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1 Introduction

Suppose we are given n observations X1, . . . , Xn, and our goal is to determine whether the samples were drawn from
distribution P0 or P1. This corresponds to performing a test of two hypotheses,

H0 : X1, . . . , Xn ∼ P0

H1 : X1, . . . , Xn ∼ P1

For example, suppose we know our samples come from a normal distribution with standard deviation σ, and we are
testing whether the mean is θ0 or θ1. Then P0 = N (θ0, σ

2) and P1 = N (θ1, σ
2). We will use this example throughout

this note.
What is the relationship between the number of samples and the error of the hypothesis test? If we had a specific

hypothesis test in mind, we could answer this question by computing its type 1 and type 2 errors for a given n. In
this note, we will be interested in lower bounds, which are statements of the form “every hypothesis test that sees
n samples gets the answer wrong at least δ fraction of the time,” where the lower bound δ is a function of n. In
order to answer this question, we bound the minimax probability of error on the hypothesis test of distinguishing
between the two populations. In this note, we describe three different types of minimax lower bounds: bounding
the chance of error in a hypothesis test with a given number of samples, bounding the number of samples a δ-PAC
correct hypothesis test must take, and bounding the risk of an estimator.

2 Minimax Probability of Error in Hypothesis Testing

We begin with the first type of lower bound: given n samples i.i.d. from either P0 or P1, we lower bound the
probability that any hypothesis test makes an error. There are two types of errors: choosing H1 if the truth is H0,
and vice versa. We are interested in bounding the probability of any error occurring, which means we want to bound
the maximum of the two types. If Ψ : {X1, . . . , Xn} → {0, 1} is a hypothesis test that decides between H0 and H1,
then we have the following lower bound on the minimax probability of error.

Theorem 2.1. Any hypothesis test that takes n samples and distinguishes between H0 : X1, . . . , Xn ∼ P0 and
H1 : X1, . . . , Xn ∼ P1 has probability of error lower bounded by

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4
e−nKL(P0||P1)

where KL(P ||Q) is the KL divergence.

Proof. To begin, we note that the maximum error is bounded below by the average error.

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

2
P0(Ψ = 1) +

1

2
P1(Ψ = 0)

Define the product distribution P̃i = P⊗ni (i.e., Pi i.i.d. on each of the n samples), which is a measure on the domain
of Ψ. Then we can rewrite the probability of each type of error as an integral,

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

2

(∫
Ψ=1

dP̃0 +

∫
Ψ=0

dP̃1

)
≥ 1

2

(∫
Ψ=1

min(dP̃0, dP̃1) +

∫
Ψ=0

min(dP̃0, dP̃1)

)
=

1

2

∫
min(dP̃0, dP̃1)
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Next, multiply by the integral of max(dP̃0, dP̃1). This integral is always less than 2, since the maximum of two
quantities is less than their sum, and

∫
dPi = 1. This lets us introduce another inequality,

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4

∫
min(dP̃0, dP̃1)

∫
max(dP̃0, dP̃1)

Now, we use the Cauchy-Schwarz inequality, 〈a, b〉2 ≤ ||a||2||b||2, to bound this expression by a single integral. If we

apply the Cauchy-Schwarz inequality with a =

√
min(dP̃0, dP̃1) and b =

√
max(dP̃0, dP̃1), we get

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4

(∫ √
min(dP̃0, dP̃1) max(dP̃0, dP̃1)

)2

=
1

4

(∫ √
dP̃0dP̃1

)2

=
1

4

∫ dP̃0

√
dP̃1

dP̃0

2

=
1

4

E0

√dP̃1

dP̃0

2

Our goal is to express this in terms of the KL divergence, so we need to introduce the log-likelihood ratio. We do
this by rewriting the inner term as the exponential of a log, and then applying Jensen’s inequality.

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4
exp

2 log

E0

√dP̃1

dP̃0


≥ 1

4
exp

2E0

log

√dP̃1

dP̃0


=

1

4
exp

(
−E0

[
log

(
dP̃0

dP̃1

)])

=
1

4
exp

(
−KL(P̃0||P̃1)

)
We have derived a lower bound on the minimax probability of error in terms of the KL divergence between P̃0 and
P̃1. The KL divergence sums over product distributions, giving us KL(P̃0||P̃1) = nKL(P0||P1), and we recover the
desired lower bound.

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4
exp (−nKL(P0||P1))

We can apply this bound to our running example of distinguishing between two Gaussian hypotheses with
different means and equal variances. The KL divergence between Gaussians N (θ0, σ

2) and N (θ1, σ
2) is given by

(θ1 − θ0)2/(2σ2). This implies the following corollary.

Corollary 2.2. Any hypothesis test that takes n samples and distinguishes between hypotheses H0 : X1, . . . , Xn ∼
N (θ0, σ

2) and H1 : X1, . . . , X2 ∼ N (θ1, σ
2) has probability of error bounded below by

max(P0(Ψ = 1),P1(Ψ = 0)) ≥ 1

4
e−n(θ1−θ0)2/(2σ2)

This result matches our understanding of what would make this problem hard. If the means are close together,
then the chance of error increases because the hypothesis distributions look more similar. If the variance is small,
then the means are better separated, and the minimax probability of error is lower.
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So far, we have seen how to compute a lower bound on the probability that any hypothesis test is in error after
taking n samples. We might instead want to set a desired level of correctness, and prove a lower bound on the
number of samples needed to guarantee that correctness. A δ-PAC guarantee on a hypothesis test states that its
type 1 and type 2 error rates are both bounded by δ. We can use Theorem 2.1 to lower bound the number of samples
required by any δ-PAC hypothesis test.

Corollary 2.3. Any hypothesis that uses n samples to distinguish between H0 : X1, . . . , Xn ∼ P0 and H1 :
X1, . . . , Xn ∼ P1 and is δ-PAC correct must satisfy

n ≥
log( 1

8δ )

KL(P0||P1)

Proof. We begin with Theorem 2.1, and then apply the fact that the maximum is upper bounded by the sum of its
arguments.

1

4
e−nKL(P0||P1) ≤ max(P0(Ψ = 1),P1(Ψ = 0))

≤ P0(Ψ = 1) + P1(Ψ = 0)

≤ 2δ

where the last line follows from the δ-PAC guarantee. We can now solve for n in terms of δ, to get

n ≥
log( 1

8δ )

KL(P0||P1)

We can use the preceding corollary to get a lower bound on the number of samples required by any δ-PAC
hypothesis test to distinguish between two Gaussians of equal variance.

Corollary 2.4. Any hypothesis test that uses n samples to distinguish between H0 : X1, . . . , Xn ∼ N (θ0, σ
2) and

H1 : X1, . . . , Xn ∼ N (θ1, σ
2) and is δ-PAC correct must satisfy

n ≥
2σ2 log( 1

8δ )

(θ1 − θ0)2

We see that more samples are required when the variance is large or the means are close together. The number
of samples also increases as the error tolerance δ decreases.

In Section 4, we will use the result of Theorem 2.1 to bound a different quantity of interest: the minimax risk of
an estimator. In the next section, we will define this quantity.

3 Defining the Minimax Risk

So far, we have been working in the setting where we must distinguish between two known hypotheses, H0 and
H1. We might instead be faced with a setting where we observe n samples X1, . . . , Xn from some distribution
parameterized by θ ∈ Θ, and we want to estimate θ with some estimator θ̂n. For example, we might want to estimate
the average height of a set of individuals with heights distributed N (θ, σ2).

A natural question we might ask is: how well can we estimate θ given these n samples? To answer this question,
we first need some notion of what it means to approximate θ “well.” In this note, we will restrict our discussion to
the mean squared error, ||θ̂ − θ||2.

Risk is defined relative to the truth θ, but in general we don’t know θ (after all, we’re trying to estimate it). How
can we evaluate the quality of our estimator in general, over all θ ∈ Θ?

We could imagine trying to describe the performance of our estimator in terms of its average risk, perhaps taking
an expectation of the risk over all parameters θ ∈ Θ. However, in order to take this expectation, we need to define a
distribution over Θ. While we may sometimes have access to such a distribution, in general we will not. In order to
avoid a dependence on this knowledge, we instead describe the performance of an estimator in terms of its worst-case
risk, Rmax.

Rmax(θ̂n) = sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]

3



If we want to measure the performance of our estimator in terms of the worst-case risk, then we would like to find
the estimator that minimizes this worst-case risk. The minimax risk is the smallest risk attainable by any estimator
θ̂n on the most difficult θ ∈ Θ. This can be written as

Rminimax(θ̂n) = inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
The minimax risk can be read, from the outside in, as an adversarial optimization. Beginning with the outer inf,

the player chooses some estimation procedure on the set of n samples. Next, in the inner sup, the adversary chooses
the value of θ to maximize the player’s risk. The adversary may use knowledge of the player’s estimation procedure,
as well as the number of samples n. The player’s goal is to choose an estimator θ̂n such that this worst-case risk is
minimized. The minimax risk is the worst-case risk under this most conservative choice of estimator.

We are interested in computing lower bounds on the minimax risk. Such a bound allows us to make statements
of the following form: no procedure which takes n samples from a distribution with parameter θ ∈ Θ, and returns
an estimator θ̂n, achieves a risk lower than the minimax risk on every distribution.

4 Lower Bounds on Hypothesis Testing Imply Lower Bounds on Esti-
mation Error

Theorem 4.1. Suppose that P is a probability distribution parameterized by θ, with P0 = P (θ0) and P1 = P (θ1).

Additionally, define s = 1
2 ||θ0 − θ1||. Then, the minimax risk of any estimator θ̂n that estimates θ with n samples

from P (θ) is lower bounded by

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ 1

4
s2e−nKL(P0||P1)

for all θ0, θ1 ∈ Θ, where KL(P ||Q) is the KL divergence.

Proof. In order to prove minimax lower bounds, we will transform our problem into one of hypothesis testing. We
begin with Markov’s inequality, which allows us to relate the probability of a nonnegative random variable exceeding
some threshold, and the expected value of that random variable. Let s be nonnegative. Then,

P(||θ̂n − θ|| ≥ s) = P(||θ̂n − θ||2 ≥ s2)

≤
E
[
||θ̂n − θ||2

]
s2

This gives us a lower bound on the minimax risk,

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ s2 inf

θ̂n

sup
θ∈Θ

P(||θ̂n − θ|| ≥ s)

We have managed to express the minimax risk in terms of the probability that our estimator deviates from the
truth by more than some threshold s. This isn’t quite sufficient, because we still have no way to determine how often
the best estimator will violate that threshold. In order to control this quantity, we switch from a supremum over all
of Θ to a maximum over two hypotheses. Additionally, we separate our hypotheses by a distance of 2s. This lets us
establish a connection between the test choosing the wrong hypothesis, and the estimator being far from the truth.

In order to reduce to two hypotheses, let us first define a pair of distributions {θ0, θ1} ⊂ Θ, which satisfy
||θ0 − θ1|| ≥ 2s. If we restrict our true distribution θ to be either θ0 or θ1, then we have created an easier problem.
In particular, the supremum over all θ ∈ Θ certainly upper bounds the maximum over the subset {θ0, θ1}, which
gives us the lower bound

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ s2 inf

θ̂n

max
i∈{0,1}

Pi(||θ̂n − θi|| ≥ s)

Next, we transform the infimum over all estimators into an infimum over all hypothesis tests. As before, let Ψ :
{X1, . . . , Xn} → {0, 1} be a hypothesis test that selects either H0 or H1 based on the observed data. We want to
claim that a lower bound on any hypothesis test’s probability of error implies a lower bound on any estimator’s
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Figure 1: If the estimator θ̂n is within distance s of the true hypothesis with probability at least p, then we could use
it to design a hypothesis test with probability of error less than 1− p. Therefore, a lower bound on the probability
of error for the hypothesis test is also a lower bound on the probability of ||θ̂n − θ|| exceeding s.

probability of getting within s of the truth. To see this, suppose, to obtain a contradiction, that we had a lower
bound on the performance of a hypothesis test, which said that no hypothesis test could correctly identify θi with
probability greater than some p, for each hypothesis θi. Then, we cannot have an estimator which gets within
distance s of the true distribution θi with probability p. If we did, then we would use that estimator to design a
hypothesis test with error p: simply estimate θ̂n and return the closest θi. With probability p, this estimator is
within s of the true distribution. In this event, since our hypotheses are separated by 2s, the closest hypothesis to
θ̂n is the true θi. We have used our estimator to create a hypothesis test with probability of success greater than p,
which is a contradiction. This tells us that no estimator can be within s of the true parameter with probability p.
The idea is illustrated in Figure 1.

We now formalize this argument in the following lemma.

Lemma 4.2. Let d(θ0, θ1) = ||θ0 − θ1||. If d(θ0, θ1) ≥ 2s, then for any estimator θ̂n, the probability that its distance
from the truth exceeds s is bounded by

Pθj (d(θ̂n, θj) ≥ s) ≥ Pθj (Ψ∗ 6= j)

where Ψ∗ is the minimum distance test defined by

Ψ∗ = arg min
k∈{0,1}

d(θ̂n, θk)

Proof. To prove the desired statement, it suffices to prove the implication

Ψ∗ 6= j =⇒ d(θ̂n, θj) ≥ s

under the true distribution θj . We will show the proof for j = 0; the case for j = 1 is identical.
If Ψ∗ 6= 0, then the minimum distance test chose k = 1. Since the hypotheses are separated by at least 2s, we

can use the triangle inequality to conclude

2s ≤ d(θ1, θ0)

≤ d(θ1, θ̂n) + d(θ̂n, θ0)

≤ 2d(θ̂n, θ0)

where the last inequality follows from the fact that the minimum distance test chose 1 instead of 0, so d(θ̂n, θ1) <

d(θ̂n, θ0). We have shown the desired implication for j = 0; this argument can be repeated for j = 1 to complete the
proof of the lemma.
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We use this lemma to lower bound the risk by the maximum error of the best hypothesis test.

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ s2 max

j∈{0,1}
Pj(Ψ∗ 6= j)

≥ s2 inf
Ψ

max
j∈{0,1}

Pj(Ψ 6= j)

= s2 inf
Ψ

max(P0(Ψ = 1),P1(Ψ = 0))

We have reduced the problem of bounding the minimax risk of an estimator to the problem of bounding the error
rate of a hypothesis test. From here, we can use the bounds on the minimax probability of error from Theorem 2.1,
completing the proof.

Returning to our example, suppose we knew our data came from a Gaussian distribution, and we wanted to
estimate its mean. We can use Theorem 4.1 to get a lower bound for the risk of any estimator for this problem.

Corollary 4.3. Let X1, . . . , Xn ∼ N (θ, σ2). The minimax risk of any estimator θ̂n that estimates θ given X1, . . . , Xn

is bounded below by

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ 1

8e
· σ

2

n

Proof. Let δ = ||θ0 − θ1||. Then, Theorem 4.1 gives us

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ 1

16
δ2e−nKL(P0||P1)

The KL divergence between two Gaussians is given by (θ0− θ1)2/(2σ2), which we substitute into the KL divergence.

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ 1

16
δ2e−nδ

2/(2σ2)

Theorem 4.1 holds for all choices of θ0 and θ1, so we maximize this lower bound over all positive values of δ.

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ max

δ

1

16
δ2e−nδ

2/(2σ2)

This maximum is achieved at δ =
√

2σ2/n, which gives a lower bound of

inf
θ̂n

sup
θ∈Θ

Eθ
[
||θ̂n − θ||2

]
≥ 1

8e
· σ

2

n

We have just seen that no estimator θ̂n for the mean of a Gaussian has expected mean squared error less than

O
(
σ2

n

)
. We might ask whether that lower bound is tight, that is, whether there exists an estimator that achieves

the lower bound. As the next remark shows, there is such an estimator.

Remark 4.4. Let Xi ∼ N (θ, σ2). The empirical average, θ̂n = 1
n

∑n
i=1Xi, achieves the minimax risk of O

(
σ2

n

)
up

to constant factors.

Proof. To prove this claim, we will compute the MSE of this estimator. We begin with the bias-variance decompo-
sition:

Eθ
[
||θ̂n − θ||2

]
= ||E[θ̂n]− θ||2 + E[||θ̂n − E[θ̂n]||2]
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The estimator is unbiased, so we are left with the variance term,

Eθ
[
||θ̂n − θ||2

]
= E[||θ̂n − E[θ̂n]||2]

= Var(θ̂n)

= Var

(
1

n

n∑
i=1

Xi

)

=
1

n2

n∑
i=1

Var(Xi)

=
σ2

n

We conclude that the empirical average has risk σ2

n . By corollary 4.3, it is minimax optimal up to constant factors.

There are many different types of information theoretic lower bounds. For example, if the KL divergence is
difficult to calculate for a given pair of hypothesis distributions, there are bounds that employ the Hellinger distance,
the total variation distance, or the likelihood ratio between the distributions. There are also situations in which two
hypotheses are insufficient for a strong lower bound on the risk, in which case it is necessary to use bounds based on
multiple hypotheses. Chapter 2 of [3] is a useful reference for a variety of information theoretic lower bounds.

The statement of Theorem 2.1 can be found in [3] (as Theorem 2.2). The proof presented here was synthesized
from techniques found in [3] and the proof of Lemma 7 in [1]. The proof of Theorem 4.1 is based on Section 2.2 of
[3]. Readers may also be interested in John Duchi’s excellent set of notes on minimax lower bounds [2].
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