson

Recall the Golden-Thompson inequality, employed in the previous lecture:

Lemma 1.1. For all symmetric matrices $A, B \in \mathbb{M}_d$, it holds that

$$\text{Tr}(e^{A+B}) \leq \text{Tr}(e^A e^B).$$

Recall that $e^X = \sum_{n \geq 0} \frac{X^n}{n!}$, and note that

$$(A + B)^n = \sum_{i_1, i_2, \ldots, i_n \in \{0, 1\}} A^{i_1} B^{1-i_1} A^{i_2} B^{1-i_2} \cdots A^{i_n} B^{1-i_n}$$

is a uniform sum over all degree-n interleavings of A and B. To obtain the degree-n terms in $e^A e^B$, one takes every product occurring in this sum and sorts it so that all the copies of A come first: $e^A e^B$ only contains products of the form $A^{j} B^{n-j}$ for $0 \leq j \leq n$.

Thus, intuitively, $\text{Tr}(e^{A+B}) \leq \text{Tr}(e^A e^B)$ asserts that the largest correlations occur when the A and B terms are grouped together. How might we prove this?

1.1 The Frobenius inner product

A hint comes from the Cauchy-Schwarz inequality. Define the *Frobenius inner product* of two matrices $A, B \in \mathbb{M}_d$ by

$$(A, B) \mapsto \text{Tr}(A^T B) = \sum_{ij} A_{ij} B_{ij}.$$

(Similarly for $A, B \in \mathbb{M}_d(\mathbb{C})$, one uses $\text{Tr}(A^* B)$.) As the final expression shows, this is just the standard inner product on the “vectorizations” of A and B (i.e., when considering them as d^2-dimensional vectors).

Let us correspondingly define the Frobenius norm (aka the Hilbert-Schmidt norm, aka the Schatten 2-norm) of a matrix:

$$\|A\|_2 := \text{Tr} (A^T A)^{1/2}.$$

Recall that every matrix $A \in \mathbb{M}_d$ has a singular-value decomposition $A = \sum_{i=1}^d \sigma_i u_i v_i^T$, where $\sigma_1, \ldots, \sigma_d \geq 0$, and each of $\{u_i\}, \{v_i\}$ forms an orthonormal basis of \mathbb{R}^d. In this case,

$$A^T A = \sum_{i} \sigma_i^2 v_i v_i^T,$$

hence we also have $\|A\|_2 = \| (\sigma_1, \ldots, \sigma_d) \|_2$.

1.2 Sorting products

Assume now that $A, B \in \mathbb{M}_d$ are symmetric, and then applying the Cauchy-Schwarz inequality gives

$$\text{Tr}((AB)^2) \leq \|AB\|_2^2 = \text{Tr}((AB)^T AB) = \text{Tr}(B^T A^T AB) = \text{Tr}(BA^2 B) = \text{Tr}(A^2 B^2),$$

(1.1)
where the last equality uses cyclicity of the trace. Let’s try the fourth power:

\[
\text{Tr}(AB)^4 = \text{Tr}((AB)^2(AB)^2) \leq \| (AB)^2 \|^2_2 = \text{Tr}(BABA ABAB)
\]

\[
= \text{Tr}([AB(AB)^T][(AB)^T AB])
\]

\[
\leq \| AB(AB)^T \|_2 \| (AB)^T AB \|_2
\]

\[
= \| AB(AB)^T \|^2_2
\]

\[
= \text{Tr}((AB^2A)^2) = \text{Tr}((A^2B^2)^2),
\]

where the last equality uses cyclicity of the trace. Now we can apply (1.1) (with the substitution \(A \rightarrow A^2, B \rightarrow B^2 \)), yielding

\[
\text{Tr}(AB)^4 \leq \text{Tr}((A^2B^2)^2) \leq \text{Tr}(A^4B^4).
\]

This gives one faith that such a relation holds more generally; we will prove the following.

Lemma 1.2 (Distentangling Lemma). For every integer \(k \geq 1 \) and \(U, V \in \mathbb{M}_d(\mathbb{C}) \) Hermitian, it holds that

\[
\text{Tr}((UV)^{2^k}) \leq \text{Tr}(U^{2^k} V^{2^k}).
\]

1.2.1 The Lie-Trotter product formula

Now let us see how to employ the sorting lemma (Lemma 1.2) to prove the Golden-Thompson inequality. If we take \(U := e^{A/p} \) and \(V := e^{B/p} \) for some \(p = 2^k \), then Lemma 1.2 gives

\[
\text{Tr} \left((e^{A/p} e^{B/p})^p \right) \leq \text{Tr}(e^A e^B). \tag{1.2}
\]

Now we can employ the Lie-Trotter formula which asserts that for any matrices \(A, B \in \mathbb{M}_d \),

\[
e^{A+B} = \lim_{N \to \infty} \left(e^{A/N} e^{B/N} \right)^N. \tag{1.3}
\]

Thus taking \(p \to \infty \) in (1.2) yields Lemma 1.1.

Proof of (1.3). Denote \(U := e^{(A+B)/N} \) and \(V := e^{A/N} e^{B/N} \). Then using \(e^X = \sum_{n \geq 0} X^n / n! \), we have

\[
U = I + \frac{A + B}{N} + \frac{(A + B)^2}{2N^2} + \cdots
\]

\[
V = I + \frac{A + B}{N} + \frac{A^2 + B^2 + 2AB}{2N^2} + \cdots,
\]

so \(U \) and \(V \) agree up to first order, hence

\[
\| U - V \| \leq O(1/N^2). \tag{1.4}
\]

where the \(O(\cdot) \) notation hides a constant possibly depending on \(A \) and \(B \) (but not on \(N \)). Note also that \(\| U \|, \| V \| \leq e^{\| A \| + \| B \|}/N \).

Using both these facts and the triangle inequality give

\[
\| U^N - V^N \| = \sum_{k=0}^{N-1} \| U^{k+1} V^{N-k-1} - U^k V^{N-k} \|
\]
where we used the fact that \(\|ST\| \leq \|S\| : \|T\| \) holds for all \(S, T \in \mathbb{M}_d \). As \(U^N = e^{A+B} \) and \(V^N = (e^{A/N}e^{B/N})^N \), this completes the proof. \(\Box \)

1.2.2 Disentangling

Our proof of Lemma 1.2 will follow an argument of Dyson (1964). Note that Cauchy-Schwarz gives \(\text{Tr}(A^2) \leq \text{Tr}(A^*A) \) for all \(A \in \mathbb{M}_d(C) \). Let us prove the following generalization.

Lemma 1.3. Consider \(A \in \mathbb{M}_d(C) \), and suppose that \(A_i \in \{A, A^*\} \) for each \(i = 1, 2, \ldots, 2n \). Then,

\[
|\text{Tr}(A_1A_2\cdots A_{2n})| \leq \text{Tr}((A^*A)^n).
\]

Proof. We may clearly assume that \(A \neq A^* \). Let \(\mathcal{P}_n \) denote the space of such products \(P = A_1A_2\cdots A_{2n} \). Define the number of *transitions* in \(P \) as \(\# \{ i \in \{1, 2, \ldots, 2n\} : A_i \mod 2n \neq A_{(i+1) \mod 2n} \} \), i.e., the number of times in the cyclic order we see \(AA^* \) or \(A^*A \) occur in \(P \).

Let \(P = A_1A_2\cdots A_{2n} \) denote a maximizer of \(|\text{Tr}(P)| \) among \(P \in \mathcal{P}_n \). If the number of transitions in \(P \) is \(2n \), then \(P = (A^*A)^n \) or \(P = (AA^*)^n \), and we are done. Otherwise, there is some adjacent pair of symbols that are equal; by a cyclic permutation, we may assume that \(A_n = A_{n+1} \).

Denote \(Q := A_1\cdots A_{n} \) and \(R := A_{n+1}\cdots A_{2n} \), as well as \(P' = Q^*Q \) and \(P'' = R^*R \) so that \(P', P'' \in \mathcal{P}_n \). By Cauchy-Schwarz, we have

\[
|\text{Tr}(P)|^2 \leq |\text{Tr}(Q^*Q)| \cdot |\text{Tr}(R^*R)| = |\text{Tr}(P')| \cdot |\text{Tr}(P'')|.
\]

By maximality of \(|\text{Tr}(P)| \), we have \(|\text{Tr}(P)| = |\text{Tr}(P')| = |\text{Tr}(P'')| \). We will argue that one of \(P' \) or \(P'' \) has more transitions than \(P \), and therefore by induction there exists a maximizer of \(|\text{Tr}(P)| \) with \(2n \) transitions, completing the proof.

Indeed, the transitions in \(P \) are made up of three types: Those that occur within \(Q \), those that occur within \(R \), and possibly one transition from \(A_{2n} \) to \(A_1 \), hence

\[
N_P \leq n_Q + n_R + 1.
\]

Moreover, we have \(N_{P'} \geq 2n_Q + 2 \) and \(N_{P''} \geq 2n_R + 2 \). Let us prove the first inequality, since the second is identical. Every transition within \(Q \) induces two transitions in \(P' \), one in \(Q^* \) and one in \(Q \). There are also two new transitions: One from the end of \(Q^* \) to the beginning of \(Q \), and one from the end of \(Q \) to the beginning of \(Q^* \). We conclude that \((N_{P'} + N_{P''})/2 > N_P \), hence one of \(P' \) or \(P'' \) has more transitions than \(P \). \(\Box \)

We can now prove Lemma 1.2.
Proof of Lemma 1.2. Recall that \(U, V \) are Hermitian. Define \(A = UV \) so that Lemma 1.3 gives
\[
\text{Tr}((UV)^{2^k}) \leq \text{Tr}((V^*U^*UV)^{2^{k-1}}) = \text{Tr}((VU^2V)^{2^{k-1}}) = \text{Tr}((U^2V^2)^{2^{k-1}}),
\]
where the last equality uses cyclicity of the trace. Continuing inductively gives
\[
\text{Tr}((U^2V^2)^{2^{k-1}}) \leq \text{Tr}((U^4V^4)^{2^{k-2}}) \leq \cdots \leq \text{Tr}(U^2V^2)^{2^k}
\]
\[\square\]

1.3 A Hölder product formula

Let us prove a generalization of Lemma 1.3. For this, we define the Schatten \(p \)-norm of a matrix \(A \in \mathbb{M}_{d}(\mathbb{C}) \): For any \(p \geq 1 \), define
\[
\|A\|_p := (\text{Tr}(|A|^p))^{1/p} = \left(\text{Tr}((A^*A)^{p/2}) \right)^{1/p}.
\]
The operator norm \(\|A\| = \|A\|_\infty \) is the limiting case as \(p \to \infty \). One can see that, as for the 2-norm, if \(\sigma_1, \ldots, \sigma_d \geq 0 \) are the singular values of \(A \), then
\[
\|A\|_p = \| (\sigma_1, \ldots, \sigma_d) \|_p.
\]

Lemma 1.4. For any integer \(k \geq 1 \) and \(A_1, \ldots, A_{2^k} \in \mathbb{M}_{d}(\mathbb{C}) \), it holds that
\[
|\text{Tr}(A_1A_2 \cdots A_{2^k})| \leq \|A_1\|_{2^k} \|A_2\|_{2^k} \cdots \|A_{2^k}\|_{2^k}.
\]

Proof. The proof is by induction on \(k \). The case \(k = 1 \) is Cauchy-Schwarz.

Consider now \(k > 1 \). The inductive hypothesis yields
\[
|\text{Tr}(A_1A_2 \cdots A_{2^k})| \leq \|A_1A_2\|_{2^{k-1}} \|A_3A_4\|_{2^{k-1}} \cdots \|A_{2^k-1}A_{2^k}\|_{2^{k-1}}.
\]

(1.5)

Now use the definition of the Schatten \(2^{k-1} \)-norm to write
\[
\|A_1A_2\|_{2^{k-1}} = \text{Tr} \left(((A_1A_2)^*A_1A_2)^{2^{k-2}} \right) = \text{Tr} \left((A_1^*A_2^*A_1^*A_2)^{2^{k-2}} \right) = \text{Tr} (A_1^*A_2^*A_1A_2),
\]
where in the last equality we have used the cyclic property of the trace to move one copy of \(A_2^* \) from the head to the tail of the product. Applying the inductive hypothesis again yields
\[
\text{Tr} (A_1A_1^*A_2^*A_2A_3^* \cdots A_{2^k}) \leq \prod_{j=1}^{2^{k-1}} \|A_1A_1^*\|_{2^{k-1}} \|A_2A_2^*\|_{2^{k-1}} = \|A_1\|_{2^{k-1}}^2 \|A_2\|_{2^{k-1}}^2,
\]
where we have observed that \(\|A_1A_1^*\|_{2^{k-1}}^2 = \text{Tr} \left((A_1A_1^*)^{2^{k-2}} \right) = \text{Tr}(A_1^*A_1)^{2^{k-1}} = \|A_1\|_{2^{k-1}}^2 \), and similarly for \(A_2 \). Therefore we have
\[
\|A_1A_2\|_{2^{k-1}} \leq \|A_1\|_{2^k} \|A_2\|_{2^k}.
\]

Since this holds also for every pair \(A_iA_{i+1} \), using it in (1.5) yields
\[
|\text{Tr}(A_1A_2 \cdots A_{2^k})| \leq \|A_1\|_{2^k} \|A_2\|_{2^k} \cdots \|A_{2^k}\|_{2^k},
\]
as desired. \[\square\]
In analogy with the scalar case, we might look to prove a generalization of Lemma 1.1: For any $p_1, p_2, \ldots, p_n > 0$ such that $\frac{1}{p_1} + \cdots + \frac{1}{p_n} = 1$,
\[
|\text{Tr}(A_1 A_2 \cdots A_n)| \leq \|A_1\|_{p_1} \|A_2\|_{p_2} \cdots \|A_n\|_{p_n}.
\]
To prove this, fix some $m \geq 1$ and define $N := 2^m$, $k_i := \lceil N/p_i \rceil$ for each $i = 1, \ldots, n$. Then we have
\[
|\text{Tr}(A_1 A_2 \cdots A_n)| = \left| \text{Tr} \left(\prod_{j=1}^{k_1} A_1^{1/k_1} \prod_{j=1}^{k_2} A_2^{1/k_2} \cdots \prod_{j=1}^{k_n} A_n^{1/k_n} I_{N-(k_1+\cdots+k_n)} \right) \right| \\
\leq \|A_1^{1/k_1}\|_N^{k_1} \cdots \|A_n^{1/k_n}\|_N^{k_n} \cdot \|I\|_N^{N-(k_1+\cdots+k_n)}.
\]
Note that
\[
\|A^{1/k}\|_N = \text{Tr}(|A|^{N/k})^{k/N} = \|A\|_{N/k},
\]
and
\[
\|I\|_N^{N-(k_1+\cdots+k_n)} = d^{1-(k_1+\cdots+k_n)/N},
\]
hence
\[
|\text{Tr}(A_1 A_2 \cdots A_n)| \leq \|A_1\|_{2^{m/k_1}} \cdots \|A_n\|_{2^{m/k_n}} \cdot d^{1-(k_1+\cdots+k_n)/2^m}.
\]
As $m \to \infty$, we have $2^{m/k_i} \to p_i$ and $(k_1 + \cdots + k_n)/2^m \to 1$, completing the proof.

1.4 Discussion

Perhaps that all seemed a bit mysterious. While “non-interleaved correlations are the largest” makes intuitive sense, why does something clean like Lemma 1.1 hold? Say that a norm $\|\cdot\|$ on $\mathbb{M}_d(\mathbb{C})$ is unitarily invariant if $\|UAV\| = \|A\|$ for all $A \in \mathbb{M}_d(\mathbb{C})$ and U, V unitary. (We will study unitarily invariant norms more in the next lecture.)

The trace norm $A \mapsto \text{Tr}((A^* A)^{1/2})$ is such a norm (as are all Schatten p-norms for $p \in [1, \infty]$). An analog of Lemma 1.1 holds for every unitarily invariant norm: If $A, B \in \mathbb{M}_d(\mathbb{C})$, then
\[
\|e^{A+B}\| \leq \|e^{A/2} e^{B} e^{A/2}\|.
\]

Weak majorization. Inequality (1.6) holding for every unitarily invariant norm is equivalent to the statement that
\[
e^{A+B} \prec_w e^{A/2} e^{B} e^{A/2},
\]
where for two matrices $X, Y \in \mathbb{M}_d(\mathbb{C})$ with singular values $\sigma_1(X) \geq \cdots \geq \sigma_d(X)$ and $\sigma_1(Y) \geq \cdots \geq \sigma_d(Y)$, the notation $X \prec_w Y$ means that
\[
\sigma_1(X) + \cdots + \sigma_k(X) \leq \sigma_1(Y) + \cdots + \sigma_k(Y), \quad \forall 1 \leq k \leq d.
\]

In general, this inequality is related to similar sorts of “non-interleaved correlations are the largest” inequalities. For instance, it holds that for every pair of PSD matrices $A, B \in \mathbb{M}_d(\mathbb{C})$ and any Hermitian $X \in \mathbb{M}_d(\mathbb{C})$:
\[
\|A^{1/2} X B^{1/2}\| \leq \left\| \int_0^1 A^{1/2} X B^{1-t} dt \right\| \leq \left\| \frac{A X + X B}{2} \right\|.
\]
This is one possible analog of the classical AM-LM-GM inequality: For all \(a, b \geq 0\), it holds that

\[
\sqrt{ab} \leq \int_0^1 a^t b^{1-t} \, dt \leq \frac{a + b}{2}.
\]

(The less familiar quantity in the middle is the “logarithmic mean” and equals \(\frac{a - b}{\log a - \log b}\).) We will discuss such concepts further when we study matrix means.

Here is another example:

Theorem 1.5 (Lieb-Thirring trace inequality). For all \(A, B \succeq 0\) and \(t \geq 1\), it holds that

\[
\text{Tr} \left[(B^{1/2} A B^{1/2})^t \right] \leq \text{Tr} \left[A^t B^t \right]
\]