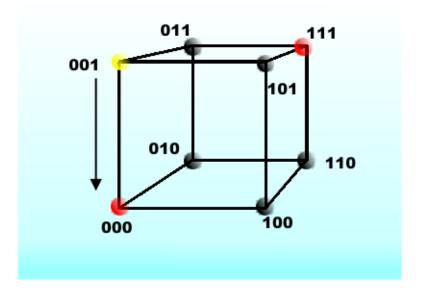
ERROR-CORRECTING CODES

Amr Kabardy

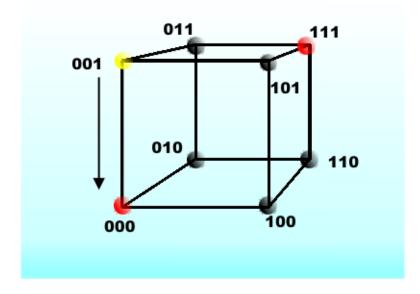
Kabardy@uw.edu

AGENDA

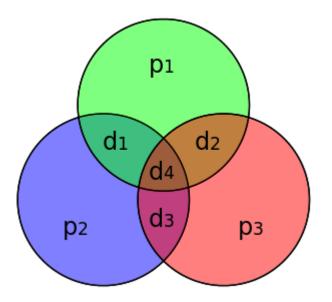
- What are Error-Correcting Codes?
- How do they works?
- Example: Hamming Codes (7,4)
- Types of Error-Correcting Codes
- Applications


WHAT ARE ERROR-CORRECTING CODES?

- Basic idea: add redundant bits
- Code Rate: Proportion of data-stream that is useful
 - Denoted as Code(n, k), n > k, generates n bits for every k bits
 - Code Rate = k / n
- Error Detection Vs Error Correction
- How much errors can be corrected?
 - Shannon Limit 1948:
 - The theoretical maximum information transfer rate of the channel
 - Shannon theorem: "Given a noisy channel with channel capacity C and information transmitted at a rate R, then if R < C there exist codes that allow the probability of error at the receiver to be made arbitrarily small"


HOW IT WORKS?

Triplet received	Interpreted as
000	0 (error free)
001	0
010	0
100	0
111	l (error free)
110	1
101	1
011	1


 In general, to correct m bits, each valid symbol has to be surrounded by a sphere of radius m+1 of invalid codes.

EXAMPLE: HAMMING CODE (7,4)

- Introduced by Richard Hamming in 1950, then was frustrated with the error-prone punched card reader
- For every 4 bits of data: d1, d2, d3, d4
- Add 3 parity bits: p1, p2, p3
- Transmit: pl p2 dl p3 d2 d3 d4

TYPES OF ERROR-CORRECTING CODES

- Convolutional Codes:
 - Sliding window on bit streams of arbitrary length
 - Most often decoded with the Viterbi algorithm
- Block Codes:
 - Work on fixed-size blocks of bits
 - Generally decoded in polynomial time to their block length
 - E.g. Reed-Solomon Code, Golay, BCH, Multidimensional parity, and Hamming codes.
- Turbo Codes:
 - Combines two or more relatively simple convolutional codes and an interleaver to produce a block code

APPLICATIONS

- Convolutional codes used in:
 - both <u>CDMA</u> and <u>GSM</u> digital cellular
 - dial-up modems
 - Satellite and deep-space communications
 - 802.11 wireless LANs
- Reed-Solomon coding has widespread use on the <u>Compact disc</u>, the <u>DVD</u>, and in <u>hard disk drives</u>
- Hamming ECC is commonly used to correct single level cell <u>NAND flash</u> memory errors

APPLICATIONS (2)

- LDPC codes are now used in many recent high-speed communication standards:
 - DVB-S2 (Digital video broadcasting)
 - WiMAX (IEEE 802.16e standard for microwave communications)
 - High-Speed Wireless LAN (IEEE 802.11n)
 - <u>10GBase-T Ethernet</u> (802.3an)
 - <u>G.hn/G.9960</u> (ITU-T Standard for networking over power lines, phone lines and coaxial cable).
- Turbo coding CDMA2000 lx and EV-DO
 - Digital cellular technology developed by <u>Qualcomm</u> and sold by <u>Verizon Wireless</u>, <u>Sprint</u>, and other carriers.

REFERENCES

- https://en.wikipedia.org/wiki/Noisy-channel coding theorem
- https://en.wikipedia.org/wiki/Error detection and correction#Errorcorrecting code
- https://en.wikipedia.org/wiki/Forward error correction
- https://en.wikipedia.org/wiki/Code_rate
- http://www.i-programmer.info/babbages-bag/214-error-correcting-codes.html?start=1
- https://en.wikipedia.org/wiki/Hamming(7,4)
- How do error correction codes work? (Hamming coding) https://www.youtube.com/watch?v=cBBTWcHkVVY

REFERENCES (2)

- https://en.wikipedia.org/wiki/Viterbi algorithm
- https://en.wikipedia.org/wiki/Convolutional code
- https://en.wikipedia.org/wiki/Viterbi_decoder
- https://en.wikipedia.org/wiki/Hard_disk_drive
- https://en.wikipedia.org/wiki/Linear_code

Questions?