
CSE P521: Applied Algorithms

Instructor: Prof. James R. Lee
TAs: Evan McCarty (head), Jeffrey Hon

Office hours: TBA

Grading: 5-6 Homeworks (60%), Project (40%)

Homework will be assigned on Thursdays; due next Thursday
There will be a homework out tomorrow.
Collaboration policy on website; all homework submitted electronically

[Prefer typeset solutions; scans of neat handwriting acceptable]

Project will be described in 3rd lecture; must work in pairs

Class e-mail list: Sign up at course site if you didn’t receive “hello” email

Discussion board: Accessible from course homepage; intended for
“unsupervised” discussion of course topics

CSE P521: Applied Algorithms

Instructor: Prof. James R. Lee
TAs: Evan McCarty (head), Jeffrey Hon

Office hours: TBA

Expected background: discrete math (CSE 311)
basic probability theory (CSE 312)
undergrad algs & data structures (CSE 332)
“mathematical maturity” [this is a theory course]

Course materials: There is no textbook
Lecture notes and supplementary reading posted on course site
Some lectures will have required preparatory reading [will send email]

Questions?

what is this course about?

Modern algorithms

Inputs are huge, noisy, dynamic, incomplete, high-dimensional, arrive online

Approximation, randomization

Nuanced tradeoffs: Efficiency, profit, correctness

Tools of algorithmic analysis

Course cannot be comprehensive

Goal is exposure to a sample of key ideas, techniques, philosophies

Mathematical explanations

Prove that things work when we can

Develop a theoretical framework for understanding/designing solutions

what is this course about?

Hashing
Universal and perfect hashing
Load balancing, the power of two choices
Streaming algorithms
Locality sensitive hashing, high-dimensional search

Spectral algorithms
Singular-value decomposition (SVD)
Principal component analysis
Spectral partitioning

Linear programming
Formulating LPs; relaxations and approximation
Duality theory
Gradient descent

Online optimization
Regret minimization
Boosting, multiplicative weights

Algorithmic game theory
Algorithms in the face of economic incentives
Exploiting selfish agents

Karger’s randomized min cuts

The Global Min-cut problem

Input: An undirected graph 𝐺 = (𝑉, 𝐸)

Output: A partition of the graph into two pieces 𝑉 = 𝑆 ∪ ҧ𝑆
so the number of cut edges is minimized

Contraction operation:
For an edge 𝑒 ∈ 𝐸, write 𝐺/𝑒 for the new graph
formed by contracting the edge 𝑒.

⇒

Karger’s randomized min cuts

Contraction operation:
For an edge 𝑒 ∈ 𝐸, write 𝐺/𝑒 for the new graph
formed by contracting the edge 𝑒.

⇒

Karger’s randomized min cuts

Karger’s randomized min cuts

How many times does
the while loop execute?

𝑉 − 2 times

Karger’s randomized min cuts

Karger’s randomized min cuts

analysis

analysis

analysis

Theorem: For any min-cut 𝑆, ҧ𝑆 , Karger’s algorithm returns 𝑆, ҧ𝑆 with probability at least
1
𝑛
2

=
2

𝑛 𝑛 − 1

Corollary: Any graph has at most 𝑛
2

global min-cuts.

analysis

Theorem: For any min-cut 𝑆, ҧ𝑆 , Karger’s algorithm returns 𝑆, ҧ𝑆 with probability at least
1
𝑛
2

=
2

𝑛 𝑛 − 1

If we run the algorithm 𝐾 times and output the smallest cut from all 𝐾 runs, the
probability we fail to find a min cut is at most:

analysis

Theorem: If we run the algorithm 𝐾 ≈ 𝑛2 log 𝑛 times, then

Pr find a min cut ≥ 1 − 1/𝑛2

Total running time?
One run can be implemented to run in time 𝑂(𝑛2), so the total running time is
𝑂 𝑛4 log 𝑛 [pretty slow]

one way to implement

For fans of undergraduate algorithms:
Can use Kruskal’s algorithm for minimum spanning trees.

one way to implement

For fans of undergraduate algorithms:
Can use Kruskal’s algorithm for minimum spanning trees.

analysis

Theorem: If we run the algorithm 𝐾 ≈ 𝑛2 log 𝑛 times, then

Pr find a min cut ≥ 1 − 1/𝑛2

Total running time?
One run can be implemented to run in time 𝑂(𝑛2), so the total running time is
𝑂 𝑛4 log 𝑛 [pretty slow]

Improvement:
There is an algorithm that runs in time 𝑂 𝑛2 log 𝑛 3 and finds a global min-
cut with probability close to 1.

EXERCISE

For any 𝑘 < 𝑛: Pr ¬𝒜1 ∧ ¬𝒜2 ∧ ⋯∧ ¬𝒜𝑘 ≥

𝑘
2
𝑛
2

Observation:

Therefore if 𝑘 ≈ 𝑛/ 2, then the probability a min-cut 𝑆, ҧ𝑆

remains after 𝑘 steps is at least

𝑘 𝑘 − 1
2

𝑛 𝑛 − 1
2

≈

𝑛

2

2

𝑛2
=
1

2

Karger’s randomized min cuts

EXERCISE

Therefore if 𝑘 ≈ 𝑛/ 2, then the probability a min-cut 𝑆, ҧ𝑆

remains after 𝑘 steps is at least

𝑘 𝑘 − 1
2

𝑛 𝑛 − 1
2

≈

𝑛

2

2

𝑛2
=
1

2

So things are going better early on…

How to exploit this for a
much faster algorithm?

For any 𝑘 < 𝑛: Pr ¬𝒜1 ∧ ¬𝒜2 ∧ ⋯∧ ¬𝒜𝑘 ≥

𝑘
2
𝑛
2

Observation:

Karger-Stein algorithm

Probability we find a specific min-cut
𝑆, ҧ𝑆 is given by the recurrence relation:

𝑝 𝑛 = 1 − 1 −
1

2
𝑝 1 +

𝑛

2

2

Running time of fastmincut:

𝑇 𝑛 = 2𝑇 1 +
𝑛

2
+ 𝑂 𝑛2

after the break: hashing and sketching

⇒

