
CSE P531: Computability and Complexity Theory (Spring, 2016) 
Homework 6          Out: Thursday, 5-May.  Due: Saturday, 14-May (9pm in the Dropbox) 

 

Reading: 
 

Sipser, 8.1-8.4, 9.1; Arora-Barak 4.1-4.3 

 

Instructions:   
 

Your proofs and explanations should be clear, well-organized and as concise as possible. 
 
You are allowed to discuss the problems with fellow students taking the class.  However, you must write 
up your solutions completely on your own. Moreover, if you do discuss the problems with someone else, 
I am asking, on your honor, that you do not take any written material away from the discussion. In 
addition, for each problem on the homework, I ask that you acknowledge the people you discussed that 
problem with, if any. 
 
Most of the problems require only one or two key ideas for their solution – spelling out these ideas should 
give you most of the credit for the problem even if you err in some finer details. So, make sure you clearly 
write down the main idea(s) behind your solution. 
 
A final piece of advice:  Begin work on the problem set early and don’t wait until the deadline is only a 
few days away.  



1. Checking for integer roots 
 

A monomial in variables 𝑥1, 𝑥2, … , 𝑥𝑛 is a product 𝑥1
𝛼1𝑥2

𝛼2 ⋯ 𝑥𝑛
𝛼𝑛, where the 𝑎𝑖’s are natural 

numbers.  An integral polynomial in 𝑥1, 𝑥2, … , 𝑥𝑛 is a sum of monomials with integer 

coefficients.  For instance, 

𝑝(𝑥1, 𝑥2, 𝑥3) = 4𝑥1𝑥2 − 7𝑥1𝑥3
2 + 11 𝑥1

2𝑥2
2𝑥3 + 2 

A root (𝑧1, 𝑧2, … , 𝑧𝑛)  of a polynomial 𝑝  in 𝑛  variables is a sequence of numbers such that 

𝑝(𝑧1, 𝑧2, … , 𝑧𝑛) = 0.  A root is integral if all the 𝑧𝑖’s are integers. 

Consider the language: 

INTEGRAL-ROOT = { 〈𝑝〉 ∶  𝑝 is a polynomial with an integer root } 

 

a) Show that 3-SAT ≤𝑃  INTEGRAL-ROOT. 

b) Does this imply that INTEGRAL-ROOT is NP-complete?  What’s the difficulty? 

 

2. EXPTIME vs. NEXPTIME 

 

Recall that EXPTIME =  ⋃ TIME (2𝑛𝑘
)𝑘 .  Let NEXPTIME = ⋃ NTIME (2𝑛𝑘

)𝑘  be the class of 

languages decidable on a non-deterministic TM with exponential time.  Your goal in this 

problem is to show that if EXPTIME ≠ NEXPTIME, then P ≠ NP. 

To accomplish this, it will help to use the function 

pad ∶  Σ∗ × ℕ → Σ∗#∗ 

defined by pad(𝑠, 𝑙) = 𝑠#𝑗  where 𝑗 = max (0, 𝑙 − length(𝑠)).  In other words, the function 

pad adds enough # characters to the end of 𝑠  so that it has length exactly 𝑙  (and it just 

returns 𝑠 if length(𝑠) > 𝑙). 

 

For a language 𝐴 and a function 𝑓 ∶ ℕ → ℕ, we define a new language 

pad(𝐴, 𝑓(𝑛)) = {pad (𝑠, 𝑓(length(𝑠))) ∶ 𝑠 ∈ 𝐴 } 

 

Prove that if 𝐴 ∈ 𝑇𝐼𝑀𝐸(𝑛10), then pad(𝐴, 𝑛2) ∈ 𝑇𝐼𝑀𝐸(𝑛5). 

 

Prove that if EXPTIME ≠ NEXPTIME, then P ≠ NP. 



EXTRA CREDIT [each worth two regular problems] 

 

1. Graph acyclicity 
 

You can read in Sipser (Section 8.4) about the complexity class 𝐿 = SPACE(log 𝑛) of languages 

that can be decided using only 𝑂(log 𝑛) space.  This is the set of languages where inputs of 

length 𝑛 can be decided using only 𝑂(log 𝑛) bits of memory.  (Note that for Turing machines, 

this is modeled by having two tapes:  The input tape is read only and your TM is only allowed to 

access 𝑂(log 𝑛) cells on the working tape.) 

Consider the language 

ACYCLIC = { 〈𝐺〉 ∶  𝐺 is an undirected graph with no cycles } 

(Note that 𝐺 could be disconnected.)  Prove that ACYCLIC ∈ 𝐿. 

 

2.  Bounded acceptance 

For any natural number 𝑘 ≥ 1, define the language 

𝐴𝑇𝑀
𝑘 = { 〈𝑀, 𝑤〉 ∶ 𝑀 is a TM with at most 𝑘 states and 𝑀 accepts 𝑤 } 

Prove that for some 𝑘 ≥ 1, the language 𝐴𝑇𝑀
𝑘  is undecidable. 

 

 


