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Markov chain setup

Let {X;} be areversible Markov chain on a finite state space ()
with stationary measure 7.

Denote by £ = | — P the (positive semi-definite) Laplacian, and
let H, = e~ be the continuous-time heat semigroup.

Dirichlet form: For f, g € L?(Q, ):

1
E(f,9) = 5 Exomr [(F(XD) = F(X0)) (9 (K1) — 9(X0))]

Heat equation: If {/; : t = 0} is the time-evolution of a density
ho : O — R, then

d *
Eht — _L ht



convergence to equilibrium

d
Spectral gap: — Varg(he) = =2 E(hy, hy)

A = inf {\fa(i(ff)) L f # O} Var,(h,) < e 24 Var,(hy)

Modified log-Sobolev (MLS): [Bobkov-Tetali 2006]

Enty(he) = ) m(0h(x) logh, ()

X€E()

d
i Ent,(h,) = — E(hy, loghe)

po = inf {Sé]rfl:ro(gf])f) L f = O} Ent,(h,) < e Pot Ent_(h,)



LSI vs. MLSI

Log-Sobolev constant: p = inf {gé\r{;(\g) : f > }

E(f,1
Modified log-Sobolev: po = inf { é{l :(fjc];) Hf = O}

For diffusions: E(f,g) = ijVg = ijg

(|VfI?
f

(W77) = [ (V7)) -
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: fo 7log f = £(f,log )



LSI vs. MLSI

Log-Sobolev constant: = inf { é\r{;(\g)  f = }
E(f,1
Modified log-Sobolev: po = inf { é{l O(i];) tf = O}
4p < A
P=pPo= >
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LSI vs. MLSI

. _inf (VDN
Log-Sobolev constant: p = inf { Ent.(f) ) =
o [E(f,log f) }

11 - " — f ’ 2 O

Modified log-Sobolev: Po = { Ent. () f
4p < p,y < 4
P=pPo= 7
1

1 1 1
— < ¥, mixing time <—{| 1+ —loglo
2p ’ ° P( T g7Tmin>

[Diaconis Saloff-Coste 1996]



curvature and path couplings

Bakry-Emery (1985) theory: For Markov diffusions,
Positive curvature = Log-Sob inequality (quantitatively)

Otto-Villani (2000): Proved this (and stronger versions) using
Otto’s interpretation of diffusion as the gradient flow of the
entropy on an appropriate Riemannian manifold of probability
measures.

In recent years, a rather large body of work attempting to define
these notions / extend these implications to discrete spaces.




curvature and path couplings

Suppose we have a metric d on the state space ().

Y. Ollivier (following Bubley-Dyer'97, etc.):

The metric chain (Q, P, d) has coarse Ricci curvature > « if for
every pair u, v € Q, there is a pair of random variables (U, V)

such that
U~X; |1 X =u V~X 1 Xg=v

and
Eld(U,V)] < (1 —k)d(u,v)
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curvature and path couplings

Suppose we have a metric d on the state space ().

Y. Ollivier (following Bubley-Dyer'97, etc.):

The metric chain (Q, P, d) has coarse Ricci curvature > « if for
every pair u, v € Q, there is a pair of random variables (U, V)

such that
U~X; |1 X =u V~X 1 Xg=v

and
Eld(U,V)] < (1 —k)d(u,v)
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Peres-Tetali conjecture

Conjecture:

If we metricize the chain so that d(x,y) = 1 when P(x,y) > 1 and
then take the induced path metric, the following holds:

Whenever (), P, d) has coarse Ricci curvature > x, the chain
admits a [modified*] log-Sobolev inequality with constant 0 (1/x).

Challenge / test chain:
For what values of A (maximum degree) and k (# colors) does the

Glauber dynamics on k-colorings of a graph admit a (uniform)
log-Sobolev inequality?

k > 2A [Marton 2015]
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entropy-transport

The W, distance between densities f and g on a metric
measure space (Q,,d) IS

W,(f,g) = mm {(Jd(u, v)Pdu(u, v) >p}

where the minimum is over all couplings u of (f dm, g dm).

Inequalities relating transportation distances to entropy were
studied by Marton (1996) and Talagrand (1996).

[Bobkov-Gotze 1999): If (Q, P, ) admits a log-Sobolev inequality
with constant 1/«, then it admits a W, entropy-transport inequality:

Wi(f,1) < y2a Enty(f)

where Q is equipped with the graph metric introduced earlier.




entropy-transport

Conjecture: If we metricize the chain so that d(x,y) = 1 when
P(x,y) > 1 and then take the induced path metric, the following holds:

Whenever (, P, d) has coarse Ricci curvature > k, the chain admits a
[modified*] log-Sobolev inequality with constant 0 (1/x).

[Bobkov-Gotze 1999): If (Q, P, ) admits a log-Sobolev inequality
with constant 1/«, then it admits a W, entropy-transport inequality:

Wi(f, 1) < y2a Ent,(f)

Theorem [Eldan-L-Lehec 2015]:
Coarse Riccli curvature > k implies a W, entropy-transport

inequality with constant & = k™ /(1 - 2).

[See also work of Fathi and Shu, 2015]



entropic interpolation

Consider a space P of paths y : [0,T] — Q equipped with a
background measure u (e.g., trajectories of continuous-time
random walk), and also two measures o, and o7 on ().

Schrodinger problem:

Find the unique measure v on P that interpolates between g,
and or: If y ~ v, then y(0) ~ g, and y(T) ~ o and minimizes

the relative entropy to the background measure:

minimize D(v | 1) = [ dv(y) log(

dV(V))
du(y)




entropic interpolation

Now let {X; : t = 0,1, ..., T} be discrete-time random walk.

Our initial measure will be concentrated on a fixed point X, = x,,
and the final measure will have density 1. where f : (L — R,
Is given and u is the law of X | X, = x,.

The optimal entropic interpolation is the process {Z;} given by
Zy=xpandfort <T,

Pr_if ()
Pr_i41 f(Z¢—1)

where P, f (x) = E[ f(X;) | Xo = x ] Is the discrete-time heat
semi-group.

P(Zy=yI1Zi—1) =p(Ze-1,y)



entropic interpolation

The optimal entropic interpolation is the process {Z;} given by
Zy=xpandfort <T,

Pr_:f (y)
PT—t+1 f(Zt—l)

where P; f (x) = E[ f(X;) | Xy, = x ] 1s the discrete-time heat
semi-group.

P(Zy =y | Zi—1) =p(Ze-1,y)

Moreover, one has:
D({Zo, ...,ZT} | {Xo, ,XT}) — D(ZT | XT) — EntuT(f)

In particular, one can examine the “information burn” at each time:

E[D(Pz(Zt—1,7) | p(Z=1,)) )]

T T
t=1

Ent,, () = Z . [1 ‘ Pr_¢(Z) ] _

0)
=1 PT—t+1(Zt—1)



entropic interpolation

MLSI picture
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Moreover, one has:
D({Zo, ...,ZT} | {Xo, ,XT}) — D(ZT | XT) — Ent”T(f)

In particular, one can examine the “information burn” at each time:

T T
-y Pro(Z) | y
EntuT(f) = £, E [108 PT—t+1(Zt—1)] = £, EID(Pz(Z¢e—1,) | p(Ze-1,7) )]




interpolated random walk

m random walk m  interpolated random walk




the coupling and contraction
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TV-optimal coupling of Z, W, -optimal coupling of X,
and Xy | (Xo=Z;1) and X, | (Xo=Z;_4)

Competing factors:

() separation decays at rate (1 — k) because of the contraction
(spend information at the end)

(i) Pinsker's inequality dry(u,v) < /D(ulv)
(spend information slowly)




the coupling and contraction
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Cauchy-Schwarz of (i) and (ii): W, (f,1) < /2x~1Ent,(f)

Competing factors:

() separation decays at rate (1 — k) because of the contraction
(spend information at the end)

(i) Pinsker's inequality dry(u,v) < /D(u|v)
(spend information slowly)




back to (modified) log-Sobolev

R last 1/k steps spend
: 90% of information

Question:

Is this curve monotone in time (on average, Z, ~ ), T — c0?
(open even for diffusion on a compact manifold)

Strategy for modified log-Sobolev:
Duality formula for relative entropy [following Borell 2000, Eldan-L 2015]



questions?




