1 Lifts of polytopes

1.1 Polytopes and inequalities

Recall that the convex hull of a subset $X \subseteq \mathbb{R}^n$ is defined by

$$\text{conv}(X) = \{\lambda x + (1 - \lambda)x' : x, x' \in X, \lambda \in [0, 1]\}.$$

A d-dimensional convex polytope $P \subseteq \mathbb{R}^d$ is the convex hull of a finite set of points in \mathbb{R}^d:

$$P = \text{conv} \{\{x_1, \ldots, x_k\}\}$$

for some $x_1, \ldots, x_k \in \mathbb{R}^d$.

Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities

$$P = \{x \in \mathbb{R}^d : Ax \leq b\}$$

for some matrix $A \in \mathbb{R}^{m \times d}$.

Let us define a measure of complexity for P: Define $\gamma(P)$ to be the smallest number m such that for some $C \in \mathbb{R}^{s \times d}, y \in \mathbb{R}^s, A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m$, we have

$$P = \{x \in \mathbb{R}^d : Cx = y \text{ and } Ax \leq b\}.$$

In other words, this is the minimum number of inequalities needed to describe P. If P is full-dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P).

Thinking of $\gamma(P)$ as a measure of complexity makes sense from the point of view of optimization: Interior point methods can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in $\gamma(P)$.

1.2 Lifts of polytopes

Many simple polytopes require a large number of inequalities to describe. For instance, the cross-polytope

$$C_d = \{x \in \mathbb{R}^d : \|x\|_1 \leq 1\} = \{x \in \mathbb{R}^d : \pm x_1 \pm x_2 \cdots \pm x_d \leq 1\}$$

has $\gamma(C_d) = 2^d$. On the other hand, C_d is the projection of the polytope

$$Q_d = \left\{(x, y) \in \mathbb{R}^{2d} : \sum_{i=1}^n y_i = 1, \; y_i \geq 0, \; -y_i \leq x_i \leq y_i \; \forall i\right\}$$

onto the x coordinates, and manifestly, $\gamma(Q_d) \leq 3d$. Thus C_d is the (linear) shadow of a much simpler polytope in a higher dimension.
A polytope Q is called a lift of the polytope P if P is the image of Q under an affine projection, i.e. $P = \pi(Q)$, where $\pi : \mathbb{R}^N \rightarrow \mathbb{R}^n$ is the composition of a linear map and possibly a translation and $N \geq n$. By applying an affine map first, one can assume that the projection is merely coordinate projection to the first n coordinates.

Again, from an optimization stand point, lifts are important: If we can optimize linear functionals over Q, then we can optimize linear functionals over P. For instance, if P is obtained from Q by projecting onto the first n coordinates and $w \in \mathbb{R}^n$, then
\[
\max_{x \in P} \langle w, x \rangle = \max_{y \in Q} \langle \tilde{w}, y \rangle,
\]
where $\tilde{w} \in \mathbb{R}^N$ is given by $\tilde{w} = (w, 0, 0, \ldots, 0)$.

This motivates the definition
\[
\bar{\gamma}(P) = \min \{ \gamma(Q) : Q \text{ is a lift of } P \}.
\]
The value $\bar{\gamma}(P)$ is sometimes called the (linear) extension complexity of P.

Exercise (1 point) 1.1. Prove that $\gamma(C_d) = 2^d$.

1.2.1 The permutahedron

Here is a somewhat more interesting family of examples where lifts reduce complexity. The permutahedron $\Pi_n \subseteq \mathbb{R}^n$ is the convex hull of the vectors (i_1, i_2, \ldots, i_n) where $\{i_1, \ldots, i_n\} = \{1, \ldots, n\}$. It is known that $\gamma(\Pi_n) = 2^n - 2$.

Given a permutation $\pi : [n] \rightarrow [n]$, the corresponding permutation matrix is defined by
\[
P_{\pi} = \begin{pmatrix}
e_{\pi(1)} \\
e_{\pi(2)} \\
\vdots \\
e_{\pi(n)}
\end{pmatrix},
\]
where e_1, e_2, \ldots, e_n are the standard basis vectors.
Let $B_n \subseteq \mathbb{R}^{n^2}$ denote the convex hull of the $n \times n$ permutation matrices. The Birkhoff-von Neumann theorem tells us that B_n is precisely the set of doubly stochastic matrices:

$$B_n = \left\{ M \in \mathbb{R}^{n \times n} : \sum_i M_{ij} = \sum_j M_{ij} = 1, M_{ij} \geq 0 \quad \forall i, j \right\},$$

thus $\gamma(B_n) \leq n^2$ (corresponding to the non-negativity constraints on each entry).

Observe that Π_n is the linear image of B_n under the map $A \mapsto (1, 2, \ldots, n)A$, i.e. we multiply a matrix $A \in B_n$ on the left by the row vector $(1, 2, \ldots, n)$. Thus B_n is a lift of Π_n, and we conclude that $\tilde{\gamma}(\Pi_n) \leq n^2 \ll \gamma(\Pi_n)$.

1.2.2 The cut polytope

If $P \neq NP$, there are certain combinatorial polytopes we should not be able to optimize over efficiently. A central example is the cut polytope: $\text{CUT}_n \subseteq \mathbb{R}^{\binom{n}{2}}$ is the convex hull of all all vectors of the form

$$v^S_{i,j} = |1_S(i) - 1_S(j)| \quad \{i, j\} \in \binom{[n]}{2}$$

for some subset $S \subseteq \{1, \ldots, n\}$. Here, 1_S denotes the characteristic function of S.

Note that the MAX-CUT problem on a graph $G = (V, E)$ can be encoded in the following way: Let $W_{ij} = 1$ if $\{i, j\} \in E$ and $W_{ij} = 0$ otherwise. Then the value of the maximum cut in G is precisely the maximum of $\langle W, A \rangle$ for $A \in \text{CUT}_n$. Accordingly, we should expect that $\tilde{\gamma}($CUT$_n)$ cannot be bounded by any polynomial in n (lest we violate a basic tenet of complexity theory).

Our goal in this lecture and the next will be to show that the cut polytope does not admit lifts with $n^{O(1)}$ facets.

1.2.3 Exercises

Exercise (1 point) 1.2. Define the bipartite perfect matching polytope $BM_n \subseteq \mathbb{R}^{n^2}$ as the convex hull of all the indicator vectors of edge sets of perfect matchings in the complete bipartite graph $K_{n,n}$. Show that $\gamma(BM_n) \leq n^2$.

Figure 2: The permutahedron of order 4. [Source: Wikipedia]
Exercise (1 point) 1.3. Define the subtour elimination polytope \(\text{SEP}_n \subseteq \mathbb{R}^{(2)} \) as the set of points \(x = (x_{ij}) \in \mathbb{R}^{(2)} \) satisfying the inequalities

\[
\begin{align*}
x_{ij} & \geq 0 & \{i, j\} & \in \binom{[n]}{2} \\
\sum_{i=1}^{n} x_{ij} & = 2 & j & \in [n] \\
\sum_{i \in S} \sum_{j \not\in S} x_{ij} & \geq 2 & S & \subseteq [n], 2 \leq |S| \leq n - 2.
\end{align*}
\]

Show that \(\gamma(\text{SEP}_n) \leq O(n^3) \) by think of the \(x_{ij} \) variables as edge capacities, and introducing new variables to enforce that the capacities support a flow of value 2 between every pair \(i, j \in [n] \).

Exercise (1 point) 1.4 (Goemans). Show that for any polytope \(P \),

\[\# \text{ faces of } P \leq 2^\# \text{ facets of } P. \]

Recall that a facet of \(P \) is a face of largest dimension. (Thus if \(P \subseteq \mathbb{R}^n \) is full-dimensional, then a facet of \(P \) is an \((n - 1)\)-dimensional face.) Use this to conclude that \(\gamma(\Pi_n) \geq \log(n!) \geq \Omega(n \log n) \).

Exercise (1 point) 1.5 (Martin, 1991). Define the spanning tree polytope \(\text{ST}_n \subseteq \mathbb{R}^{(2)} \) as the convex hull of all the indicator vectors of spanning trees in the complete graph \(K_n \). Show that \(\gamma(\text{ST}_n) \leq O(n^3) \) by introducing new variables \(\{z_{uvw} : u, v, w \in \{1, 2, \ldots, n\}\} \) meant to represent whether the edge \(\{u, v\} \) is in the spanning tree \(T \) and \(w \) is in the component of \(v \) when the edge \(\{u, v\} \) is removed from \(T \).

2 Non-negative matrix factorization

The key to understanding \(\gamma(\text{CUT}_n) \) comes from Yannakakis’ factorization theorem.

Consider a polytope \(P \subseteq \mathbb{R}^d \) and let us write in two ways: As a convex hull of vertices

\[
P = \text{conv} \left(\{x_1, x_2, \ldots, x_n\} \right),
\]

and as an intersection of half-spaces: For some \(A \in \mathbb{R}^{m \times d} \),

\[
P = \left\{ x \in \mathbb{R}^d : Ax \leq b \right\}.
\]

Given this pair of representations, we can define the corresponding slack matrix of \(P \) by

\[
S_{ij} = b_i - \langle A_i, x_j \rangle \quad i \in \{1, 2, \ldots, m\}, j \in \{1, 2, \ldots, n\}.
\]

Here, \(A_1, \ldots, A_m \) denote the rows of \(A \).

We need one more definition. If we have a non-negative matrix \(M \in \mathbb{R}^{n \times n}_+ \), then a rank-\(r \) non-negative factorization of \(M \) is a factorization \(M = AB \) where \(A \in \mathbb{R}^{m \times r}_+ \) and \(B \in \mathbb{R}^{r \times n}_+ \). We then define the non-negative rank of \(M \), written \(\text{rank}_+(M) \), to be the smallest \(r \) such that \(M \) admits a rank-\(r \) non-negative factorization.

Exercise (0.5 points) 2.1. Show that \(\text{rank}_+(M) \) is the smallest \(r \) such that \(M = M_1 + \cdots + M_r \) where each \(M_i \) is a non-negative matrix satisfying \(\text{rank}_+(M_i) = 1 \).
Theorem 2.2 (Yannakakis Factorization Theorem). For every polytope P, it holds that $\gamma(P) = \text{rank}_+(S)$ for any slack matrix S of P.

The key fact underlying this theorem is Farkas’ Lemma (see Section 2.1 for a proof). Recall that a function $f : \mathbb{R}^d \to \mathbb{R}$ is affine if $f(x) = \langle a, x \rangle - b$ for some $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given functions $f_1, \ldots, f_k : \mathbb{R}^d \to \mathbb{R}$, denote their non-negative span by

$$\text{cone}\left(\{f_1, f_2, \ldots, f_k\}\right) = \left\{\sum_{i=1}^{k} \lambda_i f_i : \lambda_i \geq 0\right\}.$$

Lemma 2.3 (Farkas Lemma). Consider a polytope $P = \{x \in \mathbb{R}^d : Ax \preceq b\}$ where A has rows A_1, A_2, \ldots, A_m. Let $f_i(x) = b_i - \langle A_i, x \rangle$ for each $i = 1, \ldots, m$. If f is any affine function such that $f|_P \geq 0$, then

$$f \in \text{cone}\left(\{f_1, f_2, \ldots, f_m\}\right).$$

The lemma asserts if $P = \{x \in \mathbb{R}^d : Ax \preceq b\}$, then every valid linear inequality over P can be written as a non-negative combination of the defining inequalities $\langle A_i, x \rangle \leq b_i$.

Exercise (0.5 points) 2.4. Use Farkas’ Lemma to prove that if S and S' are two different slack matrices for the same polytope P, then $\text{rank}_+(S) = \text{rank}_+(S')$.

There is an interesting connection here to proof systems. The theorem says that we can interpret $\gamma(P)$ as the minimum number of axioms so that every valid linear inequality for P can be proved using a conic (i.e., non-negative) combination of the axioms.

To conclude this section, let us now prove the Yannakakis Factorization Theorem.

Proof of Theorem 2.2. Let us write $P = \{x \in \mathbb{R}^d : Ax \preceq b\} = \text{conv}(V)$ where $V = \{x_1, \ldots, x_N\}$ and $A \in \mathbb{R}^{m \times d}$. Let $M_{ij} = b_i - \langle A_i, x_j \rangle$ denote the associated slack matrix.

First, let us suppose there is a lift $Q \subseteq \mathbb{R}^{d+d'}$ of $P \subseteq \mathbb{R}^d$ given by r inequalities. We may assume that

$$Q = \{(x, y) \in \mathbb{R}^d \times \mathbb{R}^{d'} : Rx + Sy = t, Ux + Vy \leq c\}$$

and P is the projection of Q to the first d coordinates, and where $U \in \mathbb{R}^{r \times d}$ and $V \in \mathbb{R}^{r \times d'}$.

Now observe that the inequalities $Ax \preceq b$ are valid for Q simply because if $(x, y) \in Q$ then $x \in P$. For every $x \in P$, let $y \in \mathbb{R}^{d'}$ be such that $(x, y) \in Q$. Let $Z \in \mathbb{R}^{(r+m) \times N}$ denote the matrix that records the slack of the r inequalities of Q at the points $(x_1, y_1), \ldots, (y_N, x_N)$, and then in the last m rows the slack of the inequalities $Ax \preceq b$.

Then we have: $\text{rank}_+(M) \leq \text{rank}_+(Z)$ (since M is precisely the last m rows of Z). But Lemma 2.3 tells us that the last m rows of Z are non-negative combinations of the first r rows, hence $\text{rank}_+(Z) \leq r$, and we conclude that $\text{rank}_+(M) \leq r$.

Conversely, let us suppose there is a non-negative factorization $M = KL$ where $K \in \mathbb{R}^{m \times r}_+$ and $L \in \mathbb{R}^{r \times N}_+$. We claim that the x-coordinate projection of

$$Q = \{(x, y) \in \mathbb{R}^{d+r} : Ax + Ky = b, y \geq 0\}$$
is precisely P, which will imply that $\bar{\gamma}(P) \leq r$. This is not quite true: One should also verify that Q is a polytope, which means it should be bounded. For that to be true, it should be true that no column of K is identically zero. But this is easy to enforce: If not, we can find a factorization of smaller rank by deleting that column and the corresponding row of L.

Note that $\text{proj}_j(Q) \subseteq P$ because $K_{y} \geq 0$; this is where we use the fact that K is non-negative. For the other direction $P \subseteq \text{proj}_j(Q)$, we need to find for every vertex x_j of P a point $y_j \in \mathbb{R}^d$ such that $(x_j, y_j) \in Q$. We simply take y_j to be the jth column of L, noting that

$$Ax_j + Ky_j = Ax_j + (b - Ax_j) = b$$

and also $y_j \geq 0$ (this is where we use that L is non-negative). \qed

\section*{2.1 Proof of Farkas' Lemma}

Exercise (2 points) 2.5. Prove Farkas’ Lemma by completing each of the following steps. Recall that $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ is a polytope and $A \in \mathbb{R}^{m \times d}$. Let A_1, \ldots, A_m denote the rows of A.

1. Let $\mathcal{A} = \{f : \mathbb{R}^d \to \mathbb{R} | f \text{ is affine}\}$. Give a natural interpretation of \mathcal{A} as a $(d + 1)$-dimensional vector space; addition of functions should have the natural meaning $(f + g)(x) = f(x) + g(x)$.

2. Let $f_1, f_2, \ldots, f_m : \mathbb{R}^d \to \mathbb{R}$ be the m affine functions given by $f_i(x) = b_i - \langle A_i, x \rangle$. Show that for $x \in \mathbb{R}^d$,

$$x \in P \iff f(x) \geq 0 \quad \forall f \in \text{cone}\{f_1, \ldots, f_m\}.$$

3. Consider the following fundamental fact.

\textbf{Theorem 2.6} (Hyperplane separation theorem). \textit{For any $n \geq 1$, if $K \subseteq \mathbb{R}^n$ is a non-empty, closed convex set and $y \notin K$, then there is a vector $v \in \mathbb{R}^n$ and value $b \in \mathbb{R}$ such that $\langle v, z \rangle \geq b$ for all $z \in K$, but $\langle v, y \rangle < b$.}

Use this theorem in conjunction with (i) and (ii) to prove that if $f \notin \text{cone}\{f_1, \ldots, f_m\}$ then there is a point $x \in P$ such that $f(x) < 0$. [Hint: This will be the tricky part. One needs to use the fact that P is bounded.] Conclude that Lemma 2.3 is true.

4. We are left to prove Theorem 2.6. Without loss of generality, we can assume that $y = 0$. Argue that the optimization $\min_{z \in K} \|z\|^2$ has a unique solution. Let z^* be the optimizer, and show that one can take $v = z^*$ to prove the theorem.

\section*{2.2 Slack matrices and the correlation polytope}

Thus to prove a lower bound on $\bar{\gamma}(\text{CUT}_n)$, it suffices to find a valid set of linear inequalities for CUT_n and prove a lower bound on the non-negative rank of the corresponding slack matrix. Toward this end, consider the correlation polytope $\text{CORR}_n \subseteq \mathbb{R}^{n^2}$ given by

$$\text{CORR}_n = \text{conv}\{xx^T : x \in \{0, 1\}^n\}.$$

Exercise (0.5 points) 2.7. Show that for every $n \geq 1$, CUT_{n+1} and CORR_n are linearly isomorphic.
Now we identify a slack matrix for CORR_n. Denote by
\[
R_2[x_1, \ldots, x_n] = \left\{ a_0 + \sum_i a_i x_i + \sum_{i,j} a_{ij} x_i x_j \right\}.
\]
the set of quadratic polynomials on R^n. Let
\[
\text{QML}_n = \{ f : \{0, 1\}^n \to R : f = g|_{\{0,1\}^n} \text{ for some } g \in R_2[x_1, \ldots, x_n] \}
\]
be the functions given by restricting quadratic polynomials to the discrete cube.
Observe that every $f \in \text{QML}_n$ can be written as a multi-linear function
\[
f(x) = a_0 + \sum_i a_i x_i + \sum_{i \neq j} a_{ij} x_i x_j
\]
since $x_i^2 = x_i$ for $x_i \in \{0, 1\}$. Finally, define the set of non-negative quadratic multi-linear functions
\[
\text{QML}_n^+ = \{ f \in \text{QML}_n : f(x) \geq 0 \ \forall x \in \{0, 1\}^n \}.
\]

Lemma 2.8. Define the (infinite) matrix $M_n : \text{QML}_n^+ \times \{0, 1\}^n \to R_+$ by
\[
M_n(f, x) = f(x).
\]
Then M_n is a slack matrix for CORR_n.

Proof. Consider $f \in \text{QML}_n^+$. Recalling that $x_i = x_i^2$, we can write
\[
f(x) = b - \sum_i A_{ii} x_i^2 - \sum_{i \neq j} A_{ij} x_i x_j
\]
for some symmetric matrix $A \in R^{n \times n}$ and $b \in R$.
Define the Frobenius inner product on matrices $A, B \in R^{n \times n}$ by
\[
\langle A, B \rangle = \text{Tr}(A^T B) = \sum_{i,j} A_{ij} B_{ij},
\]
and observe that
\[
f(x) = b - \langle A, xx^T \rangle.
\]
Since $f(x) \geq 0$ for all $x \in \{0, 1\}^n$, we have $b - \langle A, xx^T \rangle \geq 0$ for all $x \in \{0, 1\}^n$, hence by convexity $\langle A, Y \rangle \leq b$ holds for all $Y \in \text{CORR}_n$. The quantity $f(x)$ is precisely the slack of this inequality at the vertex x. \hfill \Box

Exercise (0.5 points) 2.9. Complete the preceding proof by showing that the family of linear inequalities underlying M_n characterize CORR_n.

Combining Exercise 2.7 and Lemma 2.8 yields the following.

Theorem 2.10. For all $n \geq 1$, it holds that $\tilde{\gamma}(\text{CUT}_{n+1}) \geq \text{rank}_+(M_n)$.

7