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Markov chain setup

Let {𝑋𝑡} be a reversible Markov chain on a finite state space Ω
with stationary measure 𝜋.

Denote by ℒ = 𝐼 − 𝑃 the (positive semi-definite) Laplacian, and
let 𝐻𝑡 = 𝑒−𝑡ℒ be the continuous-time heat semigroup.

Dirichlet form:  For 𝑓, 𝑔 ∈ 𝐿2 Ω, 𝜋 :

ℰ 𝑓, 𝑔 =
1

2
𝔼𝑋0∼𝜋 𝑓 𝑋1 − 𝑓 𝑋0 𝑔 𝑋1 − 𝑔 𝑋0

Heat equation:  If {ℎ𝑡 ∶ 𝑡 ≥ 0} is the time-evolution of a density
ℎ0 ∶ Ω → ℝ+, then

𝑑

𝑑𝑡
ℎ𝑡 = −ℒ

∗ℎ𝑡



convergence to equilibrium

𝑑

𝑑𝑡
Var𝜋 ℎ𝑡 = −2 ℰ ℎ𝑡 , ℎ𝑡

𝜆 = inf
ℰ 𝑓, 𝑓

Var𝜋 𝑓
∶ 𝑓 ≠ 0 Var𝜋 ℎ𝑡 ≤ 𝑒

−2𝜆𝑡 Var𝜋 ℎ0

Ent𝜋 ℎ𝑡 =  

𝑥∈Ω

𝜋 𝑥 ℎ𝑡 𝑥 log ℎ𝑡 𝑥

𝑑

𝑑𝑡
Ent𝜋 ℎ𝑡 = − ℰ ℎ𝑡 , log ℎ𝑡

𝜌0 = inf
ℰ 𝑓, log 𝑓

Ent𝜋 𝑓
∶ 𝑓 ≥ 0 Ent𝜋 ℎ𝑡 ≤ 𝑒

−𝜌0𝑡 Ent𝜋 ℎ0

Spectral gap:

Modified log-Sobolev (MLS):  [Bobkov-Tetali 2006]



LSI vs. MLSI

𝜌0 = inf
ℰ 𝑓, log 𝑓

Ent𝜋 𝑓
∶ 𝑓 ≥ 0

Log-Sobolev constant:

Modified log-Sobolev:

𝜌 = inf
ℰ 𝑓, 𝑓

Ent𝜋 𝑓
∶ 𝑓 ≥ 0

For diffusions: ℰ 𝑓, 𝑔 =  𝛻𝑓𝛻𝑔 =  𝑓Δ𝑔

ℰ 𝑓, 𝑓 =  𝛻 𝑓
2
=
1

4
 
𝛻𝑓 2

𝑓

=
1

4
 𝛻𝑓 𝛻 log 𝑓 =

1

4
ℰ 𝑓, log 𝑓
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[Diaconis Saloff-Coste 1996]



curvature and path couplings

Bakry-Emery (1985) theory:  For Markov diffusions,
Positive curvature ⇒ Log-Sob inequality (quantitatively)

Otto-Villani (2000):  Proved this (and stronger versions) using 
Otto’s interpretation of diffusion as the gradient flow of the 
entropy on an appropriate Riemannian manifold of probability 
measures.

In recent years, a rather large body of work attempting to define 
these notions / extend these implications to discrete spaces.



curvature and path couplings

Suppose we have a metric 𝑑 on the state space Ω.

Y. Ollivier (following Bubley-Dyer’97, etc.):  
The metric chain (Ω, 𝑃, 𝑑) has coarse Ricci curvature ≥ 𝜅 if for 
every pair 𝑢, 𝑣 ∈ Ω, there is a pair of random variables (𝑈, 𝑉)
such that

𝑈 ∼ 𝑋1 ∣ 𝑋0 = 𝑢 𝑉 ∼ 𝑋1 ∣ 𝑋0 = 𝑣

and
𝔼 𝑑 𝑈, 𝑉 ≤ 1 − 𝜅 𝑑(𝑢, 𝑣)

𝑢 𝑣
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Peres-Tetali conjecture

Conjecture:
If we metricize the chain so that 𝑑 𝑥, 𝑦 = 1 when 𝑃 𝑥, 𝑦 > 1 and 
then take the induced path metric, the following holds:
Whenever (Ω, 𝑃, 𝑑) has coarse Ricci curvature ≥ 𝜅, the chain 
admits a [modified*] log-Sobolev inequality with constant 𝑂(1/𝜅).

Challenge / test chain:
For what values of Δ (maximum degree) and 𝑘 (# colors) does the
Glauber dynamics on 𝑘-colorings of a graph admit a (uniform)
log-Sobolev inequality?

𝑘 ≥ 2Δ [Marton 2015]

𝑘 ≥
11

6
Δ ???



entropy-transport

The 𝑾𝒑 distance between densities 𝑓 and 𝑔 on a metric
measure space (Ω, 𝜋, 𝑑) is

𝑊𝑝 𝑓, 𝑔 = min
𝜇

 𝑑 𝑢, 𝑣 𝑝𝑑𝜇 𝑢, 𝑣

1
𝑝

where the minimum is over all couplings 𝜇 of 𝑓 𝑑𝜋, 𝑔 𝑑𝜋 .

[Bobkov-Götze 1999]:  If (Ω, 𝑃, 𝜋) admits a log-Sobolev inequality 
with constant 1/𝛼, then it admits a 𝑊1 entropy-transport inequality:

𝑊1 𝑓, 𝟏 ≤ 2𝛼 Ent𝜋 𝑓

where Ω is equipped with the graph metric introduced earlier.

Inequalities relating transportation distances to entropy were 
studied by Marton (1996) and Talagrand (1996).



entropy-transport

Conjecture:  If we metricize the chain so that 𝑑 𝑥, 𝑦 = 1 when 
𝑃 𝑥, 𝑦 > 1 and then take the induced path metric, the following holds:
Whenever (Ω, 𝑃, 𝑑) has coarse Ricci curvature ≥ 𝜅, the chain admits a 
[modified*] log-Sobolev inequality with constant 𝑂(1/𝜅).

[Bobkov-Götze 1999]:  If (Ω, 𝑃, 𝜋) admits a log-Sobolev inequality 
with constant 1/𝛼, then it admits a 𝑊1 entropy-transport inequality:

𝑊1 𝑓, 𝟏 ≤ 2𝛼 Ent𝜋 𝑓

Theorem [Eldan-L-Lehec 2015]:
Coarse Ricci curvature ≥ 𝜅 implies a 𝑊1 entropy-transport 
inequality with constant 𝛼 = 𝜅−1/(1 − 𝜅

2
).

[See also work of Fathi and Shu, 2015]



entropic interpolation

Consider a space 𝒫 of paths 𝛾 ∶ 0, 𝑇 → Ω equipped with a
background measure 𝜇 (e.g., trajectories of continuous-time
random walk), and also two measures 𝜎0 and 𝜎𝑇 on Ω.

Schrӧdinger problem:
Find the unique measure 𝜈 on 𝒫 that interpolates between 𝜎0
and 𝜎𝑇: If 𝜸 ∼ 𝜈, then 𝜸 0 ∼ 𝜎0 and 𝜸 𝑇 ∼ 𝜎𝑇 and minimizes
the relative entropy to the background measure:

minimize  𝐷 𝜈 𝜇 = ∫ 𝑑𝜈 𝛾 log 𝑑𝜈 𝛾
𝑑𝜇 𝛾

𝜎0 𝜎𝑇



entropic interpolation

Now let 𝑋𝑡 ∶ 𝑡 = 0, 1, … , 𝑇 be discrete-time random walk.
Our initial measure will be concentrated on a fixed point 𝑋0 = 𝑥0,
and the final measure will have density 𝑓𝜇𝑇 where 𝑓 ∶ Ω → ℝ+
is given and 𝜇𝑇 is the law of 𝑋𝑇 ∣ 𝑋0 = 𝑥0.

The optimal entropic interpolation is the process {𝑍𝑡} given by 
𝑍0 = 𝑥0 and for 𝑡 ≤ 𝑇,

ℙ 𝑍𝑡 = 𝑦 𝑍𝑡−1 = 𝑝 𝑍𝑡−1, 𝑦
𝑃𝑇−𝑡𝑓 𝑦

𝑃𝑇−𝑡+1 𝑓 𝑍𝑡−1

where 𝑃𝑡𝑓 𝑥 = 𝔼 𝑓 𝑋𝑡 𝑋0 = 𝑥 is the discrete-time heat 
semi-group.



entropic interpolation

The optimal entropic interpolation is the process {𝑍𝑡} given by 
𝑍0 = 𝑥0 and for 𝑡 ≤ 𝑇,

ℙ 𝑍𝑡 = 𝑦 𝑍𝑡−1 = 𝑝 𝑍𝑡−1, 𝑦
𝑃𝑇−𝑡𝑓 𝑦

𝑃𝑇−𝑡+1 𝑓 𝑍𝑡−1

where 𝑃𝑡𝑓 𝑥 = 𝔼 𝑓 𝑋𝑡 𝑋0 = 𝑥 is the discrete-time heat 
semi-group.

Moreover, one has:
𝐷 𝑍0, … , 𝑍𝑇 𝑋0, … , 𝑋𝑇 = 𝐷 𝑍𝑇 𝑋𝑇 = Ent𝜇𝑇(𝑓)

In particular, one can examine the “information burn” at each time:

Ent𝜇𝑇 𝑓 = 

𝑡=1

𝑇

𝔼 log
𝑃𝑇−𝑡 𝑍𝑡
𝑃𝑇−𝑡+1 𝑍𝑡−1

= 

𝑡=1

𝑇

𝔼 𝐷 ℙ𝑍 𝑍𝑡−1,⋅ 𝑝 𝑍𝑡−1,⋅



entropic interpolation

Moreover, one has:
𝐷 𝑍0, … , 𝑍𝑇 𝑋0, … , 𝑋𝑇 = 𝐷 𝑍𝑇 𝑋𝑇 = Ent𝜇𝑇(𝑓)

In particular, one can examine the “information burn” at each time:

𝑍0 𝑍𝑡 𝑍𝑇𝑍𝑡+1

Ent𝜇𝑇 𝑓 = 

𝑡=1

𝑇

𝔼 log
𝑃𝑇−𝑡 𝑍𝑡
𝑃𝑇−𝑡+1 𝑍𝑡−1

= 

𝑡=1

𝑇

𝔼 𝐷 ℙ𝑍 𝑍𝑡−1,⋅ 𝑝 𝑍𝑡−1,⋅

MLSI picture



interpolated random walk

random walk interpolated random walk



the coupling and contraction

𝑍𝑡−1

𝑋𝑡−1

TV-optimal coupling of 𝑍𝑡
and 𝑋1 ∣ (𝑋0 = 𝑍𝑡−1)

𝑊1-optimal coupling of 𝑋𝑡
and 𝑋1 ∣ (𝑋0 = 𝑍𝑡−1)

Competing factors:

(i) separation decays at rate 1 − 𝜅 because of the contraction
(spend information at the end)

(ii) Pinsker’s inequality 𝑑TV 𝜇, 𝜈 ≤ 𝐷 𝜇 𝜈
(spend information slowly)



the coupling and contraction

𝑍𝑡−1

𝑋𝑡−1

Cauchy-Schwarz of (i) and (ii):  𝑊1(𝑓, 𝟏) ≤ 2𝜅−1Ent𝜋(𝑓)

Competing factors:

(i) separation decays at rate 1 − 𝜅 because of the contraction
(spend information at the end)

(ii) Pinsker’s inequality 𝑑TV 𝜇, 𝜈 ≤ 𝐷 𝜇 𝜈
(spend information slowly)



back to (modified) log-Sobolev

𝑍0 𝑍𝑡−1 𝑍𝑇𝑍𝑡

𝐷 ℙ𝑍 𝑍𝑡−1,⋅ 𝑝 𝑍𝑡−1,⋅

last 1/𝜅 steps spend
90% of information

Question:
Is this curve monotone in time (on average, 𝑍0 ∼ 𝜋), 𝑇 → ∞?
(open even for diffusion on a compact manifold)

Strategy for modified log-Sobolev:
Duality formula for relative entropy [following Borell 2000, Eldan-L 2015]



questions?


