1 Quantum probability theory

The fundamental objects in discrete probability theory are distributions, which we can represent as nonnegative vectors $p \in \mathbb{R}_+^n$ with $\sum_{i=1}^n p_i = 1$. One can think of p as describing the state of a statistical system with n possible basic deterministic states. When we observe the system (i.e., sample from p), we obtain outcome $i \in \{1, 2, \ldots, n\}$ with probability p_i.

Observations of the system described by p correspond to measurable events in the probability space. In the discrete case, these are particularly easy to describe: Consider a partition of the outcomes into m sets:

$$\{1, 2, \ldots, n\} = W_1 \cup W_2 \cup \cdots \cup W_m. \quad (1.1)$$

Then we obtain outcome W_i with probability $p(W_i) := \sum_{x \in W_i} p(x)$ and, upon observing that the outcome is i, the state of the system is described by the corresponding conditional probability distribution:

$$p(x \mid W_i) = \frac{p(x) 1_{W_i}(x)}{p(W_i)}.$$

Density matrices. The analogous concept in “quantum probability” is that of a density matrix: $\rho \in \mathbb{M}_n(\mathbb{C})$ satisfying $\rho \succeq 0$ and $\text{Tr}(\rho) = 1$. In this case, the classical distribution p might correspond to a diagonal matrix $\rho = \text{diag}(p)$.

Measurements. To observe the system described by ρ, one makes a measurement which is specified by a decomposition of the identity (compare (1.1)):

$$\sum_{i=1}^m U_i^* U_i = I.$$

This measurement has m outcomes, and outcome $i \in \{1, 2, \ldots, m\}$ occurs with probability $\text{Tr}(U_i \rho U_i^*)$. Conditioned on outcome i, the resulting state of the system is described by the density matrix

$$\frac{U_i \rho U_i^*}{\text{Tr}(U_i \rho U_i^*)}.$$

Pure states. The set $\mathcal{D} \subseteq \mathcal{H}_n$ of all density matrices is a convex set. The extreme points are called pure states. These are precisely the rank-1 matrices uu^* with $u \in \mathbb{C}^n$ and $\|u\|_2 = 1$. Thus density matrices describe mixtures of pure states; the decomposition of a mixed state into pure states is not unique.

It is typical to specify a quantum system by starting with a Hilbert space $\mathcal{H} = \mathbb{C}^n$ of pure states (this is the analog of the set $\{1, 2, \ldots, n\}$ in the classical case), and then considering the set of mixed states over \mathcal{H}, which are precisely the linear operators on \mathcal{H} that are positive semidefinite and have unit trace. Define $\mathcal{D}(\mathcal{H}) := \{\rho : \mathcal{H} \to \mathcal{H} \text{ linear} : \rho \succeq 0, \text{Tr}(\rho) = 1\}.$
Composite systems. Consider two classical statistical systems S_1 and S_2 with m and n outcomes, respectively. We can describe the state of S_1 by $p_1 \in \mathbb{R}^m$ and the state of S_2 by $p_2 \in \mathbb{R}^n$. The joint statistical state is not described by the pair $(p_1, p_2) \in \mathbb{R}^m \times \mathbb{R}^n$, unless the systems are independent. Instead, the joint state is given by $q \in \mathbb{R}^m \otimes \mathbb{R}^n$ since we need to assign a probability to all mn pairs of outcomes. If the systems are independent, their state is given by $p_1 \otimes p_2$.

Similarly, if $\mathcal{H}_A = \mathbb{C}^m$ and $\mathcal{H}_B = \mathbb{C}^n$ are two Hilbert spaces, the composite Hilbert space is $\mathcal{H}_A \otimes \mathcal{H}_B$, and the set of mixed states over the composite system is $\mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \subseteq M_{mn}(\mathbb{C})$. If the two systems are independent and described by $\rho^A \in \mathcal{D}(\mathcal{H}_A)$ and $\rho^B \in \mathcal{D}(\mathcal{H}_B)$, then the joint state is given by $\rho^{AB} = \rho^A \otimes \rho^B$.

Marginal distributions and the partial trace. If $q \in \mathbb{R}^m \otimes \mathbb{R}^n$ describes a joint probability distribution on the space of outcomes $[m] \times [n]$, then we can consider the marginal distributions q_1 and q_2 induced when we consider only the first or second system, e.g.,

$$q_1(x) = \sum_{y \in [n]} q(x, y).$$

In the quantum setting, there is a similar operation called the partial trace. Given a density $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the corresponding marginal density $\rho^A \in \mathcal{D}(\mathcal{H}_A)$ should yield the same outcome for all measurements on the joint system $\mathcal{H}_A \otimes \mathcal{H}_B$ that ignore the B component, i.e.,

$$\text{Tr} \left((U \otimes I) \rho \right) = \text{Tr} \left(U \rho^A \right),$$

and similarly for the marginal density on the B-component:

$$\text{Tr} \left((I \otimes V) \rho \right) = \text{Tr} \left(V \rho^B \right).$$

Let us define partial trace operators $\text{Tr}_A : \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{D}(\mathcal{H}_B)$ and $\text{Tr}_B : \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{D}(\mathcal{H}_A)$ that “trace out” the corresponding component so that $\rho^A = \text{Tr}_B(\rho)$ and $\rho^B = \text{Tr}_A(\rho)$. These should satisfy: For all U, V:

$$\text{Tr}_B(U \otimes V) = U \text{Tr}(V), \quad \text{Tr}_A(U \otimes V) = \text{Tr}(U)V.$$

The name “partial trace” comes from thinking of an element $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ as a block matrix. Let us use greek letters α, β to index the A-system and arabic letters i, j for the B-system. Then it is possible to think of ρ as an $m \times m$ block matrix where $\rho_{\alpha\beta} \in \mathcal{D}(\mathcal{H}_B)$ for $\alpha, \beta \in [m]$. In this case,

$$\text{Tr}_A(\rho) = \sum_{\alpha=1}^{m} \rho_{\alpha\alpha} \in \mathcal{D}(\mathcal{H}_B).$$

Note that

$$\text{Tr} (\text{Tr}_A(\rho)) = \sum_{i=1}^{n} (\text{Tr}_A(\rho))_{ii} = \sum_{i=1}^{n} \left(\sum_{\alpha=1}^{m} (\rho_{\alpha\alpha})_{ii} \right) = \text{Tr}(\rho).$$

If we instead represent ρ as a block matrix where $\rho_{ij} \in \mathcal{D}(\mathcal{H}_A)$ for each $i, j \in [n]$, then

$$\text{Tr}_B(\rho) = \sum_{i=1}^{n} \rho_{ii}.$$
Entanglement. A classical probability distribution on $[m] \times [n]$ is independent between the two subsystems if the joint distribution is a tensor: $q = p_1 \otimes p_2$. Equivalently, if $q(x, y) = p_1(x)p_2(y)$ for all $x \in [m], y \in [n]$. One can easily check that the set of probability distributions on $[m] \times [n]$ is precisely the convex hull of the set of independent distributions $p_1 \otimes p_2$ as p_1 and p_2 range over distribution on $[m]$ and $[n]$, respectively.

Similarly, we can consider the collection $\mathcal{F} \subseteq D(H_A \otimes H_B)$ of operators of the form $\sum_i \lambda_i (U_i \otimes V_i)$ where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$, and $U_i \in D(H_A), V_i \in D(H_B)$ for all i. These are called separable states, and they represent states that are classically correlated across the A-B partition.

The biggest novelty of quantum information is that there are states whose correlations on non-classical: The elements of $D(H_A \otimes H_B) \setminus \mathcal{F}$ are called entangled states. As a simple example, consider the unit vector $v \in \mathbb{C}^2 \otimes \mathbb{C}^2$ given by

$$v = \frac{1}{\sqrt{2}} (e_1 \otimes e_2 - e_2 \otimes e_1),$$

and the corresponding density matrix $\rho = vv^*$. (This is a pure entangled state.) Another example of a maximally entangled state in $D(\mathbb{C}^n \otimes \mathbb{C}^n)$:

$$\rho = \frac{1}{n^2} \sum_{i,j=1}^n e_{ij} \otimes e_{ij}.$$

State transformations. Suppose we have a density $\rho \in D(\mathcal{H})$ for some Hilbert space \mathcal{H}. This state could then be made to interact with some external system that is itself represented by a density $\rho_{\text{env}} \in D(\mathcal{H}_{\text{env}})$. Quantum dynamics are described by unitary matrices, hence the joint state after interaction and “processing” will be of the form

$$U(\rho \otimes \rho_{\text{env}})U^*,$$

for some unitary U acting on $\mathcal{H} \otimes \mathcal{H}_{\text{env}}$. Finally, we can look at the marginal state of our system after this, which corresponds to tracing out the environment

$$\tilde{\rho} = \Tr_{\text{env}}(U(\rho \otimes \rho_{\text{env}})U^*) \in D(\mathcal{H}).$$

This is called a “state transformation.”

Let us examine the general form of such a transformation. Suppose that $\mathcal{H} = \mathbb{C}^n$ and $\mathcal{H}_{\text{env}} = \mathbb{C}^m$. Since the mapping $\rho \mapsto \tilde{\rho}$ is linear in ρ_{env}, we can assume that $\rho_{\text{env}} = z z^*$ for some unit vector $z \in \mathbb{C}^m$. Let us write the unitary U in block matrix form where $U_{ij} \in \mathbb{M}_n(\mathbb{C})$. (We will write all operators on $\mathbb{C}^n \otimes \mathbb{C}^m$ in this form.) Then we have:

$$\tilde{\rho} = \Tr_{\text{env}} \left(U(\rho_{\text{env}} \otimes \rho)U^* \right) = \sum_i \left(U(\rho \otimes \rho_{\text{env}})U^* \right)_{ii}$$

$$= \sum_{i,k,\ell} U_{ik}(\rho \otimes \rho_{\text{env}})_{k\ell}(U^*)_{\ell i} = \sum_{i,k,\ell} U_{ik}(z_k z_\ell^*) \rho(U_{i\ell})^* = \sum_i \left(\sum_k z_k U_{ik} \right)^* \rho \left(\sum_\ell z_\ell U_{i\ell} \right)^*.$$

If we denote $A_i := \sum_k z_k U_{ik}$, then we have written

$$\tilde{\rho} = \sum_i A_i \rho A_i^*.$$
and these operators satisfy
\[\sum_i A_i^* A_i = \sum_{i,k,\ell} z_k z_\ell U_{ik}^* U_{i\ell} = \sum_{k,\ell} z_k z_\ell \sum_i U_{ik}^* U_{i\ell} = \sum_{k,\ell} z_k z_\ell 1_{(k=\ell)} I_n = \left(\sum_k |z_k|^2 \right) I_n = I_n, \]
where we used the fact that \(U \) is unitary so that \(U^* U = I \), hence
\[\sum_i U_{ik}^* U_{i\ell} = \sum_i (U_{ki})^* U_{\ell i} = (U^* U)_{k\ell} = \begin{cases} I_n & k = \ell, \\ 0 & \text{otherwise.} \end{cases} \]

We have thus proved the difficult part of the next theorem; we leave the converse as an exercise.

Theorem 1.1. Every state transformation \(\rho \mapsto \mathcal{E}(\rho) \) as above can be written as
\[\mathcal{E}(\rho) = \sum_i A_i \rho A_i^* \]
with \(\sum_i A_i^* A_i = I \). And, conversely, all such \(\mathcal{E} \) are state transformations.

1.1 The von Neumann entropy

The von Neumann entropy of a density \(\rho \in \mathcal{D}(\mathbb{C}^n) \) is defined as
\[S(\rho) = -\text{Tr}(\rho \log \rho). \]
This is precisely the Shannon entropy of the eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(\rho \):
\[H(\lambda_1, \ldots, \lambda_n) = \sum_{i=1}^n \lambda_i \log \frac{1}{\lambda_i}, \]
with our standard convention that \(0 \log 0 = 0 \). It is straightforward to verify that \(H \) is nonnegative and strongly concave, with the unique maximum occurring at the uniform distribution \(H(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}) = \log n \).

Purification and monotonicity of entropy. In the classical world, we have monotonicity of entropy: Suppose that \(q \in \mathbb{R}^m \otimes \mathbb{R}^n \) is a joint distribution on \([m] \times [n]\) and that \(q_1 \) and \(q_2 \) are the marginals. Then:
\[H(q_1) \leq H(q). \quad (1.2) \]
To see this, let us define the conditional distribution \(q^x_2 \) on \([n]\) by
\[q^x_2(y) = \frac{q(x, y)}{\sum_{y \in [n]} q(x, y)}. \]
One first verifies the chain rule:
\[H(q) = H(q_1) + \sum_{x \in [m]} q_1(x) H(q^x_2), \quad (1.3) \]
and then uses that all the terms in the latter sum are nonnegative, yielding (1.2). Note that (1.3) is usually written more simply as
\[H(X, Y) = H(X) + H(Y \mid X), \]
where \(X, Y \) are random variables on \([m]\) and \([n]\), respectively.

This monotonicity property fails resoundingly in the quantum setting. Note that if \(\rho = uu^* \) is a pure state, then \(S(\rho) = 0 \). On the other hand, one has the following fact.
Lemma 1.2 (Purification). For every state $\rho^A \in D(H_A)$, there is a Hilbert space H_B and a pure state $\rho^{AB} \in D(H_A \otimes H_B)$ such that $\rho^A = \text{Tr}_B(\rho^{AB})$.

In other words, every state is the partial trace (the “marginal”) of a pure state. In particular the analogous monotonicity $S(\rho^A) \leq S(\rho^{AB})$ fails to hold.

To construct the purification, decompose $\rho = \sum_{i=1}^n \lambda_i v_i v_i^*$ in its eigenbasis, and let H_B be the Hilbert space spanned by an orthonormal basis $\{e_1, \ldots, e_n\}$. Define

$$u^{AB} := \sum_i \sqrt{\lambda_i} v_i \otimes e_i, \quad \rho^{AB} = u^{AB} (u^{AB})^* = \sum_{i,j} \sqrt{\lambda_i \lambda_j} (v_i \otimes e_i)(v_j \otimes e_j)^*.$$

Note that ρ^{AB} can be interpreted as a block matrix where ρ^{AB}_{ij} is the matrix $\sqrt{\lambda_i \lambda_j} v_i v_j^*$. Therefore we have

$$\text{Tr}_B(\rho_{AB}) = \sum_i (\rho^{AB})_{ii} = \sum_i \lambda_i v_i v_i^* = \rho.$$

5