Unitary matrices

0.a Non-SVD proof

Proof. Recall that for $v \in \mathbb{C}^d$ we have that $||v||^2 = v^*v$. Thus,

$$||Av||_2^2 = (Av)^*(Av) = v^*A^*Av = ||v||_2^2 = v^*v$$
(1)

Then, for all $v \in \mathbb{C}^d$,

$$v^*(A^*A - 1)v = 0 (2)$$

Observe that $A^*A - 1$ is Hermitian and has all zero eigenvalues. Thus, by diagonalizability, it is the all zeros matrix. Therefore, $A^*A = 1$, as desired.

(Alternatively, can use the provided proof here to show that a matrix with quadratic form equalling zero implies all zero elements over the complex field).

0.b SVD

Proof. Note that $A = U\Sigma V^*$ by SVD. Furthermore, consider v, an eigenvector of A^*A with eigenvalue λ :

$$||Av||_2^2 = v^* A^* A v = v^* \lambda v = \lambda ||v||_2^2 \implies \lambda = 1$$
 (3)

Thus, all of A^*A 's eigenvalues are 1, so all of the singular values for A are also 1. This implies:

$$A^*A = V\Sigma U^*U\Sigma V^* = V\Sigma^2 V^* = VV^* = 1$$
(4)

As desired.

Bras and kets

0.c

Recall that $|\psi\rangle = |0\rangle = (1,0)^*$ and $|\phi\rangle = |+\rangle = \frac{1}{\sqrt{2}}(1,1)^*$, so:

$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \tag{5}$$

0.d *P*

Projection matrix onto $|\psi\rangle$; only keep the component in the $|\psi\rangle$ direction.

0.e I - 2P

Using $|\psi\rangle$, we can create a full orthonormal basis using $|\psi\rangle|e_i\rangle$ and decompose an arbitrary state as $|v\rangle=a|\psi\rangle+\sum c_i|e_i\rangle$. Then,

$$(I - 2P) |v\rangle = |v\rangle - 2a |\psi\rangle = -a |\psi\rangle + \sum_{i} c_i |e_i\rangle$$
 (6)

Thus, this matrix simply negates the coefficient of the component in $|\psi\rangle$.

To demonstrate unitarity, note that:

$$(I - 2P)^{\dagger}(I - 2P) = (I - 2P)(I - 2P) = I - 2P - 2P + 4P^{2} = I - 4P + 4P = I$$
(7)

Because projection matrices observe $P^2 = P$. So I - 2P unitary, as desired.

0.f Abracadbra, you're a new basis

Call the transformation T. We use:

$$T = |\psi_1\rangle \langle \phi_1| + |\psi_2\rangle \langle \phi_2| + \dots + |\psi_n\rangle \langle \phi_n|$$
(8)

This works because $\langle \phi_i | \phi_j \rangle = \delta_{ij}$, so the T on any basis state will precisely transform it into its counterpart. To demonstrate unitarity, note:

$$T^*T = \left(\sum |\phi_i\rangle \langle \psi_i|\right) \left(\sum |\psi_i\rangle \langle \phi_i|\right) = \sum_i \sum_j |\phi_i\rangle \langle \psi_i|\psi_j\rangle \langle \phi_j| = \sum_i |\phi_i\rangle \langle \phi_i| = \mathbb{1}$$
 (9)