
50

Induction Duality: Primal-Dual Search for Invariants

ODED PADON, VMware Research, USA and Stanford University, USA

JAMES R. WILCOX, Certora, USA
JASON R. KOENIG, Stanford University, USA

KENNETH L. MCMILLAN, University of Texas at Austin, USA

ALEX AIKEN, Stanford University, USA

Many invariant inference techniques reason simultaneously about states and predicates, and it is well-known

that these two kinds of reasoning are in some sense dual to each other. We present a new formal duality

between states and predicates, and use it to derive a new primal-dual invariant inference algorithm. The

new induction duality is based on a notion of provability by incremental induction that is formally dual to

reachability, and the duality is surprisingly symmetric. The symmetry allows us to derive the dual of the

well-known Houdini algorithm, and by combining Houdini with its dual image we obtain primal-dual Houdini,

the first truly primal-dual invariant inference algorithm. An early prototype of primal-dual Houdini for the

domain of distributed protocol verification can handle difficult benchmarks from the literature.

CCS Concepts: • Theory of computation→ Logic and verification; Invariants; • Software and its engi-

neering→ Formal methods.

Additional Key Words and Phrases: invariant inference, induction duality, Houdini, primal-dual Houdini, IC3,

property directed reachability, counterexample-guided abstraction refinement

ACM Reference Format:

Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken. 2022. Induction Duality:

Primal-Dual Search for Invariants. Proc. ACM Program. Lang. 6, POPL, Article 50 (January 2022), 29 pages.

https://doi.org/10.1145/3498712

1 INTRODUCTION

In modern invariant inference methods, it is common for the search for a proof to be guided
by the search for a refutation (i.e., a counterexample) and vice versa. It has been observed (e.g.,
in [Godefroid et al. 2010; McMillan 2014]) that the problems of proof and refutation are dual, in the
sense that solutions in one space constrain solutions in the other. However, the treatment of proofs
and refutations has always been asymmetric. As an example, many techniques make monotone
progress on one side but not the other. For example, a CEGAR technique [Clarke et al. 2000] may
accumulate predicates from one iteration to the next, while discarding counterexamples. On the
other hand, ICE learning [Garg et al. 2014] accumulates counterexamples but discards conjectured
invariants. IC3/PDR [Bradley 2011] accumulates both states and predicates but in an asymmetric
manner, using backward reachable states and predicates proven to be invariant in a bounded sense.
We present the first invariant inference framework where proofs and refutations are fully

symmetric. The framework is based on induction duality, a formal duality between a notion of proof

Authors’ addresses: Oded Padon, VMware Research, Palo Alto, CA, USA and Stanford University, Stanford, CA, USA,

padon@cs.stanford.edu; James R. Wilcox, Certora, USA, james@certora.com; Jason R. Koenig, Stanford University, Stanford,

CA, USA, jrkoenig@stanford.edu; Kenneth L. McMillan, University of Texas at Austin, Austin, TX, USA, kenmcm@cs.utexas.

edu; Alex Aiken, Stanford University, Stanford, CA, USA, aiken@cs.stanford.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART50

https://doi.org/10.1145/3498712

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3498712
https://doi.org/10.1145/3498712

50:2 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

a, b, c := 0, 0, 0

while * {

assert a ≥ 0

a, b, c := a+b, b+c, c+1

}

⊤
Ẽ (k=1)

−−−−−→ c ≥ 0
Ẽ (k=1)

−−−−−→ b ≥ 0
Ẽ (k=1)

−−−−−→ a ≥ 0

(a)

a, b, c := 0, 0, 0

while * {

assert a ≥ 0

a, b, c := a+b, b+c, c+a+1

}

⊤
Ẽ (k=3)

−−−−−→ a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0

(b)

Fig. 1. Illustrating bounded-width incremental induction. The notation P
Ẽ (k=n)

−−−−−−→ Q means that there is an
induction step of width n from P to Q (Section 3.2). Program (a) is provable with induction width 1. Program
(b) requires induction width 3.

by incremental induction and a notion of refutation by forward reachability, which is surprisingly
symmetric. Building on this symmetric duality, we derive primal-dual Houdini, a primal-dual
invariant inference algorithm. Like a primal-dual linear programming solver, primal-dual Houdini
alternates between the two sides of the duality making monotone progress on both sides: the proof
side successively rules out more potential refutations, while the refutation side successively rules
out more proofs. Moreover, the proof and refutation algorithms are symmetric at a high level,
differing only in the underlying solver that produces steps in the proof or refutation.

Bounded-width incremental induction. A key ingredient of our approach is a notion of provability
by incremental induction proofs that is formally dual to reachability in execution traces. Given
some inductive predicate P , a step in an incremental proof strengthens P to another inductive
predicate P ∧ ∆P , and after enough strengthening steps the goal invariant is proven. This much is
well-known [Bradley and Manna 2008; Manna and Pnueli 1995], and any such incremental proof
can be contracted to a monolithic proof, i.e., a single induction step. We introduce bounded-width
incremental induction, where in each step ∆P can only add bounded information to the invariant
(e.g., bounded number of conjuncts), forcing proofs to proceed in an incremental fashion.

Figure 1 gives illustrative examples showing how bounded-width incremental induction works.
In Figure 1a, starting from the invariant ⊤, we can prove that c ≥ 0 is an invariant of the loop. Then,
in a second induction step, using the fact that c ≥ 0 is an invariant we can prove that b ≥ 0 is an
invariant. Finally, in a third round, we can additionally prove that our goal, a ≥ 0, is an invariant.
This example requires only induction width 1, as each step adds only a single new conjunct. In
contrast, the program in Figure 1b cannot be proven with induction width 1. It requires induction
width 3, as the three conjuncts must be added simultaneously by induction.

Induction duality. With bounded width, proofs become more like execution traces, i.e., an un-
bounded iteration of bounded steps. As a result, induction can be used to reason about proofs in a
way that is analogous to the standard use of induction to reason about reachable states. For example,
to prove that the assertion in Figure 1b cannot be proven with induction width 1, we must prove
a fact about unbounded sequences. As we show, such a fact can be proven by induction, where
the induction hypothesis is a set of states. This set of states is analogous to a set of predicates that
forms an inductive invariant, and we call it dual-inductive. The connection between induction over
program execution and induction over proof sequences is formalized by our notion of induction
duality. We note that induction duality is different from the standard duality between states and
predicates given by a Galois connection [Cousot and Cousot 1979; Lawvere 1969]. Indeed, our

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:3

algorithmic developments in this paper utilize both the standard Galois-connection duality and the
new induction duality.

Primal-dual Houdini. We leverage our induction duality to obtain a dual version of the well-
known Houdini algorithm [Flanagan et al. 2001]. While Houdini finds the maximal inductive subset
of a given set of predicates, the resulting dual Houdini procedure finds the maximal dual-inductive
subset of a given set of states. Moreover, while Houdini finds counterexamples to induction (CTIs)
as part of its computation which consist of states and transitions, dual Houdini finds dual-CTIs
which consist of predicates and induction steps. We observe that dual-CTIs offer a new mechanism
for discovering predicates, and can be computed by adapting existing techniques. By combining
(primal) Houdini as a mechanism for learning states with dual Houdini as a mechanism for learning
predicates, we obtain a primal-dual invariant inference algorithm, primal-dual Houdini. This new
algorithm admits progress theorems that critically depend on the fact that the input to primal
Houdini comes from the output of dual Houdini, and vice versa, which illustrates the primal-dual
interaction between the two. Our prototype implementation of primal-dual Houdini in the domain
of distributed protocol verification is already competitive with state-of-the-art techniques.

Contributions. This paper makes the following contributions: (i) formalizing induction duality, a
symmetric connection between reachability and bounded-width incremental induction; (ii) deriving
dual Houdini as the image under induction duality of the Houdini algorithm, including dual-CTIs

which offer a new mechanism for predicate discovery; (iii) combining Houdini and dual Houdini to
obtain primal-dual Houdini, a primal-dual invariant inference algorithm which admits interesting
progress and termination theorems that highlight the primal-dual combination; and (iv) reporting
experiments showing that an early prototype of primal-dual Houdini in the domain of distributed
protocol verification is already competitive with state-of-the-art techniques.

Outline. Section 2 presents necessary preliminaries. Section 3 develops induction duality, first as a
notion on graphs, and then in relation to bounded-width incremental induction. Section 4 develops
primal-dual Houdini and presents several theorems utilizing its primal-dual nature. Section 5 reports
on an early prototype of primal-dual Houdini for distributed protocol verification and compares it
to five state-of-the-art tools. Finally, Section 6 discusses related work and Section 7 concludes.

2 PRELIMINARIES

In this section, we formalize well-known concepts of transition systems and inductive invariants.We
begin by formalizing states and predicates with a well-known Galois connection between them. This
Galois connection forms one standard duality between states/predicates and reachability/invariance,
and later in the paper two dualities will be at play: the standard one and the new induction duality.

Notation. For a set X, we use P (X) for the powerset of X, Pω (X) for the set of finite subsets of
X, and X∗ for the set of finite sequences of elements from X. For X ∈ Pω (X), we use |X | for the
cardinality of X . For X ∈ X∗, we use |X | for the length of X and Xi ∈ X for the i-th element in the
sequence, where 0 ≤ i < |X |. Whenever we have a binary relation □ ⊆ X × Y we write x□y for
(x ,y) ∈ □ and x □/ y for (x ,y) < □, and lift □ to combinations of sets and elements in the usual
way (where x ∈ X, y ∈ Y, X ⊆ X, and Y ⊆ Y): x□Y is ∀y ∈ Y . x□y, X□y is ∀x ∈ X . x□y, and
X□Y is ∀x ∈ X ,y ∈ Y . x□y; and x □/ Y , X □/ y, and X □/ Y are the negations thereof (e.g., X □/ Y
means ∃x ∈ X ,y ∈ Y . x □/ y). We similarly lift binary relations to finite sequences: for X ∈ X∗ and
Y ∈ Y∗, X□Y is

∧
0≤i< |X |,0≤j< |Y | Xi□Yj , x□Y is

∧
0≤j< |Y | x□Yj , and X□y is

∧
0≤i< |X | Xi□y.

States and predicates. Let us fix a set S of states, a set P of predicates, and |= ⊆ S × P a satisfaction
relation between states and predicates. The set of states S is typically countably infinite and

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:4 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

represents all possible system configurations (e.g., mappings from program variables to integers,
finite first-order structures). The set of predicates P is typically countably infinite and represents
possible assertions used in proofs by induction about reachable system configurations (e.g., linear
inequalities, universally quantified formulas). In the rest of this paper, finite subsets of P represent
conjunction; P itself is not closed under conjunction, which is especially crucial for bounded-width
incremental induction (defined in Section 3.2). In the sequel we use s, t to range over states; p,q to
range over predicates; S,R to range over sets of states; and P ,Q to range over sets of predicates.

Galois connection. The satisfaction relation gives rise to a well-known Galois connection between
the powerset lattices of states and predicates [Cousot and Cousot 1977, 1979; Lawvere 1969; Smith
2010]. If ⟨L, ≤⟩ and ⟨M,⊑⟩ are posets and α : L→ M and γ : M → L satisfy ∀x ∈ L, y ∈ M . α(x) ⊑

y ↔ x ≤ γ (y), then the pair (α ,γ) is a Galois connection, denoted by ⟨L, ≤⟩ −−−→←−−−α

γ
⟨M,⊑⟩. The

following functions form such a Galois connection ⟨P (S), ⊆⟩ −−−→←−−−α

γ
⟨P (P), ⊇⟩ between the powerset

lattice of states (ordered by ⊆) and the powerset lattice of predicates (ordered by ⊇):

α : P (S) → P (P) = λS . {p ∈ P | S |= p}, (1)

γ : P (P) → P (S) = λP . {s ∈ S | s |= P}. (2)

Transition systems. A transition system is given by a set of initial states ι ⊂ S and a transition
relation τ ⊂ S × S. An execution trace of a transition system is a sequence of states s0, . . . , sn
such that s0 ∈ ι and (si , si+1) ∈ τ for 0 ≤ i < n. A state is reachable if it is part of any execution
trace. Otherwise, the state is unreachable. Equivalently, the set of reachable states can be defined
as lfp λS . ι ∪ {s ′ | ∃s ∈ S . (s, s ′) ∈ τ }, where we use lfp f to denote the least fixed point of f . We
say that a finite set of states R ∈ Pω (S) is evidently reachable if all of its states are reachable via
execution traces that only contain states from R. Equivalently, R is evidently reachable iff:

R = lfp λS . (ι ∩ R) ∪ {s ′ | ∃s ∈ S . (s, s ′) ∈ τ ∩ (R × R)} . (3)

Given a finite R, checking if R is evidently reachable therefore amounts to a straightforward finite
least fixed point computation. Note that to be evidently reachable, a set has to include all the states
needed to justify its reachability. Thus, a set of reachable states that is not evidently reachable may
be made evidently reachable by including additional states that witness missing transitions.

Invariants and Inductiveness. A predicate is invariant if it is satisfied by all reachable states.
Otherwise, the predicate is noninvariant. A set of predicates is invariant if all its predicates are
invariant. A finite set of predicates Q ∈ Pω (P) is an inductive invariant or inductive if:

∀s ∈ ι. s |= Q , and (4)

∀(s, s ′) ∈ τ . s |= Q → s ′ |= Q . (5)

That is, a set of predicates is an inductive invariant if it is satisfied by the initial states and preserved
by transitions of τ . Any inductive invariant is invariant (by induction on execution traces).

3 INDUCTION DUALITY

We now develop induction duality, a formal symmetric duality between reachability and provability
by bounded-width incremental induction. As we shall see in Section 4, under the formalism
developed here, dual Houdini is obtained as the image of classical (primal) Houdini. We start with
a duality on graphs (Section 3.1). We then apply the graph duality to obtain a formal definition of
bounded-width incremental induction that is dual to reachability (Section 3.2).
The graph notion of induction duality is a connection between two graphs. As we shall see, in

one graph edges will correspond to transitions and paths to execution traces, and in the other graph

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:5

u

e

v

ũ

ẽ

ṽ

▷◁

▷◁ ▷◁

̸▷◁

Fig. 2. Illustration of ∥ and eq. (6). For e = (u,v) and ẽ = (ũ, ṽ), out of the 16 possible ways ▷◁ can relate u, v ,
ũ, and ṽ , only this one has e ∦ ẽ .

edges will correspond to incremental induction steps and paths to incremental induction proofs.
The connection is symmetric, laying the foundation for primal-dual Houdini.

3.1 Induction-Dual Graphs

A (directed, possibly infinite) graphG is a pairG = (V ,E), whereV is a set of vertices and E ⊆ V ×V
is a set of edges. We use E∗ for the reflexive-transitive closure of E. A path in G is a finite sequence
of vertices π = π0, . . . ,πn such that (πi ,πi+1) ∈ E for every 0 ≤ i < n; we write |π | for n the length
of π , and π ∈ E∗ to mean that π is a path of E-edges.

We consider two typically infinite graphs, G = (V ,E) and G̃ = (Ṽ , Ẽ), and a binary relation

▷◁ ⊆ V × Ṽ on their vertices. As we shall see in Section 3.2, G represents states and transitions, G̃
represents predicates and induction steps, and ▷◁ represents the satisfaction relation. We use u,v,w
to range over vertices, e to range over edges, and π to range over paths inG . We use ũ, ṽ , w̃ , ẽ , and

π̃ to range over corresponding objects of G̃.

Definition 3.1 (Induction-Dual Graphs). For pairs e = (u,v) ∈ V×V and ẽ = (ũ, ṽ) ∈ Ṽ×Ṽ , let
e ∥ ẽ denote:

u▷◁ũ ∧ u▷◁ṽ ∧v▷◁ũ → v▷◁ṽ . (6)

G̃ is an induction dual to G if E ∥ Ẽ, i.e., ∀e ∈ E, ẽ ∈ Ẽ. e ∥ ẽ .

The ∥ relation is illustrated in Figure 2. As can be seen from the horizontal symmetry of the

figure, eq. (6) and Definition 3.1 are symmetric betweenG and G̃. That is, G̃ is induction dual toG

by relation ▷◁ iffG is induction dual to G̃ by relation ▷◁T (▷◁ transposed). We thus simply say that G

and G̃ are induction duals. Note that induction duality is antitone (anti-monotone) w.r.t. E and Ẽ.
That is, removing edges from induction-dual graphs results in induction-dual graphs (and a pair of
graphs with no edges are always induction dual), but adding edges may break induction duality.

Induction duality imposes a pairwise constraint on edges ofG and G̃ , and the next theorem shows

it also implies a constraint on paths of G and G̃.

Theorem 3.2 (Paths in Induction-Dual Graphs). Let graphs G = (V ,E) and G̃ = (Ṽ , Ẽ) be

induction dual by relation ▷◁, then ∀π ∈ E∗, π̃ ∈ Ẽ∗. π0▷◁π̃ ∧ π▷◁π̃0 → π▷◁π̃ .

Proof. Suppose to the contrary that π0▷◁π̃ and π▷◁π̃0 but π ̸▷◁π̃ . Let i = min{i ′ | 0 ≤ i ′ ≤

|π | ∧ πi′ ̸▷◁π̃ } and j = min{j ′ | 0 ≤ j ′ ≤ |π̃ | ∧ πi ̸▷◁π̃j′}. Since π0▷◁π̃ , π▷◁π̃0, we have 0 < i, j . Consider

the edges (πi−1,πi) ∈ E and (π̃j−1, π̃j) ∈ Ẽ, and observe that we must have (πi−1,πi) ∦ (π̃j−1, π̃j),

contradicting E ∥ Ẽ. □

The definition of induction duality only constrains single edges in the graphs, but as Theorem 3.2
shows, this translates by induction to a similar relation on paths of the two graphs. The proof of
Theorem 3.2 critically uses induction on both paths simultaneously, that is, taking the minimum
indices in both π and π̃ . Another perspective is provided by the following corollary.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:6 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Corollary 3.3. Let µ(π , ũ) denote the minimum index of a vertex in π that is not related to

ũ by ▷◁, or ∞ if π▷◁ũ. That is: µ(π , ũ) = min{i | (0 ≤ i ≤ |π | ∧ πi ̸▷◁ũ) ∨ i = ∞}. Similarly, let

µ̃(u, π̃) = min{i | (0 ≤ i ≤ |π̃ | ∧ u ̸▷◁π̃i) ∨ i = ∞}. If π ∈ E∗, π̃ ∈ Ẽ∗, then µ(π , π̃0) ≤ µ(π , π̃j) for

0 ≤ j ≤ |π̃ |; dually µ̃(π0, π̃) ≤ µ̃(πi , π̃) for 0 ≤ i ≤ |π |.

Corollary 3.3 means that if there is a path from ũ to ṽ in G̃, then any path π in G must break ▷◁
connection with ũ before, or at the same time, as it breaks the connection with ṽ (and dually when

v is reachable from u in G, for paths in G̃).
Intuitively, Theorem 3.2 and Corollary 3.3 suggest that for induction-dual graphs we can view

paths in one graph as incremental induction proofs on paths of the other graph (and vice versa). To

see this, suppose there are special vertices u0 ∈ V and ũ0 ∈ Ṽ such that u0▷◁Ṽ and V ▷◁ũ0. Then, we
can view a path from ũ0 to any ṽ as an incremental induction proof that for any v reachable from
u0,v▷◁ṽ . Similarly, we can view a path from u0 to anyv as a proof that for ṽ reachable from ũ0,v▷◁ṽ .

3.2 Bounded-Width Incremental Induction Proofs

We now relate the graph duality to transition systems and incremental induction proofs. We use the
∥ relation and eq. (6) to obtain a notion of bounded-width incremental induction that is symmetric
to reachability. This symmetry is a property of the induction duality structure, defined below, which
formalizes bounded-width incremental induction proofs for a transition system. The structure
includes four sets of edges related by ∥, which are explained in detail following the definition.

Definition 3.4 (Induction Duality Structure). Given a set of states S, a set of predicates P, a set of
initial states ι ⊆ S, a transition relation τ ⊆ S×S, and an induction width k ∈ N, the induction duality

structure is
〈
V , Ṽ , ▷◁, E, Eω , Ẽω , Ẽ

〉
, where V = Pω (S), Ṽ = Pω (P), ▷◁ ⊆ V × Ṽ = {(S, P) | S |= P},

and:

E ⊆ V ×V = {(S, S ∪ {s ′}) | s ′ ∈ ι ∨ ∃s ∈ S . (s, s ′) ∈ τ } , (7)

Ẽω ⊆ Ṽ × Ṽ = {(P , P ∪Q) | (P , P ∪Q) ∥ E} , (8)

Ẽ ⊆ Ṽ × Ṽ = {(P , P ∪Q) | (P , P ∪Q) ∥ E ∧ |Q |≤k} , (9)

Eω ⊆ V ×V =
{
(S, S ∪ R) | (S, S ∪ R) ∥ Ẽ

}
. (10)

Vertices in V are finite sets of states, vertices in Ṽ are finite sets of predicates, and ▷◁ is the
satisfaction relation (where a set of predicates is interpreted conjunctively). The four sets of edges,

E, Ẽω , Ẽ and Eω , are all increasing, that is they are of the form (X ,X ∪ Y). E is determined by ι and

τ , Ẽω is the set of increasing edges parallel (∥) to E, Ẽ the subset of those where at most k predicates

are added, and Eω the set of all increasing edges parallel to Ẽ.1 We now explain the meaning of
these four sets of edges, and use them to define bounded-width incremental induction proofs.

E: Transitions and reachability. E is directly determined by ι and τ , such that (V ,E) captures the
transition system. Every trace of the transition system s0, . . . , sn corresponds to a path in (V ,E):
∅, {s0} , {s0, s1} , . . . , {s0, . . . , sn}. The following proposition relates E and evident reachability.

Proposition 3.5. For any set of states R ∈ Pω (S): (∅,R) ∈ E
∗ iff R is evidently reachable.

Proof. ⇒: by induction on the path in E∗.⇐: by induction on the least fixed point of eq. (3). □
1In this paper, we restrict Ẽ by number of predicates added. This restriction is both simple and suitable for the examples

we consider in our evaluation. However, the theory we develop does not strictly depend on this specific restriction, and is

valid as long as Ẽ is some subset of Ẽω that can be effectively searched. We consider such generalizations, leading to other

notions of bounded incremental induction, an opportunity for future research.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:7

∅
𝑐 ≥ 0

𝑏 ≥ 0, 𝑐 ≥ 0
𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0

𝑐 = 0
𝑏 = 0, 𝑐 = 0 𝑎 = 0, 𝑐 = 0

𝑎 = 0, 𝑏 = 0, 𝑐 = 0

෨𝐸
෨𝐸
෨𝐸

෨𝐸 ෨𝐸
෨𝐸෨𝐸෨𝐸𝜔

෨𝐸𝜔
෨𝐸𝜔෨𝐸𝜔

∅ 𝑐 ≥ 0
𝑏 ≥ 0, 𝑐 ≥ 0

𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0

෨𝐸
෨𝐸

෨𝐸𝜔
෨𝐸𝜔

𝑐 = 0
𝑏 = 0, 𝑐 = 0 𝑎 = 0, 𝑐 = 0

𝑎 = 0, 𝑏 = 0, 𝑐 = 0

෨𝐸 ෨𝐸
෨𝐸෨𝐸෨𝐸𝜔

(a)

(b)

Fig. 3. Illustration of Ẽ and Ẽω (Definition 3.4) for the programs of Figure 1 and induction width k = 1.
(a) corresponds to the program listed in Figure 1a, and (b) to the program listed in Figure 1b. The set of
predicates considered is P = {a ≥ 0,b ≥ 0, c ≥ 0,a = 0,b = 0, c = 0}. Only a selected subgraph is presented

(i.e., not all subsets of P are included). Self loops are omitted, and every edge labeled Ẽ also implies an Ẽω
edge (as Ẽ ⊆ Ẽω). Note that since Ẽ and Ẽω edges are always from P to P ∪Q , there is no edge from, e.g.,

{c = 0} to {c ≥ 0}. (There is an Ẽ edge from {c = 0} to {c = 0, c ≥ 0} which is not depicted since the latter
set is not included in the presented subgraph.)

Ẽω : Monolithic induction and incremental induction. Ẽω is defined to be the set of increasing edges

parallel (∥) to E. While Ẽω is defined in terms of ∥ and E, the following proposition characterizes it
directly in terms of ι and τ .

Proposition 3.6. For any sets of predicates P ,Q ∈ Pω (P), (P , P ∪Q) ∈ Ẽω iff:

∀s ∈ ι. s |= P → s |= Q , and (11)

∀(s, s ′) ∈ τ . s |= P ∧ s |= Q ∧ s ′ |= P → s ′ |= Q . (12)

Proof. By combining eqs. (6) to (8). Note that eq. (12) is very similar in form to eq. (6). □

By observing that for P = ∅, eqs. (11) and (12) reduce to eqs. (4) and (5), we get the following

corollary relating Ẽω and inductive invariants.

Corollary 3.7. For any set of predicates Q ∈ Pω (P), (∅,Q) ∈ Ẽω iff Q is inductive.

For any edge (P ,Q) ∈ Ẽω , by Theorem 3.2 if P is invariant then Q is also invariant. Therefore, if

there is a path in Ẽω from ∅ toQ , i.e. (∅,Q) ∈ Ẽ∗ω , thenQ is invariant. We therefore call (P ,Q) ∈ Ẽω

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:8 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

an induction transition from P toQ , and define an incremental induction proof to be a path in Ẽω that
starts at ∅. We expect that every incremental induction proof can be reduced to a single (monolithic)

inductive invariant. With our definitions, this expectation translates to: (∅,Q) ∈ Ẽ∗ω ⇒ (∅,Q) ∈ Ẽω .

Indeed, as Theorem 3.8 later shows, we actually have Ẽ∗ω = Ẽω .

Figure 3 illustrates Ẽ and Ẽω for the two programs listed in Figure 1 with induction width
k = 1. For the illustration, we set P = {a ≥ 0,b ≥ 0, c ≥ 0,a = 0,b = 0, c = 0}, which leads to

|Ṽ | = 26 = 64. The figure only shows the subgraphs obtained for a selected set of 8 vertices in Ṽ .

(Note that P and Ṽ are typically infinite, and we use this finite example for illustration purposes.) In

both Figure 3a and Figure 3b, there is an Ẽω edge from ∅ to {a ≥ 0,b ≥ 0, c ≥ 0}, representing the

inductive invariant for both programs. For both programs, Ẽω also includes an edge from {c = 0}

to {a = 0,b = 0, c = 0}. Clearly, this edge does not represent invariants of the programs. However,
according to Corollary 3.3, any execution trace of either program that violates a = 0 or b = 0 must
also violate c = 0, which represents valid knowledge about the programs that may be useful in

analyzing them. Thus, as intuitive way to interpret an Ẽω edge from P to Q is: any execution trace
that satisfies P also satisfies Q .
Our notion of induction transition differs from the notion of relative inductiveness used in

IC3/PDR [Bradley 2011, 2012], which is also inspired by incremental induction. Focusing on τ , IC3’s
notion of Q being inductive relative to P is ∀(s, s ′) ∈ τ . s |= P ∧ s |= Q → s ′ |= Q whereas our
induction transition from P to Q is given by eq. (12), which is very similar but also includes s ′ |= P

in the antecedent. In terms of Figure 2 and eq. (6), IC3’s relative inductiveness omits the edge v▷◁ũ
(P corresponds to ũ and Q to ṽ), which would not result in a symmetric duality if we took it as
our definition of induction transitions. Note however, that if P is inductive, then relative induction
coincides with eq. (12). In an incremental induction proof the source of every induction transition
is itself inductive, but as we shall see, primal-dual Houdini uses induction transitions where P is
not inductive as part of the search process.

Finally, we note that if ι, τ , P and Q are represented symbolically using formulas in the standard
way (where τ is represented using primed symbols for the post-state), then checking if there is
an induction transition from P to P ∪Q can be reduced to checking the validity of the following
implications matching eqs. (11) and (12), which in many cases can be automated using an SMT
solver: ι ∧ P → Q and P ∧Q ∧ τ ∧ P ′→ Q ′.

Ẽ: Bounded-width incremental induction. While Ẽω edges represent incremental induction proofs,
they pose no restriction on the amount of information each induction transition can add at once, as

manifested by the fact that any path in Ẽω can be compacted to a single induction transition. This
property also makes the task of searching for an induction transition very difficult, which motivates

our definition of Ẽ, a restriction of Ẽω to induction transitions where at most k predicates are added.

We call (P ,Q) ∈ Ẽ a k-width induction transition from P to Q , and define a k-width incremental

induction proof to be a path in Ẽ that starts at ∅. We say that a predicate p is k-provable if there

is some Q s.t. (∅,Q) ∈ Ẽ∗ with p ∈ Q . That is, a predicate is k-provable if it can be proven to be
invariant using a k-width incremental induction proof. If a predicate is not k-provable, we say it is
k-unprovable. We say that a set of predicates Q is evidently k-provable if a k-width proof of every
predicate in Q can be constructed using only predicates from Q .

For example, as Figure 3 shows, for the program of Figure 1a there is an Ẽ path from ∅ to
{a≥0,b≥0, c≥0}, which is not the case for the program of Figure 1b. Therefore, for Figure 1a,
a≥0 is 1-provable and {a≥0,b≥0, c≥0} is evidently 1-provable. In contrast, for Figure 1b, a≥0 is
3-provable but not 1- or 2-provable. While in both examples a monolithic proof uses the same
three predicates, the narrowest incremental proofs for each example are of different widths, due to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:9

the different dependency structure between the predicates. In general, given a set of predicates Q
that is inductive, the minimal k for which Q is evidently k-provable matches the largest strongly
connected component in a suitable dependency graph.

We say a state is k-abstractly-reachable if it satisfies all k-provable predicates. That is, a state is
k-abstractly-reachable if it cannot be proven to be unreachable using k-width proofs. All reachable
states are k-abstractly-reachable, but an unreachable state may also be k-abstractly-reachable (i.e.,
when proving its unreachability requires induction width > k or predicates beyond P). For example,
by the discussion above, any bad state (with a < 0) is not 1-abstractly-reachable for the example of
Figure 1a, but is 1- and 2-abstractly-reachable (but not 3-abstractly-reachable) for Figure 1b.

Eω : Monolithic induction proofs of k-unprovability. In order to prove that some predicate is k-
unprovable, or that some state is k-abstractly-reachable, we must use induction proofs to put an

upper bound on Ẽ∗. The induction duality structure provides such proofs via Eω , defined to be

all edges in V that are parallel (∥) to Ẽ. That is, Eω edges connect sets of states, and Eω is to Ẽ

precisely what Ẽω is to E. In proofs of k-unprovability, the induction hypothesis is thus a set of
states. Note that by Theorem 3.2, if (∅,R) ∈ Eω then all the states in R satisfy every k-provable
predicate, that is, they are k-abstractly-reachable. We therefore say R is evidently k-abstractly-

reachable, or dual-inductive, if (∅,R) ∈ Eω . We expect that every evidently reachable set of states
is also evidently k-abstractly-reachable. With our definition and Proposition 3.5 this expectation
translates to (∅,R) ∈ E∗ ⇒ (∅,R) ∈ Eω . Indeed, as Theorem 3.8 later shows, we have E∗ ⊆ Eω .
Checking if a set of states R is evidently k-abstractly-reachable amounts to finding a k-width

induction transition (P ,Q) ∈ Ẽ such that (∅,R) ∦ (P ,Q), which we call a dual-CTI (dual counterex-
ample to induction), or concluding that no such dual-CTI exists. Indeed, one of the motivations for
restricting induction width is to make such a dual-inductiveness check practical, as the restriction
to k-width restricts the search space for dual-CTIs.2

For the program of Figure 1b and the set of predicates used in Figure 3, the following set is
evidently 1-abstractly-reachable and also evidently 2-abstractly-reachable:

R = {(0, 0,−1) , (0,−1, 0) , (−1,−1, 1) , (−2, 0, 1) , (−2, 1, 0) , (−1, 1,−1)} ,

where (x ,y, z) denotes the program state where a = x , b = y, and c = z. To see that the above

R is evidently 1-abstractly-reachable, one needs to see that every (P ,Q) ∈ Ẽ is parallel to (∅,R),
which amounts to: if R |= P then R |= Q . It is easy to see that this holds for the P used in Figure 3,

since the only P ⊆ P that is satisfied by R is ∅, which has no outgoing Ẽ edges (for either k = 1 or
k = 2). However, the reader can also convince themselves that the above R is evidently 1-abstractly-
reachable even when P includes all predicates of the formv□x wherev is a program variable, x ∈ Z,
and □ ∈ {=, ≤, ≥, <, >}.

Recap. We have seen that the four sets of edges in the induction duality structure represent:

E: transitions of the transition system, defining the set of reachable states via E∗;

Ẽ: steps of bounded-width incremental induction, defining the set of k-provable predicates via Ẽ∗;

Ẽω : unbounded monolithic induction providing an upper bound on E∗, i.e., proving that some
states are unreachable or some predicates are invariant; and

Eω : unbounded monolithic induction providing an upper bound on Ẽ∗, i.e., proving that some
predicates are k-unprovable or some states are k-abstractly-reachable.

2Checking dual-inductiveness (i.e., searching for a dual-CTI) is a central task resulting from the theory developed in this

paper. However, since the solution is domain-specific, we delay discussing its details to Section 5.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:10 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Properties of the induction duality structure. We now prove several properties of the induction
duality structure. These properties have been used above to show that our definitions match the
intuitive expectations, and they are also used in the development of primal-dual Houdini. Intuitively,
items 1 and 2 in the following theorem explore the transitive closure of the four types of edges,

and items 3 and 4 restate the maximality of Ẽω and Eω in a way that is useful for the sequel.

Theorem 3.8. If
〈
V , Ṽ , ▷◁,E,Eω , Ẽ, Ẽω

〉
is an induction duality structure, then:

(1) E∗ ⊆ Eω = E∗ω and Ẽ∗ ⊆ Ẽω = Ẽ∗ω ;

(2) E∗ ∥ Ẽω and Eω ∥ Ẽ
∗ ;

(3) for P ,Q ∈ Ṽ , either (P , P ∪Q) ∈ Ẽω or ∃e ∈ E. e ∦ (P , P ∪Q) ; and

(4) for S,R ∈ V , either (S, S ∪ R) ∈ Eω or ∃ẽ ∈ Ẽ. (S, S ∪ R) ∦ ẽ .

Proof. We first observe that for e ∈ V × V and P1, P2, P3 ∈ Ṽ , if e ∥ (P1, P2), e ∥ (P2, P3) and

P2 ⊆ P3, then e ∥ (P1, P3). Similarly, for ẽ ∈ Ṽ × Ṽ and S1, S2, S3 ∈ V , if (S1, S2) ∥ ẽ , (S2, S3) ∥ ẽ and

S2 ⊆ S3, then (S1, S3) ∥ ẽ . Therefore, if E ∈ V ×V and Ẽ ∈ Ṽ × Ṽ are sets of increasing edges with

E ∥ Ẽ, we get E ∥ Ẽ∗ and E∗ ∥ Ẽ. By applying this result to E, Ẽ, Eω and Ẽω (which only contain

increasing edges), we get item 2, as well as: E ∥ Ẽ∗ω and E∗ω ∥ Ẽ. Considering the definition of Ẽω
as all increasing edges parallel to E, and of Eω as all increasing edges parallel to Ẽ, we therefore

get Ẽ∗ω = Ẽω and E∗ω = Eω . To conclude the proof of item 1, note that Ẽ ⊆ Ẽω (by definition), and

E ⊆ Eω (since E ∥ Ẽ). Lastly, items 3 and 4 follow directly from the definitions of Ẽω and Eω . □

Note that we do not necessarily (or typically) have Eω ∥ Ẽω . That is, some k-abstractly-reachable
state can violate some inductive invariant (that is not k-provable).

3.3 Symmetric Connection Between Reachability and k-provability

We now discuss a particular symmetry of the induction duality structure. This symmetry, combined
with the fact that we used the induction duality structure to define bounded-width incremental
induction, leads to a surprising symmetric connection between reachability and k-provability. It is
this connection, rather than the graph duality of Section 3.1, that we call induction duality in the
rest of this paper. That is, the induction dual of any object represents its image under this symmetry.
Table 1 lists the various concepts we have defined, relates them to the induction duality structure,
and contrasts their induction duals with their Galois-connection duals, as discussed below.
Recall that the definition of induction-dual graphs and the ∥ relation are symmetric, and ob-

serve that the properties stated in Theorem 3.8 are symmetric as well, w.r.t. swapping tilded and

untilded objects. That is, Theorem 3.8 items 1 to 4 hold for ⟨V , Ṽ , ▷◁,E,Eω , Ẽ, Ẽω ⟩ iff they hold

for ⟨Ṽ ,V , ▷◁T , Ẽ, Ẽω ,E,Eω ⟩. Thus, we say that the following are dual to each other w.r.t. induction

duality: states and predicates (V ↔ Ṽ); transitions and k-width induction transitions (E ↔ Ẽ); and
inductive invariants and evidently k-abstractly-reachable sets, which we also call dual-inductive

(Eω ↔ Ẽω). Accordingly, reachability and k-provability are dual, as well as evident reachability and
evident k-provability. Indeed, the reader can verify that any of the definitions of Section 3.2 respect
this duality (e.g., the definition of evident k-provability, if we swap tilded and untilded objects,

coincides with the definition of evident reachability). Note that the symmetry swaps Eω ↔ Ẽω ,

even though (V ,Eω) and (Ṽ , Ẽω) are typically not induction-dual graphs (i.e., Eω ∦ Ẽω). Therefore,
the reader should not be confused by this overloading of the term induction duality, and note that
from now on, it refers to this symmetry of the induction duality structure and not to the graphs
duality of Section 3.1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:11

Table 1. Concepts, how they relate to the induction duality structure (IDS), and their duals under induction
duality and under the Galois connection. In the IDS column, a mnemonic notation is used: E∗ stands for⋃
{R | (∅,R) ∈ E∗} which defines the set of reachable states, Ẽ∗ stands for

⋃
{Q | (∅,Q) ∈ Ẽ∗} which defines

the set of k-provable predicates, Ẽω stands for (∅,Q) ∈ Ẽω which is the equivalent to Q being inductive, and
Eω stands for (∅,R) ∈ Eω which is equivalent to R being evidently k-abstractly-reachable (dual-inductive).

Concept IDS Induction dual −−−→
←−−−

α

γ
dual

reachability E∗ k-provability invariance

k-provability Ẽ∗ reachability k-abstract-reachability

invariance α(E∗) k-abstract-reachability reachability

k-abstract-reachability γ (Ẽ∗) invariance k-provability

inductiveness Ẽω evident k-abstract-reachability reachability3

evident k-abstract-reachability Eω inductiveness k-provability3

It is illustrative to contrast induction duality to the Galois connection ⟨P (S), ⊆⟩ −−−→←−−−α

γ
⟨P (P), ⊇⟩.

The Galois-connection dual of reachability is invariance, and the set of invariant predicates is
by definition α applied to the set of reachable states. Similarly, the Galois-connection dual of
k-provability is k-abstract-reachability, as the set of k-abstractly-reachable states is by definition
γ applied to the set of k-provable predicates. Another important difference is that the Galois
connection orders sets of states by ⊆ and sets of predicates by ⊇, whereas for induction duality, we

swap betweenV = Pω (S) and Ṽ = Pω (P), both ordered by ⊆ (for example, both E transitions and Ẽ
induction transitions are increasing according to ⊆).

We are now equipped to develop a symmetric primal-dual search algorithm that explores reacha-
bility, invariance, k-provability, and k-abstract-reachability, utilizing all connections between them.

4 PRIMAL-DUAL HOUDINI

We now build on induction duality to develop a primal-dual search algorithm that explores the
infinite space of states and predicates in a symmetric and primal-dual manner, i.e., new states drive
the discovery of new predicates which drive the discovery of new states and so on. The resulting
algorithm simultaneously underapproximates and overapproximates reachability, invariance, k-
provability, and k-abstract-reachability, utilizing the connections between them.

Our plan is to: (i) recall the well-known Houdini procedure [Flanagan et al. 2001; Flanagan and
Leino 2001] for computing the maximal inductive subset of a given set of predicates, (ii) systemati-
cally apply induction duality (i.e., the symmetry discussed in Section 3.3) to obtain the dual image of
HoudiniÐa procedure for computing the maximal evidently k-abstractly-reachable subset of a given

3 There is a subtlety in the relation of inductiveness and evident k-abstract-reachability to their Galois-connection duals,

which is noted here for accuracy but otherwise not important for the rest of this paper. These concepts are an overapproxi-

mation of their Galois-connection duals that is coarser than necessary by the Galois connection itself. Intuitively, both

invariance and inductiveness are Galois-connection dual to reachability as they overapproximate the set of reachable states;

but the latter is a coarser overapproximation (a finite inductive invariant is not as precise as the possibly infinite set of all

invariant predicates), while the former is the overapproximation that is inherent to the Galois connection (i.e., γ ◦ α applied

to the set of reachable states). The situation for evident k-abstract-reachability as it relates to k-provability is similar.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:12 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Algorithm 1 Primal Houdini

Input P ∈ Pω (P), S ∈ Pω (S)

Output PH ⊆ P and EH ⊆ E

▷ PH is the maximal subset of P that is inductive

▷ EH contains a CTI for every P ′ ⊆ P s.t. P ′ ⊈ PH
1: procedure PrimalHoudini(P , S)

2: EH := ∅ ; PH := P

3: while (some (X ,Y) ∈ E |S is a CTI for PH) or

4: (some (X ,Y) ∈ E is a CTI for PH) do

5: EH := EH ∪ {(X ,Y)}

6: PH := PH ∩ α(Y) (α as defined in eq. (1))

7: return PH , EH

set of states, and (iii) combine both procedures into a primal-dual search algorithm, primal-dual

Houdini, and explore its properties. Let us fix a set of states S, a set of predicates P, a set of initial

states ι ⊂ S, a transition relation τ ⊂ S × S, an induction width k ∈ N, and
〈
V , Ṽ , ▷◁,E,Eω , Ẽ, Ẽω

〉

the corresponding induction duality structure (Definition 3.4).
We say that (S,R) ∈ E is a CTI for P ∈ Pω (P) (counterexample to induction) if (S,R) ∦ (∅, P), and

that (P ,Q) ∈ Ẽ is a dual-CTI for S ∈ Pω (S) if (∅, S) ∦ (P ,Q). Recall that P is inductive iff (∅, P) ∈ Ẽω ,
and by Theorem 3.8 item 3, P is inductive iff E does not contain a CTI for P . By Theorem 3.8 item 4,

S is dual-inductive (i.e., (∅, S) ∈ Eω) iff Ẽ does not contain a dual-CTI for S .
We assume the existence of two oracles that search for CTIs and dual-CTIs. Given P , the E-solver

either finds a CTI for P in E or determines that P is inductive. The E-solver can be implemented
using an SMT solver in a standard way. On the other side of the induction duality, given S , the

Ẽ-solver either finds a dual-CTI for S in Ẽ or determines that S is dual-inductive. The Ẽ-solver is
not standard, but the bound on induction width is intended to make it practical to implement, e.g.
by adapting learning and synthesis techniques [Alur et al. 2013; Garg et al. 2014; Hu et al. 2019;

Koenig et al. 2020]. Section 5 details our Ẽ-solver for universally quantified formulas.

For E a subset of V × V or Ṽ × Ṽ , we define (∪E) = {x | (X ,Y) ∈ E ∧ x ∈ X ∪ Y } and
E|X = E ∩ (P (X) × P (X)).

4.1 Primal Houdini and Dual Houdini

Algorithm 1 presents the Houdini procedure [Flanagan et al. 2001; Flanagan and Leino 2001], called
here PrimalHoudini, for finding the maximal inductive subset of a given finite set of predicates P .
We adapt the procedure to also take as input a set S of preferred states and return as output a set

EH of CTIs, as discussed below. Houdini eliminates up to 2 |P | potential inductive invariants with at
most |P | CTIs. The algorithm follows a simple greatest fixed point computation loop. Each iteration
checks if a CTI exists for the current set of predicates, and if so removes the predicates violated
by the post-state of the CTI. For our purposes here it is useful for PrimalHoudini to return the
set of CTIs encountered during the fixed point computation. It is also useful for us to provide
PrimalHoudini with a finite set of preferred states such that PrimalHoudini first checks for CTIs
among those states. (The or in line 3 is short-circuiting.) If a CTI is not found in the preferred
states then in line 4 PrimalHoudini uses the E-solver to find an arbitrary CTI or conclude that the
current set of predicates is inductive.
The guarantees of PrimalHoudini irrespective of the preferred states are formalized in the

following proposition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:13

Algorithm 2 Dual Houdini

Input S ∈ Pω (S), P ∈ Pω (P)

Output SH ⊆ S and ẼH ⊆ Ẽ

▷ SH is the maximal subset of S that is dual-inductive

▷ ẼH contains a dual-CTI for every S ′ ⊆ S s.t. S ′ ⊈ SH
1: procedure DualHoudini(S, P)

2: ẼH := ∅ ; SH := S

3: while (some (X ,Y) ∈ Ẽ |P is a dual-CTI for SH) or

4: (some (X ,Y) ∈ Ẽ is a dual-CTI for SH) do

5: ẼH := ẼH ∪ {(X ,Y)}

6: SH := SH ∩ γ (Y) (γ as defined in eq. (2))

7: return SH , ẼH

Proposition 4.1 (PrimalHoudini). PrimalHoudini(P , _) terminates for any P ∈ Pω (P), and if

(PH ,EH) are returned and the E-solver is called N times then:

(1) PH is the maximal inductive subset of P : (∅, PH) ∈ Ẽω and PH is has no outgoing Ẽω |P edges.

(2) PH = P ∩ α(∪EH);

(3) for any P ′ ⊆ P such that P ′ ⊈ PH , some (S ′,R′) ∈ EH is a CTI for P ′, i.e., EH ∦ (∅, P
′); and

(4) N ≤ |EH | ≤ |P | − |PH |.

Proof. If we let N count the number of E-solver calls so far, then the conjunction of items 2
to 4 is a loop invariant. Termination is guaranteed because |PH | strictly decreases in every loop
iteration. Item 1 is provided by the negation of the loop condition combined with item 3. □

The return value of PH is uniquely determined by P (follows from Proposition 4.1 item 1), while
that of EH is not, and depends on the nondeterministic choices at lines 3 and 4, including the
nondeterminism of the E-solver.
The following proposition shows PrimalHoudini utilizes (and implicitly identifies) evidently

reachable preferred states to rule out all predicates violated by such states, a fact we will later use.

Proposition 4.2 (PrimalHoudini Preferred States). For P ∈ Pω (P), S ∈ Pω (S), and SR ⊆

S that is evidently reachable, if PrimalHoudini(P , S) has an execution that returns (PH ,EH) and

performs N calls to the E-solver, then:

(1) N =
���EH \ EH |S

��� ≤ |P ∩ α(SR)| − |PH |; and
(2) if P ′ ⊆ P and SR ̸ |= P ′ then EH |S contains a CTI for P ′.

Proof. By Theorems 3.2 and 3.8, E |SR
contains a CTI for any Q ⊈ α(SR). This observa-

tion allows us to conclude that during the execution of PrimalHoudini(P , S), the E-solver can
only be called after PH becomes a subset of α(SR). Formally, the following is a loop invariant:

(i) N =
���EH \ EH |S

��� ≤ |P ∩ α(SR)| − |PH ∩ α(SR)|; and (ii) if P ′ ⊆ P , SR ̸ |= P ′, and P ′ ⊈ PH then

some (S ′,R′) ∈ EH |S is a CTI for P
′. Upon termination SR |= PH , reducing (i) to (1) and (ii) to (2). □

Dual Houdini. We now apply induction duality to obtain a dual version of Houdini. Recall the
symmetry of the induction duality structure discussed in Section 3.3, which conveniently swaps
tilded and untilded symbols. We obtain the dual version of Houdini by applying this transformation

to Algorithm 1, which can be seen as PrimalHoudini applied to ⟨Ṽ ,V , ▷◁T , Ẽ, Ẽω ,E,Eω ⟩ rather

than ⟨V , Ṽ , ▷◁,E,Eω , Ẽ, Ẽω ⟩. Applying this transformation is sensical, since all the properties of the

induction duality structure ⟨V , Ṽ , ▷◁,E,Eω , Ẽ, Ẽω ⟩ used by Algorithm 1 and Propositions 4.1 and 4.2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:14 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

also hold for ⟨Ṽ ,V , ▷◁T , Ẽ, Ẽω ,E,Eω ⟩. We call the resulting procedure DualHoudini, and spell it
out in Algorithm 2. DualHoudini takes as input a set of states and a set of preferred predicates.

DualHoudini relies on the Ẽ-solver solver (Algorithm 2 line 4) to find a dual-CTI for the current set
of states or determine that it is evidently k-abstractly-reachable (dual-inductive). As the induction
dual of PrimalHoudini, DualHoudini satisfies the duals of Propositions 4.1 and 4.2, which we
spell out below.

Proposition 4.3 (DualHoudini). DualHoudini(S, _) terminates for any S ∈ Pω (S), and if

(SH , ẼH) are returned and the Ẽ-solver is called Ñ times then:

(1) SH is the maximal dual-inductive subset of S : (∅, SH) ∈ Eω and SH is has no outgoing Eω |S edges;

(2) SH = S ∩ γ (∪ẼH);

(3) for any S ′ ⊆ S such that S ′ ⊈ SH , some (P ,Q) ∈ ẼH is a dual-CTI for S ′, i.e., (∅, S ′) ∦ ẼH ; and

(4) Ñ ≤
���ẼH

��� ≤ |S | − |SH |.

Proposition 4.4 (DualHoudini Preferred Predicates). For S ∈ Pω (S), P ∈ Pω (P), and PR ⊆ P

that is evidently k-provable, ifDualHoudini(S, P) has an execution that returns (SH , ẼH) and performs

Ñ calls to the Ẽ-solver, then:

(1) Ñ =
���ẼH \ ẼH |P

��� ≤ |S ∩ γ (PR)| − |SH |; and
(2) if S ′ ⊆ S and S ′ ̸ |= PR then ẼH |P contains a dual-CTI for S ′.

Intuitively, Proposition 4.4 means that in a run of DualHoudini(S, P), any state from S that can
be proven to be unreachable using a k-width proof that uses only preferred predicates (i.e., from P)
will be eliminated during the fixed point iterations solely using preferred predicates.

4.2 Primal-Dual Search

We now combine PrimalHoudini and DualHoudini into a primal-dual search algorithm,
PrimalDualHoudini, which is listed in Algorithm 3. The combined algorithm simultaneously
underapproximates and overapproximates reachability, invariance, k-provability, and k-abstract-
reachability, utilizing the connections between them listed in Table 1. The algorithm is symmetric
w.r.t. the symmetry discussed in Section 3.3 (i.e., it would be its own induction dual), and benefits
from Houdini’s feature of eliminating an exponential set of potential proofs with a linear number
of counter-proofs (CTIs or dual-CTIs) on both sides of the duality.

The key observation behind PrimalDualHoudini is that as PrimalHoudini(P , _) computes the
maximal inductive subset of P , it discovers new states via CTIs that explain why no larger subset of
P is inductive. Dually, DualHoudini(S, _) discovers new predicates via dual-CTIs that explain why
no subset of S larger than its result is evidently k-abstractly-reachable (dual-inductive). Algorithm 3
thus alternates between Houdini in the primal and Houdini in the dual, learning states from the
former and predicates from the latter.
Intuitively, a run of PrimalHoudini hopes the current set of predicates suffices to prove the

safety property is invariant, and upon failing discovers new states that explain why not. Then, a
run of DualHoudini hopes the current set of states suffices to prove the safety property is not
k-provable, i.e., prove that an unsafe state is k-abstractly-reachable, and upon failing discovers
new predicates that explain why not. We augment this ping-pong between invariance and k-
abstract-reachability with least fixed point computations of reachability and k-provability that do
not discover new states or predicates.
Algorithm 3 is seeded with an input safety property to check p0 ∈ P, and it maintains a set S

of discovered states, a set P of discovered predicates, and four subsets of these: a set SR ⊆ S of
reachable states, a set SI ⊆ S of k-abstractly-reachable states, a set PI ⊆ P of invariant predicates,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:15

Algorithm 3 Primal-Dual Houdini

Input safety property p0 ∈ P

Output ⟨k-provable , PR∈Pω (P)⟩ | ⟨safe , PI ∈Pω (P)⟩ | ⟨unsafe , SR∈Pω (S)⟩ | ⟨k-unprovable , SI ∈Pω (S)⟩

▷ if ⟨k-provable, PR ⟩ then p0 ∈ PR and PR is evidently k-provable

▷ if ⟨safe, PI ⟩ then p0 ∈ PI and PI is inductive

▷ if ⟨unsafe, SR ⟩ then SR ̸ |= p0 and SR is evidently reachable (so p0 is noninvariant)

▷ if ⟨k-unprovable, SI ⟩ then SI ̸ |= p0 and SI is evidently k-abstractly-reachable (so p0 is not k-provable)

1: procedure PrimalDualHoudini(p0)

2: P := {p0} ; PI := ∅ ; PR := ∅ ; S := ∅ ; SI := ∅ ; SR := ∅ ghost: PG := {p0} ; SG := ∅

3: while ⊤ do

4: PI ,EH := PrimalHoudini(P , S)

5: PR := Reach(Ẽ |PI
)

6: if p0 ∈ PR then return ⟨k-provable, PR ⟩

7: if p0 ∈ PI then return ⟨safe, PI ⟩

8: S := S ∪ (∪EH) ghost: SG := SG ∪ (∪EH)

9: choose S ′ such that (S ∩ γ (PI)) ∪ SI ⊆ S ′ ⊆ S

10: S := S ′

11: SI , ẼH := DualHoudini(S, P)

12: SR := Reach(E |SI
)

13: if SR ̸ |= p0 then return ⟨unsafe, SR ⟩

14: if SI ̸ |= p0 then return ⟨k-unprovable, SI ⟩

15: P := P ∪ (∪ẼH) ghost: PG := PG ∪ (∪ẼH)

16: choose P ′ such that (P ∩ α(SI)) ∪ PI ⊆ P ′ ⊆ P

17: P := P ′

18: procedure Reach(E)

19: R := ∅

20: while some R ′ s.t. (R,R ∪ R ′) ∈ E do

21: R := R ∪ R ′

22: return R

and a set PR ⊆ P of k-provable predicates. Initially, P contains only the input safety property, and
all other sets are empty. Each iteration of PrimalDualHoudini starts by using PrimalHoudini

to compute the set of invariant predicates PI (line 4), and using the Reach auxiliary procedure

to compute the set of k-provable predicates PR by following paths in Ẽ∗ |PI
(line 5). As a result of

PrimalHoudini, new states are discovered and added to S (line 8), so the iteration proceeds by
updating the set of k-abstractly-reachable states SI using DualHoudini (line 11) and updating
the set of reachable states SR using Reach (line 12), which in this case simply follows paths in E

(i.e., transitions of τ) to find an evidently reachable subset of S . As a result of DualHoudini, new
predicates are discovered and added to P (line 15), setting the stage for the next iteration.
In addition to this algorithmic skeleton, lines 9 and 10 may prune states violating a known

invariant unless they are known to be k-abstractly-reachable, and similarly lines 16 and 17 may
prune predicates violated by a k-abstractly-reachable state unless they are known to be invariant
(the reason for these conditions is clarified by the proof of Theorem 4.7). The nondeterministic
choices in lines 9 and 16 do not affect the algorithm’s theoretical properties, and can be used to
implement different pruning heuristics.
Ultimately, PrimalDualHoudini may terminate by determining that the safety property is:

k-provable (line 6), invariant (line 7), noninvariant (line 13), or k-unprovable (line 14).
The correctness of PrimalDualHoudini rests on the following theorem.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:16 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

= Ƹ𝛾 ∪ ሚ𝐸𝐻

෩𝑁 = 0

𝑁=0

𝑆𝐻
𝑆𝐻

Ƹ𝛾 𝑃𝐻
Ƹ𝛾 𝑃𝐻𝑆𝑅

𝑆𝐼 Ƹ𝛾∘ Ƹ𝛼 ∪𝐸𝐻 = ො𝛾 𝑃𝐼
Ƹ𝛾 𝑃𝑅

∅

ො𝛾 ∅ = 𝑆

𝑃𝑅
ො𝛼 𝑆𝐼 = Ƹ𝛼∘ Ƹ𝛾 ∪ ሚ𝐸𝐻 Ƹ𝛼 ∪𝐸𝐻 =𝑃𝐼

ො𝛼 𝑆𝑅

∅

𝑃 = ො𝛼 ∅

෩𝑁 = 0

𝑃𝐻𝑁=0
𝑃𝐻

Ƹ𝛼 𝑆𝐻
Ƹ𝛼 𝑆𝐻

Fig. 4. Illustration of primal-dual Houdini, Propositions 4.1 to 4.4, and Theorem 4.5. The state of

PrimalDualHoudini (Algorithm 3) is represented by S , P , SI , PI , SR , PR , EH , ẼH , α̂ , and γ̂ , which are as
in Theorem 4.5 (see below). The state of PrimalHoudini (Algorithm 1) is represented by PH and N , and the

state of DualHoudini (Algorithm 2) is represented by SH and Ñ , where N and Ñ are the number of calls

to the E- and Ẽ-solvers as in Propositions 4.2 and 4.4. The left portion depicts the lattice of explored states
⟨P (S), ⊆⟩ and the right the lattice of explored predicates ⟨P (P), ⊆⟩, with straight lines denoting ⊆, e.g.,
PI ⊆ α̂(SR) and SI ⊆ γ̂ (PR). Questions (e.g. invariant?) label set differences that represent uncertainties, e.g., it
is unknown if the predicates in α̂(SR) \ PI are invariant. The iterations of PrimalHoudini and DualHoudini

are illustrated using wavy arrows, depicting the progression of PH from P to α̂(SR) without E-solver calls
(N = 0) and then to the return value PI by performing E-solver calls (N > 0); and similarly the progression of

SH from S to γ̂ (PR) without Ẽ-solver calls (Ñ = 0) and then to the return value SI by Ẽ-solver calls (Ñ > 0),
as per Propositions 4.2 and 4.4. Induction duality and Galois-connection duality as discussed in Section 3.3
and Table 1 both manifest as symmetries between the left and right portions of this figure. Vertical reflection

corresponds to the ⟨P (S), ⊆⟩ −−−→←−−−
α̂

γ̂
⟨P (P), ⊇⟩ Galois connection; letting x ↔ y denote that an object x from

the left portion is related to an object y from the right portion via vertical reflection, we have: γ̂ (∅) = S ↔ ∅,
γ̂ (PR) ↔ PR , SI ↔ α̂(SI), γ̂ (PI) ↔ PI , SR ↔ α̂(SR), ∅ ↔ P = α̂(∅), k-abs-reach? ↔ k-provable? and
reachable?↔ invariant?. Horizontal reflection corresponds to induction duality; letting x ↔ y denote that x
is related to y via horizontal reflection, we have: S ↔ P , γ̂ (PR) ↔ α̂(SR), SI ↔ PI , γ̂ (PI) ↔ α̂(SI), SR ↔ PR ,
∅ ↔ ∅, k-abs-reach?↔ invariant? and reachable?↔ k-provable?. (Compare to Table 1.)

Theorem 4.5 (PrimalDualHoudini Invariants). The following invariants hold in Algorithm 3

both at line 6 and at line 13, letting α̂ = λX .P ∩ α(X) and γ̂ = λX .S ∩ γ (X):

(1) PI is the maximal inductive subset of P ;

(2) PR is the maximal evidently k-provable subset of P ;

(3) SI is the maximal evidently k-abstractly-reachable subset of S ;

(4) SR is the maximal evidently reachable subset of S ;

(5) PI = α̂(∪EH) and if P
′ ⊆ PI , Q

′ ⊆ P , and Q ′ ⊈ PI then EH ∦ (P
′
,Q ′); and

(6) SI = γ̂ (∪ẼH) and if S
′ ⊆ SI , R

′ ⊆ S , and R′ ⊈ SI then (S
′
,R′) ∦ ẼH .

Proof. By combining Propositions 4.1 and 4.3, the observation that Reach(E |S ′) is the maximal

evidently reachable subset of S ′ and Reach(Ẽ |P ′) is the maximal evidently k-provable subset of P ′,
and the connections between invariance, k-provability, k-abstract-reachability, and reachability
explored in Section 3.2 and summarized in the Galois connection column of Table 1. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:17

As a corollary, we get the following guarantees when PrimalDualHoudini terminates.

Corollary 4.6 (PrimalDualHoudini Partial Correctness). If PrimalDualHoudini(p0) ter-

minates it returns one of:

(1) ⟨k-provable, PR⟩ with p0 ∈PR and PR evidently k-provable;

(2) ⟨safe, PI ⟩ with p0 ∈ PI and PI inductive;

(3) ⟨unsafe, SR⟩ with SR ̸ |= p0 and SR evidently reachable; or

(4) ⟨k-unprovable, SI ⟩ with SI ̸ |= p0 and SI evidently k-abstractly-reachable.

Proof. By conjoining the invariants stated in Theorem 4.5 with each of the four termination
conditions of Algorithm 3. □

Note that while a k-unprovable result means there is no proof with induction width up to k , a
safe result includes a monolithic inductive invariant and may use predicates that are not k-provable.
Therefore, in some cases both safe and k-unprovable are valid outputs of PrimalDualHoudini.
This allows PrimalDualHoudini to be opportunistic, in the sense that it will use a proof of induction
width > k if it happens to find the right predicates.

Figure 4 illustrates the relationships between SI , PI , SR , PR , EH and ẼH (Theorem 4.5), as well as
the internal computations of PrimalHoudini andDualHoudini. It highlights the two dualities that
are at play: the Galois connection (vertical reflection) and induction duality (horizontal reflection) as
also listed in Table 1. Figure 4 includes a detailed caption explaining the diagram. The progression
of PrimalDualHoudini is a monotonic process of knowledge discovery. With each iteration,
predicates may be discovered to be invariant (PI), k-provable (PR), noninvariant (< α(SR)), or k-
unprovable (< α(SI)). Similarly, states may be discovered to be k-abstractly-reachable (SI), reachable
(SR), not k-abstractly-reachable (< γ (PR)), or unreachable (< α(PI)). Note that SI and PI and are
incomparable, since: (i) a state s may be known to be both k-abstractly-reachable and unreachable
(s ∈ SI \ γ (PI)), in terms of predicates, a predicate p may be known to be both invariant and k-
unprovable (p ∈ PI \α(SI)); and (ii) a state s may be neither known to be k-abstractly-reachable nor
known to be unreachable (s ∈ γ̂ (PI) \SI), in terms of predicates, a predicate p may be neither known
to be invariant nor known to be k-unprovable (p ∈ α(SI) \ PI). The algorithm’s progress, as well as

its cost in terms of calls to the E- and Ẽ-solvers, is driven by knowledge gaps (using Propositions 4.2
and 4.4): predicates that are possibly invariant but not yet proven lead to calls to the E-solver that
discover new states (the N > 0 edge in Figure 4), and states possibly k-abstractly-reachable but not

yet proven to be so lead to Ẽ-solver calls that discover new predicates (the Ñ > 0 edge).
We now consider PrimalDualHoudini’s termination, both theoretically and heuristically.

4.3 Progress and Termination

We now analyze the progress and termination of Algorithm 3. Proofs in this section highlight the
primal-dual interaction between states and predicates: progress on predicates requires the right
states and progress on states requires the right predicates.

Not getting stuck. There are two ways that PrimalDualHoudini could fail to learn new informa-
tion, and thus cease to make progress: one is for PrimalHoudini and DualHoudini to only return
known states and predicates (leaving S and P unchanged in lines 8 and 15), and the other is for
the pruning in lines 10 and 17 to prune states and predicates that are rediscovered later, such that
every new state or predicate discovered has already been pruned before. The following theorem
uses ghost variables SG and PG to track all states and predicates ever considered (lines 2, 8, and 15),
and shows these sets must increase at every non-final iteration. That is, every iteration (except that
in which the algorithm terminates) explores at least one new state and one new predicate.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:18 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Theorem 4.7 (PrimalDualHoudini Exploration). Both |SG | and |PG | increase on every iteration

of PrimalDualHoudini that does not immediately lead to the algorithm’s termination.

The proof of Theorem 4.7 (given below) provides insight into the primal-dual nature of the
algorithm, as it critically depends on the fact that the input to primal Houdini comes from the
output of dual Houdini, and vice versa. The key to proving Theorem 4.7 is following pair of lemmas.

Lemma 4.8 (State Exploration). For S ∈ Pω (S), (SH , ẼH) = DualHoudini(S, _), p0 ∈ P such

that SH |= p0, P ∈ Pω (P) such that p0 ∈ P and (∪ẼH) ⊆ P , and (PH ,EH) = PrimalHoudini(P , _),

either {p0} ∪ (∪ẼH) ⊆ PH or there exists (S ′,R′) ∈ EH , a CTI for {p0} ∪ (∪ẼH) such that (S
′∪R′) ⊈ S .

Proof. Let P ′ = {p0} ∪ (∪ẼH). By Proposition 4.1, either P ′ ⊆ PH or there exists (S ′,R′) ∈ EH , a
CTI for P ′. To see that in the latter case we must have (S ′ ∪ R′) ⊈ S , assume the contrary. Then we
must have: (i) S ′ ⊆ S , (ii) R′ ⊆ S , (iii) (S ′,R′) ∈ E, (iv) S ′ |= P ′, (v) R′ ̸ |= P ′, and (vi) SH = S ∩γ (P ′)

(by Proposition 4.3 item 2 and the fact that SH |= p0). By combining items i, iv and vi we get
S ′ ⊆ SH and by combining items ii, v and vi we get R′ ⊈ SH . By Proposition 4.3 item 1, SH is
the maximal dual-inductive subset of S . However, from the above it follows that SH ∪ R

′ is also
dual-inductive, contradicting the maximality of SH . To see that SH ∪ R

′ is dual-inductive, note that

if (P ′′,Q ′′) ∈ Ẽ is a dual-CTI for SH ∪ R
′ then we must have SH ∪ R |= P ′′ and SH ∪ R ̸ |= Q

′′. Since
SH is dual-inductive we must have R ̸ |= Q ′′ (otherwise (P ′′,Q ′′) is a dual-CTI for SH), and since

S ′ ⊆ SH we obtain E ∋ (S ′,R′) ∦ (P ′′,Q ′′) ∈ Ẽ contradicting the fact that E ∥ Ẽ. □

Lemma 4.9 (Predicate Exploration). For P ∈ Pω (P), (PH ,EH) = PrimalHoudini(P , _),

S ∈ Pω (S) such that (∪EH) ⊆ S , and (SH , ẼH) = DualHoudini(S, _), either (∪EH) ⊆ SH or there

exists (P ′,Q ′) ∈ ẼH , a dual-CTI for (∪EH) such that (P ′ ∪Q ′) ⊈ P .

Proof. This lemma is induction dual to Lemma 4.8 (ignoring p0) and the proof is analogous, by
setting S ′ = (∪EH) and observing that a dual-CTI for S ′ cannot solely use predicates from P . □

Intuitively, in the context of PrimalDualHoudini, Lemma 4.8 means that if the input to
PrimalHoudini includes the safety property p0 and the output of a previous DualHoudini run,
then its output is guaranteed to either prove p0 or explore a new state. Similarly, Lemma 4.9 means
that if the input to DualHoudini includes the output of a previous PrimalHoudini run, then its
output is guaranteed to either prove that p0 is k-unprovable (since in this context (∪EH) ̸|= p0) or

explore a new predicate. We note that the lemmas are incorrect without the conditions (∪ẼH) ⊆ P

(Lemma 4.8) and (∪EH) ⊆ S (Lemma 4.9), which demonstrates the critical role of PrimalHoudini
in the discovery of predicates and that of DualHoudini in the discovery of states, highlighting the
primal-dual interaction.
We now use Lemmas 4.8 and 4.9 to prove Theorem 4.7.

Proof of Theorem 4.7. Let us first show that we can ignore the pruning by Algorithm 3 lines 10
and 17. States are only pruned if they violate a predicate known to be invariant, and such predicates
are never pruned. Thus, a state that has been pruned for violating some p ∈ PI never has a chance
to be discovered again by PrimalHoudini, since p ∈ PI is an invariant from that point onward. A
similar argument holds for predicates pruned by states known to be k-abstractly-reachable. We
now prove the theorem ignoring the pruning, i.e., as if S = SG and P = PG .
Every call to PrimalHoudini in line 4 satisfies the conditions of Lemma 4.8, and therefore if

it does not prove p0 (i.e., p0 < PI) then it must discover a new state. This argument holds for the
first iteration as well, since (∅, ∅) = DualHoudini(∅, _). Similarly, every call to DualHoudini in
line 11 satisfies the conditions of Lemma 4.9 while in addition satisfying (∪EH) ̸|= p0, and therefore
if it does not prove p0 to be k-unprovable then it must discover a new predicate. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:19

Making actual progress. Theorem 4.7 shows that as long as PrimalDualHoudini has not termi-
nated, it will keep exploring new states and predicates. The question then arises whether these
new states and predicates bring the algorithm any closer to termination, i.e., closer to finding
a proof (inductive invariant, k-provable or not) or a counter-proof (reachable or k-abstractly-
reachable unsafe state). The fact that new states are only learned via CTIs to the current set of
predicates, and that new predicates are only learned via dual-CTIs to the current set of states,
restricts PrimalDualHoudini’s exploration of the search space. This restriction is desirable as it
potentially provides heuristic guidance, but it can possibly be too restrictive by preventing the
algorithm from finding a solution. This can happen if at some point PrimalDualHoudini is unable
to learn any useful state or predicate, i.e., it will satisfy Theorem 4.7 by learning states and predicates
that are not part of either a proof or a counter-proof. The following two theorems show that if
p0 is k-provable or noninvariant, learning states and predicates from CTIs and dual-CTIs is not
too restrictive. That is, each iteration of PrimalDualHoudini has the opportunity to learn a new
predicate/state from the proof/counter-proof.

Theorem 4.10 (Possible State Progress). If π ∈ E∗, n = |π |, π0 = ∅, and πn ̸ |= p0 (i.e., p0 is

noninvariant with counterexample π) then in every iteration of PrimalDualHoudini(p0) there is a

possible execution of PrimalHoudini that increases S ∩
(⋃n

i=0 πi
)
(i.e., learns a new state from π).

Proof of Theorem 4.10. We obtain the desired execution of PrimalHoudini(P , S) (Algorithm 3
line 4) as an execution of PrimalHoudini(P , S ∪ Π), where we let Π =

⋃n
i=0 πi . This is justified

by the fact that any possible execution of PrimalHoudini(P , S ∪ Π) is a possible execution of
PrimalHoudini(P , S). To see that any execution of PrimalHoudini(P , S ∪ Π) learns a new state

from Π, apply Proposition 4.2 item 2 for P ′ = {p0} ∪ (∪ẼH) and obtain (S ′,R′) ∈ EH , a CTI for P
′

such that S ′ ∪ R′ ⊆ S ∪ Π. To see that (S ′ ∪ R′) ⊈ S , we can apply the same reasoning used in the
proof of Lemma 4.8, noting that, as in the proof of Theorem 4.7, the conditions of Lemma 4.8 hold
in every iteration of PrimalDualHoudini. □

Theorem 4.11 (Possible Predicate Progress). If π̃ ∈ Ẽ∗, n = |π̃ |, π̃0 = ∅, and p0 ∈ π̃n (i.e.,

p0 is k-provable with proof π̃) then in every iteration of PrimalDualHoudini(p0) there is a possible

execution of DualHoudini that increases P ∩
(⋃n

i=0 π̃i
)
(i.e., learns a new predicate from π̃).

Proof. This theorem is the induction dual of Theorem 4.10 and the proof is analogous, observing
that in all but the last iteration of PrimalDualHoudini we will have (∪EH) ̸|= p0 and therefore
(∪EH) ̸|=

⋃n
i=0 π̃i , so we can apply Proposition 4.4 as well as the reasoning used in the proof of

Lemma 4.9 to obtain a new predicate from
⋃n

i=0 π̃i as part of the dual-CTI for (∪EH). □

Another way to understand Theorems 4.10 and 4.11 by considering angelic nondeterminism, i.e.,
a semantics under which nondeterministic choices are resolved in favor of termination. If the non-
determinism of the Ẽ-solver (in case p0 is k-provable) or the E-solver (in case p0 is noninvariant) is
angelic, then progress towards termination will be made on each iteration of PrimalDualHoudini.
Therefore, under angelic nondeterminism, PrimalDualHoudini terminates in a number of itera-
tions given by the size of the proof or counter-proof, as formalized by the following corollary.

Corollary 4.12 (PrimalDualHoudini Angelic Termination). If π ∈ E∗, n = |π |, π0 = ∅,

and πn ̸ |= p0, an angelic E-solver can force PrimalDualHoudini to terminate (returning unsafe or

k-unprovable) after at most
��⋃n

i=0 πi
�� iterations. If π̃ ∈ Ẽ∗, n = |π̃ |, π̃0 = ∅, and p0 ∈ π̃n , an angelic

Ẽ-solver can force PrimalDualHoudini to terminate (returning k-provable or safe) after at most��⋃n
i=0 π̃i

�� iterations.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:20 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Like Theorem 4.7, Theorems 4.10 and 4.11 depend on the fact that the input to primal Houdini
comes from the output of dual Houdini, and vice versa. To find a proof (inductive invariant) it is
critical to find the right states, and to find a counter-proof it is critical to find the right predicates,
even though states do not appear in proofs nor predicates in counter-proofs. Thus, these theorems
capture properties of the primal-dual combination of primal and dual Houdini.

Termination by stratification. In practice, we cannot hope for angelic E- and Ẽ-solvers. How-
ever, the following theorem shows that we can guarantee termination by stratification [Jhala
and McMillan 2006], that is, partitioning S and P into infinite sequences of finite layers and con-

structing E- and Ẽ-solvers that return a solution from the lowest possible layer. In such a setting,
PrimalDualHoudini is guaranteed to terminate if p0 is k-provable or noninvariant.

Theorem 4.13 (PrimalDualHoudini Termination by Stratification). If S =
⋃∞

n=1 Sn and

P =
⋃∞

n=1 Pn such that every Sn and Pn is finite, and the E-solver and the Ẽ-solver always return

a solution from E |⋃L
n=1 Sn

and Ẽ |⋃L
n=1 Pn

with the smallest L possible, then PrimalDualHoudini(p0)

terminates for every p0 that is k-provable or noninvariant.

Proof. Suppose p0 is k-provable, and let L ∈ N be such that PL =
⋃L

n=1 Pn contains a k-width

proof of p0. For a stratified Ẽ-solver, every execution of DualHoudini(S, P) in Algorithm 3 line 11
can be seen as an execution ofDualHoudini(S, P ∪PL). For such an execution, by reasoning similar
to that used in the proofs of Lemma 4.9 and Theorem 4.11, we obtain that in every iteration of
PrimalDualHoudini, a new predicate from PL must be discovered (pruning can be ignored as
argued in the proof of Theorem 4.7). Therefore, PrimalDualHoudini must terminate, since PL
is finite. The case in which p0 is noninvariant is analogous (it is induction dual to the case of k-

provable): letting L ∈ N be the such that SL =
⋃L

n=1 Sn contains an execution trace violating p0, and
regarding executions of PrimalHoudini(P , S) in Algorithm 3 line 4 as PrimalHoudini(P , S ∪ SL),
we can apply reasoning similar to the proofs of Lemma 4.8 and Theorem 4.10 to show that every
iteration of PrimalDualHoudini must discover a new state from SL . □

As an example for stratification, we can partition the states by some size parameter (e.g., number of
nodes in a distributed system) such that for a fixed size there are finitely many states, and implement
an E-solver that finds the smallest CTI possible. Similarly, we can partition the predicates by some

complexity metric (e.g., number of quantifiers or terms), and implement an Ẽ-solver that returns
the simplest possible dual-CTI (using techniques such as [Koenig et al. 2020]). Such stratification
may also be heuristically helpful as it focuses the search on simple predicates and small states.

4.4 Heuristic Discussion

The practical effectiveness of primal-dual Houdini dependsmostly on the amount of uncertainty that
develops and the guidance states provide for predicates and vice versa. By Propositions 4.2 and 4.4

and as illustrated in Figure 4, the number of E- and Ẽ-solver calls and new states and predicates
added in each iteration of primal-dual Houdini is linear in the uncertainty, i.e., predicates whose
invariance is unknown (α̂(SR)\PH) and states whosek-abstract-reachability is unknown (γ̂ (PR)\SH).
Thus, in the worst case, S and P grow exponentially in the number of primal-dual Houdini iterations.
However, if most discovered states and predicates take a small number of iteration from being
discovered until they become known to be invariant/noninvariant or k-abstractly-reachable/k-
abstractly-unreachable, then exponential growth may be avoided. The pruning in Algorithm 3
lines 10 and 17 can also help by removing states known to be unreachable even if they may be k-
abstractly-reachable (and dually for k-unprovable predicates), but that presents a heuristic trade-off,
as it may prune some useful states/predicates.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:21

Guidance provided by states is crucial even for safe/k-provable instances, and the guidance
provided by predicates is crucial even for unsafe/k-unprovable examples. For example, when
searching for an invariant for a safe/k-provable instance, discovering reachable states prunes the
search space for invariants, and discovering backward reachable states and disconnected CTIs
directs the search. This interaction is present in IC3/PDR as well, but IC3/PDR only uses invariants
proven to hold (at a certain frame), and states known to be backward reachable. In contrast, primal-
dual Houdini uses both forward reachable, backward reachable, and disconnected paths in both

(V ,E) and (Ṽ , Ẽ) in a systematic and symmetric way, potentially leading to better heuristic guidance.
Unlike IC3/PDR and interpolation, primal-dual Houdini does not consider distance from initial

states and unsafe states for heuristic guidance, as it uses dual-CTIs to guide the search for predicates.

Recall that by Corollary 3.3, a dual-CTI (P ,Q) ∈ Ẽ means every execution that violates Q must
violate P , but the violation can be simultaneous. In contrast, IC3’s notion of Q being inductive
relative to P entails P must be violated before Q . This indifference of primal-dual Houdini to path
length is in contrast to both IC3/PDR and interpolation, thus presenting a different and potentially
complementary heuristic.

Finally, as primal-dual Houdini is based on the notion of bounded-width incremental induction,
we expect it to perform well for systems that are k-provable for small k . Our evaluation provides
some evidence that this bounded proof notion is a good fit for distributed protocols. The applicability
of bounded-width proofs for additional domains is an important question for future research, as is
the possibility of generalizing primal-dual Houdini to other bounded proof notions.

5 PROTOTYPE IMPLEMENTATION & EVALUATION

We describe our prototype implementation of primal-dual Houdini in the domain of distributed
protocol verification using universally quantified invariants and evaluate it by comparing to several
state-of-the-art tools.
Our implementation considers the set of states S∀∗ and the set of predicates P∀∗ . S∀∗ is the

set of finite first-order structures. P∀∗ is the set of universally quantified clauses of the form
∀x1, · · · ,xn .

(∧
1≤i<j≤n xi,x j

)
→ φ, where φ is a disjunction of literals. That is, the predicates

are universally quantified clauses whose variables have distinct interpretations. Our prototype

currently supports induction width bound k = 1. Our E- and Ẽ-solvers are stratified (by structure
size and number of quantifiers), and termination of the entire algorithm is therefore guaranteed for
k-provable or unsafe instances (Theorem 4.13).

The transition relation τ and the safety property p0 are expressed symbolically as formulas,
such that all resulting verification conditions are in the decidable EPR (effectively propositional
reasoning) fragment [Padon et al. 2017]. In this framework, the E-solver can be implemented by
checking the verification conditions given by eqs. (11) and (12) using an SMT solver that supports
EPR formulas. Our prototype follows this approach and uses both Z3 [de Moura and Bjùrner 2008]
and CVC4 [Barrett et al. 2011] as EPR solvers.

5.1 Implementing an Ẽ-Solver

Primal-dual Houdini relies on an Ẽ-solver to generate dual-CTIs. We implement the Ẽ-solver using
Algorithm 4, which relies on both an E-solver and a SEP-solver, defined below.

For states S and predicates P, a separation query with implications [Koenig et al. 2020] or SEP-
query is SEP(S+, S−, S→,k) where S+, S− ∈ Pω (S), S

→ ∈ Pω (S × S), and k ∈ N. SEP(S
+
, S−, S→,k)

is satisfied by P ∈ Pω (P), denoted P ∈ SEP(S
+
, S−, S→,k), if: (i) |P | ≤ k ; (ii) for every s ∈ S+, s |= P ;

(iii) for every s ∈ S−, s ̸ |= P ; and (iv) for every (s, t) ∈ S→ if s |= P then t |= P . A SEP-query is

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:22 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Algorithm 4 Ẽ-Solver

Input S ∈ Pω (S)

Output (P ,Q) ∈ Ẽ a dual-CTI for S , or ⊥ if S is dual-inductive

1: procedure Ẽ-Solver(S)

2: W := ∅; P := ∅

3: while ⊤ do

4: while some Q ∈ SEP(ι ∩W , {t} ,τ ∩W ×W ,k) for some t ∈ S do

5: if some (S ′,R′) ∈ E such that a (S ′,R′) ∦ (P , P ∪Q) then

6: W :=W ∪ S ′ ∪ R′

7: else return (P , P ∪Q)

8: if some {p} ∈ SEP(S, {t} , ∅, 1) for some t ∈W then

9: P := P ∪ {p}

10: W :=W ∩ γ (P) (γ as defined in eq. (2))

11: else return ⊥

satisfiable if some P satisfies it, and otherwise it is unsatisfiable. A SEP-solver is a procedure that
given a SEP-query, either returns a P that satisfies it or determines that it is unsatisfiable.

Algorithm 4 uses an E-solver (line 5) and a SEP-solver (lines 4 and 8) to implement an Ẽ-solver,
which can be seen as an adaptation of ICE learning [Garg et al. 2014] to induction transitions.
To find a dual-CTI (P , P ∪Q), it alternates between SEP(_, _, _,k) queries used to find candidates
for Q , and SEP(_, _, ∅, 1) queries used to monotonically grow P , both guided by counterexamples
generated using the E-solver.
Algorithm 4 begins with an empty set of counterexamples,W , and an empty candidate for P

(corresponding to ⊤), and maintains the invariants S |= P andW |= P . Line 4 uses a SEP-query with
implications to find aQ such that (P , P ∪Q) is a possible dual-CTI for S . Since S |= P is an invariant,

it remains to find Q such that S ̸ |= Q and (P , P ∪Q) ∈ Ẽ. The former is ensured by including a state
from S in S−, and the latter amounts to |Q | ≤ k (ensured by using k in the SEP-query) and satisfying
eqs. (11) and (12). In the SEP-query of line 4, eqs. (11) and (12) are relaxed by only considering initial
states and transitions fromW . If the query is satisfiable, line 5 checks the unrelaxed version of
eqs. (11) and (12) (using the E-solver, which as discussed above is implemented by an SMT solver).
If the equations hold, line 7 returns (P , P ∪Q) which is a valid dual-CTI; otherwise, line 6 refines
the relaxation by extendingW . If the SEP-query for Q in line 4 is unsatisfiable, we turn to updating
P and eliminating some states fromW using the SEP-query without implications in line 8. If S and
W are inseparable, we can conclude no dual-CTI exists.

Algorithm 4 may diverge by indefinitely checking Q candidates for a fixed P or by indefinitely
increasing P . However, it is guaranteed to terminate if every state is only violated by finitely many
predicates, which is the case for S∀∗ and P∀∗ .
We implement a SEP-solver for S∀∗ and P∀∗ that returns a solution with the smallest possible

number of quantifiers by reduction to SAT, similar to [Koenig et al. 2020], but using the notion of a
diagram, which is also used by PDR∀ [Karbyshev et al. 2017].

5.2 Implementation Details

Our prototype is written in Python and implemented in the mypyvy verification system. It is publicly
available as part of the open-source mypyvy project4, as well as in the artifact supporting this
paper [Padon et al. 2021]. Our prototype includes the following heuristics and engineering choices:

4https://github.com/wilcoxjay/mypyvy

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

https://github.com/wilcoxjay/mypyvy

Induction Duality: Primal-Dual Search for Invariants 50:23

• Our Ẽ-solver and SEP-solver consider some predicates that are outside the formal definition of
P∀∗ by opportunistically dropping disequalities between variables, which effectively explores
all subclauses of the negation of the diagram, similarly to PDR∀.
• In Algorithm 4 line 5, we greedily optimize the counterexample to prune as much of the
search space as possible.
• When we search for CTIs (Algorithm 1 line 4), we try to extend known reachable states
(similar to [Miltner et al. 2020]) and other states in S , before considering general CTIs.

• Our Ẽ-solver only considers predicates that are implied by ι when strengthening P .
• For the nondeterministic choices in Algorithm 3 our implementation chooses P ′ = P and
S ′ = (S ∩ γ (PI)) ∪SI . That is, we never prune predicates according to k-abstractly-reachable
states, and always prune as many states as possible.
• Our E-solver uses both Z3 [de Moura and Bjùrner 2008] and CVC4 [Barrett et al. 2011], run
in parallel over several random seeds.

5.3 Benchmarks

We evaluate our prototype on distributed protocols verification benchmarks. All benchmarks have
a universally quantified inductive invariant, and for most we also include unprovable variants that
are either unsafe or do not have a universally quantified inductive invariant, which we constructed
by over-strengthening the safety property, manually injecting a bug, or removing some ghost state
required for a universally quantified invariant. Our benchmarks, described in more detail in the
following list, are primarily asynchronous message-passing concurrent systems, such as consensus
and cache-coherence protocols, drawn from previous works [Feldman et al. 2019; Hawblitzel et al.
2015; Ma et al. 2019; Padon et al. 2017, 2016; Taube et al. 2018; Wilcox et al. 2015].

• ring: A simple leader election in a ring protocol from [Padon et al. 2016].
• cons: A simplified version of paxos (see below), with leader election and decision on values
but without rounds, together with an unsafe variant and a variant that is safe but unprovable
with a universally quantified invariant.
• paxos: The single-decree Paxos [Lamport 2001] distributed algorithm modeled in EPR fol-
lowing [Padon et al. 2017], and instrumented by a derived relation capturing the notion of
a choosable value; this example has a universal invariant which implies safety and makes
crucial use of the derived relation; we also include three unprovable variants.
• spaxos: The Stoppable Paxos algorithm [Malkhi et al. 2008] modeled in EPR following [Padon
et al. 2017] and augmented with a derived relation for choosable values; this is a very complex
and challenging distributed algorithm.
• paxos-h: Another variant of paxoswith a universal invariant, supported by additional history
variables rather than the choosable derived relation; this variant is harder than paxos because
the invariant itself must include parts of the definition of the choosable derived relation.
• spaxos-h: as above, but for Stoppable Paxos.
• locksrv: a mutual exclusion protocol from [Wilcox et al. 2015], with an unprovable variant;
• skv: a key-value store from [Hawblitzel et al. 2015], and two unprovable variants;
• skvr: a variant of sharded_kv that tolerates duplicate messages with sequence numbers; this
example is challenging due to the high arity of the relations involved; we also include an
unprovable variant that incorrectly reuses sequence numbers;
• cache: a model of a MESI cache coherence protocol from [Feldman et al. 2019], and an
unprovable variant that sends incorrect memory values on the shared bus.

All benchmarks are openly available in the artifact supporting this paper [Padon et al. 2021].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:24 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Table 2. Comparison of pdH, PDR∀, FOL-IC3, SWISS, IC3PO, andDistAI on 10 safe and 10 unsafe benchmarks,
with 10 runs using different random seeds. Each table entry lists how many runs ended in each result. For
pdH, possible results are: ł1pž for 1-provable, łsž for safe, łusž for unsafe, ł1up ž for 1-unprovable, and łtož
for timeout at 24 hours or other runtime error. For the other tools, results are grouped to łcž for correct (safe
or unsafe as appropriate) and łto.ž The columns labeled łtimež list the mean wall-clock time in seconds for
successful runs, i.e. excluding timeouts and errors. Entries that are not applicable are left blank.

pdH PDR∀ FOL-IC3 SWISS IC3PO DistAI

Example 1p s us 1up to time c to time c to time c to time c to time c to time

S
a
fe

ring 10 0 0 0 34 10 0 59 10 0 22 10 0 201 10 0 5 10 0 344

cons 10 0 0 0 5760 10 0 202 10 0 2844 10 0 146 10 0 1572 10 0 1266

paxos 10 0 0 0 2814 10 0 9256 0 10 10 0 6359 0 10 0 10

spaxos 6 0 0 4 32482 0 10 0 10 0 10 10 0 5632 0 10

paxos-h 2 0 0 8 25991 0 10 0 10 0 10 0 10 0 10

spaxos-h 0 0 0 10 0 10 0 10 0 10 0 10 0 10

locksrv 0 1 4 5 134 10 0 10 10 0 9 10 0 6744 10 0 3 10 0 2

skv 0 0 10 0 43 10 0 3 10 0 22 10 0 6065 10 0 2 10 0 2

skvr 0 0 0 10 2 8 15127 0 10 0 10 0 10 0 10

cache 0 0 0 10 0 10 0 10 0 10 10 0 757 0 10

U
n
sa
fe

o
r
U
n
p
ro
v
a
b
le

cons-u1 10 0 0 52 10 0 1 10 0 8 10 0 2

cons-u2 2 0 8 61802 10 0 63 10 0 1098 0 10

paxos-u1 0 10 0 17 10 0 2 10 0 26 0 10

paxos-u2 0 0 10 0 10 0 10 0 10

paxos-u3 10 0 0 266 10 0 1 10 0 35 10 0 2

locksrv-u 9 0 1 2050 10 0 10 10 0 28 10 0 2

skv-u1 10 0 0 15 10 0 1 10 0 19 10 0 1

skv-u2 10 0 0 261 10 0 6 10 0 60 10 0 1

skvr-u 0 0 10 0 10 0 10 0 10

cache-u 0 0 10 10 0 137 3 7 6541 10 0 7

5.4 Results

Table 2 compares our prototype, pdH, with five state-of-the-art invariant inference techniques.
PDR∀ is a variant of IC3/PDR for universally quantified invariants [Karbyshev et al. 2017]. FOL-IC3
is a variant of IC3/PDR for general quantified invariants [Koenig et al. 2020]. SWISS performs an
explicit search for general quantified invariants leveraging incremental induction [Hance et al. 2021].
IC3PO is a variant of IC3/PDR that analyzes finite instances of protocols and lifts propositional
clauses to quantified formulas [Goel and Sakallah 2021a,b]. DistAI performs an explicit search for
universally quantified invariants guided by reachable states discovered by random simulation [Yao
et al. 2021]. Unlike the other techniques, SWISS and DistAI cannot solve unsafe benchmarks, so we
only compare to them on safe benchmarks. Each tool5 was run on each benchmark 10 times with
different random seeds. All experiments were performed on AWS EC2 z1d.metal instances, which
łprovide a Intel Xeon Scalable processor with a sustained all core frequency of up to 4.0 GHz.ž pdH
and SWISS use parallelism, while the rest of the tools are sequential.

5 For pdH and PDR∀, we used mypyvy4 commit 5dcbb19. For FOL-IC3, we used https://doi.org/10.1145/3395650. For SWISS,

we used https://github.com/secure-foundations/SWISS commit 348b9c4. For IC3PO we used https://github.com/aman-

goel/fmcad2021exp commit 9d3a54b. For DistAI we used https://github.com/VeriGu/DistAI commit 0ec9389.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

https://doi.org/10.1145/3395650
https://github.com/secure-foundations/SWISS
https://github.com/aman-goel/fmcad2021exp
https://github.com/aman-goel/fmcad2021exp
https://github.com/VeriGu/DistAI

Induction Duality: Primal-Dual Search for Invariants 50:25

As seen in Table 2, performance varies across the benchmark suite and among the six tools.
Some examples, like ring and cons-u1, are easy for all tools, while some examples, like spaxos-h
and skvr-u, are hard and unsolved by all tools. All six techniques solve challenging benchmarks,
and some solve benchmarks that are not solved by others. For example, PDR∀ uniquely solves the
difficult skvr benchmark, which is beyond the reach of other techniques, while pdH is uniquely able
to solve paxos-h. The spaxos example, which we consider the most algorithmically complex protocol
in our benchmark suite, is only solved by pdH and IC3PO, and its more difficult variant spaxos-h
is unsolved by any technique. For unsafe benchmarks, pdH is often able to discover concrete
counterexamples, which indicates that the primal-dual search stimulates discovery of error traces.

Even with k = 1, pdH is able to solve some challenging benchmarks such as spaxos and paxos-h.
However, the restricted induction width can hurt pdH even for simple examples. The locksrv and
skv benchmarks are relatively easy examples for which most tools prove safety in seconds, while
pdH either diverges or returns 1-unprovable (except for one lucky locksrv run). These examples
are hard for pdH because their invariants consist of 7ś9 predicates that are all mutually dependent.
This fact also makes these examples more difficult for SWISS, but it is still able to solve them.
In contrast, spaxos for example requires more predicates (and over a richer vocabulary), but is
1-provable. The correspondence between the theory on which pdH is based on and its behavior in

practice is notable, as is the fact that the Ẽ-solver can be made practical for challenging problems.
Overall, we view these results as encouraging: a new invariant inference algorithm, not a variant

of an established technique like interpolation or IC3/PDR, originating from a theoretical treatment
of duality, can cope with examples that are on the frontier of state-of-the-art techniques.

6 RELATED WORK

The interaction between proof and counter-proof has long been exploited as a heuristic in searching
for proofs and counterexamples. A major example is counterexample-guided abstraction refine-
ment (CEGAR) [Clarke et al. 2000] and its extensions to software verification such as predicate
abstraction [Ball et al. 2001] and trace abstraction [Heizmann et al. 2009]. In this framework, an
abstraction can be seen as a restriction on the proof search space. In searching this space, we
may discover an abstract counterexample. This is a sequence of states that proves that there is no
proof in the restricted space. The abstract counterexample gives us a heuristic for refining the
abstraction, that is, expanding the proof search space. Our refinement must at least refute the
abstract counterexample, and ideally should also generalize it.

CEGAR can be viewed as a relaxation of a constraint solving problem, in the style of the classical
relaxation from integer linear programming (ILP) to linear programming (LP). A proof system
can be thought of as constraints on the space of counterexamples. Abstraction corresponds to
removal of constraints, which may give spurious solutions (abstract counterexamples). As in ILP, we
generalize a spurious solution into a new constraint that rules it out, along with a class of spurious
solutions. In this method, proofs and counter-proofs interact, but there is a distinct asymmetry.
That is, we relax in the space of counterexamples, and restrict in the space of proofs. In primal-dual
Houdini, we simultaneously expand the space of proofs and counter-proofs, and each restricts the
future development of the other.
In ICE learning [Garg et al. 2014], we guess a proof in the form of a conjectured inductive

invariant ϕ. If ϕ is not inductive, we get a CTI as a counter-proof. The CTIs are accumulated,
acting as constraints on future proofs. This approach is also asymmetric, but in the opposite way
to CEGAR. That is, in ICE learning we relax in the space of proofs and restrict in the space of
counter-proofs. The primal-dual approach has several heuristic advantages over ICE learning. First,
using Houdini, it eliminates large parts of the proof space with relatively little computation, while

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

50:26 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

ICE learning eliminates only one candidate invariant. Second, it has an inductive bias toward
narrow proofs with simple predicates. Third, work done by the learner is not discarded as in ICE
learning. Rather, the clauses of a candidate proof, like the CTIs, can be accumulated and re-used.

In Craig interpolation techniques [McMillan 2003, 2006], we typically relax in the space of proofs,
e.g., by bounding executions. If the resulting proof is spurious, in the sense that it fails to generalize
to an inductive invariant, we tighten the constraint by increasing the bound on execution steps.
IC3 [Bradley 2011, 2012; Somenzi and Bradley 2011], like primal-dual Houdini, monotonically

builds up both proof and refutation attempts. IC3 differs in some key aspects, however. First, in
IC3 inference of a new predicate Q are local, repairing a single CTI relative to an existing frame P ,
while in primal-dual Houdini they are global, driven by many CTIs and generating both P andQ as
a dual-CTI. Second, IC3 uses only backward reachable states and predicates proven to be preserved
by bounded executions, while primal-dual Houdini uses CTIs and dual-CTIs which may be forward
reachable, backward reachable, or disconnected in the graphs of executions and incremental proofs.
Third, IC3 also uses a notion of incremental induction, but the one we use here is both generalized
to arbitrary width, and modified to obtain the symmetry of induction duality.

Sorcar [Neider et al. 2019] extends Houdini to a property-driven algorithm. It selects predicates
from a known set based on relevance, where a predicate is deemed relevant if it eliminates a
pre-state of a CTI. In primal-dual Houdini, if a dual-CTI (P ,Q) is discovered by dual Houdini, then
Q must eliminate some pre-state of a CTI from the previous run of primal Houdini. However, that
is not the case for P , which is guided by the requirement that the dual-CTI must be an induction
transition, and thus affected by all transitions and not just the discovered CTIs. Therefore, in
addition to the fact that primal-dual Houdini discovers predicates and Sorcar does not, dual-CTIs
provide a different refinement strategy compared to Sorcar’s relevant predicates.
In all of the prior approaches, proofs and counter-proofs interact heuristically, but there is an

asymmetry between the two. In this paper, we introduce the first approach in which proofs and
counter-proofs are fully symmetric. Our duality theory also opens a path to possible discovery of
primal-dual versions of additional algorithms such as IC3 and Sorcar.

7 CONCLUSION

We developed a symmetric duality between proofs by induction and counterexample traces, and
saw how this duality can be exploited using a simple invariant generation algorithm, Houdini,
such that the algorithm and its dual heuristically guide each other. A preliminary evaluation shows
that this approach has certain strengths for difficult infinite-state verification problems, where it is
easy to diverge in an infinite sequence of irrelevant generalizations. We see this as a promising
start, and work remains to be done to better understand the inductive bias introduced by the
primal-dual interaction, and to contain the states-predicates explosion problem. Moreover, the
theory presented here opens a path to explore primal-dual versions of more advanced invariant
generation algorithms, and may have further applications.

DATA AVAILABILITY STATEMENT

An artifact supporting this paper is openly available in Zenodo [Padon et al. 2021]. This artifact
includes our prototype implementation of primal-dual Houdini, and both input files (benchmarks)
and results (log files) for all six tools included in the experiments.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, artifact evaluation reviewers, and shepherd for comments and
suggestions which improved this paper. This work was supported by National Science Foundation
grants CCF-1160904 and CCF-1409813 as well as a grant of cloud credits from AmazonWeb Services.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

Induction Duality: Primal-Dual Search for Invariants 50:27

REFERENCES

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in

Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 1ś8. https://doi.org/10.1109/FMCAD.

2013.6679385

Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. 2001. Automatic Predicate Abstraction of C

Programs. In Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Snowbird, Utah, USA, June 20-22, 2001, Michael Burke and Mary Lou Soffa (Eds.). ACM, 203ś213. https://doi.org/

10.1145/378795.378846

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,

USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer

(Eds.). Springer, 171ś177. https://doi.org/10.1007/978-3-642-22110-1_14

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Verification, Model Checking, and Abstract

Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings (Lecture Notes

in Computer Science, Vol. 6538), Ranjit Jhala and David A. Schmidt (Eds.). Springer, 70ś87. https://doi.org/10.1007/978-3-

642-18275-4_7

Aaron R. Bradley. 2012. Understanding IC3. In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International

Conference, Trento, Italy, June 17-20, 2012. Proceedings. 1ś14. https://doi.org/10.1007/978-3-642-31612-8_1

Aaron R. Bradley and Zohar Manna. 2008. Property-directed incremental invariant generation. Formal Asp. Comput. 20, 4-5

(2008), 379ś405. https://doi.org/10.1007/s00165-008-0080-9

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction

Refinement. In Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,

Proceedings (Lecture Notes in Computer Science, Vol. 1855), E. Allen Emerson and A. Prasad Sistla (Eds.). Springer, 154ś169.

https://doi.org/10.1007/10722167_15

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (Los Angeles, California) (POPL ’77). ACM, New York, NY, USA, 238ś252. https://doi.org/10.

1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceedings of the 6th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas) (POPL ’79). ACM, New

York, NY, USA, 269ś282. https://doi.org/10.1145/567752.567778

Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science,

Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337ś340. https://doi.org/10.1007/978-3-540-78800-3_24

Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv. 2019. Inferring Inductive Invariants from Phase

Structures. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,

2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer,

405ś425. https://doi.org/10.1007/978-3-030-25543-5_23

Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. 2001. Annotation inference for modular checkers. Inf. Process. Lett.

77, 2-4 (2001), 97ś108. https://doi.org/10.1016/S0020-0190(00)00196-4

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001: Formal

Methods for Increasing Software Productivity, International Symposium of Formal Methods Europe, Berlin, Germany, March

12-16, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2021), José Nuno Oliveira and Pamela Zave (Eds.). Springer,

500ś517. https://doi.org/10.1007/3-540-45251-6_29

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,

VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and

Roderick Bloem (Eds.). Springer, 69ś87. https://doi.org/10.1007/978-3-319-08867-9_5

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. 2010. Compositional may-must program analysis:

unleashing the power of alternation. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg

(Eds.). ACM, 43ś56. https://doi.org/10.1145/1706299.1706307

Aman Goel and Karem A. Sakallah. 2021a. On Symmetry and Quantification: A New Approach to Verify Distributed

Protocols. In NASA Formal Methods - 13th International Symposium, NFM 2021, Virtual Event, May 24-28, 2021, Proceedings

(Lecture Notes in Computer Science, Vol. 12673), Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz, and

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1016/S0020-0190(00)00196-4
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/1706299.1706307

50:28 Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan, and Alex Aiken

Ivan Perez (Eds.). Springer, 131ś150. https://doi.org/10.1007/978-3-030-76384-8_9

Aman Goel and Karem A. Sakallah. 2021b. Towards an Automatic Proof of Lamport’s Paxos. In Proceedings of the 21st

Conference on Formal Methods in Computer-Aided Design, FMCAD 2021, Vol. 2. TU Wien Academic Press, 112ś122.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021. Finding Invariants of Distributed Systems: It’s a Small

(Enough) World After All. In 18th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2021,

April 12-14, 2021, James Mickens and Renata Teixeira (Eds.). USENIX Association, 115ś131. https://www.usenix.org/

conference/nsdi21/presentation/hance

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian

Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 1ś17.

https://doi.org/10.1145/2815400.2815428

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2009. Refinement of Trace Abstraction. In Static Analysis,

16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5673), Jens Palsberg and Zhendong Su (Eds.). Springer, 69ś85. https://doi.org/10.1007/978-3-642-03237-0_7

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas W. Reps. 2019. Proving Unrealizability for Syntax-

Guided Synthesis. In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,

July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.).

Springer, 335ś352. https://doi.org/10.1007/978-3-030-25540-4_18

Ranjit Jhala and Kenneth L. McMillan. 2006. A Practical and Complete Approach to Predicate Refinement. In Tools and

Algorithms for the Construction and Analysis of Systems, 12th International Conference, TACAS 2006 Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006,

Proceedings (Lecture Notes in Computer Science, Vol. 3920), Holger Hermanns and Jens Palsberg (Eds.). Springer, 459ś473.

https://doi.org/10.1007/11691372_33

Aleksandr Karbyshev, Nikolaj Bjùrner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham. 2017. Property-Directed

Inference of Universal Invariants or Proving Their Absence. J. ACM 64, 1 (2017), 7:1ś7:33. https://doi.org/10.1145/3022187

Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. 2020. First-order quantified separators. In Proceedings of the

41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 703ś717. https://doi.org/10.1145/3385412.3386018

Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (December 2001), 51ś58.

https://doi.org/10.1145/568425.568433

F William Lawvere. 1969. Adjointness in foundations. Dialectica 23, 3-4 (1969), 281ś296. http://www.tac.mta.ca/tac/reprints/

articles/16/tr16.pdf Republished in Reprints in Theory Appl. Categ.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A. Sakallah. 2019. I4: incremental

inference of inductive invariants for verification of distributed protocols. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. 370ś384. https://doi.org/10.1145/

3341301.3359651

Dahlia Malkhi, Leslie Lamport, and Lidong Zhou. 2008. Stoppable Paxos. Technical Report MSR-TR-2008-192. https:

//www.microsoft.com/en-us/research/publication/stoppable-paxos/

Zohar Manna and Amir Pnueli. 1995. Temporal Verification of Reactive Systems - Safety. Springer. https://doi.org/10.1007/978-

1-4612-4222-2

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Verification, 15th International

Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2725), Warren

A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 1ś13. https://doi.org/10.1007/978-3-540-45069-6_1

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Computer Aided Verification, 18th International Conference,

CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 4144), Thomas Ball

and Robert B. Jones (Eds.). Springer, 123ś136. https://doi.org/10.1007/11817963_14

Kenneth L. McMillan. 2014. Lazy Annotation Revisited. In Computer Aided Verification - 26th International Conference,

CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. 243ś259.

https://doi.org/10.1007/978-3-319-08867-9_16

Anders Miltner, Saswat Padhi, Todd D. Millstein, and David Walker. 2020. Data-driven inference of representation invariants.

In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,

PLDI 2020, London, UK, June 15-20, 2020. 1ś15. https://doi.org/10.1145/3385412.3385967

Daniel Neider, Shambwaditya Saha, Pranav Garg, and P. Madhusudan. 2019. Sorcar: Property-Driven Algorithms for

Learning Conjunctive Invariants. In Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October

8-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11822), Bor-Yuh Evan Chang (Ed.). Springer, 323ś346.

https://doi.org/10.1007/978-3-030-32304-2_16

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

https://doi.org/10.1007/978-3-030-76384-8_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/11691372_33
https://doi.org/10.1145/3022187
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/568425.568433
http://www.tac.mta.ca/tac/reprints/articles/16/tr16.pdf
http://www.tac.mta.ca/tac/reprints/articles/16/tr16.pdf
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-319-08867-9_16
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1007/978-3-030-32304-2_16

Induction Duality: Primal-Dual Search for Invariants 50:29

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. PaxosMade EPR: Decidable Reasoning About Distributed

Protocols. Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages. https://doi.org/10.1145/3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM,

614ś630. https://doi.org/10.1145/2908080.2908118

Oded Padon, James R. Wilcox, Jason Koenig, Kenneth L. McMillan, and Alex Aiken. 2021. Artifact for POPL 2022 Paper:

Induction Duality: Primal-Dual Search for Invariants. (November 2021). https://doi.org/10.5281/zenodo.5703081

Peter Smith. 2010. The Galois connection of syntax and semantics. Technical Report. Cambridge University. http://www.

logicmatters.net/resources/pdfs/Galois.pdf

Fabio Somenzi and Aaron R. Bradley. 2011. IC3: where monolithic and incremental meet. In International Conference on

Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, Per Bjesse and

Anna Slobodová (Eds.). FMCAD Inc., 3ś8. http://dl.acm.org/citation.cfm?id=2157657

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug

Woos. 2018. Modularity for decidability of deductive verification with applications to distributed systems. In Proceedings

of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,

USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 662ś677. https://doi.org/10.1145/3192366.3192414

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, David

Grove and Stephen M. Blackburn (Eds.). ACM, 357ś368. https://doi.org/10.1145/2737924.2737958

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated

Invariant Learning for Distributed Protocols. In 15th USENIX Symposium on Operating Systems Design and Implementation,

OSDI 2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.). USENIX Association, 405ś421. https:

//www.usenix.org/conference/osdi21/presentation/yao

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 50. Publication date: January 2022.

https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.5281/zenodo.5703081
http://www.logicmatters.net/resources/pdfs/Galois.pdf
http://www.logicmatters.net/resources/pdfs/Galois.pdf
http://dl.acm.org/citation.cfm?id=2157657
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/2737924.2737958
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao

	Abstract
	1 Introduction
	2 Preliminaries
	3 Induction Duality
	3.1 Induction-Dual Graphs
	3.2 Bounded-Width Incremental Induction Proofs
	3.3 Symmetric Connection Between Reachability and k-provability

	4 Primal-Dual Houdini
	4.1 Primal Houdini and Dual Houdini
	4.2 Primal-Dual Search
	4.3 Progress and Termination
	4.4 Heuristic Discussion

	5 Prototype Implementation & Evaluation
	5.1 Implementing a Dual-E Solver
	5.2 Implementation Details
	5.3 Benchmarks
	5.4 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

