
CSE P531: Computability and Complexity Theory (Spring, 2016) 
Homework 3            Out: Thursday, 14-Apr.  Due: Friday, 22-Apr (9pm in the Dropbox) 

 

Reading: 
 

Sipser, Sections 5.1—5.3 and 7.1—7.2 

 

Instructions:   
 

Your proofs and explanations should be clear, well-organized and as concise as possible. 
 
You are allowed to discuss the problems with fellow students taking the class.  However, you must write 
up your solutions completely on your own. Moreover, if you do discuss the problems with someone else, 
I am asking, on your honor, that you do not take any written material away from the discussion. In 
addition, for each problem on the homework, I ask that you acknowledge the people you discussed that 
problem with, if any. 
 
Most of the problems require only one or two key ideas for their solution – spelling out these ideas should 
give you most of the credit for the problem even if you err in some finer details. So, make sure you clearly 
write down the main idea(s) behind your solution. 
 
A final piece of advice:  Begin work on the problem set early and don’t wait until the deadline is only a 
few days away. 



1. Decidability of arithmetical theorems 
 

We will consider the state of true theorems in modular arithmetic.  Fix a natural number 𝑞 > 1 

denote ℤ𝑞 = {0, 1, … , 𝑞 − 1} and let Th(ℤ𝑞 , +,×) be the set of true sentences using quantifiers, 

logical operators, =  (equality), and the operations +  and × , where the two operations 
correspond to addition and multiplication modulo 𝑞. 
 
For every 𝑞 > 1, describe how one can think about the set of true sentences as a language over 
some alphabet, and then argue that your language Th(ℤ𝑞 , +,×) is decidable.  In other words, 

there exists a Turing machine that, when given a sentence as input, accepts the sentence if it is 
true and rejects the sentence if it false. 
 
The quantifiers are ∀ (for all) and ∃ (there exists), and the logical operators are ∧ (and), ∨ (not), 
¬ (negation), and → (implication).  For instance, here is the statement that every number has an 
additive inverse modulo 𝑞: 

∀𝑥∃𝑦 (𝑥 + 𝑦 = 0) 

This sentence is true.  Here is the statement that every number has a multiplicative inverse 
modulo 𝑞: 

∀𝑥∃𝑦 (𝑥𝑦 = 1) 

This statement is never true (because 0 does not have an inverse).  On the other hand, the 
following statement is a true theorem if and only if 𝑞 is prime: 

∀𝑥 (¬(𝑥 = 0) → ∃𝑦 𝑥𝑦 = 1) 

Here, 𝑞 is fixed (it is not part of the input), and your Turing machine should decide whether or 
not the formula is true. 

 

[It is a fascinating fact that if we work instead over the integers, the corresponding theory 
Th(ℤ, +,×) is undecidable.  This is because there exists a computable reduction that maps an 
input 〈𝑀, 𝑤〉 to a sentence 𝜙𝑀,𝑤 in Th(ℤ, +,×) such that 𝑀 accepts 𝑤 ↔ 𝜙𝑀,𝑤 is true.  Basically, 

arithmetic contains a universal Turing machine!] 

 

  



2. Dynamic programming 
 

Recall that if 𝐿 is a language, then 𝐿∗ is the language defined by 

𝐿∗ = { 𝑤1𝑤2 ⋯ 𝑤𝑘 : 𝑘 ≥ 0, 𝑤𝑖 ∈ 𝐿 for each 𝑖 } 

In other words, 𝐿∗ contains strings that are concatenations of zero or more strings in 𝐿.  The goal 

of this problem is to prove that if 𝐿 ∈ 𝑷 then 𝐿∗ ∈ 𝑷, where 𝑷 = ⋃ 𝑇𝐼𝑀𝐸(𝑛𝑘)𝑘≥1  is the set of 

languages decidable in polynomial time. 

 

This requires an idea known as “dynamic programming.”  Suppose we are given a string 

𝑦1𝑦2 ⋯ 𝑦𝑛 where each 𝑦𝑖 ∈ Σ.  We want to know if the string is in 𝐿∗.  To do this, we build an 𝑛 ×

𝑛  table 𝐴, where the entry 𝐴[𝑖, 𝑗] (for 𝑖 ≤ 𝑗) is supposed to represent whether the substring 

𝑦𝑖𝑦𝑖+1 ⋯ 𝑦𝑗  is in 𝐿∗.  If we can build this table, then we can just look at the entry 𝐴[1, 𝑛] to figure 

out if 𝑦1𝑦2 ⋯ 𝑦𝑛 ∈ 𝐿∗. 

 

What’s left is to see that we can fill in the table 𝐴 in polynomial time.  Remember that we have 

assumed 𝐿 ∈ 𝑷, so we have an algorithm that tests membership in 𝐿.  We can easily fill in some 

entries of the table:  For each 𝑖 = 1,2, … , 𝑛 , we have 𝐴[𝑖, 𝑖] = 1  if the string 𝑦𝑖  is in 𝐿  and 

𝐴[𝑖, 𝑖] = 0 otherwise.  Now consider the following pseudocode to fill in the rest of 𝐴: 

 

For 𝑖 = 1, 2, … , 𝑛 − 1, do: 

 For 𝑗 = 1, 2, … , 𝑛 − 𝑖 

    𝐴[𝑗, 𝑗 + 𝑖] = ⋯ 

 

Your goal is to fill in 𝐴[𝑖, 𝑗] using entries of the table 𝐴 that have already been filled in.  The whole 

algorithm should run in polynomial time, and at the end, we should have 𝐴[𝑖, 𝑗] = 1  if 

𝑦𝑖𝑦𝑖+1 … 𝑦𝑗 ∈ 𝐿∗ and 𝐴[𝑖, 𝑗] = 0 otherwise.  As we said before, 𝐴[1, 𝑛] then contains the answer 

to whether 𝑦1𝑦2 … 𝑦𝑛 ∈ 𝐿. 

 

Complete the code and argue that it decides membership in 𝐿∗ in polynomial time. 

 
 
 
 
 
 
 
 
 
 
 
 



Extra credit problems [These problems are difficult:  They may require some creativity 

and clever ideas.  They are each worth two regular problems.  If you get stuck on one, you 
can ask me for help.] 

 
1. An oracle for a language 𝐿 is an external device that can report whether any string 𝑤 is a 

member of 𝐿.  An oracle Turing machine is a modified Turing machine that has the 

additional capability of querying such an oracle.  We write 𝑀𝐿  to describe an oracle 

Turing machine that has an oracle for the language 𝐿. 

We say that a language 𝐴 is Turing-reducible to a language 𝐵, written 𝐴 ≤𝑇 𝐵, if there 

is a Turing machine 𝑀 such that 𝑀𝐵  decides 𝐴.  (In other words, 𝐴 can be decided with 

an oracle for 𝐵.)  As a warm up, you might want to confirm the following two facts: 

1) If 𝐴 ≤𝑇 𝐵 and 𝐵 is decidable, then 𝐴 is decidable. 

2) 𝐴𝑇𝑀 ≤𝑇 𝐻𝐴𝐿𝑇𝑇𝑀    (in other words, the acceptance language for Turing 

machines can be decided if we have an oracle for the halting problem) 

Now here’s the problem:  Show that there are two languages 𝐴 and 𝐵 such that 𝐴 ≰𝑇 𝐵 

and 𝐵 ≰𝑇 𝐴.  In other words, 𝐴 cannot be solved with an oracle for 𝐵 and 𝐵 cannot be 

solved with an oracle for 𝐴. 

 

2. Suppose we have 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛 and each variable can take only value 0 or 1.  

We also have an expression of the form 

𝐶1 ⋅ 𝐶2 ⋅ 𝐶3 ⋯ 𝐶𝑚 

Where each 𝐶𝑖  is of the form 𝐶𝑖 = max(𝑎𝑖, 𝑏𝑖) and each 𝑎𝑖  or 𝑏𝑖  is a variable 𝑥 or 1 − 𝑥.  

For instance, consider the following expression over the variables 𝑥1, 𝑥2, 𝑥3: 

𝐸 = max(𝑥1, 1 − 𝑥2) ⋅ max(1 − 𝑥1, 𝑥3) ⋅ max(𝑥1, 𝑥3) ⋅ max(𝑥2, 1 − 𝑥3) 

You are given such a formula as input and the goal is to decide if there exists a setting of 

the variables to 0/1 values such that the expression equals 1.  For example, for 𝐸 there is 

a solution: 

𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1 

Plugging these in we get 𝐸 = max(1,0) ⋅ max(0,1) ⋅ max(1,0) = 1 ⋅ 1 ⋅ 1 = 1. 

On the other hand, the expression 

max(𝑥1, 1 − 𝑥2) ⋅ max(1 − 𝑥1, 1 − 𝑥2) ⋅ max(𝑥1, 𝑥2) ⋅ max(1 − 𝑥1, 𝑥2) = 1 

has no solution (you can try all four possible values for 𝑥1, 𝑥2). 

Consider the language of formulas of this form that have a solution.  Show that this 

language is in 𝑷 (polynomial time). 

 


