
Lecture 9: Strong subadditivity CSE 599I, Spring 2021
Instructor: James R. Lee

1 Quantum entropy and subadditivity

Recall the von Neumann entropy of a density ρ ∈ D(Cn) is defined as

S(ρ) � −Tr(ρ log ρ).

This is precisely the Shannon entropy of the eigenvalues λ1 , . . . , λn of ρ:

H(λ1 , . . . , λn) �
n∑

i�1
λi log 1

λi
,

with our standard convention that 0 log 0 � 0.

Remark 1.1. In most of what follows, we will assume that our density matrices ρ are strictly positive,
i.e., that they don’t have zero eigenvalues. Thus quantities like log(ρ) are well-defined. Our results
extend to the general case by applying first an arbitrarily small perturbation and then taking a limit
as the perturbation goes to zero. This will generally make sense in considering expressions like
ε log ε, which goes to 0 as ε→ 0.

1.1 Subadditivity and monotonicity

It is well-known that the Shannon entropy of two random variables X,Y is subadditive:

H(X,Y) 6 H(X) + H(Y). (1.1)

This can be proved using the chain rule

H(X,Y) � H(X) + H(Y | X),

and then the monotonicity H(Y | X) 6 H(Y).
Consider a density matrix on a bipartite system ρAB ∈ D(HA ⊗ HB), and define the reduced

densities ρA :� TrB(ρAB) and ρB :� TrA(ρAB). We have already seen that a corresponding argument
fails in the quantum case, as it can be that the joint entropy vanishes, i.e., S(ρAB) � 0, and yet
S(ρA) > 0. Still, the analog of the subadditivity inequality (1.1) is true. The proof will use the
quantum relative entropy

S(ρ ‖ σ) � Tr(ρ(log ρ − log σ)),

and the fact we established earlier that S(ρ ‖ σ) > 0 with S(ρ ‖ σ) � 0 ⇐⇒ ρ � σ. Note that we
take S(ρ ‖ σ) � +∞ if ker σ * ker(ρ).

Theorem 1.2. It holds that

S(ρAB) 6 S(ρA) + S(ρB) � S(ρA ⊗ ρB),

with equality if and only if ρAB � ρA ⊗ ρB.
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Proof. We have S(ρAB ‖ ρA ⊗ ρB) > 0, with equality if and only if ρAB � ρA ⊗ ρB . As we have seen
in the first homework, it holds that

log(ρA ⊗ ρB) � log(ρA) ⊗ IB + log(ρB) ⊗ IA ,

hence

0 6 S(ρAB ‖ ρA ⊗ ρB) � −S(ρAB) − Tr
(
ρAB

(
log(ρA) ⊗ IB + log(ρB) ⊗ IA

))
� −S(ρAB) − Tr

(
(TrBρ

AB) log(ρA) + (TrAρ
AB) log(ρB)

)
� −S(ρAB) + S(ρA) + S(ρB). �

Although monotonicity of the entropy fails, we can recover the following quantum weakening
of the classical fact that H(X,Y) > min(H(X),H(Y)).

Theorem 1.3. It holds that
S(ρAB) > |S(ρA) − S(ρB)|.

The only known argument is via purification. We require the following lemma.

Lemma 1.4. Suppose that ρ ∈ D(H1 ⊗H2) is a pure state and ρ1 � Tr2(ρ), ρ2 � Tr1(ρ). Then ρ1 and ρ2

have the same eigenvalues. In particular, S(ρ1) � S(ρ2).

Proof. Write ρ � uu∗ for a unit vector u ∈ H1 ⊗ H2. Let {ui} and {v j} be orthonormal bases forH1
andH2 and write

u �

∑
i , j

ai j(ui ⊗ v j),

ρ �

∑
i , j,i′, j′

ai j āi′ j′(ui ⊗ v j)(ui′ ⊗ v j′)∗.

Then,

ρ1
�

∑
i ,i′
(AA∗)ii′ui u∗i′ , ρ2

�

∑
j, j′
(A∗A) j j′v j v∗j′ ,

where A is the matrix defined by Ai j � ai j .
Stated a different way: If we write u in the basis {ui ⊗ v j} and write each of ρ1 and ρ2 in the

bases {ui} and {v j}, respectively, then u is the matrix A (as a vector!), while ρ1 is the matrix AA∗

and ρ2 is the matrix A∗A. As we have already seen from the singular-value decomposition, the
matrices AA∗ and A∗A always have the same non-zero eigenvalues—which are the singular values
of A—although the multiplicity of the 0 eigenvalue will be different, to make up for the possibly
unequal dimensions. �

Proof of Theorem 1.3. Let ρABC denote a purification of ρAB so that ρAB � TrC(ρABC). Also define
ρC � TrAB(ρABC) and ρAC � TrB(ρABC). By Lemma 1.4, it holds that S(ρC) � S(ρAB) and
S(ρAC) � S(ρB). Thus from Theorem 1.2, we have

S(ρB) � S(ρAC) 6 S(ρA) + S(ρC) � S(ρA) + S(ρAB),

whereby
S(ρAB) > S(ρB) − S(ρA). �
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1.2 Quantum mutual information and strong subadditivity

The mutual information between two classical random variables X,Y is defined by

I(X,Y) :� D(pXY ‖ pX ⊗ pY),

where pXY is the joint distribution on (X,Y) and pX , pY are the respective marginal distributions. It
is straightforward to verify that I(X,Y) � H(X) + H(Y) − H(X,Y).

Given a bipartite state ρ ∈ D(HA ⊗HB), one defines the classical mutual information across the
A-B partition by

I(A, B)ρ :� S(ρ ‖ ρA ⊗ ρB),

with ρA � TrB(ρ), ρB � TrA(ρ), and Theorem 1.2 asserts that the quantum mutual information is
always nonnegative, since I(A, B)ρ � S(ρA) + S(ρB) − S(ρ) holds as well.

The classical conditional mutual information is defined by

I(X,Y | Z) :� E
Z

[
D(pXY |Z ‖ pX |Z ⊗ pY |Z)

]
,

where we use pA|Z to denote the distribution of the random variable A conditioned on Z. This
definition does not extend nicely to the quantum setting since the notion of “conditioning” is not
well-defined there. But since

I(X,Y | Z) � H(X, Z) + H(Y, Z) − H(X,Y, Z) − H(Z)

holds, we can use this formula to define the quantum conditional mutual information for a tripartite
state ρ ∈ D(HA ⊗ HB ⊗ HC):

I(A, C | B)ρ � S(ρAB) + S(ρBC) − S(ρ) − S(ρB),

where we make the definitions

ρAB
� TrC(ρ), ρBC

� TrA(ρ), ρA
� TrBC(ρ), ρB

� TrAC(ρ).

Strong subadditivity asserts that I(X,Y | Z) > 0 always holds, and the strong subadditivity of
quantum entropy is the fact that this is also true in the quantum setting. The next assertion was
conjectured by Robinson and Ruelle in 1966 and proved in 1973 by Lieb and Ruskai using Lieb’s
concavity thoerem. It was later discovered that it had already been proved by Kiefer in 1959 (in a
paper entitled “Optimal Experimental Designs” that has no mention of anything quantum).

Theorem 1.5 (Quantum SSA). It holds that I(A, C | B)ρ > 0, i.e.,

S(ρ) + S(ρB) 6 S(ρAB) + S(ρBC).

You will prove this in HW #2 using monotonicity of the relative entropy under partial trace,
which we discuss next.
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