
Compositional and Automated Verification of Distributed Systems

James R. Wilcox

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2021

Reading Committee:

Zachary Tatlock, Chair

Dan Grossman

Thomas Anderson

Program Authorized to Offer Degree:
Computer Science & Engineering

© Copyright 2021

James R. Wilcox

University of Washington

Abstract

Compositional and Automated Verification of Distributed Systems

James R. Wilcox

Chair of the Supervisory Committee:
Professor Zachary Tatlock

Paul G. Allen School of Computer Science & Engineering

Distributed systems provide the backbone for modern computer systems, from cloud com-

puting to air-traffic control. These complex systems execute concurrently in unreliable en-

vironments and are expected to tolerate various faults. Such environments are notoriously

difficult to adequately model with testing, but because of the critical importance of these

systems, it is essential that they are correct. It thus makes sense to turn to more rigorous

methods of ensuring correctness, such as formal verification. Applying formal methods is

not a panacea, however, due to the complexity of the systems involved. It is not uncommon,

e.g., for a distributed file system to coordinate thousands of machines using a combination of

several different protocols to ensure consistency, fault tolerance, and high performance. Ver-

ifying such a system requires breaking the problem down into individually verifiable parts,

and leveraging automation whenever possible.

This dissertation describes programming languages techniques for verifying distributed

systems compositionally and automatically. First, we present Verdi, a framework for verifying

distributed systems that reasons about fault tolerance mechanisms as transformers between

fault models. Second, we detail Disel, a concurrent separation logic for distributed systems

whose key insight is to treat the network as analogous to the heap in sequential programming.

Finally, we report on mypyvy, a domain-specific language for symbolic transition systems in

first-order logic, which supports a variety of automated reasoning tools to analyze systems.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1

Chapter 2: Vertical Composition: Fault-Tolerance and Application Logic 7
2.1 Introduction . 7
2.2 Overview . 9
2.3 Network Semantics . 19
2.4 Verified System Transformers . 25
2.5 Case Study: Key-Value Store . 29
2.6 Case Study: Primary-Backup Transformer 30
2.7 Case Study: Raft Replication Transformer 32
2.8 Evaluation . 44
2.9 Related Work . 46
2.10 Conclusion . 49

Chapter 3: Horizontal Composition: Systems Built from Many Protocols 50
3.1 Introduction . 50
3.2 Overview . 56
3.3 Distributed Separation Logic . 68
3.4 Case Study: Two-Phase Commit and Its Client Application 80
3.5 Implementation and Experience . 88
3.6 Related and Future Work . 91
3.7 Conclusion . 95

Chapter 4: Automatic Verification with Transition Systems 96
4.1 Introduction . 96
4.2 Background on Transition Systems . 97
4.3 The Robot in mypyvy . 107

i

4.4 Background on first-order logic . 110
4.5 Expressing Transition Systems in mypyvy . 116
4.6 Queries on Transition Systems . 120
4.7 Using mypyvy . 126
4.8 Related Work . 129
4.9 Conclusion . 133

Chapter 5: Conclusion . 136

ii

To Barkley

ACKNOWLEDGMENTS

It takes a village, and without my village, this thesis wouldn’t have happened. My

parents, Amy and Brian, always encouraged me to pursue my interests, and they put up

with seven-year-old me’s endless appetite for algebra problems. I’ve always looked up to my

big brother Sam, even though he’s two years younger, and to his family, Alexis and Charlie.

Zach: you’ve been everything I needed in an advisor. I couldn’t have done it without you.

And a special thank you for putting so much time into building the lab into what it is today.

To my reading committee members, Dan and Tom, you are both such great role models for

how to be an academic. I learned a ton from watching you work. To my GSR and friend,

Geoffrey, my time in your choir was some of the only consistent (and much needed) structure

to my schedule those first few years in grad school, and really helped me feel connected to

UW and Seattle.

To all the members of the PLSE lab, what an incredible space to learn and hang out!

To Doug, I learned so much from you (and your dad). Thanks for teaching me how to

impersonate a systems person. Thanks to Colin, Konstantin, Pavel, Eric, Stuart, Calvin,

Talia, John, Chandra, Max, and Remy for teaching me so much about PL while disguising it

as shooting the breeze. Also a big thanks to all the incredible UW undergraduates I worked

with over the years, Steve, Ryan, Pooja, Justin, Miranda, David, Ethan, and Taylor. You

all contributed so much to our projects!

One of the best parts about getting a PhD is becoming a member of the international

research community. I’ve had the pleasure of meeting many wonderful people and starting

great collaborations with several of them. I met Ilya at the PLDI 2015 banquet, and it

wasn’t long before we were talking about the basic ideas of Disel. I met Karl at the ASE

iv

2015 banquet, and it wasn’t long before we were talking about Verdi and sensor networks. I

met Oded at PLDI 2016, and it wasn’t long before we were working on yet another proof of

Raft’s correctness. Oded introduced me to Mooly, Yotam, Sharon, and Marcelo, as well as to

Ken and Giuliano. Everyone in this entourage has helped me realize that I am a collaborator

at heart. Here’s to many more projects together!

I had a beautiful time at my summer internship at Microsoft Research with Jay Lorch

and Rustan Leino. To this day, one of my favorite things to do is to make Jay laugh. Rustan

taught me pretty much everything I know about building verification tools, especially the

insight that compiler engineering principles apply to them. That summer, I also had the

chance to get to know Shaz Qadeer, who taught me how to think about refinement proofs

and concurrency.

Finishing this thesis was not an easy journey for me. I left UW having defended but not

submitted the document in June 2019, and at that point I was feeling pretty ground down

and not able to make much progress. I consider it a small miracle that the document will

finally be submitted in the summer of 2021. I found a very friendly and welcoming home in

the intervening years at Certora, with Mooly and Shelly and the rest of the team. Big thanks

to them for hiring me, and for keeping me around part time when I tried to quit. While

working at Certora, Daniel Ricketts and Calvin at Oracle were excellent lunch buddies.

I wouldn’t have been able to get back to making progress on the thesis without Zach’s

gentle guidance and project management. “Five minutes a day” was life changing for me a

year ago, and I’m so happy to have seen it grow into a full community, first with Chandra and

then with #accountability-coop. Finally, thanks to Race Condition Running (miles, not

pace!), the choirs of Saint Mark’s cathedral, and the species Canis familiaris for supporting

my mental health through this process.

v

1

Chapter 1

INTRODUCTION

Distributed systems are widely used in everything from web infrastructure to airplanes,

and their correctness is critical. These systems are notoriously hard to implement correctly

because they are expected to tolerate execution in harsh environments, where concurrency

and partial failure are a fact of life, all while no single node has access to a global view of the

system state. Traditional testing techniques are inadequate for exploring the space of possible

executions in the presence of concurrency and partial failure because this space includes the

exponential number of interleavings of system events and failure events. Furthermore, even

considering a particular interleaving of events, one faces all the usual difficulties with testing

a sequential program, including the issue of achieving sufficient coverage.

Since testing is not enough for distributed systems, the research community has developed

a rich body of work applying formal methods to exhaustively check correctness. Applying

formal methods is not a panacea, however, because complex systems have complex proofs

of correctness. It is not uncommon, e.g., for a distributed file system to coordinate thou-

sands of machines using a combination of several different protocols to ensure consistency,

fault tolerance, and high performance. The primary challenge to applying verification to

distributed systems is high system complexity, which leads to high proof complexity.

We seek to address the challenge of proof complexity in verified distributed systems while

meeting the following goals.

1. Our solutions should produce running code, not just models. (Note that this is different

from saying we want to analyze existing implementations that were not designed for

verification.)

2

2. Our solutions should support expressing optimizations that are essential for good per-

formance in practice, such as efficient data structures and optimized protocols with,

e.g., batching and piggybacking.

3. Our solutions should minimize developer effort.

Our approach is to use compositional reasoning to break down the verification problem

into smaller parts, and then to apply automated decision procedures to the resulting pieces.

In the face of high system complexity, decomposing the problem reduces proof complexity and

increases automation. Decomposing proofs leads to two benefits. First, a truly compositional

proof imposes no additional proof burden to put the pieces back together. Second, sufficiently

decomposed pieces can be analyzed fully automatically using decision procedures.

For example, consider a system that consists of a replicated key-value store and a highly

available lock-based resource manager service. (See Figure 1.1.) Both subsystems use con-

sensus for reliability, and the key-value store uses the locking service to manage cross-key

transactions. To verify such a system, we can decompose the proof along two dimensions.

First, each subsystem’s proof can be decomposed vertically, by separating the replication

mechanism from the application logic. Second, the entire system’s proof can be constructed

by horizontally composing the subsystem proofs. Lastly, the application logic is expressed at

a high enough level of abstraction that its specification can be analyzed fully automatically.

These considerations lead us to the central claim of this dissertation:

Techniques for composition and automation provide a basis for effective verification of

distributed systems implementations.

The remainder of this dissertation addresses describes three aspects of our approach:

composing fault-tolerance mechanisms with application logic (Verdi, Chapter 2), composing

several protocols to build larger protocols (Disel, Chapter 3), and automating verification

of high-level protocols with SMT solvers (mypyvy, Chapter 3). These techniques also satisfy

3

Key-Value

������ Semantics

LockServ

������ Semantics

Seq #
...

Consensus

Seq #
...

Consensus
��� Semantics ��� Semantics

Verdi
Proof ��

Verdi
Proof ��

Disel
Proof ��

Spec and
Invariants

Spec and
Invariants

mypyvy
Analysis��

mypyvy
Analysis��

Figure 1.1: The structure of the proof of a verified distributed system using techniques from
this dissertation.

our goals described above for working on running code with protocol optimizations while

reducing developer effort.

Chapter 2 addresses complexity challenges due to fault tolerance by introducing Verdi,

a Coq [17] framework for implementing and verifying distributed systems that supports

compositional fault tolerance reasoning through verified system transformers. Verdi models

system execution using various network semantics, each of which encodes assumptions about

the environment including possible network faults and machine failures. Network semantics

can range from the idealistic to the pessimistic. For example, one might assume that all

messages are eventually delivered and that nodes never fail. On the other hand, one might

4

assume that packets can be dropped and duplicated and that some nodes behave arbitrarily

or maliciously. Different systems are designed under different sets of assumptions, and net-

work semantics capture those assumptions. The main point of defining a particular network

semantics in Verdi is to verify distributed systems using that semantics as the fault model.

Assuming the network semantics accurately describes all possible behaviors of the system’s

environment, a proof in Verdi guarantees that the system is correct for all executions. For

common network semantics, there are typically generic mechanisms that systems use to toler-

ate faults, e.g., sequence numbering to handle message reordering and duplication. Another

key benefit of clearly stating environment assumptions as network semantics is that one can

then express these generic fault tolerance mechanisms as transformers between semantics.

Using transformers, the engineer can implement and reason about their application in a fault

model with relatively few faults, and then automatically transform the system into one that

provably works in a more adversarial fault model with relatively more faults. We used Verdi

to study the Raft consensus protocol [86], producing the first formal proof of safety and the

first verified implementation. The Verdi framework was originally described in a PLDI 15

paper [117], and an extended case study proving the safety of the Raft consensus protocol

was published in CPP 16 [118]. These papers were written together with a fantastic team of

coauthors: Doug Woos, Pavel Panchekha, Steve Anton, Zachary Tatlock, Xi Wang, Michael

D. Ernst, and Thomas Anderson. Chapter 2 is a combined narrative of these two papers

with fixed typos and a more coherent description of the Raft proof and less emphasis on

the proof engineering difficulties we encountered. The Verdi code is publicly available at

https://github.com/uwplse/verdi.

Chapter 3 details Disel, a concurrent separation logic for distributed systems. Whereas

Verdi separates fault tolerance reasoning from application logic (the vertical dimension of

Figure 1.1), Disel separates reasoning about cooperating services by defining interfaces that

capture protocol-specific invariants (the horizontal dimension). This supports verifying mod-

ern distributed systems which are typically built by composing several services to provide

a high-level application. A proof of correctness for a system composed of several services

https://github.com/uwplse/verdi

5

should similarly compose the guarantees of each individual service. Using the techniques

of Verdi alone, such reasoning is not possible. Instead of reasoning across fault models,

what we need is to abstract over the low-level details each component uses to provide its

guarantee. To achieve this, we take inspiration from modern program logics for concur-

rent programs that manipulate heap pointers. These logics allow modular reasoning by

separating different parts of the heap, each of which can be reasoned about independently.

Disel applies this insight to distributed systems by analogizing the network as the heap.

Thus, Disel separates the network messages of each protocol from each other, allowing in-

dependent reasoning. Disel achieves this through several logical mechanisms that support

strengthening the invariants of other services with client-specific facts and capturing the

essential interactions between protocols with hooks, which allow one protocol’s actions to

be conditioned on another protocol’s state. Disel was originally published in SNAPL 17

and POPL 18 [102, 116], and would not have been possible without my wonderful collabo-

rators, Ilya Sergey, Zachary Tatlock, and Miranda Edwards. Chapter 3 is a version of the

POPL 18 paper with just a handful of typos fixed. The Disel code is publicly available at

https://github.com/DistributedComponents/disel.

Experience in Disel and Verdi showed that the manual effort required to provide strong

guarantees about distributed systems doesn’t scale with current tooling. In particular, the

key sticking point is developing inductive invariants. Deductive verification techniques, such

as those used in Disel and Verdi, are highly expressive but require the user to provide a great

deal of additional input, including inductive invariants and their proofs. For example, using

Verdi to prove an application correct in a relatively nice fault model still requires deriving an

application-specific invariant, which simultaneously (1) summarizes all the reachable states

of the application, (2) is closed under the transition system’s step relation, and (3) ensures

the absence of safety violations. The difficulty of deriving these invariants inspired us to

investigate techniques for automatically proving and even inferring inductive invariants.

Chapter 4 describes mypyvy, a tool for automated reasoning about symbolic transition

systems in first-order logic. mypyvy takes an input file describing a symbolic transition

https://github.com/DistributedComponents/disel

6

system and can perform a variety analyses, as requested by the user. Three of the most

interesting analyses include inductive invariant checking, invariant inference, and bounded

trace reasoning. In all cases, mypyvy loads the transition system and compiles it together

with the user-requested analysis to a (sequence of) SMT queries, which are dispatched to Z3.

The resulting workflow is significantly more automated than using Verdi or Disel to prove

inductive invariants, and anecdotally is much more enjoyable to use for verification. On the

other hand, the automation is sensitive to the complexity of the protocol being analyzed, so

it is essential to first decompose the system vertically and horizontally and only then to apply

mypyvy. mypyvy was originally developed to support a CAV 19 paper [25], but that paper

was not about mypyvy per se. Chapter 4 contains previously unpublished material describing

mypyvy itself and the theory behind it, and will become the primary reference for mypyvy.

For the purposes of this dissertation, the main contribution of Chapter 4 is methodological:

one can use mypyvy to automate the verification of distributed protocols once they have been

sufficiently decomposed and abstracted. That said, we also have some experience to indicate

that mypyvy will be useful as a platform for exploring further automated reasoning tasks.

The development of mypyvy has benefited greatly from many contributors, especially Oded

Padon, Yotam Feldman, Sharon Shoham, Mooly Sagiv, Jason R. Koenig, Ken McMillan, Alex

Aiken, Giuliano Losa, Daniel Ricketts, Shachar Itzhaky, Lindsey Kuper, William Schultz, and

Aaron Weiss. mypyvy is actively developed at https://github.com/wilcoxjay/mypyvy.

Distributed systems remain a crucial topic with many potential avenues for future work.

In Chapter 5, we summarize our plans for extending Verdi, Disel, and mypyvy to further

improve the verification experience. We are especially excited to live in a world where more

users are empowered to verify their distributed systems.

https://github.com/wilcoxjay/mypyvy

7

Chapter 2

VERTICAL COMPOSITION: FAULT-TOLERANCE AND
APPLICATION LOGIC

2.1 Introduction

This chapter addresses the “vertical” dimension of composition that is our first step on our

overarching goal of making it easier to verify distributed systems. By vertical composition,

we mean the separation of application logic from generic fault tolerance mechanisms. Our

approach is to first describe several different fault models that a distributed system might

run in, which we call network semantics. We can then describe fault tolerance mechanisms

as adapters that allow a system designed for one fault model to run in another fault model.

This separation of concerns allows reasoning about application logic in a relatively “nice”

fault model (one with fewer failures). We have implemented our approach in a framework

called Verdi. Later chapters will further compose several protocols horizontally and automate

reasoning about application logic to build an entire system.

There are several design challenges related to vertical composition of verified distributed

systems. First, we want to work with executable code rather than mathematical models. For

performance reasons, real-world systems often diverge in important ways from their high-level

mathematical descriptions [10]. If we were to reason only about models, bugs could creep into

the formality gap between model and implementation. Second, distributed systems run in a

diverse range of environments. For example, some networks may reorder packets, while other

networks may also duplicate them. Verdi must support verifying applications against these

different fault models. Third, it is difficult to prove that application-level guarantees hold

in the presence of faults. Verdi aims to help the programmer separately prove correctness of

application-level behavior and correctness of fault-tolerance mechanisms, and to allow these

8

VST

Net Sem 2

Net Sem 1

7!

4

Net

Runtime 5Extractor

Net Sem 2

Proof
CheckerSpec’

Proof’

1: Name’
2: I/O’ + Msg’
3: State’

4: Handler’

Impl’

Spec

Proof

1: Name
2: I/O + Msg
3: State

4: Handler

Impl

1

2

3

Figure 2.1: Verdi workflow. Programmers provide the dark gray boxes in the left column:
the specification, implementation, and proof of a distributed system. Rounded rectangles
correspond to proof-related components. To make the proof burden manageable, the initial
proof typically assumes an unrealistically simple network model in which machines never
crash and packets are never dropped or duplicated. A verified system transformer (VST)
transforms the application into one that handles faults, as shown in the column of light
gray boxes in the middle column. Note that the programmer does not write any code for
this step. Verdi provides the white boxes, including verified systems transformers (VSTs),
network semantics encoding various fault models, and extraction of an implementation to
an executable. Programmers deploy the executable over a network for execution.

proofs to be easily composed.

Verdi addresses the above challenges with three key ideas. First, Verdi provides a Coq [17]

toolchain for writing executable distributed systems and verifying them; this avoids a for-

mality gap between the model and the implementation. Second, Verdi provides a flexible

mechanism to specify fault models as network semantics. This allows programmers to verify

their system in the fault model corresponding to their environment. Third, Verdi provides

a compositional technique for implementing and verifying distributed systems by separat-

ing the concerns of application correctness and fault tolerance. This simplifies the task of

providing end-to-end guarantees about distributed systems.

To achieve compositionality, we introduce verified system transformers. A system trans-

former is a function whose input is an implementation of a system and whose output is a new

system implementation that makes different assumptions about its environment. A verified

system transformer includes a proof that the new system satisfies properties analogous to

those of the original system. For example, a Verdi programmer can first build and verify a

system assuming a reliable network, and then apply a transformer to obtain another version

9

of their system that correctly and provably tolerates faults in an unreliable network (e.g.,

machine crashes).

Contributions. This chapter makes the following contributions: (1) Verdi, a toolchain

for building provably correct distributed systems, (2) a set of formal network semantics

with different fault models, (3) a compositional verification technique using verified system

transformers, (4) case studies of implementing, and proving correct, practical distributed

systems including a key-value store, a primary-backup replication transformer, and the first

formally verified proof of linearizability for the Raft consensus protocol [86], and (5) an

evaluation showing that these implementations can provide reasonable performance. Our

key conceptual contribution is the use of verified systems transformers to enable modular

implementation and verification of systems.

The rest of the chapter is organized as follows. Section 2.2 overviews the Verdi sys-

tem. Section 2.3 details the small-step operational semantics that specify distributed system

behavior in different fault models. Section 2.4 describes how systems in Verdi can be con-

structed from modular components. Sections 2.5–2.7 describe case studies of using Verdi to

implement and verify distributed systems. Section 2.8 evaluates the performance of systems

implemented in Verdi. Section 2.9 discusses related work, and Section 2.10 concludes.

2.2 Overview

Figure 2.1 illustrates the Verdi workflow. The programmer À specifies a distributed system

and Á implements it by providing four definitions: the names of nodes in the system, the

external input and output and internal network messages that these nodes respond to, the

state each node maintains, and the message handling code that each node runs. Â The

programmer proves the system correct assuming a specific baseline network semantics. In the

examples in this chapter, the programmer chooses an idealized reliable model for this proof:

all packets are delivered exactly once, and there are no node failures. Ã The programmer

then selects a target network semantics that reflects their environment’s fault model, and

applies a verified system transformer (VST) to transform their implementation into one

10

Client

Other
local

processes
Agent

Input

Output

Client

Other
local

processes
Agent

Input

Output

Server

Message

Message

Figure 2.2: Architecture of a lock service application. Boxes represent separate physical
nodes, while dotted lines separate processes running on the same node. Each client node
runs an Agent process that exchanges input and output with other local processes. The
Agent also exchanges network messages with the Server.

that is correct in that fault model. This transformation also produces updated versions of

the specification and proof. Ä The verified system is extracted to OCaml, compiled to an

executable, and deployed across the network.

The rest of this section describes each of these five steps, using a simple lock service as

a running example. The lock service manages a single shared lock. Conceptually, clients

communicate with the lock service using the following API: a client requests and releases a

lock via the Lock and Unlock input messages, and the lock service grants a lock by responding

with a Grant output message.

To provide this API, the lock service consists of a central lock Server node, and a lock

Agent that runs on every client node, as illustrated in Figure 2.2. That is, each client node

runs a lock Agent along with other client processes that access the API through the Agent.

Each lock Agent communicates over the network with the central lock server. The Agent

requests and releases the lock with the LockMsg and UnlockMsg network messages, and the

server sends a GrantMsg network message to notify an Agent when it has received the lock.

11

(* 1 - node identifiers *)
Name := Server | Agent(int)

(* 2 - API, also known as external IO *)
Inp := Lock | Unlock
Out := Grant
(* 2 - network messages *)
Msg := LockMsg | UnlockMsg | GrantMsg

(* 3 - state *)
State (n: Name) :=
match n with
| Server => list Name (* head = agent holding lock *)

(* tail = agents waiting for lock *)
| Agent n => bool (* true iff this agent holds lock *)

InitState (n: Name) : State n :=
match n with
| Server => []
| Agent n => false

(* 4 - handlers for external input and internal messages *)
HandleInp (n: Name) (s: State n) (inp: Inp) :=
match n with
| Server => nop (* server performs no external IO *)
| Agent n =>
match inp with
| Lock => (* if client requests lock, forward to Server *)
send (Server, LockMsg)

| Unlock => (* if client requests unlock and lock held... *)
if s then (
(* update state and tell Server lock freed *)
s := false;;
send (Server, UnlockMsg))

HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
match n with
| Server =>
match msg with
| LockMsg => (* if lock not held, immediately grant *)
if s == [] then send (src, GrantMsg);;
s := s ++ [src] (* add requester to end of queue *)

| UnlockMsg => (* head of queue no longer holds lock *)
s := tail s;;
(* grant lock to next waiting agent, if any *)
if s != [] then send (head s, GrantMsg)

| _ => nop (* never happens *)
| Agent n =>
match msg with
| GrantMsg => (* we have the lock *)
(* update state and notify external listeners *)
s := true;;
output Grant

| _ => nop (* never happens *)

Figure 2.3: A simple lock service application implemented in Verdi, under the assumption of
a reliable network. Verdi extracts these definitions into OCaml and links the resulting code
with a runtime to send and receive messages over the network.

12

2.2.1 Specification

A Verdi programmer specifies the correct behavior of their system in terms of traces, the

sequences of external input and output generated by nodes in the system. For the lock

service application, correctness requires mutual exclusion: no two distinct nodes should ever

simultaneously hold the lock. This mutual exclusion property can be expressed as a predicate

over traces:
mutex(τ) :=

τ = τ1 ++ 〈n1, Grant〉 ++ τ2 ++ 〈n2, Grant〉 ++ τ3

→ 〈n1, Unlock〉 ∈ τ2

To hold on trace τ , the mutex predicate requires that whenever Grant is output on node n1

and then later Grant is output on node n2, there must first be an intervening Unlock input

from n1 releasing the lock.

A system implementation satisfies specification Φ in a particular network semantics if for

all traces τ the system can produce under that semantics, Φ holds on τ . For the example

lock service application, an implementation satisfies mutex in a given semantics if mutex holds

on all the traces produced under that semantics.

2.2.2 Implementation

Figure 2.3 shows the definitions a programmer provides to implement the lock service ap-

plication in Verdi. (1) Name lists the names of nodes in the system. In the lock service

application, there is a single Server node and an arbitrary number of Agents. (2) Inp and

Out define the API of the lock service — the external input and output exchanged between

an Agent and other local processes on its node. Msg defines network messages exchanged

between Agents and the central Server. (3) State defines the state maintained at each node.

Node state is defined as a dependent type where a node’s name determines the data main-

tained locally at that node. In the lock service, the Server maintains a queue of Agent nodes,

initially empty, where the head of the queue is the Agent currently holding the lock and the

13

rest of the queue represents the Agents which are waiting to acquire the lock. Each Agent

maintains a boolean, initially false, which is true exactly when that Agent holds the lock. (4)

The handler functions HandleInp and HandleMsg define how nodes respond to external input

and to network messages.

This implementation assumes a reliable network where machines never crash and packets

may be reordered but are not dropped or duplicated. These assumptions reduce the pro-

grammer’s effort in both implementing the application and proving it correct. Section 2.2.4

shows how Verdi can automatically transform the lock service application into a version that

tolerates faults.

When the system runs, each node listens for events and responds by running the appro-

priate handler: HandleInp for external input and HandleMsg for network messages. When an

Agent receives an external input that requests to acquire or release the lock, it forwards the

request to the Server; in the Unlock case, it first checks to ensure that the lock is actually

held, and it resets its local state to false. Because the network is assumed to be reliable, no

acknowledgment of the release is needed from the Server. When the Server receives a LockMsg

network message, if the lock is not held, the server immediately grants the lock, and always

adds the requesting Agent to the end of the queue of nodes. When the Server receives an

UnlockMsg message, it removes a node from the head of its queue of Agents and grants the

lock to the next Agent in the queue, if any. When an Agent receives a GrantMsg message, it

produces external output (Grant) to inform other processes running on its node that the lock

is held.

The application will be deployed on some network, and network semantics capture as-

sumptions about the network’s behavior. For this example, we assume a semantics encoding

a reliable network. In a reliable network, each step of execution either (1) picks an arbitrary

node and delivers an arbitrary external input, runs that node’s input handler, and updates

the state, or (2) picks a message in the network, runs the recipient’s message handler, and

updates the state.

Figure 2.4 shows an execution of the lock service application with two agents. Agents A1

14

A1 S A2

false [] false

Lock

[A1]

LockMsg

true

GrantMsg
Grant

Lock

[A1,A2]

LockMsg

false

Unlock

[A2]UnlockMsg

trueGrantMsg

Grant

[〈A1, Lock〉, 〈A2, Lock〉, 〈A1, Grant 〉, 〈A1, Unlock〉, 〈A2, Grant 〉]

Figure 2.4: The behavior of the lock service application, with one server S and two agents A1

and A2. Each agent starts with the state false, and the server starts with an empty queue.
Time flows downward. In response to external input (drawn with lightning-bolt arrows) and
network messages, the nodes exchange messages and update local state. External output is
shown as speech bubbles. The trace of this execution is shown at the bottom; note that only
externally-visible events (external input and output) appear in the trace.

and A2 both try to acquire the lock. The service first grants the lock to A1. Once A1 releases

the lock, the service grants it to A2. Note that, because our network semantics does not

assume messages are delivered in the same order in which they were sent, there is a potential

race condition: an agent can attempt to re-acquire the lock before the server has processed

its previous release. In that case, the server simply (and correctly) adds the sender to the

queue again. Using Verdi, the lock service is guaranteed to behave correctly even in such

corner cases.

2.2.3 Verifying the Lock Service Application

We briefly outline the proof of the mutex property for the lock service application in the

reliable network environment (i.e., no machine crashes nor packet loss/duplication). The

15

proof that mutex holds on all traces of the lock service application consists of three high-level

steps: (1) prove an invariant about the reachable node and network states of the lock service

application, (2) relate these reachable states to the producible traces, and (3) show that the

previous two steps imply mutex holds on all producible traces.

The first step proves that all reachable system states satisfy the mutexstate property:

mutexstate(Σ, P) :=

∀ n m, n 6= m→ ¬hasLock(Σ, n) ∨ ¬hasLock(Σ, m)

hasLock(Σ, n) :=

Σ(Agent(n)) = true

The function Σ maps node names to their state, and P is the set of in-flight packets. The

property mutexstate ensures that at most one Agent node holds the lock at a time.

A programmer can verify the mutexstate property by proving an inductive state invariant.

A property φ is an inductive invariant if both (1) it holds in the initial state, (Σ0, ∅), where

Σ0 maps each node to its initial state and ∅ represents the initial, empty network, and also

(2) whenever it holds in some state, (Σ, P), and (Σ, P) can step to (Σ′, P ′), then it holds

in (Σ′, P ′).

One inductive state invariant for mutexstate is:

(∀ n, hasLock(Σ, n)→ atHead(Σ, n))

∧ (∀ p ∈ P, p.body = GrantMsg→ grantee(Σ, p.dest))

∧ (∀ p ∈ P, p.body = UnlockMsg→ grantee(Σ, p.source))

∧ at_most_one {GrantMsg, UnlockMsg} P

16

where

atHead(Σ, n) := ∃ t, Σ(Server) = n :: t

grantee(Σ, n) := atHead(Σ, n) ∧ ¬hasLock(Σ, n).

The first conjunct above ensures that the Server and Agents agree on who holds the lock. The

second and third conjuncts state that GrantMsg is never sent to an agent that already holds the

lock, and that UnlockMsg is never sent from an agent that still holds the lock. Finally, the last

conjunct states that there is at most one in-flight message in the set {GrantMsg, UnlockMsg};

this is necessary to ensure that neither of the previous two conjuncts is violated when a

message is delivered. We proved in Coq that this invariant is inductive and that it implies

mutexstate; the proof is approximately 500 lines long.

The second step of the proof relates reachable states to the traces a system can produce:

trace_state_agreement(τ, Σ) :=

∀ n, lastGrant(τ, n)↔ hasLock(Σ, n)

lastGrant(τ, n) := ∃ τ1 τ2,

τ = τ1 ++ 〈n, Grant〉 :: τ2 ∧ ∀ m, 〈m, Unlock〉 6∈ τ2

This property requires that whenever a Grant output appears in the trace without a corre-

sponding Unlock input, that agent’s flag is true (and vice versa). The proof of this property

is by induction on the possible behavior of the network.

The third step of the proof shows that together, mutexstate and trace_state_agreement im-

ply that mutex holds on all traces of the lock service application under the reliable semantics.

This result follows from the definitions of mutex, mutexstate, and trace_state_agreement.

17

2.2.4 Verified System Transformers

We have proved the mutex property for a reliable environment where the network does not

drop or duplicate packets and the server does not crash. Assuming such a reliable environ-

ment simplifies the proof by allowing the programmer to consider fewer cases. To transfer the

property into an unreliable environment with network and machine failures, a programmer

uses Verdi’s verified system transformers. As illustrated by Figure 2.1 part Ã, after verifying

a distributed system in one network semantics, a programmer can apply a verified system

transformer to produce another version of their system which provides analogous guarantees

in another network semantics.

In general, there are two types of transformers in Verdi: transmission transformers that

handle network faults like packet duplication and drops and replication transformers that

handle node crashes. Below we describe an example transmission transformer for the lock

service application and briefly overview replication transformers, deferring details to Sec-

tion 2.7.

Tolerating network faults. Figure 2.3’s implementation of the lock service application

will not function correctly in a network where messages can be duplicated. If an UnlockMsg

message is duplicated but the agent reacquires the lock before the second copy is delivered,

the server will misinterpret the duplicated UnlockMsg message as releasing the second lock

acquisition.

Realistically, most developers would not run into this issue, as correct TCP implemen-

tations reject duplicate transmissions. However, some distributed systems need to handle

deduplication and retransmission at a higher level, or choose not to trust the guarantees

provided by unverified TCP implementations.

As another option, a programmer could rewrite the lock service—for instance, by in-

cluding a unique identifier with every GrantMsg and UnlockMsg message to ensure that they

are properly paired. The developer would then need to re-prove system correctness for this

slightly different system in the semantics that models packet-duplicating networks. This

18

would require finding a new inductive invariant and writing another proof.

Verdi allows developers to skip these steps. Verdi provides a system transformer that

adds sequence numbers to every outgoing packet and ignores packets with sequence numbers

that have already been seen. Applying this transformer to the lock service yields both a new

system and a proof that the new system preserves the mutex property even when packets are

duplicated by the underlying network. Section 2.4 further details this transformer.

More generally, Verdi decouples the verification of application-level guarantees from the

implementation and verification of fault-tolerance mechanisms. Verdi provides a collection

of verified system transformers which allow the developer to transfer guarantees about a

system in one network semantics to analogous guarantees about a transformed version of

the system in another network semantics. This allows a programmer to build and verify

their system against an idealized semantics and use a verified system transformer to obtain a

version of the system that provably tolerates more realistic faults while guaranteeing system

correctness properties.

Tolerating machine crashes. Verdi also provides verified system transformers to toler-

ate machine crashes via replication. Such replication transformers generally create multiple

copies of a node in order tolerate machine crashes. This changes the number of nodes when

transforming a system, which we discuss further in Section 2.7. (By contrast, transmission

transformers like the one described above generally preserve the number of nodes and the

relationships among them when transforming a distributed system.)

2.2.5 Running the Lock Service Application

Now we have a formally verified lock service, written in Coq, that tolerates message dupli-

cation faults. To obtain an executable for deployment, a Verdi programmer invokes Coq’s

built-in extraction mechanism to generate OCaml code from the Coq implementation, com-

pile it with the OCaml compiler, and link it with a Verdi shim. The shim is written in

OCaml; it implements network primitives (e.g., packet send/receive) and an event loop that

invokes the appropriate event handler for incoming network packets, IO, or other events.

19

2.2.6 Summary

We have demonstrated how to use Verdi to establish a strong guarantee of the mutex property

for the lock service application running in a realistic environment. Specifically, a programmer

first specifies, implements, and verifies an application assuming a reliable environment. The

programmer then applies system transformers to obtain a version of their application that

handles faults in a provably correct way.

Verdi’s trusted computing base includes the following components: the specifications

of verified applications, the assumption that Verdi’s network semantics match the physical

network, the Verdi shim, Coq’s proof checker and OCaml code extractor, and the OCaml

compiler and runtime.

Verdi currently supports verifying safety properties, but not liveness properties, and

none of Verdi’s network semantics currently capture Byzantine fault models. We believe

that Verdi could be extended to support these features: liveness properties could be verified

by supporting infinite traces and adding fairness hypotheses as axioms as in TLA [59], while

Byzantine fault models can be supported by adding more nondeterminism in the network

semantics.

2.3 Network Semantics

The correctness of a distributed system relies on assumptions about its environment. For

example, one distributed system may assume a reliable network, while others may be designed

to tolerate packet reordering, loss, or duplication. To enable programmers to reason about

the correctness of distributed systems in the appropriate environment model, Verdi provides

a spectrum of network semantics that encode possible system behaviors using small-step

style derivation rules.

This section presents the spectrum of network semantics that Verdi provides, ranging

from single-node systems that do not rely on the network, through models of increasingly

unreliable packet delivery (reordering, drops, and duplication), and culminating with a model

20

Hinp(σ, i) = (σ′, o)

(σ, T) ;s (σ
′, T ++ 〈i, o〉)

Input

Figure 2.5: Single-node semantics. The derivation rule above encodes possible behaviors of
a single-node system that does not rely on the network. When the node is in state σ with
input/output trace T , it may receive an arbitrary input i, and respond by running its input
handler Hinp(σ, i), which generates both the next state σ′ and a list of outputs o. The Input
rule relates the two states of the world (σ, T) ;s (σ

′, T ++ 〈i, o〉) to reflect that the node
has updated its state to σ′ and sent outputs o in response to input i. Verifying properties
of such single-node systems (i.e., state machines) is useful when they are replicated over a
network to provide fault tolerance.

that permits arbitrary node crashes under various recovery assumptions. Each of these

semantics is useful for reasoning about different types of systems. For example, the properties

of single-node systems can be extended to handle node failures using protocols like Raft,

while packet duplication semantics is useful for verifying packet delivery even in the face of

reconnection, something that raw TCP does not support.

In Verdi, network semantics are defined as step relations on a “state of the world”. The

state of the world differs among network semantics, but always includes a trace of the sys-

tem’s external input and output. For example, many semantics include a bag of in-flight

packets that have been sent by nodes in the system but have not yet been delivered to

their destinations. Each network semantics is parameterized by system-specific data types

and handler functions. Below we detail several of the network semantics Verdi currently

provides.

Single-node semantics We begin with a simple semantics for single-node systems that

do not use the network, i.e., state machines. This semantics is useful for proving properties

of single-node systems; these can be extended, using a verified system transformer based on

Raft, to provide fault tolerance. The single-node semantics, shown in Figure 2.5, models

21

Hinp(n, Σ[n], i) = (σ′, o, P ′) Σ′ = Σ[n 7→ σ′]

(P, Σ, T) ;r (P] P ′, Σ′, T ++ 〈i, o〉)
Input

Hnet(dst, Σ[dst], src, m) = (σ′, o, P ′) Σ′ = Σ[dst 7→ σ′]

({(src, dst, m)}] P, Σ, T) ;r (P] P ′, Σ′, T ++ 〈o〉)
Deliver

Figure 2.6: Reordering semantics. The derivation rules above encode the behavior of systems
running on networks that may arbitrarily reorder packet delivery. The network is modeled
as a bag (i.e., a multiset) P of packets, which contain source and destination node names
as well as a message. The state at each node in the network is a map Σ from node names
to system-defined data. The Input rule passes arbitrary input i to the input handler Hinp

for a given node n in state σ, which generates the next state σ′, a list of outputs o, and a
multiset of new packets P ′. The outputs are added to the externally-visible trace, while the
packets are added to the network (using the multiset-union operator]). The Deliver rule
works similarly, except that instead of running a handler in response to arbitrary input, the
network handle Hnet is run on a packet taken from the network.

systems of a single node that respond to input by modifying their state and producing

output. The node’s behavior is described by a handler Hinp, which takes the current local

state and an input and returns the new state and a list of outputs. The state of the world

in this semantics is the node’s state σ paired with a trace T that records the inputs sent to

the system along with the outputs the system generates. The only step, Input, delivers an

arbitrary input i to the handler Hinp and records the results in the next state. The squiggly

arrow between two states indicates that a system in the state of the world on the left of

the arrow may transition to the state of the world on the right of the arrow when all of the

preconditions above the horizontal bar are satisfied. The node’s state is updated, and the

trace is extended with the input i and the output o.

Reordering semantics The reordering semantics, shown in Figure 2.6, models a system

running on multiple nodes where packets are always delivered but may be arbitrarily re-

22

p ∈ P

(P, Σ, T) ;dup (P] {p}, Σ, T)
Duplicate

Figure 2.7: Duplicating semantics. The duplicating semantics includes all the derivation
rules from the reordering semantics, which we elide for space. In addition, it includes the
Duplicate rule, which duplicates an arbitrary packet in the network. This represents a
simple class of network failure in which a network misbehaves by delivering the same packet
multiple times.

ordered. This was the “reliable” semantics initially used for the lock service implementation

in Section 2.2. Each node communicates with other processes running on the same host via

input and output, just as in the single-node semantics. Nodes can also exchange packets,

which are tuples of the form (source, destination, message), over a network that may reorder

packets arbitrarily but does not drop, duplicate, or fabricate them. The behavior of nodes is

described by two handler functions. The input handler, Hinp, is run whenever a node receives

input from another process on the same host. Hinp takes as arguments the node on which

it is running, the current local state, and the input that was delivered. It returns the new

local state and a list of outputs and packets to be processed by the semantics. Similarly, the

network handler, Hnet, is run whenever a packet is delivered from the network. Hnet takes

as arguments the receiver of the packet, the sender of the packet, the local state, and the

message that was delivered.

A state of the world in the reordering semantics consists of a bag of in-flight packets

P , a map from nodes to their local state Σ, and a trace T . The two rules in the reorder-

ing semantics, Input and Deliver, respectively, model input from other processes on the

node’s host (i.e., the “outside world”) and delivery of a packet from the network, where the

corresponding handler function executes as described above. Delivered packets are removed

from the bag of in-flight packets. Input and output are recorded in the trace; new packets

are added to the bag of in-flight packets.

23

({p}] P, Σ, T) ;drop (P, Σ, T)
Drop

Htmt(n, Σ[n]) = (σ′, o, P ′) Σ′ = Σ[n 7→ σ′]

(P, Σ, T) ;drop (P] P ′, Σ′, T ++ 〈tmt, o〉)
Timeout

Figure 2.8: Dropping semantics. The dropping semantics includes the two rules above in
addition to all the derivation rules from the duplicating semantics. The Drop rule allows
a network to arbitrarily drop packets. Systems which tolerate dropped packets need to
retransmit some messages, so the dropping semantics also includes a Timeout rule, which
fires a node’s timeout handler Htmt. The Verdi shim implements this by setting system-
defined timeouts after every event; if another event has not occurred on a given node before
the timeout fires, the system’s Htmt handler is executed. Note that the semantics do not
explicitly model time and allow timeouts to occur at any step.

Duplicating semantics The duplicating semantics, shown in Figure 2.7, extends the

reordering semantics to model packet duplication in the network. In addition to the Input

and Deliver rules from the reordering semantics, the duplicating semantics includes the

rule Duplicate, which adds an additional copy of an in-flight packet to the network.

Dropping semantics Figure 2.8 specifies a network that drops arbitrary in-flight packets.

The Drop rule allows any packet in the in-flight bag P to be dropped. However, simply

adding this rule to the semantics would make it very difficult to write working systems, since

handler functions only execute when packets are delivered and packets may be arbitrarily

dropped. Real networked systems handle the possibility that packets can be dropped by

setting timeouts, which execute if a certain amount of time has elapsed without receiving

some other input or packet. We model this behavior in the Timeout rule: a timeout can

be delivered to any node at any time, and will execute the node’s Htmt handler.

Node failure There are many possible models for node failure. Some systems assume that

nodes will always return after a failure, in which case node failure is equivalent to a very

24

n 6∈ F

(P, Σ, F, T) ;fail (P, Σ, {n} ∪ F, T)
Crash

n ∈ F Hrbt(n, Σ[n]) = σ′ Σ′ = Σ[n 7→ σ′]

(P, Σ, F, T) ;fail (P, Σ′, F − {n}, T)
Reboot

Figure 2.9: Failure semantics. The node failure semantics represents a network in which
nodes can both stop and start, and adds a set of failed nodes F to the state of the world.
The node failure semantics includes all the derivation rules from the dropping semantics in
addition to the rules above. The rules from the drop semantics are modified to only run
when node n is not in the set of failed nodes F . The Crash rule simply adds a node to
the set of failed nodes F . Crashed nodes may re-enter the network via the Reboot rule, at
which point their state is restored according to the Hrbt function.

long delay. Others assume that nodes will never return to the system once they have failed.

Verdi’s semantics for node failure, illustrated in Figure 2.9 assumes that nodes can return to

the system and that all, some, or none of their state will be preserved (i.e., read back in from

non-volatile storage). The state of the world in the node failure semantics includes a set F

containing the nodes which have failed. The rules from the drop semantics are included in

the failure semantics, but each with an added precondition to ensure that only live nodes

(i.e., nodes that are not in F) can receive external input, network packets, or timeouts. A

node can fail (be added to F) at any time, and failed nodes can return at any time. When

a failed node returns, the Hrbt (reboot) function is run on its pre-failure state to determine

what state survives the failure.

Low-level details Verdi’s network semantics currently elide low-level network details. For

example, input, output, and packets are modeled as abstract datatypes rather than bits

exchanged over wires, and system details such as connection state are not modeled. This

level of abstraction simplifies Verdi’s semantics and eases both implementation and proof.

25

SA Φ(SA)

SB lift(Φ)(SB)

transformer transformer
correctness

Figure 2.10: A verified system transformer takes a system (SA) written against some network
semantics and returns a new system (SB) in another semantics. Its correctness property
states that for any property Φ of the original system, a lifted version of that property holds
on the transformed system.

Lower-level semantics could be developed and connected to the semantics presented here via

system transformers, as described in the next section. This would further reduce Verdi’s

trusted computing base and increase our confidence in the guarantees Verdi provides.

2.4 Verified System Transformers

Verdi’s spectrum of network semantics enable the programmer to reason about their system

running in the fault model corresponding to their environment. However, directly verifying

a system in a realistic fault model requires establishing both application-level guarantees

and the correctness of fault-tolerance mechanisms simultaneously. Verdi provides verified

system transformers to separate these concerns and enable a modular approach to building

and verifying distributed systems. The programmer can assume an idealized network while

verifying application-level guarantees and then apply a transformer to obtain a system that

tolerates more faults while providing analogous guarantees.

For common fault models, the distributed systems community has developed standard

techniques to handle failures. For example, as discussed in Section 2.2, by adding a unique

sequence number to every message and ignoring previously received messages, systems can

handle packet duplication. Verdi supports such standard fault-tolerance mechanisms through

verified system transformers, which transform systems from one semantics to another while

26

guaranteeing that analogous system properties are preserved. See Figure 2.10. For example,

in the transformer that handles deduplication, any property that holds on the underlying

system is true of the transformed system when sequence numbers are stripped away.

System transformers are implemented as wrappers around the system’s state, messages,

and handlers. Messages and state are generally transformed to include additional fields.

Handlers in the transformed system call into underlying handlers and implement additional

functionality. The underlying handlers are called with underlying state and underlying mes-

sages, capturing the intuition that the underlying handlers are unable to distinguish whether

they are running in their original network semantics or the new semantics targeted by the

system transformer.

System transformers in Verdi are generally either transmission transformers, which tol-

erate network faults by adding functionality to every node in a system, or replication trans-

formers, which tolerate node failures by making several copies of the underlying nodes. The

sequence numbering transformer discussed below is an example of a transmission transformer.

Sections 2.6 and 2.7 discuss replication transformers.

2.4.1 Sequence Numbering Transformer

Sequence numbering is a technique for ensuring that messages are delivered at most

once. Senders tag each outgoing message with a sequence number that is unique among all

messages from that sender. Message recipients keep track of all 〈number, sender〉 pairs they

have seen. If a message arrives with a 〈number, sender〉 pair that the destination has seen

before, the message is discarded.

Figure 2.11 shows the Verdi implementation of the sequence numbering transformer,

SeqNum. It takes a distributed system S as input and produces a new distributed system that

implements sequence numbering by wrapping the message, state, and handler definitions in

S. SeqNum leaves the Name, Inp, and Out types unchanged. It adds an integer field to each

message which is used as a sequence number to uniquely identify messages. SeqNum also

adds a list of (Name, int) pairs to the state to track the sequence numbers received from

27

(* S describes a system in the reordering semantics *)
SeqNum (S) :=
Name := S.Name

Inp := S.Inp
Out := S.Out
Msg := { seqnum: int; underlying_msg: S.Msg }

State (n: Name) := { seen: list (Name * int);
next_seqnum: int;
underlying_state: S.State n }

InitState (n: Name) := { seen := [];
next_seqnum := 0;
underlying_state := S.InitState n }

HandleInp (n: Name) (s: State n) (inp: Inp) :=
wrap_result (S.HandleInp (underlying_state s) inp)

HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
if not (contains s.seen (src, msg.seqnum)) then
s.seen := (src, msg.seqnum) :: s.seen;;
(* wrap_result adds sequence numbers to messages while
incrementing next_seqnum *)

wrap_result (S.HandleMsg n (underlying_state s)
src (underlying_msg msg))

Figure 2.11: Pseudocode for the sequence numbering transformer.

other nodes in the system, as well as an additional counter to track the local node’s current

maximum sequence number. The initial state in the wrapped system is constructed by

building the initial state for the underlying system and then setting all sequence numbers to

zero. To handle messages, the wrapped handler checks the input message to determine if it

has previously been processed: if so, the message is simply dropped; otherwise, the message

is passed to the message handler of S. Messages sent by the underlying handler are paired

with fresh sequence numbers and the sequence number counter is incremented appropriately

using the helper function wrap_result. The input handler passes input through to the input

handler from S and wraps the results.

2.4.2 Correctness of Sequence Numbering

Given a proof that property Φ holds on every trace of an underlying system, the correctness of

a system transformer should enable a programmer to easily establish an analogous property

28

Φ′ of traces in the transformed system.

Each verified system transformer T provides a function transfer which translates prop-

erties of traces in the underlying semantics ;1 to the target semantics ;2:

∀ Φ S, holds(Φ, S, ;1)→

holds(transfer(Φ), T (S), ;2)

where holds(Φ, S, ;) asserts that a property Φ is true of all traces of a system S under

the semantics defined by ;. Crucially, the transfer function defines how properties of the

underlying system are translated to analogous properties of the transformed system.

For the sequence numbering transformer, ;1 is ;r (the step relation for the reordering

semantics) and ;2 is ;dup (the step relation for the duplicating semantics). The transfer

function is the identity function: properties of externally visible traces are precisely preserved

by the transformation. Intuitively, the external output depends only on the wrapped state

of the system, and the wrapped state is preserved by the transformer.

We prove that the wrapped state is preserved by backward simulation: for any step

the transformed system T (S) can take, the underlying system S can take an equivalent

step. We specify this using helper functions unwrap and dedupnet. Given the global state

of the transformed system, unwrap returns the underlying state at each node. Given the

global state of the transformed system and the bag of in-flight messages, dedupnet returns

a bag of packets which includes only those messages which will actually be delivered to

the underlying handlers—non-duplicate packets which have not yet been delivered. The

simulation is specified as follows, where ;?
dup and ;?

r are the reflexive transitive closures of

the duplicating semantics and the reordering semantics, respectively:

(Σ0, ∅, ∅) ;?
dup (Σ, P, T)→

(unwrap(Σ0), ∅, ∅) ;?
r (unwrap(Σ), dedupnet(Σ, P), T)

29

The proof is by induction on the step relation. For Duplicate steps, ;?
r holds reflexively,

since dedupnet returns the same network when a packet is duplicated and the state and trace

are unchanged. For Deliver steps, the proof shows that either the delivered packet is

ignored by the destination node, in which case ;?
r holds reflexively, or that the underlying

handler is run normally, in which case the underlying system can take the analogous Deliver

step. For both the Deliver and Input steps, the proof shows that wrapping the sent packets

results in a deduplicated network that is reachable in the underlying system. These proofs

require several facts about the internal state of the sequence numbering transformer, such

as the fact that all nodes correctly maintain their next_seqnum field. These internal state

properties are proved by induction on the execution.

2.4.3 Ghost Variables and System Transformers

Many program verification frameworks support ghost variables: state which is never read

during program execution, but which is necessary for verification (e.g., to provide suffi-

ciently strong induction hypotheses). In Verdi, ghost variables are implemented via a system

transformer. Like the sequence numbering transformer, the ghost variable transformer adds

information to the system’s state while ensuring that the wrapped state is preserved. The

system’s original handlers are called in order to update the wrapped state and send messages;

the new handlers only update the ghost state. The indistinguishability result shows that the

ghost transformer does not affect the externally-visible trace or the wrapped state. In this

way, ghost state can be added to Verdi systems for free, without requiring any additional

proof effort to show that properties verified in the ghost system hold for the underlying

system as well.

2.5 Case Study: Key-Value Store

As a case study, we implemented a simple key-value store as a single-node system in Verdi.

The key-value store accepts get, put, and delete operations as input. When the system

receives input get(k), it outputs the value associated with key k; when the system receives

30

input put(k, v), it updates its state to associate key k with value v; and when the system

receives input delete(k), it removes any associations for the key k from its state. Internally,

the mapping from keys to values is represented using an association list.

The key-value store’s correctness is specified in terms of traces. First, operations on a

single key are specified using an interpreter over trace input/output events, which runs each

operation and returns the final result. For instance,

interpret [put “foo”, put “bar”, get] = “bar”

Trace correctness is then defined using the interpreter: for every 〈input, output〉 pair in

the trace, output is equal to the value returned by running the interpreter on all operations

on that key up to that point. This trace-based specification allows the programmer to

change the backing data structure and implementation of each operation without changing

the system’s specification. Moreover, additional operations can be added to the specification

via small modifications to the interpretation function.

We prove the key-value store’s correctness by relating its trace to its current state: for all

keys, the value in the association list for that key is equal to interpreting all the operations

on that key in the trace. The proof is by induction on the execution, and is approximately

280 lines long.

In the next section, we will see how a state-machine replication system can be imple-

mented and verified using Verdi. Combining the key-value store with the replication trans-

former provides a combined guarantee for a replicated key-value store without requiring the

programmer to simultaneously reason about both application correctness and fault tolerance.

2.6 Case Study: Primary-Backup Transformer

In this section, we introduce the primary-backup replication transformer, which takes a

single-node system and returns a replicated version of the system in the reordering semantics.

A primary node synchronously replicates requests to a backup node: when a request arrives,

31

PB (S) :=
Name := Primary | Backup

Msg := Replicate S.Inp | Ack
Inp := S.Inp
Out := { request: S.Inp; response: S.Out }
State (n: Name) = { queue: list S.Inp;

underlying_state: S.State }

InitState (n: Name) = { queue := [];
underlying_state := S.InitState n }

HandleInp (n: Name) (s: State n) (inp: Inp) :=
if n == Primary then
append_to_queue inp;;
if length s.queue == 1 then
(* if not already replicating a request *)
send (Backup, Replicate (head s.queue))

HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
match n, msg with
| Primary, Ack =>
out := apply_entry (head s.queue);;
output { request := head s.queue; response := out };;
pop s.queue;;
if s.queue != [] then
send (Backup, Replicate (head s.queue))

| Backup, Replicate i =>
apply_entry i;;
send (Primary, Ack)

Figure 2.12: Pseudocode for the primary-backup transformer. The primary node accepts
commands from external input and replicates them to the backup node. During execution,
the primary node keeps a queue of operations it has received but not yet replicated to the
backup node. The backup node applies operations to its local state and notifies the primary
node. Once the primary node receives a notification, it responds to the client.

the primary ensures that the backup has processed it before applying it locally and replying to

the client. Whenever a client gets a response, the corresponding request has been processed

by both the primary and the backup. Pseudocode for the primary-backup transformer is

shown in Figure 2.12.

The primary-backup transformer’s correctness is partially specified in terms of traces the

primary may produce: any sequence of inputs and corresponding outputs produced by the

primary node is a sequence that could have occurred in the original single-node system, and

thus any property Φ of traces of the underlying single-node system also holds on all traces

32

at the primary node in the transformed system. This result guarantees indistinguishability

for the primary-backup transformer.

The primary-backup transformer specification also relates the backup node’s state to

the primary node’s state. Because the primary replicates entries synchronously, and one at

a time, the backup can fall arbitrarily behind the input stream at the primary. However,

the primary does not send a response to the client until the backup has replicated the

corresponding request. Thus, the state at the backup is closely tied to that at the primary. In

particular, we were able to show that either the primary and the backup have the same state

or the backup’s state is one step ahead of the primary. This property provides some intuitive

guarantees about potential failure of the primary: namely, that manual intervention could

restore service with the guarantee that any lost request must not have been acknowledged.

It makes sense that manual intervention is necessary in the case of failure: the composed

system is verified against the reordering semantics, where the developer assumes that machine

crashes require manual intervention.

Once implemented and verified, the primary-backup transformer can be used to construct

replicated applications. Applying it to the case study from Section 2.5 results in a replicated

key-value store. The resulting system is easy to reason about because of the transformer’s

indistinguishability result. For example, we were able to show (in about 10 lines) that

submitting a put request results in a response that correctly reflects the put.

2.7 Case Study: Raft Replication Transformer

Fault-tolerant, consistent state machine replication is a classic problem in distributed sys-

tems. This problem has been solved with distributed consensus algorithms, which guarantee

that all nodes in a system will agree on which commands the replicated state machine has

executed and in what order, and that each node has a consistent copy of the state machine.

In Verdi, we can implement consistent state machine replication as a system transformer.

The consistent replication transformer lifts a system designed for the state machine semantics

into a system that tolerates machine crashes in the failure semantics. We implemented the

33

replication transformer using the Raft consensus algorithm [86]. Our implementation of Raft

in Verdi is described in Section 2.7.2.

A Verdi system transformer lifts a safety property of an input system into a new seman-

tics. The consensus transformer provides an indistinguishability result for linearizability,

which states that any possible trace of the replicated system is equivalent to some valid

trace of the underlying system under particular constraints about when operations can be

re-ordered. We have proved linearizability in two steps. First, we show that Raft’s state

machine safety property implies linearizability. Second, we verify the (much more difficult)

state machine safety property. We discuss these results further in Section 2.7.3.

2.7.1 Raft Background

Raft is a state machine replication protocol. The state machine is a deterministic program

that specifies the desired behavior of the cluster as a whole. The state machine processes a

sequence of commands, which are given by the clients of the cluster. External clients interact

with the system as if it were a single node running a single copy of the state machine.

Each node in a Raft cluster simulates a copy of the state machine, and the goal of

the protocol is to maintain consistency across the copies. Replication allows the system to

continue serving clients whenever a majority of machines are available. However, maintaining

consistency among replicas is difficult in the presence of asynchrony, network failures (packet

drops, duplications, and reordering) and node failures (crashes and reboots). In particular,

the combination of asynchrony and failure means that the nodes in the system are never

guaranteed to be in global agreement [28].

Since Raft requires that the state machine it replicates is deterministic, the replicas will

be consistent as long as the same client commands are executed on each replica’s copy in the

same order. Raft’s main internal correctness invariant, called state machine safety, captures

this property.

Proposition 2.7.1 (State Machine Safety). Each replicated copy of the state machine exe-

34

time

node 3

node 2 . . .

node 1

RV V AE Ack

A B C D E F

term 1 term 2
election replication election

Figure 2.13: Two terms of the Raft protocol, each consisting of a leader election phase
(orange) followed by a log replication phase (blue). Node 3 is the leader of the first term,
and node 1 is the leader of the second term. Messages are RequestVote (RV), Vote (V),
AppendEntries (AE), or Acknowledgment (Ack). represents a dropped message and
represents a crashed node.

cutes the same commands in the same order.

The list of commands to execute on the state machine is kept in the log, and the position

of a command in the log is called its index. Each node has its own copy of the log, and state

machine safety reduces to maintaining agreement between all copies of the log.

Figure 2.13 shows an example execution of the Raft protocol.1 Time is logically divided

into terms, and each term consists of a leader election phase followed by a log replication

phase. During leader election, the cluster chooses a leader, who coordinates the cluster and

handles all communication with clients during the following log replication phase. Nodes are

either leaders, candidates, or followers. Candidates are in the process of trying to become

leader. Followers passively obey the leader of the current term and respond to RequestVote

messages from candidates.

Leader Election If the leader node crashes or is isolated by a network partition (e.g.,

node 3 at event E in Figure 2.13), the Raft system elects a new leader. When a node times

out waiting to hear from a leader (as node 1 does at event F in Figure 2.13), it becomes

1https://raft.github.io/ has a visualization of Raft in operation.

https://raft.github.io/

35

a candidate.2 A candidate tries to get itself elected as the new leader by sending messages

requesting votes from all other nodes. Once a candidate receives votes from a majority of

nodes in the system, it becomes the leader. If no candidate successfully wins the election, a

new election will take place following a timeout. Requiring a majority ensures that there is

only one leader elected per term.

Proposition 2.7.2 (Election Safety). There is at most one leader per term.

Log Replication During normal operation, the cluster is in the log replication phase. In

log replication, when a client sends an input to the leader3 (e.g., at event A in Figure 2.13),

the leader first appends a new log entry containing that command to its local log. Then the

leader sends an AppendEntries message containing the entry to the other nodes in the Raft

system. Each follower appends the entries to its log (e.g., at event B in Figure 2.13), and

responds to the leader with an acknowledgment. To ensure that follower logs stay consistent

with the log at the leader, AppendEntries messages include the index and term of the previous

entry in the leader’s log; the follower checks that it too has an entry at that index and term

before appending the new entries to its log. This consistency check guarantees the following

property:

Proposition 2.7.3 (Log Matching). If two logs contain entries at a particular index and

term, then the logs are identical up to and including that index.

Once the leader learns that a majority of nodes (including itself) have received the new

entry (e.g., at event C in Figure 2.13), the leader marks the entry as committed.4 Note

that the leader need not receive acknowledgments from all nodes before proceeding (e.g.,

2Timeouts are randomized and configured so that candidates rarely compete for leadership. See Ongaro’s
thesis for more detail on the leader election process [85].
3Raft implementations have various mechanisms for clients to locate the leader. In our implementation,

clients can send their operations to every node in the cluster until the leader is found.
4Committing old entries (those from leaders who failed before completely replicating them) is more

complex; see the Raft paper [86] for details.

36

an acknowledgment is dropped at event D in Figure 2.13, but nodes 2 and 3 constitute a

majority). The leader then executes the command contained in the committed entry on the

state machine and responds to the client with the output of the command. The followers are

also informed that they can safely execute the command on their state machines.

Once an entry is committed, it becomes durable, in the sense that its effect will never be

forgotten by the cluster. To ensure that leader elections do not violate this property, a new

leader must have heard of all committed entries created by the previous leader. Therefore,

Raft specifies that a node only votes for candidates whose log is at least as advanced as the

voter’s. Because a newly elected leader was voted in by a majority, it has a log that is at

least as advanced as a majority of the cluster. Since any committed entry is present on a

majority, every committed entry is present on at least one node that voted for the candidate.

The successful candidate’s log thus contains every committed entry.

Proposition 2.7.4 (Leader Completeness). A successfully elected candidate’s log contains

every committed entry.

Client-facing correctness Clients expect to interact with Raft nodes as if the nodes were

collectively a single state machine. More formally, clients see a linearizable view of the repli-

cated state [40], i.e., if any node responds to a client command c, all subsequently requested

commands will execute on a state machine that reflects the execution of c. Section 2.7.3

gives a precise definition of linearizability.

Proposition 2.7.5. Raft implements a linearizable state machine.

Raft also provides a liveness guarantee: if there are sufficiently few failures, then the

system will eventually process and respond to all client commands. To date, we have only

verified Raft’s safety properties, leaving liveness for future work.

2.7.2 Raft Implementation

37

input :=
ClientRequest
(c : cmd) (uid : nat) ...

output :=
ClientResponse
(uid : nat) (r : result) ...

| NotLeader

handleInput (i : input) :=
match i with
| ClientRequest ...
end;
leaderHeartbeat();
executeEntries()

(* internal Raft messages *)
msg := RequestVote ...

| Vote ...
| AppendEntries ...
| Acknowledgment ...

handleMessage (m : msg) :=
match m with
| AppendEntries ...
| Acknowledgment ...
| RequestVote ...
| Vote ...
end;
leaderHeartbeat();
executeEntries()

handleTimeout :=
...; leaderHeartbeat(); executeEntries()

leaderHeartbeat :=
(* send AppendEntries to followers *)
(* mark entries as committed *)
...

executeEntries :=
(* execute entries on the local state machine *)
(* respond to clients if necessary *)

logEntry := { c : cmd;
index : nat;
term : nat; ... }

nodeType := Leader | Candidate | Follower

data := { log : list logEntry;
commitIndex : nat;
term : nat;
type : nodeType;
sm : stateMachine; ... }

init : data := { log := [];
commitIndex := 0;
term := 0;
type := Follower;
sm := initialStateMachine; ... }

Figure 2.14: Signatures of key parts of our Raft implementation.

We implemented Raft as a verified system transformer from a single node semantics with

no faults to a multi-node semantics with network and machine faults. To use the transformer,

a programmer first implements an algorithm as a (non-distributed) state machine in which

a single process responds to input from the outside world. Then, Raft transforms this into

a system where the original state machine is consistently replicated across a number of

nodes. As a result, the programmer can prove properties about the replicated system by

reasoning only about the underlying state machine. The Raft transformer produces a system

that is proven correct in an environment in which all messages can be arbitrarily reordered,

duplicated, delayed, or dropped, and in which nodes can crash and reboot. We chose this set

of faults to be as small as possible, while covering all real world failure scenarios that Raft

is designed to tolerate. Other scenarios that are not explicitly included in our model can

38

be simulated by existing scenarios. For example, a network partition, where a set of nodes

cannot send or receive messages from the remaining nodes can be simulated by dropping

all such messages. While there is nothing wrong with adding explicit support for network

partitions, keeping the set of explicitly modeled failures minimal reduces proof burden.

Figure 2.14 shows signatures for key parts of Raft as implemented in Verdi.5 There

are two classes of messages: external messages (inputs from clients) and internal messages

exchanged between nodes in the system.

Raft has three kinds of external messages. Nodes running Raft receive ClientRequest

messages from external clients; each such message contains a command of type cmd, which is a

parameter of the system. These are delivered by the Input rule in Figure 2.6. Nodes respond

with NotLeader to indicate that the client should find the current leader or ClientResponse,

containing the result of the command, once the system has successfully processed a client

command. To ensure that network failures do not cause a single client command to be

executed multiple times, each ClientRequest includes a unique identifier, shown as uid in

Figure 2.14. Raft guarantees that a request with a given identifier will only be executed

once. Clients can thus repeatedly retry a request; when a client receives a ClientResponse

with the same uid, it knows the command has executed exactly once on the state machine.

Raft has four kinds of internal messages: AppendEntries and Acknowledgment, used

in log replication, and RequestVote and Vote, used in leader election. These messages

correspond directly to the behavior described in Section 2.7.1.

Our Raft implementation consists of event handlers for external messages, inter-

nal messages, and timeouts. Each of these handlers begins with some event-specific

code and then calls two bookkeeping functions, leaderHeartbeat and executeEntries.

leaderHeartbeat performs leader-specific tasks, such as sending AppendEntries messages

to followers and marking entries as committed. executeEntries performs tasks that should

be done by every server, such as executing committed entries on the state machine.

5For more detail, see raft/Raft.v at https://github.com/uwplse/verdi/tree/cpp2015.

https://github.com/uwplse/verdi/tree/cpp2015

39

The local state of each Raft node is given in Figure 2.14 by the type data and includes

the log, the index of the most recently committed entry, the node’s current term, the node’s

type (Leader, Candidate, or Follower), and its copy of the state machine. The log is a list

of entries, each of which contains a command to be executed on the state machine, its index

(position in the log), and the term in which the entry was initially received by the cluster.

The initial state of each node is given by the value init. The log is initially empty, no

entries are committed, the current term is 0, every node is a follower (nodes will time out

and start an election in term 1 to determine the first leader), and the state machine is in its

initial state, having not yet processed any commands.

Our verified implementation of Raft in Coq consists 530 lines of code and 50,000 lines

of proof, excluding code from the core Verdi framework. It does not support extensions to

Raft which are useful in practice, such as dynamic reconfiguration and log compaction. It

also includes more data on Acknowledgment messages than is necessary. These limitations

are not fundamental, but addressing them would increase the proof burden.

2.7.3 Raft Proof

The behavior of a Verdi system is described by traces, which record the interaction between

the system and its clients. Internal messages sent between nodes of the system are not

included in the trace, as they are not observable by clients of the cluster. For example, if

Raft is used to replicate a simple key-value store, a valid trace of the resulting system might

be:

[ClientRequest (Put "x" "hello") 1;

ClientResponse 1 "";

ClientRequest (Get "x") 2;

ClientResponse 2 "hello"].

In this execution, a client first sends a ClientRequest containing a command to set the key

"x" to the value "hello"; this request is assigned the unique identifier 1. The system then

40

sends a response containing the empty string as its result, which serves as an acknowledgment

that the Put has taken place. The client then sends a request to read the value of the key

"x"; the request is assigned the unique identifier 2. Finally, the system responds with the

value "hello".

The correctness of a system transformer such as Raft is a relation that must hold between

the traces generated by the transformed system and those generated by the original system.

In Figure 2.10, this relation is called lift.

The relational specification of the Raft transformer is that the traces it generates linearize

(see below) to traces generated by the single-node state machine. Intuitively, linearizability

means that once the Raft cluster sends a ClientResponse for a command c, the execution

of all subsequently issued commands will reflect the execution of c. More precisely, a trace

of a replicated system linearizes to a trace of the underlying system if its operations can be

reordered to match the underlying trace without moving an incoming command before a pre-

viously acknowledged command. For example, in Raft, the system can reorder concurrently

issued client requests, but if a request is received after a previous request is acknowledged,

then the system must respect that ordering.

We formalize the linearizes-to relation as follows.6

Definition 2.7.6 (Linearizes-to). Let τ be a trace of inputs and outputs, where each input-

output pair is given a unique key. Then τ linearizes to a sequence of state machine commands

σ if the events of τ can be reordered into a trace τ ′ such that

1. τ ′ is sequential, i.e., it consists of alternating inputs and outputs with matching keys;

2. τ ′ agrees with σ, i.e., they consist of the same sequence of commands, and each output

in τ ′ equals the result given by the corresponding command in σ; and

3. if an output o appears in τ before an input i, then o also appears before i in τ ′.

6The relevant Coq development is raft/Linearizability.v at https://github.com/uwplse/verdi/
tree/cpp2015.

https://github.com/uwplse/verdi/tree/cpp2015
https://github.com/uwplse/verdi/tree/cpp2015

41

Note that this definition requires τ and σ to contain the same set of commands. Thus,

we can define linearizability:

Definition 2.7.7 (Linearizability). A trace τ is linearizable if there exists a sequence σ of

state machine commands such that τ linearizes to σ.

This definition captures the notion of linearizability, but establishing it directly for Raft

would be difficult because it would require strengthening it to be an inductive invariant of

the system. Instead, we proved Raft linearizable by relating the system’s trace to the local

state of each node and the set of packets in the network.

First, we related the trace of the system to each node’s local copy of the state machine

via state machine safety (Proposition 2.7.1 from Section 2.7.1). Proving linearizability from

state machine safety required proving each of the conditions in Definition 2.7.6 by reducing

each to an internal property of Raft.

Theorem 2.7.8. State machine safety implies linearizability.7

Proof. Given an execution trace τ of Raft, we must find σ such that τ linearizes to σ. There

is an obvious choice for σ: it is just the sequence of commands executed by the nodes on

their local state machines. State machine safety guarantees that the nodes agree on this

sequence, so our choice is well defined.

It remains to show that τ linearizes to σ. In other words, we must find τ ′ such that

the conditions of Definition 2.7.6 are satisfied. Let τ ′ be the sequential input–output trace

corresponding to σ, i.e., for each command of σ, τ ′ contains an input immediately followed

by the corresponding output for that command. Then τ ′ is sequential and agrees with σ by

construction, and it remains to show that τ ′ is a permutation of τ that respects the ordering

condition (item 3) of Definition 2.7.6. Each of these is established as a separate invariant by

induction on the execution.

7This argument is formalized in raft/RaftLinearizableProofs.v, along with the lemmas imported by
that file.

42

This result fits into the framework of verified system transformers, as described in Sec-

tion 2.4. The remainder (and vast majority) of our Raft verification effort establishes state

machine safety. Since each node executes commands on its state machine as entries become

committed in the node’s log, state machine safety requires that nodes never disagree about

committed entries. The proof of State Machine Safety requires the use of ghost variables.

Ghost variables are components of system state that are tracked for the purposes of veri-

fication but not needed at run time. This state is therefore not tracked in the extracted

implementation.

Theorem 2.7.9 (State Machine Safety). State machine safety holds for every reachable

state of the system.8

Proof Sketch. First strengthen the induction hypothesis to quantify over ghost state and

appropriately constrain each node’s history. Next proceed by induction on the step relation,

and in each case show that the strengthened hypothesis is preserved.

The proof of State Machine Safety requires several ghost variables on local data, as well

as one on messages. Figure 2.15 shows pseudocode for the local data ghost state, including

the ways in which it is updated in response to incoming messages. Intuitively, each ghost

variable stores part of the system’s history, which is not tracked in the actual implementation

but which is necessary for proofs. For example, a node in the system does not actually need

to keep a record of every vote that it has every cast; it is sufficient to track only the vote

for its current term. However, in order to prove that only one leader is elected per term, the

proof uses the votes ghost variable. We use the ghost state to establish the Election Safety

and Leader Completeness properties, from which we then prove State Machine Safety. As

an example, we show how Election Safety follows using these ghost variables.9

8The top-level proof is in raft-proofs/StateMachineSafetyProof.v. The ghost variables required are
specified in raft/RaftRefinementInterface.v and raft/RaftMsgRefinementInterface.v.
9The proof of Leader Completeness is available in raft-proofs/LeaderCompletenessProof.v.

43

ghostData := {
(* list of term, candidate this node voted for,
log at time of vote *)

votes : list (nat * name * list logEntry);

(* term -> list of nodes who voted for
this node in that term *)

cronies : nat -> list name;

(* term, log when this node became leader *)
leaderLogs : list (nat * list logEntry);

(* list of term, entry:
all entries ever present in log at this node*)

allEntries : list (nat * logEntry)
}

ghostHandleMessage (m : msg) :=
match m with
| AppendEntries ... =>
(* If entries added to log, add to allEntries
and tag with current term *)

| RequestVote ...
(* If voting, add the current term,
the candidate ’s name,
and the current log to votes *)

| Vote ...
(* Add sender to cronies at current term *)
(* If node becomes leader, add current term
and log to leaderLogs *)

end

Figure 2.15: Ghost variables used in the verification of Raft

44

Theorem 2.7.10 (Election Safety). Election safety is true in every reachable state of the

system.10

Proof Sketch. If a node is a leader, then it has a majority of nodes in its cronies for that

term. A node h does not appear in cronies at a node h′ unless h′ is in votes at h for

the same term. A node only votes for one leader for each term. If there are two leaders for

one term, at least one node h must be in cronies at both leaders since they each have a

majority. That node must have voted for both of them at that term, so they must be the

same node. Therefore, Election Safety holds.

2.8 Evaluation

This section aims to answer the following questions:

• How much effort was involved in building the case studies discussed above?

• To what extent do system transformers mitigate proof burden when building modular

verified distributed applications?

• Do Verdi applications correctly handle the faults they are designed to tolerate?

• Can a verified Verdi application achieve reasonable performance relative to analogous

unverified applications?

2.8.1 Verification Effort

Table 2.1 shows the size of the specification, implementation, and proof of each case study.

The Verdi row shows the number of lines in the shim, the network semantics from Section 2.3,

and proofs of reusable, common lemmas in Verdi. The KV+PB row shows the additional

lines of code required to state and prove a simple property of the key-value store with

10See raft-proofs/OneLeaderPerTermProof.v.

45

Table 2.1: Verification effort: size of the specification, implementation, and proof, in lines of
code (including blank lines and comments).

System Spec. Impl. Proof
Sequence numbering 20 89 576
Key-value store 41 138 337
Primary-backup 20 134 1155
KV+PB 5 N/A 19
Raft (Linearizability) 170 520 4144
Raft (SMS) 47 N/A 50719
Verdi 148 220 2364

the primary-backup transformer applied. This line shows that verified system transformers

mitigate proof burden by preserving properties of their input systems.

2.8.2 Verification Experience

While verifying the case studies, we discovered several serious errors in our system implemen-

tations. The most subtle of these errors came from our implementation of Raft: servers could

delete committed entries when a complex sequence of failures occurred. Such a sequence is

unlikely to arise in regular testing, but proving Raft in Verdi forced us to reason about all

possible executions. The Raft linearizability property we proved prevents such subtle errors

from going unnoticed.

2.8.3 Verification and Performance

We applied the consensus transformer described in Section 2.7 to the key-value store de-

scribed in Section 2.5; we call the composed system vard.11 We performed a simple evaluation

of its performance. We ran our benchmarks on a three-node cluster, where each node had

eight 2.0 GHz Xeon cores, 8 GB main memory, and 7200 RPM, 500 GB hard drives. All the

nodes were connected to a gigabit switch and had ping times of approximately 0.1 ms. First,

11Pronounced var-DEE.

46

Table 2.2: A performance comparison of etcd and our vard.

Throughput
(req./s)

Latency
get (ms) put (ms)

etcd 38.9 205 198
vard 34.3 232 232

we ran the composed system and killed the leader node; the system came back as expected.

Next, we measured the throughput and latency of the composed system and compared it to

etcd [18], a production fault-tolerant key-value store written in the Go language which also

uses Raft internally. We used a separate node to send 100 random requests using 8 threads;

each request was either a put or a get on a key uniformly selected from a set of 50 keys.

As shown in Table 2.2, vard achieves comparable performance to etcd. We believe that

etcd has slightly better throughput and latency because of better data structures and be-

cause requests are batched. vard is not feature complete with respect to etcd, which uses

different internal data structures and a more complex network protocol. Nonetheless, we be-

lieve this benchmark shows that a verified Verdi application can achieve roughly equivalent

performance compared to existing, unverified alternatives.

2.9 Related Work

This section relates Verdi to previous approaches for building reliable distributed systems.

Proof assistants and distributed systems. EventML [92] provides expressive prim-

itives and combinators for implementing distributed systems. EventML programs can be

automatically abstracted into formulae in the Logic of Events, which can then be used to

verify the system in NuPRL [16]. The ShadowDB project implements a total-order broad-

cast service using EventML [99]. The implementation is then translated into NuPRL and

verified to correctly broadcast messages while preserving causality. A replicated database is

implemented on top of this verified broadcast service. Unlike vard (described in Section 2.8),

47

the database itself is unverified.

Bishop et al. [6] used HOL4 to develop a detailed model and specification for TCP and the

POSIX sockets API, show that their model implements their specification, and validate their

model against existing TCP implementations. Rather than verifying the network stack itself,

in Verdi we chose to focus on verifying high-level application correctness properties against

network semantics that are assumed to correctly represent the behavior of the network stack.

These two lines of work are therefore complementary.

Ridge [97] verified a significant component of a distributed message queue, written in

OCaml. His technique was to develop an operational semantics for OCaml which included

some basic networking primitives, encode those semantics in the HOL4 theorem prover, and

prove that the message queue works correctly under those semantics. Unlike in Verdi, the

proofs for the system under failure conditions were done only on paper.

Verdi’s system transformers enable decomposing both systems and proofs. This allows

developers to establish correctness guarantees of the implementation of their distributed

systems, from the low-level network semantics to a high-level replicated key-value store,

while retaining flexibility and modularity. The system transformer abstraction could be

integrated into these other approaches; for example, ShadowDB’s consensus layer could be

implemented as a system transformer along the lines of Verdi’s Raft implementation.

Ensemble. Ensemble [39] layers simple micro protocols to produce sophisticated dis-

tributed systems. Like Ensemble micro protocols, Verdi’s system transformers implement

common patterns in distributed systems as modular, reusable components. Unlike Ensemble,

Verdi’s systems transformers come with correctness theorems that translate guarantees made

against one network semantics to analogous guarantees against another semantics. Unlike

Verdi, Ensemble enables systems built by stacking many layers of abstraction to achieve ef-

ficiency equivalent to hand-written implementations via cross-protocol optimizations. These

micro protocols are manually translated to IO automata and verified in NuPRL [41, 69].

In contrast, Verdi provides a unified framework that connects the implementation and the

formalization, eliminating the formality gap.

48

Verified SDN. Formal verification has previously been applied to software-defined net-

working, which allows routing configurations to be flexibly specified using a simple domain

specific language (see, e.g., Verified NetCore [36]). As in Verdi, verifying SDN controllers

involves giving a semantics for OpenFlow, switch hardware, and network communication.

The style of formalization and proof in Verified NetCore and Verdi are quite similar and

address orthogonal problems. Verified NetCore is concerned with correct routing protocol

configuration, while Verdi is concerned with the correctness of distributed algorithms that

run on top of the network.

Specification Reasoning. There are many models for formalizing and specifying the

correctness of distributed systems [29, 90, 98]. One of the most widely used models is TLA,

which enables catching protocol bugs during the design phase [60]. For example, Amazon

developers reported their experience of using TLA to catch specification bugs [81]. Another

approach of finding specification bugs is to use a model checker. For example, Zave applied

Alloy [44] to analyzing the protocol of the Chord distributed hash table [123]. Lynch [72]

describes algorithm transformations which are similar to Verdi’s verified system transformers.

On the other hand, Verdi focuses on ensuring that implementations are correct. While

this includes the correctness of the underlying algorithm, it goes further by also showing that

the actual running system satisfies the intended properties.

Model checking and testing. There is a rich literature in debugging distributed

systems. Run-time checkers such as Friday [30] and D3S [70] allow developers to specify

invariants of a running system and detect possible violations on the fly or offline. Model

checkers such as Mace [49, 50], MoDist [120], and CrystalBall [119] explore the space of

executions to detect bugs in distributed systems. These tools are useful for catching bugs

and easy to use for developers, as they only need to write invariants. On the other hand,

Verdi’s proofs provide correctness guarantees.

For example, Mace provides a full suite of tools for building and model checking dis-

tributed systems. Mace’s checker has been applied to discover several bugs, including liveness

violations, in previously deployed systems. Mace provides mechanisms to explicitly break

49

abstraction boundaries so that lower layers in a system can notify higher layers of failures.

Verdi does not provide liveness guarantees nor mechanisms to break abstraction boundaries,

but enables stronger guarantees via full formal verification.

Verification. Several major systems implementations have been verified fully formally

in proof assistants. The CompCert C compiler [64] was verified in Coq and repeatedly shown

to be more reliable than traditionally developed compilers [61, 121]. Our system transformers

are directly inspired by the translation proofs in CompCert, but adapted to handle network

semantics where faults may occur.

The Reflex framework [96] provides a domain-specific language for reasoning about the

behavior of reactive systems. By carefully restricting the DSL, the authors were able to

achieve high levels of proof automation. Bedrock [13] and Ynot [79] are verification frame-

works based on separation logic and are useful for verifying imperative programs in Coq, but

also consider only the behavior of a single node and do not model faults.

2.10 Conclusion

This chapter presented Verdi, a framework for building formally verified distributed systems.

Verdi’s key conceptual contribution is the use of verified system transformers to separate con-

cerns of application correctness and fault tolerance, which simplifies the task of implementing

and verifying distributed systems. This modularity is enabled by Verdi’s encoding of distinct

fault models as separate network semantics. We demonstrated how to apply Verdi to writing

and verifying several practical applications, including the Raft state replication library and

the vard fault-tolerant key-value store, with the help of verified system transformers. These

applications provide strong correctness guarantees and acceptable performance while impos-

ing reasonable verification burden. From the perspective of this dissertation as a whole,

Verdi provides vertical decomposition of application logic, fault models, and fault tolerance

mechanisms, reducing overall proof complexity.

50

Chapter 3

HORIZONTAL COMPOSITION: SYSTEMS BUILT FROM
MANY PROTOCOLS

3.1 Introduction

The previous chapter described techniques for building a single verified distributed system by

decomposing the application logic from the fault-tolerance mechanisms. Real-world systems,

however, rarely consist of just a single monolithic application. Rather, they are composed

of multiple independent modules, which are then linked together in some way. This compo-

sitional software development approach enables clean separation of concerns and a modular

development process: in order to use one component within a larger system, one only needs

to know what it does without requiring details on how it works. This chapter describes

techniques to bring this modularity into verified distributed systems using horizontal com-

position.

There are several design constraints on such horizontal reasoning. For example, to com-

pose a linearizable database with a causally consistent cache [2], one would need a framework

general enough to express both specifications and reason about their interaction, possibly

in the presence of application-specific constraints. Furthermore, composable verified sys-

tems must disentangle implementation details from abstract protocol definitions, allowing

independent evolution of components without extensive refactoring [118]. Finally, like all

software, real-world systems exist in an open world, and should be usable in multiple con-

texts by various clients, each of which may make different assumptions.

51

3.1.1 Towards Modular Distributed System Verification

Recent advances in the area of formal machine-assisted program verification demonstrated

that composition, obtained by means of expressive specifications and rich semantics, is the key

to producing scalable, robust and reusable software artifacts in correctness-critical domains,

such as compilers [54, 104], operating systems [34, 51] and concurrent libraries [35, 101].

Following this trend, we identify the following challenges in designing a verification tool to

support compositional proofs of distributed systems.

1. Protocol-program modularity. One should be able to define an abstract model of

a distributed protocol (typically represented by a form of a state-transition system)

without tying it to a specific implementation. Any purported implementation should

then be proven to follow the protocol’s abstract model. This separation of concerns

supports reuse of existing techniques for reasoning about the high-level behavior of a

system, while allowing for optimized implementations, without redefining the high-level

interaction protocol.

2. Modular program verification. Once proven to implement an abstract protocol,

a program should be given a sufficiently expressive declarative specification, so that

clients of the code never need to be examine the implementation itself. Furthermore,

it should be possible to specify and verify programs made up of parts belonging to dif-

ferent protocols (horizontal compositionality). This enables decomposing a distributed

application into independently specified and proved parts, making verification scale to

large codebases.

3. Modular proofs about distributed protocols. A single protocol may be useful

to multiple different client applications, each of which may exercise the protocol in

different ways. For instance, a “core” consensus protocol implementation can be em-

ployed both for leader election as well as for a replicated data storage. In this case, the

invariants of the core protocol should be proved once and for all and then reused to

52

establish properties of composite protocols. These composite protocols often require

elaborating the core invariants with client-specific assumptions, but it would be unac-

ceptable to re-verify all existing code under new assumptions for each different use of

the core protocol. Instead, clients should be able to prove their elaborated invariants

themselves by reasoning about the core protocol after the fact. This also ensures any

existing program that follows the protocol is guaranteed to also satisfy the client’s new

invariant. This decomposition between core protocols and elaborated client invariants

reduces and parallelizes the proof engineering effort: the core system implementer ver-

ifies basic properties of the protocol and correctness of the implementation, while the

system’s client proves the validity of their context-specific invariants.

This chapter presents Disel, a mechanized framework for verification and implementation

of distributed systems that aims to address these challenges.

3.1.2 What is Disel?

Disel is a verification framework incorporating ideas from dependent type theory, interactive

theorem proving, separation-style program logics for concurrency, resource reasoning, and

distributed protocol design.

From the perspective of a distributed protocol designer, Disel is a domain-specific lan-

guage for defining a protocol P in terms of its state-space invariants and atomic primitives

(e.g., send and receive). These primitives implement specific transitions which synchronize

message-passing with changes to the local state of a node. Described this way, the proto-

cols are immediately amenable to machine-assisted verification of their safety and temporal

properties [93, 117], and Disel facilitates these proofs by providing a number of higher-order

lemmas and libraries of auxiliary facts.

From the point of view of a system implementer, Disel is a higher-order program-

ming language, featuring a complete toolset of programming abstractions, such as first-class

functions, algebraic datatypes, and pattern matching, as well as low-level primitives for

53

message-passing distributed communication. Disel’s dependent type system makes pro-

grams protocol-aware and ensures that well-typed programs don’t go wrong; that is, if a

program c type-checks in the context of one or many protocols P1, . . . ,Pn (i.e., informally,

P1, . . . ,Pn ` c), then it correctly exercises and combines transitions of P1, . . . ,Pn.

Finally, for a human verifier, Disel is an expressive higher-order separation-style program

logic1 that allows programs to be assigned declarative Hoare-style specifications, which can

be subsequently verified in an interactive proof mode. Specifically, one can check that, in the

context of protocols P1, . . . ,Pn, a program c satisfies pre/postconditions P and Q, where P

constrains the pre-state s of the system, and Q constrains the result res and the post-state s′.

The established pre-/postconditions can be then used for verifying larger client programs

that use c as a subroutine. Disel takes a partial correctness interpretation of Hoare-style

specifications, thus focusing on verification of safety properties and leaving reasoning about

liveness properties for future work.

We implemented Disel on top of the Coq [17] proof assistant, making use of Coq’s de-

pendent types and higher-order programming features. In the tradition of Hoare Type The-

ory (HTT) by Nanevski, Morrisett, and Birkedal [78], Nanevski et al. [79], and Nanevski,

Vafeiadis, and Berdine [80] and its recent versions for concurrency [66, 77], we give the

semantics to effectful primitives, such as send/receive, with respect to a specific abstract

protocol (or protocols). Thus, we address challenge (1) by ensuring that any well-typed

program is correct (i.e., respects its protocols) by construction, independently of which and

how many of the imposed protocols’ transitions are taken and of any imperative state the

program might use. This type-based verification method for distributed systems is differ-

ent from more traditional techniques for establishing refinement [1, 38] between an actual

implementation (the code) and a specification (an abstract protocol) via a simulation argu-

ment [73]. In comparison with the refinement-based techniques, the type-based verification

method makes it easy to account for horizontal composition of protocols (necessary, e.g., for

1The framework name stands for Distributed Separation Logic.

54

reasoning about remote procedure calls, as we will show in Section 3.2) and accommodate

advanced programming features, such as higher-order functions.

As a program logic, Disel draws on ideas from separation-style logics for shared-memory

concurrency [77, 110], allowing one to instrument programs with pre/postconditions and

providing a form of the frame rule [95] with respect to protocols. Thus, there is an analogy

between the heap in shared-memory concurrency and the set of protocols in Disel. For

example, assuming that the state-spaces of P1 and P2 are disjoint, P1 ` c1 and P2 ` c2

together with the frame rule imply P1,P2 ` C[c1, c2] for any well-formed program context

C. This ensures that the composite program C[c1, c2] can “span” multiple protocols, thus

addressing challenge (2). The assumption of protocol state-spaces being disjoint might seem

overly restrictive, but, in fact, it reflects the existing programming practices. For instance,

the local state of a node responsible for tracking access permissions is typically different from

the state used to store persistent data.

Disel further alleviates the issue of disjoint state and also addresses challenge (3) with

two novel logical mechanisms, described in detail in Section 3.3. The first one supports the

possibility of elaborating protocol invariants via an inference rule, WithInv, allowing one to

strengthen the assumptions about a system’s state, resulting in the strengthened guarantees,

as long as these assumptions form an inductive invariant. Second, Disel supports “coupling”

protocols via inter-protocol behavioral dependencies, which allow one protocol restricted log-

ical access to state in another protocol, all while preserving the benefits of disjointness,

including the frame rule. Dependencies are specified with the novel logical mechanism of

inter-protocol send-hooks, allowing one to restrict interaction between a core protocol and

its clients by placing additional preconditions on certain message sends. For example, a send-

hook could disallow certain transitions of the client protocol unless a particular condition

holds for the local state associated with the core protocol. These additional preconditions

do not require re-verifying any core components.

While we do not explicitly model node failures, by focusing on establishing safety prop-

erties, Disel allows one to reason about systems where some of the nodes can experience

55

non-Byzantine failures (i.e., stop replying to messages). From the perspective of other par-

ticipants in such systems, a failed node will be, thus, indistinguishable from a node that just

takes “too long” to respond. As customary in reasoning about partial program correctness,

this behavior will not violate the established notion of safety, which is termination-insensitive.

To summarize, this chapter makes the following contributions:

• Disel, a domain-specific language and the first separation-style program logic for

the implementation and compositional verification of message-passing distributed ap-

plications for full functional correctness, supporting effectful higher-order functional

programming style, as well as custom distributed protocols and their combinations;

• Two conceptually novel logical mechanisms allowing reuse of Hoare-style and inductive

invariant proofs while reasoning about distributed protocols: (a) the WithInv rule

enabling elaboration of the protocol invariant in program specifications, and (b) send-

hooks, providing a way to modularly verify programs operating in a restricted product

of multiple protocols.

• A proof-of-concept implementation of Disel as a foundational (i.e., proven sound from

first principles [3]) verification tool, built on top of Coq, as well as mechanized sound-

ness proofs of Disel’s logical rules with respect to a denotational semantics of message-

passing distributed programs;

• An extraction mechanism into OCaml and a trusted shim implementation, allowing

one to run programs written in Disel on multiple physical nodes;

• A series of case studies implemented and verified in Disel (including the Two-Phase

Commit protocol [115] and its client application), as well as a report on our experience

of using Disel and a discussion on the executable code.

56

C1

C2

S

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Figure 3.1: A communication scenario between a server and two client nodes in a distributed
calculator.

3.2 Overview

In this section we illustrate the Disel methodology for specifying, implementing, and ver-

ifying distributed systems by developing a simple distributed calculator. Disel systems

are composed of concurrently running nodes communicating asynchronously by exchanging

messages, which, as in real networks, can be reordered and dropped.

In the calculator system, each node n is either a client (written n ∈ C) or a server (n ∈ S),

and the system is parameterized over some expensive partial function f with domain dom(f).

Given arguments args ∈ dom(f), a client can send a request containing args to a server, which

will reply with f(args). Figure 3.1 depicts an example execution for the calculator system

with one server S and two clients, C1 and C2. Note that requests and responses may not

be received in the order they are sent due to network reordering, and the server may service

requests in any order (e.g., due to implementation details such as differing priorities among

requests). However, the system should satisfy weak causality constraints, e.g., a client C

should only receive a response f(args) if C had previously made a request for args . In the

remainder of this section we show how Disel enables developers to specify the calculator

protocol, implement several versions of server and client nodes that follow the protocol, and

prove key invariants of the system.

57

Send-transitions
τs Requires (m, to) Ensures

sreq n ∈ C ∧ to ∈ S ∧ n � rs ∧m = (Req, args) ∧ args ∈ dom(f) n � (to, args)] rs

sresp n ∈ S ∧ f(args) = v ∧ n � (to, args)] rs ∧m = (Resp, v, args) n � rs

Receive-transitions
τr Requires (m, from) Ensures

rreq n ∈ S && n � rs && m = (Req, args) n � (from, args)] rs

rresp n ∈ C && n � (from, args)] rs && m = (Resp, ans, args) n � rs

Figure 3.2: Send- and receive-transitions of the distributed calculator protocol with respect
to a node n.

3.2.1 Defining a Calculator Protocol

A protocol in Disel provides a high-level specification of the interface between distributed

system components. As with traditional program specifications, Disel protocols serve to

separate concerns: implementations can refine details not specified by the protocol (e.g.,

the order in which to respond to client requests), invariants of the protocol can be proven

separately (e.g., showing that calculator responses contain correct answers), and interactions

between components within a larger system can be reasoned about in terms of their protocols

rather than their implementations. Following the tradition established by Lamport [57],

Disel protocols are defined as state-transition systems.

Figure 3.2 depicts the state-transition system for the calculator example with two send-

transitions and two receive-transitions. Each transition is named in the first column: s-

transitions are for sending and r-ones for receiving. Their pre- and postconditions (in the

form of requires/ensures pairs) are given as assertions in the second and third columns

respectively. These assertions are phrased in terms of the message being sent/received,

recipient/sender (to/from), and the protocol-specific state of a node n. For the calculator,

the state for node n is a multiset of outstanding requests rs , denoted as n � rs .

Protocol transitions synchronize the exchange of messages with changes in a node’s state.

58

Preconditions in send-transitions specify requirements that must be satisfied by the local

state of node n for it to send message m to recipient to and postconditions specify how n’s

state must be updated afterward. For example, the sreq transition can be taken by a client

node n ∈ C to send a request message (Req, args) to server to where args ∈ dom(f) and,

after sending, n has added (to, args) to its state. Preconditions in receive-transitions specify

requirements that must be satisfied by the local state of node n for it to receive message m

from sender from and postconditions specify how n’s state must be updated. For example,

the rreq transition can be taken by a server node n to receive a request message (Req, args)

from node from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the pre-

condition of receive-transitions must be decidable (which we emphasize by using boolean

conjunction && instead of propositional ∧). This is because a program’s decision to send a

message is active and corresponds to calling the low-level send primitive (described later in

this section); the system implementer must prove such preconditions to use the transition. In

contrast, receiving messages is passive and corresponds to using the low-level recv primitive

(also described later in this section) that will react to any valid message. A message m sent

to node n should trigger the corresponding receive transition only if n’s state along with the

message satisfies the transition’s precondition. To choose such a transition unambiguously,

we require that each message’s tag (e.g., Req and Resp) uniquely identifies a receive-transition

that should be run. Combined with the decidability of receive-transition preconditions, this

allows Disel systems to automatically decide whether a transition can be executed.

As defined, the calculator protocol prohibits several unwelcome behaviors. For instance,

a server cannot send a response without a client first requesting it, since (a) servers only

send messages via the sresp transition, (b) sresp requires (to, args) to be in the multiset

of outstanding requests at the server, and (c) (to, args) can only be added to the set of

outstanding requests once it has been received from a client. Also note that the precondition

of sreq requires that when a client sends a request to a server to compute f(args), args ∈

dom(f). Similarly, the precondition of sresp requires that when a server responds to a

59

client request for args , it may only send the correct result f(args). In this case, the initial

arguments args are included into the response in order make it possible for the client to

distinguish between responses to multiple outstanding requests.

The protocol also leaves several details up to the implementation. For example, the sresp

transition allows a server to respond to any outstanding request, not necessarily the least

recently received. This flexibility allows for diverse implementation strategies and enables the

implementation I of a component to evolve without requiring updates to other components

which only assume that I satisfies its protocol.

This state-space and transitions define the calculator protocol C. Protocols are basic

specification units in Disel, and, as we will soon see, a single program can “span” multiple

protocols. Thus, we will annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

3.2.2 From Protocols to Programs

The transitions in Figure 3.2 define functions mapping a state, message, and node id to

a new state. We can use these functions as basic elements in building implementations of

distributed system components, but first we need to “tie” them to realistic low-level message

sending/receiving primitives. We can then combine these basic elements, via high-level

programming constructs, into executable programs.

In Disel a programmer can define a new programming primitive based on a send- or

receive transition using a library of transition wrappers, that decorate send/receive primitives

with transitions of protocols at hand. The generic send[τs, `] wrapper from this library takes

a send-transition τs of a protocol identified by a label ` and yields a program that sends a

message. For instance, from the description in Figure 3.2 and Disel’s logic (discussed in

Section 3.3), we can assign the following Hoare type (specification) to a “wrapped” transition

sresp run by server n in the context of the protocol C`:

C`
n
` send[sresp, `](m, to) :

n ∈ S ∧ n � ((to, args)] rs)

∧ m = (Resp, f(args), args)

 {
n � rs ∧ res = m

}
(1)

60

The assertions in the pre/postconditions of the type (1) quantify implicitly over the entire

global distributed state s (including previously sent messages), although the calculator pro-

tocol only constrains n’s local contents in s, which are referred using the “node n’s local

state points-to” assertion of the form n � −. In particular, the specification ensures that

the outstanding request (to, args) is removed from the local state of a node n upon sending a

message. As customary in Hoare logic, all unbound variables (e.g., rs , args) are universally-

quantified and their scope spans both the pre- and post-condition. The return value res,

occurring freely in the postcondition of a wrapped send-transition, is the message sent. In

most of the cases, we will omit the type of res for the sake of brevity.

Disel’s type system ensures Hoare-style pre/postconditions in types are stable, i.e., in-

variant under possible concurrent transitions of nodes other than n. Stability often requires

manual proving, but is indeed the case in the triple (1), as its pres/posts constrain only local

state of the node n, which cannot be changed by other nodes. In general, Hoare triples in

Disel can refer to state of other nodes as well, as we will demonstrate in Section 3.4.

Using a wrapper recv for tying a receive-transition to a non-blocking receive command

is slightly more subtle. In general, we cannot predict which messages from which protocols

a node n may receive at any particular point during its execution. To address this, receive

wrapper recv[T, L] specifies a set T of message tags and a set L of protocol labels; and

only accept messages whose tag is in T for a protocol whose label is in L.2 The resulting

primitive provides non-blocking receive: if there are no messages matching the criteria, it

returns None and acts as an idle transition. Otherwise, it returns Some (from,m) for a

matching incoming message m from sender from, chosen non-deterministically from those

available. For example, we can assign the following Hoare type to a wrapper, associated with

the tag Req of C`:

2Our implementation also allows “filtering” messages to be received with respect to their content.

61

C`
n
` recv[{Req} , {`}] :

{
n ∈ S ∧ n � rs

}


if res = Some (from, (Req, args))

then n � ((from, args)] rs) ∧

〈from, n, •, (Req, args)〉 ∈ MS `

else n � rs


(2)

The postcondition of the type (2) demonstrates an important feature of Disel’s Hoare-

style specs: in the case of a received message, it existentially binds its components (i.e., from,

args) in then-branch, and also identifies the message 〈from, n, •, (Req, args)〉 in the message

soup MS ` (which models both the current state and history of the network) of the post-state

s′ wrt. the protocol C`. Messages in Disel’s model (described in detail in Section 3.3.1) are

never “thrown away”; instead they are added to the soup, where they remain active (◦) until

received, at which points they become consumed (•).3

We can now employ the program (2) to write a blocking receive for request messages via

Disel’s built-in general recursion combinator letrec (explained in Section 3.3), assigning

this procedure the following specification:

C`
n
` letrec receive_req (_ : unit) ,

r ← recv[{Req} , {`}];

if res = Some (from,m)

then return (from,m)

else receive_req () : ∀u : unit.
{
n ∈ S ∧ n � rs

} n � ((res.1, res.2)] rs) ∧

〈res.1, n, •, (Req, res.2)〉 ∈ MS `


(3)

The Hoare type of receive_req describes it as a function, which takes an argument of type

unit and is safe to run in a state, satisfied by its precondition. The pre/postconditions of

receive_req are derived from the type (2) by application of a typing (inference) rule for

fixpoint combinator, with an assistance of a human prover and according to the inference

3This design choice with respect to message representation is common in state-of-the-art frameworks for
distributed systems verification, e.g., IronFleet [38] and Ivy [89], as it simplifies reasoning about past
events.

62

1 letrec simple_server (_ : unit) ,
2 (from, args)← receive_req ();
3 let v = f(args) in
4 send[sresp, `]((Resp, v, args), from);
5 simple_server ()
6 in simple_server ()

Figure 3.3: A simple server that responds to one request in each iteration of an infinite loop.

rules of Disel, described in Section 3.3.2. Internally, receive_req corresponds to an execution

of possibly several idle transitions, followed by one receive-transition. That is, when invoked,

it still follows C`’s transitions: otherwise we simply could not have assigned a type to it at all!

In other words, a body of receive_req is merely a combination of more primitive sub-programs

(namely, the “wrapped” non-blocking receive (2)) that are proven to be protocol-compliant.

3.2.3 Elaborating State-Space Invariants of a Protocol

Let us now use receive_req to implement our first useful component of the system: a simple

server, which runs an infinite loop, responding to one request each iteration (see Figure 3.3).

In trying to assign a type to this program in the context of C` for a node n ∈ S, we encounter a

problem at line 3. Since f is partially-defined, Disel will emit a verification condition (VC),

requiring us to prove that f is defined at args . Unfortunately, the postcondition in the

spec (3) of receive_req does not allow us to prove the triple: we can only conclude that

a message from the soup is consumed, but not that its contents are well-formed, i.e., that

args ∈ dom(f). The issue is caused by the lack of constraints, imposed by the protocol C`
on the system state s, specifically, on the messages in its soup, which we refer to as s#MS `.

The necessary requirement for this example, however, could be derived from the following

property of a state s:

Inv1(s) , ∀m ∈ s#MS `, m = 〈from, to,−, (Req, args)〉 =⇒ args ∈ dom(f) (4)

63

The good news is that the property Inv1 is an inductive invariant with respect to the

transitions of C`: if it holds at some initial state s0, then it holds for any state s reachable

from s0 via C`’s transitions. Better yet, since every well-typed program in Disel is composed

of protocol transitions, it will automatically preserve the inductive invariant and can be given

the same pre/postconditions, as long as the pre-state satisfies the invariant.

To account for this possibility of invariant elaboration, Disel provides a protocol combi-

nator WithInv that takes a protocol P and a state invariant I, proven to be inductive wrt.

P , and returns a new protocol P ′, whose state-space definition is strengthened with I. That

is, the pre/postcondition of every transition can be strengthened with I “for free” once I is

shown to be an inductive invariant. Therefore, taking C ′` , WithInv(C`, Inv1), we can reuse

all of simple_server’s subprograms in the new context C ′`. The postcondition on line 3, in

conjunction with Inv1 holding over any intermediate states ensures that f is defined at args ,

allowing us to complete the verification of our looping server implementation, assigning it

the following type (with the standard False postcondition due to non-termination):

C′`
n
` simple_server () :

{
n ∈ S ∧ n � rs

}
{False} (5)

Having a server loop assigned the specification (5) ensures that it faithfully follows the

protocol’s transitions and does not terminate.

3.2.4 More Implementations for Cheap

With the elaborated protocol C ′`, we can now develop and verify a variety of system compo-

nents, reusing the previously developed libraries and enjoying the compositionality of specs

afforded by Hoare types quantifying over a distributed state and sent/received messages. It

is still up to the programmer to verify those implementations in a Hoare style, but writing

them does not require changing the protocol, only composing the verified subroutines.

64

letrec receive_batch (k : nat) ,
if k = k′ + 1
then fargs ← receive_req ();

rest ← receive_batch k′;
return fargs :: rest

else return []

letrec send_batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs ′

then let v = f(args) in
send[sresp, `]((Resp, v, args), from);
send_batch rs ′

else return ()

letrec batch_server (bsize : nat) ,
reqs ← receive_batch bsize;
send_batch reqs;
batch_server bsize

letrec memo_server (mmap : map) ,
(from, args)← receive_req ();
let ans = lookup mmap args in
if ans 6= ⊥
then

send[sresp, `]((Resp, ans, args), from);
memo_server mmap

else
let ans = f(args) in
send[sresp, `](m, (Resp, ans, args));
let mmap′ = update mmap args ans in
memo_server mmap′

(a) (b)

Figure 3.4: Batching (a) and memoizing (b) calculator servers defined on top of the proto-
col C ′`.

Alternative servers. Figure 3.4 presents two alternative looping server implementations.

The first one processes requests in batches of a predefined size bsize. This batching may

cause batch_server to loop for an unbounded period, until bsize requests have been received,

but this is perfectly safe. Once this is done, the batch is passed to the second subroutine,

send_batch, which delivers the results. Finally, the server loop restarts. Another, more

efficient server implementation memo_server uses memoization, implemented by means of

store-passing style, in order to avoid repeating computations. It first checks whether the

answer for a requested argument list is available in the memoization table mmap, and, if so,

sends it back to the client. Otherwise, it computes the answer and stores it in the local state,

which is then passed to the next recursive call. Both implementations, when invoked with a

suitable initial argument (batch size and an empty map, correspondingly), type-check against

the same Hoare type as the simple server (5) and are verified directly from the specifications

of their components in the context of C ′`.

65

1 letrec compute (args , serv) ,
2 send[sreq , `]((Req, args), serv);
3 v ← receive_resp ();
4 return v

Figure 3.5: A client in the calculator protocol that asks the server to compute its answer.

Implementing a calculator client. Let us now build and verify a simple client-side

procedure that requests a computation and obtains the result. It can be implemented as

shown in Figure 3.5. The program compute sends a request to a server serv and then runs

a blocking procedure receive_resp for a message with the Resp tag, implemented similarly

to receive_req, and having, when invoked as a function, the following specification, stating

that res is the received response:

C′`
n
` receive_resp () :

{
n ∈ C ∧ n � {(serv , args)}

}
{
〈serv , n, •, (Resp, res, args)〉 ∈ MS ` ∧ n � ∅

} (6)

Unfortunately, this type is not helpful to prove the desired spec of compute, stating that

its result is equal to f(args): this dependency is not captured in (6)’s postcondition. In

order to deliver a stronger postcondition of receive_resp, we need to elaborate the protocol’s

state-space assumption even further, proving the following invariant Inv2 inductive:

Inv2(s) , ∀m ∈ s#MS `, m = 〈n1, n2,−, (Resp, ans, args)〉 =⇒ f(args) = ans (7)

What is left is to verify the implementation of receive_resp in the context of C ′′` , WithInv(C ′`, Inv2).

The property Inv2 ensures that any answer carried by a Resp-message is correct wrt. the

corresponding arguments. Since the client has only one outstanding request at the moment

it calls receive_resp, it will only accept a message with an answer to that request. Thus, we

66

letrec deleg_server (n′ : Node) ,
(from, args)← receive_req`1 ();
ans ← compute`2(args , n

′);
send[sresp, `1]((Resp, ans , args), from);
deleg_server n′

Figure 3.6: Delegating calculator server that forwards all requests to an existing server.

can prove the following spec for the RPC compute:

C′′`
n
` compute (args, serv) :

{
n ∈ C ∧ n � ∅ ∧ serv ∈ S ∧ args ∈ dom(f)

}{
res = f(args) ∧ n � ∅

} (8)

Server as a client. So far, we have only considered programs that operate in the context

of a single protocol. However, it is common for realistic applications to participate in several

systems. Disel accounts for such a possibility by providing an injection/protocol framing

mechanism, inspired by the FCSL program logic by Nanevski et al. [77], and allowing one

to type-check a program in the context of several protocols with disjoint state-spaces. The

disjointness of those does not mean the disjointness of the node sets: one node can be a part

of several protocols, in which case its local state is divided among them. As an example, let

us implement yet another calculator server, this time using an `1-labelled protocol run by

a node n, which, instead of calculating directly, delegates to a server n′ in another protocol

(labelled with `2, which we use to annotate the corresponding call to compute to emphasize

the protocol it “belongs to”), in which n is a client. The Disel implementation of such a

server is shown in Figure 3.6. The code of deleg_server is almost identical to the code of

simple_server and it has the following type in the context of two independent protocols, C ′′`1
and C ′′`2 :

67

memo_server

batch_server

simple_server

batching server, processes requests in batches of a prede-
fined size bsize . Since the system’s liveness is not of our
concern here, it can potentially loop fo a long time, until the
expected batch of requests is delivered by the receive batch.
Once this is done, the batch is passed to the second sub-
routine, send batch, which delivers the results. After this,
the server loop restarts. Another, slightly more efficient im-
plementation memo server uses memoization, implemented
by means of store-passing style, in order to avoid repeating
computations. It first checks whether the answer for a re-
quested argument list is available in the memoization table
mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0

`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv

and then runs a blocking receive procedure receive resp

for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :
�

�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s

0
. hserv , n, •, (Resp, r, args)i 2 s

0
.MS` ^ s

0
.n 7! ;}

(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:

I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i
=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00

` , WithInv(C0
`, I2). The

property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding
arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :
�

�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s

0
. r = f(args) ^ s

0
.n 7! ;}

(10)

Server as a client. So far, we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [8, 11], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n

0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00

`1
and C00

`2
:

C00
`1 ⇤ C00

`2

n

` delegating server (n0) :
n

�s. n 2 S`1 ^ n 2 C`2 ^ n

0 2 S`2 ^ s.n

`17! rs ^ s.n

`27! ;
o

{�r s

0
. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.
2.5 Putting It All Together
DISEL programs can be extracted into OCaml code and run
on a trusted distributed shim. In order to do so, one needs
to (a) assign each participant node (represented by a natu-
ral number id) a program to run (some nodes might have no
programs assigned), (b) provide an initial distributed config-
uration that instantiates the local state for each participant in
each protocol and satisfies all imposed state-space invariants
(e.g., (5) and (9)). The semantics of Hoare types in DISEL
ensures that well-typed programs are not affected by execu-
tion of other programs running in parallel, and are always
safe to run when their precondition is satisfied.

As an illustration of one possible finalized protocol/pro-
gram composition, Figure 4 depicts the three calculator-
based programs, described earlier, running concurrently by
three different nodes, n1, n2, and n3, such that n1 and n2

communicate according to the protocol C00
`1

, and n2 and n3

follow the protocol C00
`2

. The initial local states for all the

Programming and Proving with Distributed Protocols 6 2016/11/12

batching server, processes requests in batches of a prede-
fined size bsize . Since the system’s liveness is not of our
concern here, it can potentially loop fo a long time, until the
expected batch of requests is delivered by the receive batch.
Once this is done, the batch is passed to the second sub-
routine, send batch, which delivers the results. After this,
the server loop restarts. Another, slightly more efficient im-
plementation memo server uses memoization, implemented
by means of store-passing style, in order to avoid repeating
computations. It first checks whether the answer for a re-
quested argument list is available in the memoization table
mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0

`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv

and then runs a blocking receive procedure receive resp

for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :
�

�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s

0
. hserv , n, •, (Resp, r, args)i 2 s

0
.MS` ^ s

0
.n 7! ;}

(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:

I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i
=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00

` , WithInv(C0
`, I2). The

property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding
arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :
�

�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s

0
. r = f(args) ^ s

0
.n 7! ;}

(10)

Server as a client. So far, we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [8, 11], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n

0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00

`1
and C00

`2
:

C00
`1 ⇤ C00

`2

n

` delegating server (n0) :
n

�s. n 2 S`1 ^ n 2 C`2 ^ n

0 2 S`2 ^ s.n

`17! rs ^ s.n

`27! ;
o

{�r s

0
. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.
2.5 Putting It All Together
DISEL programs can be extracted into OCaml code and run
on a trusted distributed shim. In order to do so, one needs
to (a) assign each participant node (represented by a natu-
ral number id) a program to run (some nodes might have no
programs assigned), (b) provide an initial distributed config-
uration that instantiates the local state for each participant in
each protocol and satisfies all imposed state-space invariants
(e.g., (5) and (9)). The semantics of Hoare types in DISEL
ensures that well-typed programs are not affected by execu-
tion of other programs running in parallel, and are always
safe to run when their precondition is satisfied.

As an illustration of one possible finalized protocol/pro-
gram composition, Figure 4 depicts the three calculator-
based programs, described earlier, running concurrently by
three different nodes, n1, n2, and n3, such that n1 and n2

communicate according to the protocol C00
`1

, and n2 and n3

follow the protocol C00
`2

. The initial local states for all the

Programming and Proving with Distributed Protocols 6 2016/11/12

The postcondition of the type (2) demonstrates an important
feature of DISEL’s Hoare-style specs: in the case of a re-
ceived messages, it also identifies the message hfrom, n, •, mi
in the message soup MS` of the state s0 wrt. the protocol C`.
Messages in DISEL’s logic model (described in detail in
Section 3) are never “thrown away”: instead they are added
to the “soup”, where they remain active (�) until received, at
which points they become consumed (•).6

We can now employ the program (2) to write a blocking
receive for request messages via DISEL’s native general re-
cursion combinator, assigning it the following spec:

C`

n

` letrec receive req (: unit) ,
r actr[{Req} , {`}];
if r = Some (from, m)
then return (from, m)
else receive req () :

�

�s. n 2 S ^ s.n 7! rs

⇢

�r s

0
. s

0
.n 7! (r.1, r.2) [rs ^
hr.1, n, •, (Req, r.2)i 2 s

0
.MS`

�

(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition, that is it still follows C`’s transitions: if it were
otherwise we could not simply have assigned a type for it!
To put it differently, receive req is merely a combination
of more primitive sub-programs (namely, the “wrapped” re-
ceive (2)) that are proven to be protocol-obeying.
2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first use-
ful component of the calculator system: a simple one-shot
server, which runs an infinite loop, responding to requests:

1 letrec one shot server (: unit) =
2 (from, args) receive req ();
3 let ans = f(args) in
4 acts[sresp, `]((Resp, ans, args), from);
5 one shot server ()
6 in one shot server ()

(4)

Trying to assign a type to this program in the context of
C` for a node n 2 S, we can spot a problem with validat-
ing an execution of the line 3. Since f is partially-defined,
DISEL will emit a verification condition (VC), requiring us
to prove that f is defined at args . Unfortunately, the cur-
rent assertions, derived from the precondition of receive req

would not allow us to prove so: we can only conclude that
a message from the soup is consumed, but not that its con-
tents are well-formed. The problem is caused by the lack of
constraints, imposed by the protocol C` on the global system
state s, specifically, on the messages in the soup s.MS`. The
necessary requirement for this example, however, could be
derived out of the following property of a state s:

6 This design choice wrt. message is common in state-of-the-art frameworks
for distributed system verification, e.g., IronFleet [3] and Ivy [10], as it
enables easier reasoning about past events by means of having a “free”
history variable in the state, i.e., the soup in the case of DISEL.

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs

0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation
letrec memo server (mmap : map) =

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
acts[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

I1(s) , 8m 2 s.MS`, m = hfrom, to,�, (Req, args)i
=) f is defined at args

(5)

The good news is that the property I1 is an inductive invari-
ant with respect to the transitions of C`: if it holds at some
initial state s0, then it holds for any state s reachable from
s0 via C`’s transitions. Better yet, since every well-typed pro-
gram in DISEL is composed out of a protocol transitions, it
will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account of this possibility of application-specific in-
variant strengthening, DISEL provides a protocol combina-
tor WithInv that take a protocol P and a state invariant I ,
proven to be inductive wrt. P and returns a new protocol P 0,
whose state-space definition is strengthened with I .

Therefore, taking C0` , WithInv(C`, I1), we can reuse all
of the specifications for one shot server’s subprograms de-
rived so far, in a new context of C0`. The postcondition on
the line 3, in conjunction with I1 holding over any interme-
diate states ensures that f is defined at args , allowing us to
complete the verification of our non-terminating server im-
plementation, assigning it the following type:

C0
`

n

` one shot server () :
�

�s. n 2 S ^ s.n 7! rs

{�r s

0
. False}

(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative server implementations. Figure 3 presents two
alternative looping server implementations. The frist one,

Programming and Proving with Distributed Protocols 5 2016/11/12

recv[{Req}, {ℓ}]

deleg_server
compute

recv[{Resp}, {ℓ}]

p
r

o
to

c
o

l
 e

l
a

b
o

r
a

t
io

n

receive_req

receive_resp

send[sreq, ℓ]send[sresp, ℓ]

Figure 3.7: Components of the calculator
system.

n1

n2

n3

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation

letrec memo server (mmap : map) =
(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
acts[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv

and then runs a blocking receive procedure receive resp

for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :
�

�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s

0
.MS` ^ s

0
.n 7! ;}

(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:
I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i

=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding

arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :
�

�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s

0
.n 7! ;}

(10)

Server as a client. So far we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [7, 10], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n

0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1 ⇤ C

00
`2

n

` delegating server (n0) :
n

�s. n 2 S`1 ^ n 2 C`2 ^ n

0 2 S`2 ^ s.n

`17! rs ^ s.n

`27! ;
o

{�r s0. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.
2.5 Putting It All Together
DISEL does not draw a distinction between real and auxiliary
state, hence this state can be

(Show runnable clients and the common state)
(Mention that all the implementations are in our Coq files)

Summary of the DISEL methodology. (Ilya: A diamond dia-
gram and variations (as suggested by Zach).)

3. A State Model for Distributed Programs
Here we describe the model allowing the modular specifica-
tion of disjoint distributed protocols.

Programming and Proving with Distributed Protocols 6 2016/11/11

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation

letrec memo server (mmap : map) =
(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
acts[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv

and then runs a blocking receive procedure receive resp

for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :
�

�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s

0
.MS` ^ s

0
.n 7! ;}

(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:
I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i

=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding

arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :
�

�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s

0
.n 7! ;}

(10)

Server as a client. So far we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [7, 10], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n

0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1 ⇤ C

00
`2

n

` delegating server (n0) :
n

�s. n 2 S`1 ^ n 2 C`2 ^ n

0 2 S`2 ^ s.n

`17! rs ^ s.n

`27! ;
o

{�r s0. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.
2.5 Putting It All Together
DISEL does not draw a distinction between real and auxiliary
state, hence this state can be

(Show runnable clients and the common state)
(Mention that all the implementations are in our Coq files)

Summary of the DISEL methodology. (Ilya: A diamond dia-
gram and variations (as suggested by Zach).)

3. A State Model for Distributed Programs
Here we describe the model allowing the modular specifica-
tion of disjoint distributed protocols.

Programming and Proving with Distributed Protocols 6 2016/11/11

n1 ↦ []

n2 ↦ []

n2 ↦ []
 

n3 ↦ []

initial state nodes running programs

Req

Req

compute (args, n2)

memo_server ({ })

Re
sp

Re
sp

deleg_server (n3)

p
r

o
to

c
o

l
s

Figure 3.8: Initial state and execution with three
nodes.

C′′`1 , C
′′
`2

n
` deleg_server (n′) :

{
(n ∈ S`1 ∧ n `1� rs) ∗ (n ∈ C`2 ∧ n′ ∈ S`2 ∧ n `2� ∅)

}
{False} (9)

In the precondition, the assertions about the nodes’ roles and local state are elaborated for

specific constituent protocols, labeled with `1 and `2, correspondingly. Furthermore, we use

the separating conjunction ∗ in order to emphasize the disjointness of the protocol-specific

local states, used to handle outstanding requests within two different protocols. As a server, n

can have an arbitrary number of “outstanding responses” rs in its local state (hence n `1� rs),

but should start with an empty set of its own outstanding requests, thus n `2� ∅.

Summary of the Disel methodology. Our entire development of the calculator-aware

applications (e.g., servers and clients) is outlined in Figure 3.7. This is a general layout of

structuring the development of applications in Disel. In the figure, the top-down direction

corresponds to elaborating the protocol invariants (so the specs of programs verified there can

be directly reused further down), and the arrows denote dependencies between components.

3.2.5 Putting It All Together

Disel programs can be extracted into OCaml code, linked with a trusted shim, and run. In

order to do so, one needs to assign each participant node a program to run (some nodes might

68

have no programs assigned) and provide an initial distributed configuration that instantiates

the local state for each participant in each protocol and satisfies all imposed state-space

invariants (e.g., (4) and (7)). The semantics of Hoare types in Disel, defined in Section 3.3.3,

specifies what it means for a program to be type-safe (i.e., correct) in a distributed setting:

postconditions (even those constraining the global state) of well-typed programs are not

affected by execution of programs running concurrently on other nodes, and such programs

are always safe to run when their precondition is stable and satisfied.

As an illustration of one possible finalized protocol/program composition, Figure 3.8 de-

picts the three calculator-based programs, described earlier, running concurrently by three

different nodes, n1, n2, and n3, such that n1 and n2 communicate according to the proto-

col C ′′`1 , and n2 and n3 follow the protocol C ′′`2 . Solid arrows between nodes denote message

exchange, with the time going from left to right. The initial local states for all the nodes/pro-

tocols are instantiated with empty lists of requests. Importantly, the code run by the nodes

n1 and n3 has been verified separately, in simpler, smaller contexts, and only the implemen-

tation of n2’s program deleg_server has been done in the composite context of two protocols.

Our accompanying Coq development provides the complete implementation of the described

programs in Disel DSL, their extracted executable counterparts in OCaml, and mechanized

proofs of all of the mentioned invariants and specifications. 4

3.3 Distributed Separation Logic

We next describe the formal model of the state and protocols, giving meaning to Disel’s

Hoare-style specifications in the context of multiple protocols with disjoint state-spaces and

possible imposed inter-protocol dependencies.

4Our GitHub repository https://github.com/DistributedComponents/disel contains a README.md
file that describes how to check the proofs and run the code.

https://github.com/DistributedComponents/disel

69

State-space components World components

Node, Loc,Mid , N
Lab,Tag , N

l ∈ LocState , Loc
fin
⇀ Val

DistLocState , Node
fin
⇀ LocState

MS ∈ MessageSoup , Mid
fin
⇀ Msg

m ∈ Msg , Node× Node× {◦, •} ×MBody

m ∈ MBody , Tag × N∗

d ∈ Statelet , MessageSoup× DistLocState

s ∈ State , Lab
fin
⇀ Statelet

coh ∈ Coh , Statelet→ Prop

τs ∈ Ts , Tag × Pres × Steps
τr ∈ Tr , Tag × Prer × Stepr

Pres , Node× Node×MBody × Statelet→ Prop

Steps , Node×MBody × LocState ⇀ LocState

Prer , Msg × LocState→ bool

Stepr , Msg × LocState→ LocState

P ∈ Protocol , Coh× T ∗
s × T ∗

r

h ∈ hook , LocState×LocState×MBody×Node→Prop

H ∈ Hooks , HkId× Lab× Lab× Tag
fin
⇀ hook

C ∈ Context , Lab
fin
⇀ Protocol

W ∈World , Context× Hooks

Figure 3.9: Disel’s distributed state and world components.

3.3.1 State and Worlds

Distributed state and its components. The left part of Figure 3.9 defines the com-

ponents of the state, subject to manipulation by concurrently executing programs run by

different nodes. Each global system state s is a finite partial mapping from protocol labels

` ∈ Lab to statelets. Each statelet represents a protocol-specific component, consisting of

a “message soup” MS and a per-node local state (DistLocState). The former represents a

finite partial map from unique message identifiers to messages,5 each of which carries its

sender and recipient node ids, the payload m, which includes a tag, and a boolean indicating

whether the message is already received (•) or not yet (◦). The per-node local state maps

each node id into protocol-specific piece of local state, represented as a mapping from lo-

cations (isomorphic to natural numbers) to specific values. For instance, in the calculator

system example from Section 3.2, all local states had the same type and each carried just

one value, updated in the course of execution,—a multiset of outstanding requests—so we

omitted the only location from assertions in the program specs.

5The uniqueness constraint is introduced to make the encoding easier in Coq, but our specs and proofs
do not rely on it, and the implementation prevents using message ids as values in programs.

70

Protocols, hooks and worlds. The right part of Figure 3.9 shows the components of

Disel protocols and worlds. A protocol P consists of a state-space coherence predicate coh,

which defines the shape of the corresponding statelet (i.e., components of the per-node local

state and message soup properties), and two finite sets of send- and receive transitions: Ts

and Tr, correspondingly. Each send-transition is defined by a tag of a message it can send, a

precondition, and a step function. The precondition constrains the sender, the addressee, the

message to be sent, and the local state of the sender. The step function, which is partially

defined, describes the changes in the local state of the sender, assuming that the state satisfies

the precondition. Each receive-transition comes with a tag, which uniquely identifies it in a

specific protocol. Its precondition is decidable in order to allow the runtime to check it for

applicability. Its step function is totally defined. We will use the notations τ.tag , τ.pre and

τ.step to refer correspondingly to the tag, precondition and step-components of a transition

τ , which might be either send- or receive-one.

A world W is represented by a pair 〈C,H〉, with its first component C being a collection

of protocols that are assigned unique labels. For instance, deleg_server from Section 3.2

was specified in the context of a world with two protocols with disjoint state-spaces, C ′′`1
and C ′′`2 . The second component of a world H contains client-provided send-hooks, used

to impose application-specific restrictions on interacting protocols, as we will demonstrate

in Section 3.4. Each hook h(ls, lc,m, to) is a predicate, relating a local state of a node ls,

which belongs to a core (or server) protocol, a local state lc of the same node from a client

protocol, a content of a message m to be sent and a potential recipient to. A hook-map

Hooks associates each hook h with a unique id z ∈ HkId, a core protocol label `s, a client

protocol label `c and a tag t of a send-transition it applies to. Each send-hook prevents a

send-transition τs in a particular client protocol from being taken by a node n, unless the

hook’s predicate holds wrt. n’s local state in both server and client protocols; in other words

hooks allow strengthening τs’s precondition. Hooks are discussed in more detail below. All

examples we have seen so far in Section 3.2 were defined with H = ∅ (i.e., without any

imposed inter-protocol restrictions), but in Section 3.4 we will show how the mechanism of

71

s � n `� l iff ∃d, s(`) = (−, d) ∧ d(n) = l

s � P (MS `) iff ∃MS , s(`) = (MS ,−) ∧ P (MS)

s � P1 ∗ P2 iff ∃s1 s2, s = s1] s2 ∧ s1 � P1 ∧ s2 � P2

s � this s′ iff s = s′

Figure 3.10: Semantics of Disel state assertions.

send-hooks enables modular verification of programs operating in a restricted product of

protocols, allowing one to build verified distributed client applications on top of verified core

systems.

A world W = 〈C,H〉 is well-formed iff all protocol labels (for servers and clients) in the

domain of H are also in the domain of C. A state s is coherent wrt. a world W = 〈C,H〉

(W
 s) iff (a) both C and s are defined on the same set of unique labels, and (b) ∀` ∈

dom(C), C(`).coh(s(`)), i.e., each statelet in s is coherent with respect to the corresponding

protocol in C. When defining a protocol, it is a programmer’s responsibility to show that

all its transitions preserve the global protocol-specific state coherence, a fact that can then

be used freely in the proofs about programs.

3.3.2 Language, Specifications and Selected Inference Rules

The programming language of Disel, embedded shallowly into Coq, features pure, strictly

normalizing, expressions (i.e., those of Gallina), such as let-expressions, tuples, variables and

literals, ranged over by e (with v being a fully reduced value), and commands c, whose effect

is distributed interaction, reading from local state and divergence, due to general recursion.

The meta-variable F ranges over possibly recursive procedures. Non-interpreted effectful

procedures are ranged over by a functional symbol f . Non-Hoare types are ranged over by

a meta-variable T . The syntax of Disel commands is given below:

c ::= send[τs, `](em, eto) | recv[T, L] | read`(v) | x← c1; c2 | return e | if e then c1 else c2 | F (e)

F ::= f | letrec f(x : T) , c

72

Commands include send, receive and read actions, decorated with the corresponding protocol

labels and transition tags. A decorated receive takes a set of tags T and a set of protocol labels

L to identify the messages to react to. The read`(v) command is used to examine the contents

of a location v of a local state with respect to the protocol labelled `, at the corresponding

node executing the command. The commands also include the standard monadic return e

that returns the value of e, a sequential composition x ← c1; c2, implemented as a monadic

bind (x may be omitted if not used in c2), a conditional statement, and an application F (e).

Program specifications. Figure 3.10 provides the semantics of the assertions with re-

spect to a distributed system state that we have used in the examples in Section 3.2, referring

to particular component of the state constrained by pre- and postconditions of the corre-

sponding Hoare specs. Specifically, a local state assertion n `� l allows one to refer to a

specific component l of a local state of a node n (which might be different from the one run-

ning the code), with respect to a protocol labelled `. The message soup selector MS ` allows

one to make statement about message soup of a specific protocol. Finally, the separating

conjunction (∗), allows one to decompose assertions in the presence of a composite state s,

which can be represented as a disjoint union of sub-states s1]s2. The separating conjunction

allows one to combine separately proved specifications wrt. multiple involved protocols, as

we did when assigning the type (9) to deleg_server. As is customary in Separation Logic [95],

the ∗ operator distributes over plain conjunction for assertions that do not constrain state.

this s′ allows one to assert that the immediate state is equal to a certain fixed state s′.

A command c run by a node n in a world W satisfies a spec W
n
` c : {P}{Q} if it

is safe to execute c from a global system state s satisfying P , concurrently with programs

on other nodes, c respects the protocols and hooks from W , and returns a result value res,

leaving the system in a state s′, such that s′ � Q holds. Here and below, we assume that

res occurs freely in Q. All other unbound variables in Q and P are considered to be logical

variables, whose scope spans both pre- and postcondition of the specification, with logical

variables in Q (except for res) being a subset of those in P . In order to describe an effect

73

of an uninterpreted and potentially recursive procedure f(x : T), we employ the following

notation for parameterized Hoare specs: W
n
` f(x) : ∀x : T .{P}{Q}, where x may occur

freely in P and Q. The Hoare-style logic of Disel will ensure that all intermediate program-

level assertions, describing the global state from a perspective of a node n, which runs the

code being verified, are stable [45, 112], i.e., closed under observable changes performed by

all other nodes, involved into execution of the protocol, and, thus, captured by its definition.

Logic judgements and inference rules. The top part of Figure 3.11 shows selected

inference rules of Disel. In order to account for typed free program variables and functional

symbols f , Disel’s judgements are stated in the presence of a typing context Γ, defined as

follows:

Γ ::= ∅ | Γ, x : T | Γ, f : 〈W,∀x : T .{P}{Q}〉

Typing entries for procedures f include the world W in which their specification was derived.

The top two rules, Bind and Letrec, demonstrate the use of typing contexts.

The next two rules, SendWrap and ReceiveWrap, are crucial for program verification

in Disel, as they allow one to assign Hoare specifications to atomic decorated send- and

receive-commands, instrumented with the suitable protocol annotations. Both rules require

user-assigned pre/postconditions to be stable with respect to interference imposed by the

protocols in the world W . The net effect of sending or receiving a message atomically is

captured by the two auxiliary assertion tuples Sent and Received, defined at the bottom of

Figure 3.11, which relate the states s and s′ (captured via free logical variables) immediately

before and after sending and receiving a message correspondingly.

Specifically, Sent ensures that the precondition of the corresponding send-transition τs,

holds over the pre-state s, as well as all of the hook statements imposed by H, which is

ensured by the auxiliary predicate HooksOk defined below in the same figure. The immediate

post-state s′ is the same as s, except for the local state of node s(`)(n) of the node n wrt.

the protocol `, which is updated with the effect of the state transition τs.step (we use the

74

Bind
Γ;W

n
` c1 : {P}{Q ∧ res : T }

Γ, x : T ;W
n
` [x/res]c2 : {Q}{R} x /∈ FV(R)

Γ;W
n
` x← c1; c2 : {P}{R}

Letrec
Γ, x : T , f : 〈W,∀x : T . {P}{Q}〉;W

n
` c : {P}{Q}

Γ;W
n
` letrec f(x : T) , c : ∀x.T . {P}{Q}

SendWrap
P,Q are W -stable W = 〈C,H〉 τs ∈ C(`).Ts

Sent(τs, `, n,m, to,H) v (P,Q)

Γ;W
n
` send[τs , `](m, to) : {P}{Q}

ReceiveWrap
P,Q are W -stable W = 〈C,H〉

Received(T,L,C) v (P,Q)

Γ;W
n
` recv[T, L](m, to) : {P}{Q}

Read
P,Q are W -stable W = 〈C,H〉(

this s ∧ coh s ∧
v ∈ dom(s(`)(n))

,
this s ∧ coh s ∧
res = s(`)(n)(v)

)
v (P,Q)

Γ;W
n
` read`(v) : {P}{Q}

Frame
Γ;W

n
` c : {P}{Q}

NotHooked(W,H) R is C-stable
Γ;W] 〈C,H〉

n
` c : {P ∗R}{Q ∗R}

WithInv Γ; 〈` 7→ P`]W,H〉
n
` c : {P}{Q} I is inductive wrt. P` I , ∀s, this s⇒ I(s)

Γ; 〈` 7→WithInv(P`, I)]W,H〉
n
` c : {P ∧ I}{Q ∧ I}

Auxiliary definitions

Sent(τs, `, n,m, to,H) ,

 this s ∧ coh s ∧
τs.pre(n, to,m, s(`)) ∧
HooksOk(H, τs, `, n,m, to)

,
this s′ ∧ coh s′ ∧ res = m ∧
s′ = (s[`, n] 7→ τs.step(to,m, s(`)(n))) ∧
s′#MS ` = s#MS `] 〈n, to, ◦, (τs.tag ,m)〉



Received(T,L,C) ,


this s ∧
coh s

,

this s′ ∧ coh s′ ∧ if res = Some (from,m)
then ∃` ∈ L, t ∈ T,MS ′, τr ∈ C(`).Tr, t = τr.tag ∧

s#MS ` = MS ′] 〈from, n, ◦, (t,m)〉 ∧
s′#MS ` = MS ′] 〈from, n, •, (t,m)〉 ∧
τr.pre(m, s(`)(n)) ∧
s′ = (s[`, n] 7→ τr.step(m, s(`)(n)))

else s = s′


HooksOk(H, τs, `c, s, n,m, to) , ∀`s h z,H(z, `s, `c, τs.tag) = h =⇒ h(s(`s)(n), s(`c)(n),m, to)

NotHooked(W,H) , ∃C, W = 〈C,−〉 ∧ ∀(z, `s, `c, t) ∈ dom(H), `c /∈ dom(C).

Figure 3.11: Selected logic inference rules of Disel and auxiliary predicates.

75

notation s(`)(n) to refer directly to the local state of n of in the second component of s(`)).

Finally, the new message is added to the `-related message soup MS ` of s′. In contrast with

sending, receiving messages does not impose any non-trivial preconditions, but in case of a

successfully received message (i.e., res is not None), it allows one to learn a number of facts

about the pre-state, as captured by the assertions of Received. For instance, the tag t of a

received message corresponds to the tag of the corresponding triggered receive-transition τr

of the `-labelled protocol, so the transition has changed the local state of n accordingly, and

also “consumed” the received message in the message soup MS `. In conjunction with the

protocol invariants, relating local state and message soup properties, this allows one to infer

global assertions about the state of the network, as we have shown in Section 3.2.3.

The premises of these rules rely on the following definition of Hoare ordering v, allowing

one to strengthen the precondition P2 ⇒ P1 and weaken the postcondition Q1 ⇒ Q2, while

accounting for the local scope of free logical variables in the assertions [52].

Definition 3.3.1 (Hoare ordering). For the given pairs preconditions P1, P2 and postcondi-

tions Q1, Q2, possibly containing free logical variables, we say (P1, Q1) v (P2, Q2) iff ∀s s′, (s �

∃x2.P2 ⇒ s � ∃x1.P1) ∧ ((∀x1 res. s � P1 ⇒ s′ � Q1)⇒ (∀x2 res. s � P2 ⇒ s′ � Q2), where xi are

the free logical variables of both Pi and Qi correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not

modify the local state in any way, observable by other nodes, which is what is ensured by

the “atomic specification” in its premise, which expresses that the pre/post-states are the

very same state this s, modulo W -interference, tolerated by pre/postconditions P and Q .

The rule Frame is the key to horizontal compositionality with respect to involved proto-

cols. It allows one to add a “framed in” world part 〈C,H〉 (with the corresponding assertion

R, quantifying over components of C-relevant state) to a specification, assuming that all

involved assertions are stable. This rule is inherently asymmetric due to the “hooking” com-

ponent H. Specifically, it allows any additions 〈C,H〉 as long as hooks in H cannot invalidate

preconditions of send-transitions of W ’s protocols. This check, captured by the NotHooked

76

auxiliary predicate defined at the bottom of Figure 3.11, can be done syntactically on the

domains of W and H, just by checking the “intersection” of their “footprints”, very much in

the spirit of ordinary Separation Logic.6 Furthermore, if H = ∅, the rule Frame becomes

symmetric and can be used to combine any two worlds that do not have mutual inter-protocol

restrictions, which is what we did in Section 3.2.4 when implementing a delegating server.

Typically, the world W contains a number of core protocols (e.g., for locking or replication),

whereas the addition 〈C,H〉 comes with client-specific protocols and restrictions imposed by

the state wrt. W , so client applications have to be verified in a joint “large-footprint” world

W]〈C,H〉. Here,] is a pointwise disjoint union of labeled protocols and hooks, so the rule

only applies when the result of] is defined. In Section 3.4, we will demonstrate how to make

such efforts reusable by exploiting Coq’s higher-order definitions and abstract predicates.

Finally, the rule WithInv allows one to elaborate the context assumptions wrt. a spe-

cific protocol P` and also the corresponding state assertions for any invariant I, which is

P`-inductive, i.e., it, as an assertion, over the global network state, is preserved while any

node invokes any allowed send- or receive-transitions of P`.7 Internally, the protocol combi-

nator WithInv(P`) replaces the coherence predicate coh of the protocol P` with a new one,

elaborated with the inductive I. Applying this rule corresponds to proving whole-system

properties, which is complementary to Hoare-style specifications, local for specific nodes.

The remaining rules, such as the rule of conjunction, function application, specification

weakening etc., are standard and thus omitted.

3.3.3 Program Semantics and Logic Soundness

The semantics of programs and the soundness result in Disel are closely tied to the no-

tion of protocol-aware network semantics. This is a non-deterministic small-step operational

6This definition of NotHooked is a syntactic approximation of “framing wrt. transitions” that suffices for
our purposes. More elaborate checks could be devised for tracking fine-grained dependencies between the
core and the client protocols by considering the “transition footprint” instead of a “protocol footprint”.
7The formal definition of inductive invariants is with respect to the protocol-aware network semantics,

defined in Section 3.3.3, and is available in the accompanying Coq development.

77

SendStep
W = 〈C,H〉

W
 s ` ∈ dom(C) P` = C(`) (MS , d) = s(`)
{
n, to

}
⊆ dom(d) τs ∈ P`.Ts

τs.pre(n, to, m , d) HooksOk(H, τs, `, s, n,m, to) MS ′ = MS] 〈n, to, ◦, (τs.tag ,m)〉
s n;W s[` 7→ (MS ′, d[n 7→ τs.step(to,m, d(n))])]

ReceiveStep
W = 〈C,H〉 W
 s ` ∈ dom(C) P` = C(`) (MS , d) = s(`)

τr ∈ P`.Tr MS = MS ′]m m = 〈from, n, ◦, (τr.tag ,m)〉 {from, n} ⊆ dom(d) τr.pre(m, d(n))

MS ′′ = MS ′] 〈from, n, •, (τr.tag ,m)〉
s n;W s[` 7→ (MS ′′, d[n 7→ τr.step(m, d(n))])]

Figure 3.12: Transition rules of the network semantics.

semantics, and its two transition rules are shown in Figure 3.12 (ignore the gray boxes for

now). All free variables in the rules other than s, n and W are existentially quantified. That

is, the SendStep-rule will fire for a node n in a world W = 〈C,H〉 if there is a protocol P`

in C and there is a send-transition τs in P`, such that the corresponding local state of the

sender n and the message m satisfy its precondition and also all W ’s hooks constraining τs

are satisfied. The resulting state will thus have its n-entry wrt. P` updated correspondingly,

and a new message added to the soup MS with a fresh logical message id (omitted here

for brevity). The rule ReceiveStep is similar in that it looks for an active message m in

the soup MS of a arbitrarily chosen protocol P`, such that n is its addressee, and its tag

corresponds to a specific receive-transition τr of P`. It then checks the precondition of τr at

n’s local state, and executes it, updating s’s local state and soup correspondingly.

One can notice the similarity between the network semantic rules SendStep and Re-

ceiveStep and the inference rules SendWrap and ReceiveWrap from Figure 3.11. This

should not come as a surprise: indeed, the two mentioned inference rules provide a way to

symbolically account for corresponding local executions of send- receive-transitions by a spe-

cific node, consistent with the network semantics.

We build the semantics of programs in Disel with respect to a specific node n and a

world W . To do so, we provide the semantics of wrappers for transitions via the following

78

semi-formal definitions (the formal ones are in our Coq code), accompanied by the natural

adequacy result (Lemma 3.3.4).

Definition 3.3.2 (Send-wrapper). The semantics of a send-wrapper call w = send[τs , `](m, to)

is defined by fixing the grayed elements in the rule Send to be the wrapper’s arguments τs,

m, `, and to. The wrapper precondition w.pre is τs.pre and its result is m.

Definition 3.3.3 (Receive-wrapper). The semantics of a receive-wrapper call recv[T, L] is

defined by fixing the grayed elements in the rule Recv such that ` ∈ L and τr.tag ∈ T

are chosen non-deterministically. The precondition w.pre is True and the result is the pair

Some (from,m) from m, if side conditions of Recv are satisfied and there is a message in

the soup matching some tag t ∈ T and a label ` ∈ L, or None otherwise.

We use the notation s w,n;W s′ to indicate the effect of a wrapper w, executed by a node

n in a global system state s, such that s
 W , resulting in a new state s′.

Lemma 3.3.4 (Wrappers obey the network semantics). Let w be a send- or receive-wrapper

call at a node n in a world W , instantiated with valid arguments. Then for any global state s,

such that W
 s, the resulting state s′ of a wrapper execution s w,n;W s′ is computable from

s and w, and s
n;W s′ holds.

A program execution in Disel can be thought of as a sequence of wrapper calls. Indeed,

in a distributed system, every such execution at a specific node takes place concurrently

with executions on other nodes, which will typically result in multiple possible outcomes for

the global state s. To account for all such behaviors experienced by a program e running

locally, we adopt the trace-based approach for semantics of sequentially-consistent concurrent

programs [8]. We define a denotational semantics of a Disel command c as a (possibly

infinite) set of finite partial execution traces JcK = {tκ | t = [w1, . . . , wn]}, where each element

wi of a trace t is a transition wrapper call or an idle step (corresponding to reading local

state) as it occurs during a single, potentially incomplete, sequential execution of c, and κ ∈

{⊥, done v}, where⊥ indicates an incomplete execution of c, and done v stands for a complete

79

execution returning a result value v. Thus, a trace t is generated by a program running at

a node, so each of its element corresponds to a single, possible idle, transition, changing the

global system state. Since all composite commands in Disel preserve monotonicity in the

complete lattice of sets of traces, the semantics of a recursive procedure is defined as the

least fixed point of the corresponding functional by the Knaster-Tarski theorem. That is,

Disel programs are not directly executable within Coq, but are rather extracted into the

corresponding OCaml definitions, as we will outline in Section 3.5.

To give semantics for the Hoare types and formulate a type soundness result, we need

several auxiliary definitions, relating program traces and system states. Those are directly

inspired by modern concurrency logics [66, 77], and we refer the reader to our Coq code for

fully formal definitions. We first define interference-reachable states from a system state s

with respect to a node n:

Definition 3.3.5. A state s′ is interference-reachable from s wrt. a node n (denoted by

s ¬n∗;W s′) iff s = s′ or there exist s′′, n′ 6= n, such that s
n′

;W s′′ and s′′ ¬n∗;W s′.

We next define Q-satisfying safe traces wrt. a node n, state s, and an assertion Q, as traces

executing from s to the end under interference, so the final state and the result satisfy Q:

Definition 3.3.6. A trace tκ is post-safe for n, s and Q iff either

• t = [], κ = done v and ∀s′, s ¬n∗;W s′ =⇒ s′ � [v/res]Q, or

• t = w :: t′, and for any s′, such that s ¬n∗;W s′, the state s′ satisfies w.pre, and for any

s′′, such that s′ w,n;W s′′, t′κ is post-safe for n, s′′ and Q.

Finally, we define well-typed programs via our denotational semantics and post-safe traces.

Definition 3.3.7 (Hoare Type Semantics). W
n
` c : {P}{Q} iff for any s, such that s � P ,

and for any trace tκ ∈ JcK, such that κ = done v, the trace tκ is post-safe for n, s and Q.

80

Definition 3.3.7 implicitly incorporates fault-avoidance (safety) into the semantics of a

type: if a program can be assigned a type, it will safely run from a state satisfying its

precondition till the end or diverge, with each wrapper in its trace being able to execute,

and the final state satisfying the postcondition. Our implementation comes with a number

of lemmas, allowing one to reduce a derivation of a Hoare type for a composite program

c to those of its components, corresponding precisely to inference rules (cf. Figure 3.11) in

program logics. The proofs of those lemmas with respect to the denotational semantics J·K

of specific programming constructs deliver the soundness result of Disel as a logic:

Theorem 3.3.8 (Soundness of Disel logic). If the type ∅;W
n
` c : {P}{Q} can be derived

in Disel, the program c satisfies the spec W
n
` c : {P}{Q} according to Definition 3.3.7.

Definition 3.3.7 of a type incorporates interference, hence the stability obligations in

the premises of the rules for the basic commands, such as SendWrap, ReceiveWrap.

While the logic does not enforce the stability of a precondition imposed by the client at each

proof rule (as those can be strengthened arbitrarily), it is impossible to prove an unstable

postcondition (as those can be only weakened). Since having a non-stable precondition P

wrt. a node n means an inconsistent specification (i.e., s � P ∧ s ¬n∗;W s′ ∧ s′ � P ⇒ False),

it will not be possible to invoke a subroutine with a non-stable precondition within any

large consistently specified program context. In order to avoid unsoundness with respect the

“topmost” calls, which are extracted and executed on a shim as the end programs in a trusted

(i.e., unverified) environment, we require the user to establish stability of their preconditions,

which should hold over the initial state, used to initialize the network. For instance, this

is the case for the Hoare specifications of the calculator servers from Section 3.2.4, whose

preconditions mention only the node-local state and are, thus, stable.

3.4 Case Study: Two-Phase Commit and Its Client Application

We now present a case study: an implementation and verification in Disel of the basic

distributed Two-Phase Commit algorithm (TPC) [115, Chapter 19]. TPC is widely used in

81

cn

pt1

pt2

(P
re
pa
re

, r
, x

)

(Yes, r)

(Prepare, r, x)

(Y
es

, r
)

(C
om

m
it,
r)

(A
ckC

om
m
it, r)

(A
ck
Co
m
m
it,
r)(Commit, r)

Phase One Phase Two

Figure 3.13: One round of the Two-Phase
Commit.

PInit

PGotReq x

PRespNo x

PCommited x PAborted x

rPrep

sNosYes

rCommit rAbort

PRespYes x
rAbort

sAckAbortsA
ckC
om
mi
t

(b)(a)

CCommit x

CWaitPrepResp x

CAbort x

CSendPrep x

CWaitCommitAck x

CInit

CAbortCommitAck x

rAckAbort
sAbort

rYes/rNo

rAckAbort

sAbort

sPrepsPrep

rYes/rNo

sCommitsCommit

rAckCommit

rA
ck
C
om

m
it

rA
ck
Co
mm
it rAckAbort

Figure 3.14: States of a coordinator (a) and a par-
ticipant (b).

distributed systems to implement a centralized consensus protocol, whose goal is to achieve

agreement among several nodes about whether a transaction should be committed or aborted

(e.g., as part of a distributed database). Since the system may execute in an asynchronous

environment where message delivery is unreliable and machines may experience transient

crashes, achieving agreement requires care.

The goal of conducting this exercise for us was twofold: (a) to show that the protocol

properties established for systems in the distributed systems community (e.g., consensus)

are useful for Hoare-style reasoning about program composition and (b) to demonstrate that

Disel’s protocols with disjoint state-space and hooks are sufficient for conducting modular

proofs about core algorithms (e.g., TPC) and their client applications. To give a better taste of

Disel-style programming and verification, in this section we abandon mathematical notation

and show fragments of our development taken, with cosmetic adjustments, from our code.

3.4.1 The Protocol: Intuition and Formalization

The Two-Phase Commit protocol designates a single node as the coordinator, which is in

charge of managing the commit process; other nodes participating in the protocol are par-

ticipants. The protocol proceeds in a series of rounds, each of which makes a single decision.

Each round consists of two phases; an example round execution is shown in Figure 3.13. In

phase one, the coordinator begins processing a new transaction by sending Prepare messages

82

to all participants. Each participant responds with its local decision Yes or No. In the figure,

both participants vote Yes, so the coordinator enters phase two by sending Commit mes-

sages to all participants, informing them of its decision to commit. If some participant had

voted No, the coordinator would instead send Abort messages. In either case, participants

acknowledge the decision by sending AckCommit or AckAbort to the coordinator. When

the coordinator receives all acknowledgments, it knows that all nodes have completed the

transaction.

The component of the coherence predicate constraining the local state l (expressed via

Coq/Ssreflect predicate notation [Pred l | ...]) of each node n depending on its role,

coordinator or a participant, is defined as follows:

Definition localCoh (n: nid) := [Pred l |

if n == cn then ∃(r: round) (s: CState) (log: Log), l = st 7→ (r, s)] lg 7→ log

else if n ∈ pts

then ∃(r: round) (s: PState) (log: Log), l = st 7→ (r, s)] lg 7→ log else True].

According to the predicate localCoh, the local state of the coordinator (cn is a parameter

bound at the level of the protocol description) consists of two globally defined locations, st

and lg, which together store a round number r, a coordinator status s, and a log. The state

of a participant (n ∈ pts) is similar, except that its status is a participant status. Finally,

any node which is not the coordinator or a participant (e.g., a node participating only in

other protocols) may have an arbitrary local state with respect to TPC.

The coordinator’s status can be in any of the seven states shown in shown in Fig-

ure 3.14(a). Between rounds, the coordinator waits in the CInit state. From the initial state,

the coordinators enters the CSentPrep phase and remains in it until all prepare-requests are

sent, after which it switches into the receiving state CWaitPrepResp x for the data x. Upon

receiving all response message to the prepare-requests, the coordinator changes either to the

commit-state or to the abort-state, notifying all of the participants about the decision and

collecting the acknowledgements, eventually returning to the CInit state with an updated

log. The participants follow a similar pattern to the coordinators’s, except that a partici-

83

Definition c_send_step (r: round) (cs: CState)
(log: Log) (to: node) := match cs with

(* Sending prepare-messages *)
| CSentPrep x tos ⇒ if (* sent all messages *)

(* switch for receiving responses *)
then (r, CWaitPrepResp x [::], l)
(* keep sending requests *)
else (r, CSentPrep x (to :: tos), l)

(* ...more cases depending on cs and to... *)
end.

Definition c_recv_step (r : round) (cs : CState)
(log : Log) (tag : nat) (mbody : seq nat) :=

match cs with
(* Waiting for prepare-responses *)
| CWaitPrepResp x ⇒ if (* received all votes *)
then (r, if (* all votes yes *)

then CCommit x
else CAbort x, log)

else (r, CWaitPrepResp, log)
(* ...more cases depending on cs, tag, mbody... *)
end.

Figure 3.15: Send and receive transitions of a coordinator in a Disel definition of the TPC
protocol.

pant sends messages to or receives messages from only the coordinator before changing its

state.

Figure 3.15 shows how to encode a few of the coordinator’s transitions. Recall that

Disel transitions are computable functions that describe how to update the local state of

the node when executing the transition. The figure shows the snippets of Disel code related

to sending a prepare-request messages and receiving a corresponding response message from

participants. In the latter case, depending on the responses, once all of them are collected,

the coordinator switches to either CCommit or CAbort state.

3.4.2 Program Specification and Implementation

With the protocol in hand, we can now proceed to build programs that implement the coordi-

nator and participant and assign them useful Hoare-style specifications. An implementation

of a single round of the coordinator and its Hoare type are shown in Figure 3.16. The function

coordinator_round takes as an argument the transaction data to be processed in this round.

The type {r log} DHT [cn, TPC] (...) represents a Hoare spec, whose logical variables are

r and log. The spec is parameterized by the dedicated coordinator node id cn and a world

with a single protocol instance TPC, with no hooks. The pre/postconditions (in parentheses)

are encoded as Coq functions fun s ⇒... and fun res s’ ⇒..., correspondingly, so the

immediate pre/post-states s/s’ are made explicit, similarly to using the connective this s.

The precondition, which makes use of the local state getter loc cn s = ..., equivalent to

84

Definition coordinator_round (d : data) :
{r log}, DHT [cn, TPC]
(fun s ⇒ loc cn s = st 7→ (r, CInit)] lg 7→ log,
fun res s’ ⇒
loc cn s’ = st 7→(r+1, CInit)] lg7→(log++[(res, d)]))
:= Do (r ← read_round;

send_prep_loop r d;;
res ← receive_prep_loop r;
b ← read_resp_result;
(if b then send_commits r d;;

receive_commit_loop r
else send_aborts r d;;

receive_abort_loop r);;
return b).

Figure 3.16: Spec and code of a coordinator
round.

Definition run_coordinator (data_seq : seq data) :
DHT [cn, _]
(fun s ⇒ s = loc cn s = st 7→ (0, CInit)] lg 7→ [::]
fun _ s’ ⇒ ∃ (choices : seq bool),
let r := size data_seq in
let lg := zip choices data_seq in
loc cn s’ = st 7→ (r, CInit)] lg 7→ log ∧
∀ pt, pt ∈ pts →

loc pt s’ = st 7→ (r, PInit)] lg 7→ log)
:= Do (with_inv TPCInv (coordinator data_seq)).

Figure 3.17: Coordinator spec elaborated with
TPCInv.

the connective cn TPC� . . . from Figure 3.10, requires that the coordinator is in the CInit state,

with an arbitrary round number and log. The postcondition ensures that the local state has

returned to CInit, the round number has been incremented, and the return value accurately

reflects the decision made on the data, which is also reflected in the updated log. The

code proceeds along the lines required by the protocol: it reads the round number from the

local state, sends requests, collects the responses and then, depending on the locally stored

result b, sends commit/abort messages, collecting the acknowledgements from participants.

3.4.3 Protocol Consistency and Inductive Invariant

The spec given to coordinator_round in Figure 3.16 only constrains the local state loc of

the coordinator, but in fact the protocol maintains stronger global invariants. For example,

we might like to conclude that between rounds, all logs are in agreement. This strong

global agreement property is not implied by the coherence predicate given above, so we

must prove an inductive invariant that implies it. Finding such inductive invariants is the

art of verification, and the process typically requires several iterations before converging

on a property that is inductive and implies the desired spec. Tools such as Ivy [89] and

mypyvy (Chapter 4) make the process of finding an inductive invariant much more pleasant

by providing automatic assistance in debugging and correcting invariants, or even inferring

invariants automatically. For now, though, we proceed to manually construct an invariant.

85

In this case, an invariant that closely follows the intuitive execution of the protocol (its

formulation can be found in our Coq files) suffices to prove the global log agreement property.

For example, when the coordinator is in the CSendCommit state, the invariant ensures that

all participants are either waiting to hear about the decision, have received the decision but

not acknowledged it, or have acknowledged the decision and returned to the initial state.

The invariant also implies a simple statement of global log agreement, shown below:

Lemma cn_log_agreement d r log pt : loc cn d = st 7→ (r, CInit)] lg 7→ log →

coh d → TPCInv d → ∀ pt, pt ∈ pts → loc pt d = st 7→ (r, PInit)] lg 7→ log.

In other words, a coordinator cn in the CInit state and a round r can conclude that all

participants pt ∈ pts have also reached the current round r and have logs equal to its own.

Putting the inductive invariant to work. We can freely use the elaborated invariant in

proofs of programs. Figure 3.17 shows a coordinator program that executes a series of rounds

based on a given list data_seq of data elements. Its postcondition asserts that all participants

have finished the round and have logs agreeing with the one of the coordinator. The proof

of this specification is by a straightforward application of the WithInv rule, making use

of the elaborated invariant TPCInv as well as the lemma cn_log_agreement. Importantly,

the postcondition is stable, because each round of the Two-Phase Commit begins with a

coordinator’s move, hence no participant can change its state from the “initial” one while

the coordinator’s status is CInit.

3.4.4 Composing Two-Phase Commit with a Querying Application using Hooks

Even though core consensus protocols, such as TPC, are not designed to exist in isolation, but

rather to be used in a context of larger applications (e.g., for crash recovery), formal reasoning

about client-specific properties (i.e., properties of applications relying on certain characteris-

tics of a “core” distributed protocol) is only barely covered in classical textbooks [115] and,

with a rare exception [65], almost never a focus of major verification efforts [38, 93, 118],

which, therefore cannot be reused in any larger verified context.

86

Program Definition run_and_query (ds : seq data) pt :
{reqs resp}, DHT [cn, (TPC] Query, QHook)]
(fun s ⇒ loc s = st 7→ (0, CInit)] lg 7→ [::] ∧

pt ∈ pts ∧ query_init s],
fun (res : nat * Log) s’ ⇒ ∃ (chs : seq bool),
let d := (size ds, zip chs ds) in
loc s’ = st 7→ (d.1, CInit)] lg 7→ d.2 ∧
query_init s’ ∧ res = d)

:= Do (run_coordinator ds;;
rid ← generate_fresh_request_id pt;
send_request rid pt;;
res ← receive_responce rid pt;
return res).

Figure 3.18: Querying after the TPC coordina-
tor.

Parameter core_state : Data → LocState → Prop.
Parameter local_indicator : Data → LocState → Prop.

Definition QHook := (1, lab_c, lab_q, resp) 7→
fun lc lq m to ⇒
∀ rid data, m = rid :: serialize data →

core_state data lc.

Hypothesis core_state_inj :
∀ l d d’, core_state d l →

core_state d’ l → d = d’.

Hypothesis core_state_step : ∀ data s s’ n1 n2,
n1 != n2 → local_indicator data (loc lab_c n1 s)
→ network_step (lab_c 7→ pc, ∅) n2 s s’
→ core_state data (loc lab_c n2 s’).

Figure 3.19: Hook definition and abstract
predicates.

We now demonstrate how to employ Disel’s logical mechanisms for restricted composi-

tion of protocols in order to prove, in a modular fashion, properties of client code from a core

protocol’s invariants. To do so, we verify a composite application, which uses TPC for building

a replicated log of data elements, and a side-channel protocol for sending independent queries

about the state of TPC participants (e.g., for the purpose of implementing recovery after a

coordinator’s failure). Figure 3.18 shows a program that first calls the coordinator program

run_coordinator, and then uses the side protocol to query the local state of a participant pt,

which the program then returns as its final result res. Ignoring the query_init part in the

pre/postcondition for now, notice that the postcondition asserts that res is equal to the pair

d (round, log) stored in the local state of the coordinator (which did not crash this time)!

Establishing such validity of the query wrt. TPC-related state is, however, not trivial at

all, given how the querying protocol is defined. The protocol Query is very similar to the

calculator from Section 3.2: any node n1 in it can send a request to any other node n2,

to which n2 may respond with any arbitrary message (the details of the formal protocol

definition can be found in our Coq code). This protocol definition is intentionally made very

weak: while it allows one to prove some interesting inductive invariants (e.g., no request

is answered twice), it leaves all other interaction aspects for the final client to specify. In

particular, it does not enforce any specific shape of data being sent in a response to a request.

87

Thus, without imposing the additional restriction that the protocol Query can only trans-

mit the local state of a node wrt. TPC, we will not be able to prove the spec in Figure 3.18. The

necessary restriction is provided by a send-hook entry QHook that is used when composing

the protocols TPC and Query in the spec of run_and_query, and is defined in Figure 3.19.

In order to make the client verification effort reusable in the context of any consensus

protocol, not just TPC, we formulate the hook statement in terms of an abstract type Data

and an abstract predicate core_state, which we will later instantiate specifically for TPC,

both afforded by Coq’s higher-order programming capabilities. The hook enforces that any

message m containing a request id rid and serialized data adequately encodes the current

local state (storing data) of the sender node, at the moment of sending m, with respect to

the protocol with label lab_c. The abstract predicate core_state d lc, capturing precisely

this “adequacy of the encoding”, is supplied with the injectivity hypothesis core_state_inj

(to be proved by each consensus implementation), which ensures that the abstract data

representation is unambiguous.

We also declare an abstract predicate local_indicator and the corresponding hypothesis

core_state_step, which essentially corresponds to irrevocability of consensus and should be

proved for each consensus implementation (in particular, for TPC), ensuring that if a local

state of a node n1 is of certain shape data, the local state of n2, captured by core_state data

will be remaining the same under interference (network_step) wrt. the core lab_c-labelled

protocol pc—precisely what is ensured by the lemma cn_log_agreement of TPC.

Finally, we can use the abstract predicates from Figure 3.19 to provide specifications for

querying procedures from Figure 3.18, stating query_init in terms of assertions involving

local_indicator and query_state, in the context parameterized over a “core” consensus

protocol pc and restricted with QHook. To verify the program in Figure 3.18 against the

desired spec we only need to instantiate the predicates as follows and prove the corresponding

hypotheses for TPC, which follow from the invariant TPCInv and Lemma cn_log_agreement:

(* For TPC, abstract Data type is instantiated with a round number (nat) and Log. *)

Definition Data := nat * Log.

88

Definition local_indicator (d : Data) l := l = st 7→ (d.1, CInit)] log 7→ d.2.

Definition core_state (d : Data) l := l = st 7→ (d.1, PInit)] log 7→ d.2.

The rest of the proof is via the Frame rule with W = 〈TPC, ∅〉, C = Query and H =

QHook. Since QHook does not restrict the transitions of TPC, NotHooked holds. Thanks to

the parameterization of querying programs with abstract predicates and hypotheses from

Figure 3.19, we can compose them with any other instance of a consensus protocol, e.g.,

Paxos [58] or Raft [86], thus, reusing the proofs of their core invariants.

3.5 Implementation and Experience

Disel combines two traits that rarely occur in a single tool for reasoning about programs.

First, thanks to the representation of Hoare types by means of Coq’s dependent types, the

soundness result of Disel scales not just to a toy core calculus, but to the entirety of Gallina,

the programming language of Coq, enhanced with general recursion and message-passing

primitives. Second, Disel programs are immediately executable by means of extracting

them into OCaml, which provides the features that Gallina lacks: general fixpoints, mutable

state, and networking constructs, enabled by our trusted shim implementation.

Formal development and proof sizes. The size of our formalization of the metatheory,

inference rules and soundness proofs is about 4500 LOC. Our development builds on well-

established Ssreflect/MathComp libraries [33, 75, 100] as well as on the implementation of

partial finite maps and heap theory by Nanevski, Vafeiadis, and Berdine [80].

Table 3.1 summarizes the proof effort for the calculator, TPC/Query systems. The Def-

s/Specs column measures all specification components, including, e.g., auxiliary predicates,

whereas Impl reports the sizes of actual Disel programs. Due to the high degree of code

reuse, it is difficult to provide separate metrics in some cases; for those parts we only report

the joint numbers. Although Disel is not yet a production-quality verification tool, safety

proofs of interesting systems can be obtained in it in a reasonably short period of time and

with moderate verification effort (e.g., the full development of the core TPC system took nine

89

Component Defs/Specs Impl Proofs Build
Calculator (§3.2)

protocol (§3.2.1)
239 - 243 4.8Inv1 (§3.2.3)

Inv2 (§3.2.4)
simple_server (§3.2.3)

192 43 153 8.6batch_server (§3.2.4)
memo_server (§3.2.4)
compute (§3.2.4) 120 24 99 4.8
deleg_server (§3.2.4) 75 7 49 2.4

Two-Phase Commit (§3.4.1–§3.4.3)
protocol (§3.4.1) 465 - 231 3.9
coordinator (§3.4.2) 236 35 440 18
participant (§3.4.2) 163 24 198 10
TPCInv (§3.4.3) 997 - 2113 25

Query/TPC (§3.4.4)
protocol 169 - 115 2.1
querying procedures 326 18 707 19
run_and_query 76 5 89 2.6

Table 3.1: Statistics for implemented systems: sizes of protocol definitions/specs, programs,
proofs of protocol axioms/invariants/specs (LOC), and build times (sec).

person-days of work). Given that the current version of Disel employs no advanced proof

automation, beyond what is offered by Coq/Ssreflect, for discharging program-level verifica-

tion conditions [13] or inductive invariant proofs [89], we consider these results encouraging

for future development.

Extraction and execution. Disel’s logic reasons about programs in terms of their

denotational semantics as traces, but each primitive also has a straightforward operational

meaning. For example, executing a wrapped send transition should actually send the corre-

sponding network message. Thus it is relatively straightforward to extract Disel programs

by providing OCaml implementations of the primitive operations in a trusted shim. Our

shim consists of about 250 lines of OCaml, including primitives for sending and receiving

messages and general recursion. The local state of each node is implemented as a map from

protocol labels to heaps, where a heap is implemented as a map from locations to values.

90

Since Disel does not draw a distinction between real and auxiliary state so far, both are

manifested at run time. In the future, we plan to allow users to mark state as auxiliary to im-

prove performance. Due to artifacts of the extraction process, a Disel program that appears

tail-recursive at the Coq source level does not extract to a tail-recursive OCaml program.

This causes long running loops (such as those typically used to implement blocking receive)

to quickly blow the OCaml stack. To circumvent this issue, we added a while-loop combi-

nator to Disel, which is encoded using the general fixpoint combinator, but is extracted to

an efficient OCaml procedure that uses constant stack space. Our implementations of the

calculator and TPC use this while-loop combinator to implement blocking receive.

In this work, our goal was not to extract high-performance code for Disel programs,

but rather show that, with a careful choice of low-level primitives with precise operational

meaning, such extraction is feasible and requires a very small trusted codebase.

Adequacy of the extraction. What is the correspondence between our denotational

semantics, presented in Section 3.3.3 and the operational one implemented by our shim?

While in this work we do not state a fully formal correspondence, as the shim is written in

OCaml and uses operating system and network components, which have no formal semantics,

we argue that the extraction is adequate wrt. the denotational semantics for the following

reasons:

1. Our denotational semantics is simply a trace-collecting operational semantics for in-

terleaved, asynchronous, message-passing concurrency, with the shared message soup

being the only communication medium. Such an operational representation is widely

considered adequate for modelling distributed systems and has been employed and

evaluated (also, without verifying the extraction) in previous works [38, 89, 117].

2. The shim implementation follows the operational rules from Figure 3.12 verbatim, and

protocol transitions are encoded in Disel as functions on the local state, so they are

91

easy to extract and execute. The shim, thus, provides an accurate implementation of

the protocol-aware network semantics.

Our fixpoint definition (available in our Coq sources) admits non-terminating executions,

“approximating” them iteratively by sets of incomplete post-safe traces. It is extracted into

OCaml’s general fixpoint operator, with a somewhat ad hoc tail-call optimisation described

above in this Section. This means that our logic proves only partial correctness: verified

programs may loop at runtime, but they will never violate the protocol.

Information hiding and separation. One might wonder whether we can hide implementation-

specific parts of local state from the clients, e.g., when reasoning about other nodes’ imple-

mentations? At the moment any mutable state in Disel should be manifested in a protocol

definition (and, thus, known to all its users) and can be only altered by sending/receiving.

This is why in the examples, such as the memoizing calculator from Section 3.2.4, we model

hidden state by passing a functional argument. However, what the framework does allow

one to do is to encode an auxiliary protocol implementing a mutable storage, which, once

joined (via]) with its client protocol (e.g., calculator), does not have to be exposed to the

clients of the latter one, similarly to how it is done in the delegating calculator example.

To support a version of a “proper” hidden local mutable state (i.e., a heap with mutable

pointers) we would need to formulate a nested program logic with the corresponding low-

level semantics for state-manipulating programs—a direction we consider as interesting future

work, with an idea of adopting for this role Verifiable C by Appel et al. [4].

3.6 Related and Future Work

3.6.1 Program Logics for Concurrency

Disel builds on many ideas from modern program logics for compositional concurrency

reasoning. The notion of protocols (often called regions) in shared-memory concurrency log-

ics [22, 77, 91, 106, 110, 111] provides a “localized” version of more traditional Rely/Guar-

92

antee obligations [45], which, in their original formulation, are not modular [26, 27, 112].

The two closest to Disel logics employing protocols to reason about interference are FCSL

by Nanevski et al. [77] and GPS by Turon, Vafeiadis, and Dreyer [110]. Besides those being

logics for shared-memory, rather than message-passing concurrency, protocols in FCSL and

GPS are tailored for the notion of ownership transfer [84], as a way to express exclusivity of

access to shared resources. Due to the lack of immediate synchronization between nodes in

a message-passing setting, we consider the notion of ownership to be of less use for most of

the systems of interest. That said, even though Disel does not feature explicit ownership

transfer, it can be easily encoded on a per-protocol basis, by defining a suitable local state

and transitions.

Composition of modular proofs about protocols is a problem that has not received much

attention in modern concurrency logics. In FCSL, which tackles a similar challenge, in order

to constrain inter-protocol interaction, a user must set up her protocols with a very spe-

cific foresight of how they are going to be composed with other protocols, defining intrinsic

“ownership communication channels” for all involved components, thus, effectively prohibit-

ing unforeseen interaction scenarios. This is not the case in Disel: as we have shown in

Section 3.4, “core” and “client” protocols (e.g., TPC and Query) can be developed and ver-

ified independently and then composed in joint applications via extrinsic client-specified

send-hooks.

The recent logical framework Iris [46, 47] suggests to express protocols as a specific case of

resources, represented, in general, by partial commutative monoids, viewing state reachability

as a specific instance of framing [95]. This generality does not buy much for verifying

distributed applications, as the resulting proof obligations are the same as when proving

inductive invariants. Having an explicit notion of protocols in the logic, though, allowed us

to provide the novel protocol-tailored rules WithInv and Frame (cf. Figure 3.11), which

enabled modular invariant proofs and distributed systems composition.

A related logic by Villard, Lozes, and Calcagno [114] only considers protocols associ-

ated with specific message-passing channels, rather than entire distributed systems. In

93

Villard et al.’s logic, messages do not carry any payload: they are simply tags, indicat-

ing ownership transfer of a certain heap portion in the same shared memory space. It is

not immediately obvious how to use Villard et al.’s specifications for locally asserting global

properties of stateful distributed systems (e.g., the agreement of TPC in Figure 3.17) without

considering all involved processes. In addition to that, Villard et al.’s logic does not provide

a mechanism for establishing inductive contract invariants. A recent framework Actor Ser-

vices by Summers and Müller [105] provides abstractions similar to our protocol transitions,

but only allows to state local actor invariants, and lacks a formal metatheory and soundness

proof.

To the best of our knowledge, none of the existing concurrency logics features both a

foundational soundness proof (i.e., the proof that the entire logic, not just its toy subset, is

sound as a verification tool), and a mechanism to extract and run verified applications.

3.6.2 Types for Distributed Systems

Session Types [42] are traditionally used to ensure that distributed parties follow a predefined

communication protocol wrt. a specific channel. While the multiparty [43] and multirole [20]

Session Types enable a form of system composition and role-play, and dependent session

types allow one to quantify over messages [109], session types do not allow quantification

over the global system state and reasoning out of inductive invariants, neither do they allow

restricted composition of protocols.

We believe that Disel’s combination of Hoare types and protocols provides the neces-

sary level of expressivity to capture rich safety properties of distributed applications. A

similar approach has been explored in F? by Swamy et al. [107], although that work did not

reason about inductive invariants separately from implementations, neither did it address

composition of systems with inter-protocol dependencies.

94

3.6.3 Verification of Large Systems

Recent work has verified implementations of core pieces of distributed systems infrastructure,

both by using specialized models and DSLs.

IronFleet [38] supports proving liveness in addition to safety, all embedded in Dafny [62].

IronFleet focuses on layered verification of standalone monolithic systems. In those systems,

each layer is a state-transition system (STS) specifying the system’s behavior at a certain

abstraction level, with the top-most layer expressing how a collection of nodes together im-

plement a high-level (e.g., shared-memory) specification, and the actual implementation, run

by the nodes, at the bottom. Adjacent layers are connected by establishing refinement be-

tween their STSs via reduction [68], which often involves proving inductive invariants, similar

to what we have proven in Disel. In our understanding, such specifications do not allow

for horizontal composition, i.e., reasoning about interaction with separately verified systems

in a client code. Such an interaction has been, however, explored wrt. shared-memory con-

currency by Gu et al. [35], who built a series of abstraction layers in a verified concurrent

OS kernel. That work has shown that establishing a refinement between a spec STSs and a

family of interacting lower-level STSs is possible, although the proofs are usually quite com-

plex, as they involve reasoning about semantics of a restricted product of STSs. In contrast

with those systems, Disel’s logic does not provide machinery to establish STS refinement,

but rather explicitly identifies valid linearization points [40] in the implementations, as they

correspond precisely to taken protocol transitions. Abstract specifications and the corre-

sponding system properties, usable by client code, such as consensus, are encoded in Disel

via parameterized Hoare types and abstract predicates, as shown in Section 3.4.4.

The Chapar framework by Lesani, Bell, and Chlipala [65] is tailored to causally consistent

key-value stores, and also provides verified model checking for client programs using the

verified KV stores. Ivy is a tool to assist users in iteratively discovering inductive invariants

by finding counterexamples to induction [89]. PSync by Drgoi, Henzinger, and Zufferey [23]

is a DSL allowing one to prove inductive invariants of consensus algorithms in networks with

95

potential faults, operating in a synchronous round-based model [24]. This assumption enables

efficient proof automation, but prohibits low-level optimizations, such as, e.g., batching.

Mace by Killian et al. [49] and DistAlgo by Liu et al. [71] adopt an asynchronous protocol

model, similar to ours. Mace provides a suite of tools for generating and model checking

distributed systems, while DistAlgo allows extraction of efficient implementation from a

high-level protocol description. EventML is another DSL for verifying monolithic distributed

systems, based on compiling to the Logic of Events in Nuprl [93]. None of these frameworks

tackles the challenges of modular reasoning about horizontally composed systems (2) and

elaborated protocols (3), stated in the introduction of this chapter.

Arguably, our Two-Phase Commit implementation is a relatively small case study when

compared to the systems verified in Verdi (Chapter 2) or in other frameworks including Iron-

Fleet and EventML. Nevertheless, given enough time and effort, we are confident we could

conduct safety proofs of Raft [86] and MultiPaxos [94] in Disel, as their implementations

and invariants are based on the same semantic primitives and reasoning principles that were

employed for TPC. We believe, though, that compositionality, afforded by Disel’s logical

mechanisms, is a key to make the results of future verification efforts reusable for building

even larger verified distributed ecosystems.

3.7 Conclusion

This chapter presented Disel, a concurrent separation logic for distributed systems. Disel’s

key contribution to this dissertation is horizontal protocol composition, made possible by our

frame rule, with hooks to express protocol dependencies. We showed examples of compos-

ing protocols, including using two-phase commit mediate access to a distributed resource.

More generally, Disel allows us to compose separately designed and verified protocols to

build more complex systems from existing pieces. Together with the vertical decomposi-

tion provided by Verdi, one can systematically break down a large distributed system into

independently verifiable protocols that add up to a verified whole.

96

Chapter 4

AUTOMATIC VERIFICATION WITH TRANSITION
SYSTEMS

4.1 Introduction

Our experience with Verdi and Disel has been that the most challenging aspect of distributed

systems verification is discovering inductive invariants. An inductive invariant is a property

of system states that is true in all initial states and preserved by all steps the system can

take. Such a property is guaranteed to be true in all reachable states of the system by a

simple inductive argument on executions. A common verification task is to prove that there

is no reachable state that violates some specified safety property. The basic approach to

this task is to find an inductive invariant that implies the safety property, which is sufficient

because any reachable state satisfies the inductive invariant, so it must also satisfy the safety

property. The challenge in this approach is finding such an inductive invariant, which has led

researchers to investigate techniques for automatically inferring inductive invariants, given a

description of a system and its safety property.

This chapter describes mypyvy a tool for automated reasoning about symbolic transition

systems in first-order logic that supports a variety of automated reasoning techniques to

analyze systems. mypyvy takes an input file describing a symbolic transition system and

performs the analysis requested by the user. Three of the most interesting analyses include

inductive invariant checking, inductive invariant inference, and bounded trace reasoning,

including bounded model checking. In all cases, mypyvy loads the transition system and

compiles it together with the user-requested analysis to a (sequence of) SMT queries, which

are dispatched by Z3.

mypyvy is not just the sum of the analyses currently available; it is a platform for doing

97

research in automated verification. We have ongoing projects that use the mypyvy founda-

tion to build several new invariant inference techniques and user interfaces for verification

and exploration. In this context, mypyvy can be seen as a sort of intermediate language

that captures the right level of abstraction for implementing invariant inference techniques.

Higher level languages can access the invariant inference capabilities of mypyvy by compil-

ing their problems into mypyvy’s query language. For example, IVy [89] is a modular high

level imperative-logical language for verifying implementations or models of concurrent and

distributed systems. A typical IVy program consists of many verification tasks of the form

described above, at least one per module in the program. Each task could be translated to

mypyvy to find an inductive invariant, and the result could be translated back to IVy. We are

working with collaborators to implement such translations for IVy. There is much exciting

work to be done here, but this chapter is more modest in scope, describing just the core of

mypyvy in theory and implementation.

4.2 Background on Transition Systems

4.2.1 The robot example informally and pictorially

Imagine a robot in a 2-dimensional world. The robot starts at position (0, 5), and can take

steps to integer grid points either due north or diagonally southeast of its current position.

The world has a circular hole of radius 3 centered at the origin. Can the robot ever fall in

the hole?1

The initial situation is depicted in Figure 4.1. The smaller black circle represents the

robot’s initial position, and the larger shaded red circle represents the hole at the origin. In

its first step, shown in Figure 4.2, the robot could either move north one square, or diagonally

southeast one square. These two possibilities are drawn as thick black arrows. So far, the

robot manages to avoid falling in.

As the robot progresses, more and more positions are reachable, each with a sequence

1Thanks to Jon Howell for this example.

98

Figure 4.1: Robot initial configuration. Figure 4.2: Robot’s first steps.

Figure 4.3: Robot’s second and third steps.

of moves due north or diagonally southeast. The set of possible positions after two and

three steps are shown in Figure 4.3. Despite the growing number of reachable positions, no

sequence of steps causes the robot to fall in.

We start to see a pattern emerging. No matter what happens, the robot will never be

able to move west of the y axis, nor will it be able to move southwest of the diagonal line

x+ y = 5. This region is shown shaded in green in Figure 4.4. Visually, this green polygonal

region does not overlap with the red circle, which “proves” that the robot never falls in.

In fact, this green region exactly characterizes the set of possible positions that the robot

99

Figure 4.4: Exact characterization of the
robot’s reachable positions.

Figure 4.5: A simple overapproximation
to the set of reachable positions.

could reach through some sequence of moves. (We call such positions “reachable”.) Given

any point in the green region, the robot can reach it by first moving southeast over and over

until it is vertically below the target point, and then moving due north over and over until

the point is reached.

Our proof that the robot never falls in can be simplified slightly be noticing that we

never used the fact that the robot always remains east of the y axis. Instead, it is enough

to convince ourselves that the robot is always northeast of the line x + y = 5. This region

is shown in blue in Figure 4.5. Again, it does not visually overlap with the circle, so it

constitutes a visual “proof” that the robot never falls in.

This time, though, not every position in the blue polygonal region is reachable, since

we have already realized that no position west of the y axis is reachable. The unreachable

positions from this region are shown in Figure 4.6. This second proof demonstrates that we

can prove the robot never falls in even without exactly characterizing the set of reachable

positions.

Reflecting on our two admittedly informal proofs so far, we can boil them each down into

three essential proof steps: (1) identify a set of positions I that (2) contains all reachable

positions; and that (3) does not intersect the red circle. Each proof step is important. Proof

100

Figure 4.6: Positions from Figure 4.5 that
are unreachable.

Figure 4.7: The orange region is unsafe
because it intersects the red circle.

step (1) requires some creativity and foresight to pick a set that will make proof steps (2) and

(3) possible. Proof step (3) has been fairly straightforward so far, because we can visually

analyze our set and the red circle to determine if they overlap. If we wanted to be more

precise about proof step (3), we could do some algebra to show that any position (x, y) that

satisfies the linear inequalities that define the polygonal regions from Figures 4.4 and 4.5

always fall outside the red circle, i.e.
√

x2 + y2 > 3.

Proof step (2) is more subtle. We have claimed informally that the robot will never be

able to move southwest of the line x+y = 5, nor west of the y axis, but what would constitute

a more detailed proof of this fact? These claims are claims of invariance, i.e., that the set

I from proof step (1) is an invariant, where an invariant is a set that contains all reachable

positions. The key to proving invariance is an inductive argument, which first shows (2.1)

that the initial position is in I and then shows (2.2) that, from any position in I, all steps the

robot could take lead to new positions that are also in I. By induction, this implies that all

reachable positions are contained in I. For the invariants represented in Figures 4.4 and 4.5

we could make proof steps (2.1) and (2.2) more precise by showing that the initial position

satisfies the linear inequalities for the polygonal regions and by showing that if (x, y) satisfies

101

Figure 4.8: The region outside the circle
is invariant but not inductive.

Figure 4.9: This simplified region is also
invariant but not inductive.

the inequalities, then so do both (x, y + 1) (moving due north) and (x + 1, y − 1) (moving

southeast).

It is instructive to see what happens when the set I selected in proof step (1) fails due to

proof steps (2) or (3). When proof step (3) fails, I intersects the red circle, as in Figure 4.7.

In this case we call the set I “unsafe”. The small opaque red dot shows an example position

that is both in the candidate set I drawn as the orange region and the shaded red circle

at the origin. When proof step (2) fails, there is a position in I from which the robot can

step to a position outside I, as in Figures 4.8 and 4.9. The red arrows show examples of

positions in the orange regions that can step out of orange regions. We call such positions

“counterexamples to inductiveness”, or CTIs.

In the robot example, we can rephrase inductiveness by saying: if a position (x, y) is

not in I, then neither is any state due south or diagonally northwest of (x, y). Since our

goal in any proof of the robot’s safety is to come up with a set I that is inductive and does

not intersect the red circle, we know the states in the red circle must not be in I. Using

the rephrasing above, we can conclude that I must also not contain any state due south or

diagonally northwest of the red circle. Continuing to rule out states in this way, we can find

the largest set I that will make the proof go through, shown in Figure 4.10. To convince

102

Figure 4.10: The largest safe inductive in-
variant for the robot.

Figure 4.11: Proof that every position
outside the purple region is backward
reachable.

ourselves that this region I is the largest safe inductive invariant, it is enough to show that

every position not in I is backward reachable, by which we mean, there is a sequence of steps

starting from the position and ending somewhere in the red circle. Figure 4.11 demonstrates

that the positions just outside the purple region are all backward reachable, using sequences

of steps that follow the red arrows to the red circle. Every other position outside the purple

shaded region is either due south or diagonally northwest of one of these two red arrows, and

so is also backward reachable.

Because the robot example is so simple, we are able to exactly characterize the set of

reachable states (Figure 4.4) and the set of backward reachable states (Figure 4.11). In more

complex examples, this will be much more difficult, but luckily it will always be sufficient to

find an overapproximation to the set of reachable states, such as Figure 4.5, which proves

safety without exactly characterizing reachability or backward reachability.

4.2.2 The robot example in set theory

Let’s formalize the robot example from the previous section using the language of set theory.

A transition system τ = (S, S0,→) consists of a set of states S, a set of initial states

103

S0 ⊆ S, and a binary transition relation →⊆ S × S. We write s→ s′ to mean (s, s′) ∈→.

We can formalize the robot example as a transition system as follows.

τrobot = (Srobot, S
0
robot,→robot)

Srobot = {(x, y) | x, y ∈ Z}

S0
robot = {(0, 5)}

→robot = {((x, y), (x, y + 1)) | x, y ∈ Z} ∪

{((x, y), (x+ 1, y − 1)) | x, y ∈ Z}

We write s →∗ s′ to mean that there is a (possibly empty) sequence of steps from s to

s′. Using this notation, we can say that a state s is reachable if there is an initial state

s0 ∈ S0 such that s0 →∗ s. We write reach(τ) for the set of reachable states of the transition

system τ .

In the robot example, we characterized the set of reachable states in Figure 4.4. We can

express the set precisely as

reach(τrobot) = {(x, y) | x ≥ 0 and x+ y ≥ 5}

The proof of this fact follows the informal discussion from the previous section. First, the set

on the right hand side contains all reachable states, which can be shown with an inductive

argument (which we spell out below). Second, every state in this set is reachable, which we

can show by first showing that everything on the diagonal x + y = 5 ∧ x ≥ 0 is reachable

(by a sequence of southeast moves from the initial state), and then showing that every state

above the diagonal is reachable (by a subsequent sequence of north moves).

In the robot example, our goal was to prove the robot never falls in the red circle. In

general, the kinds of goals we will be interested in will be safety properties, specifically, that

a transition system avoids a certain set of bad states B ⊆ S that is claimed not to intersect

the set of reachable states. In the robot example, the bad states are the ones in the red

104

circle:

Brobot =
{
(x, y) |

√
x2 + y2 ≤ 3

}
.

The claim that the robot is safe means that Brobot does not intersect reach(τrobot), which is

visually apparent in Figure 4.4.

In simple systems, such as the robot example, reach(τ) can be characterized directly, but

in more complex systems, it is neither practical nor useful to obtain an exact characterization

of reachable states. Instead, one often uses overapproximations to reachability, known as

invariants. We say that a set I is an invariant if it contains every reachable state, that

is, if reach(τ) ⊆ I. Thus, another way to talk about safety properties is to say that the

complement of the set of bad states is an invariant, i.e. reach(τ) ⊆ S \ B. Indeed, another

way to set up the safety verification problem is to specify S \ B directly instead of B, and

to claim that S \B is an invariant. We call this the positive phrasing of the safety problem.

When reach(τ) has a direct characterization, one can prove that I is an invariant directly

from the definition. But in complex systems where no useful direct characterization of

reach(τ) exists, one instead uses an inductive argument to establish invariance. We say that

I is an inductive invariant if: (1) S0 ⊆ I; and (2) for any s ∈ I, if s→ s′, then s′ ∈ I.

Both the green region from Figure 4.4 and the blue region from Figure 4.5 are invariants,

and in fact are inductive invariants. (Indeed reach(τ) is always an inductive invariant in any

transition system.) However, not all invariants are inductive invariants. For example, the

orange regions from Figures 4.8 and 4.9 are both invariants (because they contain the green

region from Figure 4.4) but neither are inductive. If we wanted to use an inductive argument

to show that these orange regions are invariants, we would need to first strengthen them.

In general, suppose we want to prove that I is an invariant of some transition system τ ,

and that we don’t have a useful direct characterization of reach(τ) handy. Further, suppose

that I is not inductive. To show that I is an invariant, it is enough to find another set J

such that: (1) J ⊆ I; and (2) J is inductive. Since J is inductive, J is an invariant, i.e.

reach(τ) ⊆ J . But J ⊆ I, so I is also an invariant. In the robot example, we could use the

105

blue region from Figure 4.5 as an inductive strengthening to prove that either of the orange

regions is an invariant. Most of the art and skill of working with transition systems is in the

ability to look at a non-inductive property and see what kinds of strengthenings of it might

be good ideas to get it to be inductive.

4.2.3 First-order logic for transition systems

We are on a journey to more and more formally specify the robot example and to prove its

safety more and more automatically. Our next stop is first-order logic, which we assume

the reader is at least passingly familiar with. (See Section 4.4 for a formal presentation.)

The basic idea is to make the states of a transition system first-order structures over state

variables, and to use formulas to describe the initial states, the transition relation, the bad

states, and the inductive invariant.

For the robot, the state variables are x and y, both of sort Z. A first order structure is

just an assignment of variables to values of the correct sort. In this case, a structure will

be an integer for x and an integer for y, that is, a pair of integers, or, in yet other words, a

point in the plane.

The robot only has one initial state, (5, 0). We can describe this as a logical formula over

the variables x and y as

Init robot = x = 0 ∧ y = 5.

Taking the positive phrasing of the robot example’s safety problem, we want to show

that the set of states with distance strictly greater than 3 from the origin is an invariant of

the transition system. We can express this safety invariant as follows (avoiding square roots

by squaring both sides)

Safe robot = x2 + y2 > 9.

Since the initial condition and the safety condition of a transition system are sets of

states, they are encoded in logic as formulas over one copy of the state variables. The

transition relation, on the other hand, is a binary relation, so it is encoded in logic as a

106

formula over two copies of the state variables. (We refer to formulas over two copies of the

state variables as "2-vocabulary" or "2-state" formulas, and we call the second copy of the

variables "primed" and write them as x′, for example.) In the robot example, we can write

the transition relation as

Tr robot = (x′ = x ∧ y′ = y + 1) ∨ (x′ = x+ 1 ∧ y′ = y − 1).

We think of the primed variables x′ and y′ as holding the values after the step occurs, while

the unprimed versions hold the values from before the step. The transition formula says:

A step is possible from (x, y) to (x′, y′) if either x stays the same and y is incre-

mented by one, or x is incremented by one and y is decremented by one.

Next, we can state the blue region from Figure 4.5 as a formula

Inv robot = x+ y ≥ 5.

If we are trying to prove Safe using Inv , there are two things to check. First, Inv must

be strong enough to prove Safe, that is,

Inv ⇒ Safe.

In the robot example, this amounts to the fact that the blue region from Figure 4.5 does not

intersect the red circle at the origin,

x+ y ≥ 5⇒ x2 + y2 > 9.

Second, Inv must be inductive, which is phrased logically using two formulas, one to check

that the initial condition implies the invariant,

Init ⇒ Inv ,

107

and one to check that the invariant is preserved by the transition relation,

Inv ∧ Tr ⇒ Inv ′.

The first of these two formulas is over a single copy of the state. But the second formula is

a 2-vocabulary formula, both because it contains the 2-vocabulary formula Tr , and because

we use Inv ′ to mean “Inv with all the state variables changed to their primed copy”. In the

robot example, there is only one initial state, so the check on initial states amounts the fact

that the initial state is in the blue region or, logically,

x = 0 ∧ y = 5⇒ x+ y ≥ 5.

To check that the blue region is preserved by the robot’s steps, we need to observe that there

is no way to start in a state in the blue region and take a step outside of it, or, logically,

x+ y ≥ 5 ∧ ((x′ = x ∧ y′ = y + 1) ∨ (x′ = x+ 1 ∧ y′ = y − 1))⇒ x′ + y′ ≥ 5.

This formula is valid, since either y′ > y and x′ = x in the first kind of step, or x+y = x′+y′ in

the second kind of step. While a bit tedious, this is perhaps the first time in the robot example

that we haven’t had to hand-wave around the fact that one of the regions is inductive. It

follows from the tedium of checking this formula’s validity.

4.3 The Robot in mypyvy

It’s finally time to write some mypyvy. Let’s take a tour of the syntax using our robot

example. A mypyvy program is a list of declarations. There are two broad kinds of declara-

tions: those that define the transition system and those that make queries over the transition

system.

Here are two declarations for the state variables of the robot.

mutable constant x: int

108

mutable constant y: int

In mypyvy, we spell “variable” as “mutable constant”, following the logical terminology of

a constant symbol.2 We discuss mutability in more detail in the next section. All the state

declarations together define the state space of the transition system.

The initial conditions are declared with the init keyword.

init x = 0

init y = 5

The conjunction of all the init declarations in a mypyvy program is the initial condition of

the resulting transition system.

The transition relation is declared with several transition declarations.

transition north()

modifies y

new(y) = y + 1

transition south_east()

modifies x, y

& new(x) = x + 1

& new(y) = y - 1

Each transition has a name and takes parameters in parentheses, which are existentially

quantified. The modifies clause is a comma-separated list of state components that are

changed by this transition; all other state components are implicitly constrained to not

change. For example, in the north transition, there is an implicit constraint x′ = x, which

was explicit when we were writing directly in first-order logic in the previous section. In

mypyvy syntax, instead of primed symbols, we use the new keyword, so new(y) refers to y′.

mypyvy also allows conjunction and disjunction symbols (& and |) to appear before the first

2Logicians use the terminology of relations, constants, and functions, and mypyvy has both immutable
and mutable versions of each of these. Unfortunately, the combined terminology clashes badly, and we
end up with the somewhat strange sounding phrase “mutable constant”.

109

conjunct or disjunct, for the sole reason that it makes it easy to vertically align the lines of

a long formula. The global transition relation of the transition system is the disjunction of

all the transition declarations in the program.

The safety property is declared using the safety keyword.

safety [no_fall_in] x * x + y * y > 9

A safety property can be given a name by including it in square brackets. In this case

the name is no_fall_in. mypyvy will use this name to refer to this invariant. If no name

is given, mypyvy will refer to a line number instead. If the program has more than one

safety declaration, the safety property is the conjunction of all the declarations. The safety

keyword is our first example of a declaration that is a query. When processing the program,

mypyvy will attempt to prove that the safety property is true in all reachable states of the

system. As we have discussed throughout this chapter, the primary technique for proving a

safety property is to find an inductive invariant.

These invariants are declared using the invariant keyword.

invariant x + y >= 5

Invariants can also be named, but here we choose to not name the invariant. All the

invariant declarations in a program are implicitly conjoined.3

That completes the robot example in mypyvy. Running mypyvy on the resulting file

causes it to issue queries to the solver to verify that the invariants are inductive and imply

the safety property. For this program, the verification succeeds. mypyvy’s output can be

seen in the top half of Figure 4.13. Commenting out the invariant declaration causes the

verification to fail because the safety property is not itself inductive. mypyvy’s output in

this case can be seen in the bottom half of Figure 4.13. mypyvy shows a counterexample to

3One could imagine wanting to check that two different invariants are separately inductive. We have
thus far chosen not to support this use case in mypyvy because: (1) it seems more common that one cares
about invariance rather than inductiveness, and there is no such thing as “invariance, separately”, unlike
inductiveness; and (2) supporting separate checking would require a more verbose syntax for verification
queries, whereas the current approach allows a mypyvy file to contain a single implicit verification query
of inductiveness of the whole invariant.

110

1 mutable constant x: int
2 mutable constant y: int
3
4 init x = 0
5 init y = 5
6
7 transition north()
8 modifies y
9 new(y) = y + 1

10
11 transition south_east()
12 modifies x, y
13 & new(x) = x + 1
14 & new(y) = y - 1
15
16 # don’t fall in!
17 safety [no_fall_in]
18 x * x + y * y > 9
19
20 invariant x + y >= 5

Figure 4.12: The complete robot ex-
ample in mypyvy.

checking init:
implies invariant no_fall_in... ok.
implies invariant on line 20... ok.

checking transition north:
preserves invariant no_fall_in... ok.
preserves invariant on line 20... ok.

checking transition south_east:
preserves invariant no_fall_in... ok.
preserves invariant on line 20... ok.

all ok!
--
checking init:
implies invariant no_fall_in... ok.

checking transition north:
preserves invariant no_fall_in...

state 0:
x = 1
y = -3
state 1:
x = 1
y = -2
error robot.pyv:17:1: invariant no_fall_in

is not preserved by transition north
error robot.pyv:7:1: this transition does
not preserve invariant no_fall_in
program has errors.

Figure 4.13: mypyvy output when running on
two versions of the robot.

induction (CTI), which is a pair of states related by the transition relation (in this case, the

north transition) such that the first state satisfies the candidate invariant but the second

state does not. The CTI in Figure 4.13 corresponds to the red arrow pointing north in

Figure 4.8.

4.4 Background on first-order logic

In this section, we return to the basics of first-order logic. The ideas of first-order logic

are not complicated, but they are tedious to set up formally. We will do our best. There

are many other presentations of first-order logic in the literature, see, e.g., Libkin’s book on

111

u ∈ String
s ::= u | bool
t ∈ FunctionType
t ::= (s, . . . , s)→ s
σ ∈ String ⇀ FunctionType
e ::= true | false | ¬e | e ∧ e | e ∨ e | e⇒ e |

e = e | f(e, . . . , e) | x | ∀x : s. e | ∃x : s. e

Figure 4.14: Syntax of pure, multi-sorted first-order logic.

finite model theory [67].

Figure 4.14 describes the syntax of first-order logic. A sort s is either bool or an uninter-

preted symbol u. A function type t is some number of argument sorts and a return sort. A

vocabulary is a map from function names to function types. We write usorts(σ) for the set of

all uninterpreted sort symbols used in the type of any function symbol in σ. We distinguish

several special classes of function types. If a function c has zero arguments, then we say that

c is a constant, and in expressions we abbreviate c() as c. If a function R has return type

bool, then we say that R is a relation.

An expression is one of: a boolean constant, the application of a unary or binary boolean

operation to subexpressions, an equation between expressions, the application of a function to

some number of arguments, a variable, or a quantified expression. There is a straightforward

type system that assigns a sort (either an uninterpreted sort or bool) to each expression, in the

context of a vocabulary and a local context that binds variables to sorts.4 The type system

also enforces that functions are applied to the correct number of arguments, that function

arguments have types corresponding to the functions declared type in the vocabulary, and

that both sides of an equation have the same type. We omit the definition of this type

4Our approach to first-order logic is somewhat nonstandard, in that we treat bool as “just another sort”,
rather than having a separate syntactic category for formulas and terms. This setup is somewhat more
parsimonious in the presence of multiple uninterpreted sorts, and it also has the advantage of allowing
quantifying over booleans. In any case, the fundamental expressivity of the logic is not changed by these
choices.

112

system, and implicitly assume that all expressions are well typed. We use the word formula

to mean “an expression of type bool”.

A first-order structure A over a vocabulary σ is (1) a set Au for every uninterpreted sort

u ∈ usorts(σ) and (2) for every function symbol f ∈ dom(σ) with type (s1, . . . , sn) → s, a

corresponding mathematical function Af : As1 × · · · ×Asn → As. (In case one of the sorts is

bool, we define Abool = B, i.e., every first-order structure interprets bool as the set {>,⊥}.)

We call
⋃

u∈usorts(σ) Au the universe of A.

Given a vocabulary σ, a first-order structure A over σ, an environment ρ ∈ String ⇀⋃
u∈usorts(σ) Au, and a first-order expression e of sort s, we define JeKρA, the interpretation of e

in A, as follows.

JeKρA ∈ As

JtrueKρA = >

JfalseKρA = ⊥

J¬eKρA = ¬JeKρA
Je1 ∧ e2KρA = Je1KρA ∧ Je2KρA
Je1 ∨ e2KρA = Je1KρA ∨ Je2KρA

Je1 ⇒ e2KρA = Je1KρA ⇒ Je2KρA
Je1 = e2KρA = Je1KρA = Je2KρA

Jf(e1, . . . , en)KρA = Af (Je1KρA, . . . , JenK
ρ
A)

JxKρA = ρ(x)

J∀x : s. eKρA = ∀a ∈ As. JeK
ρ[x 7→a]
A

J∃x : s. eKρA = ∃a ∈ As. JeK
ρ[x 7→a]
A

If e : bool and JeKρA holds, then we say that A is a model of e, and we write A |= e. We

say that e is satisfiable if there exists a first order structure A over σ such that A |= e. We

say that e is valid if for every first order structure A over σ, A |= e. A formula e is valid if

and only if ¬e is unsatisfiable (i.e., not satisfiable). If e1 : bool and e2 : bool are two formulas

113

over σ, then e1 is semantically equivalent to e2 if for every structure A, A |= e1 if and only

if A |= e2.

Let A be a first order structure over σ, and for each u ∈ usorts(σ) let Bu ⊆ Au. Then

define Bf = Af |Bs1×···×Bsn
, for each f ∈ dom(σ) of type (s1, . . . , sn) → s. Then in order for

B to be a first order structure, we need it to be “closed” under all function symbols, i.e.,

Bf (Bs1 , . . . , Bsn) ⊆ Bs.

(In the case that s = bool, there is nothing to show here, because Bbool = {>,⊥} = Abool.)

We call B the “restriction of A to the Bu”. It is sometimes convenient to gloss over the

distinction between the different sorts u and to speak of “the restriction of A to the set

X”, where X ⊆
⋃
Au. We say that B is a substructure of A if B is the restriction of A

to
⋃

Bu. (This really just amounts to saying that B is a first-order structure over σ whose

sets are subsets of A and whose interpretation of every function symbol agrees with A’s

interpretation.)

Substructures agree on the interpretation of quantifier free expressions, as shown by the

following lemma.

Lemma 4.4.1. Let e0 be quantifier free (not necessarily of sort bool), and let A and B be

first-order structures over σ such that B is a substructure of A. Also, let ρ ∈ String ⇀⋃
s∈usorts(σ) Bs. Then JeKρB = JeKρA.

Intuitively, a quantifier-free formula can only “see” elements of the structures A and B

if they are in the image of the interpretation of some function symbol, or if they are in the

environment ρ. Since substructures agree on all function interpretations, the interpretation

of e0 can’t change as we pass to the substructure B.

Proof. Induction on e using the definition of J·K.

A formula e : bool is quantifier free if its syntax does not contain any uses of ∀ or ∃. A

formula e : bool is called universal if it is equivalent to a formula of the form ∀∗e0, where

114

e0 is quantifier free. (Here we use ∀∗ to abbreviate some (possibly empty) sequence of ∀

quantifiers over unknown sorts.)

Universal formulas have a special relationship with substructures, as shown by the fol-

lowing lemma.

Lemma 4.4.2. Let e be universal and suppose A |= e and that B is a substructure of A.

Then B |= e.

Intuitively, e says something about “all” elements of A, and there are no elements of B

that are not also elements of A, so e also says the same thing about “all” elements of B.

Proof. Write e = ∀y1 : s1, . . . yn : sn. e0, where e0 is quantifier free. Since A |= e, we know

that for all a1 ∈ As1 , . . . , an ∈ Asn , Je0K
[y1 7→a1,...,yn 7→an]
A holds. Now let b1 ∈ Bs1 , . . . , bn ∈ Bsn

be arbitrary. We need to show that Je0K
[y1 7→b1,...,yn 7→bn]
B holds.

Since B is a substructure of A, we also have b ∈ As, and so we have Je0K
[y1 7→b1,...,yn 7→bn]
A

holds. Then by Lemma 4.4.1, this is the same as Je0K
[y1 7→b1,...,yn 7→bn]
B , which completes the

proof.

If a vocabulary σ consists of only relations and constants, then we call it “function free”.

If σ is function free and e : bool over σ, then we say that e is effectively propositional for

satisfiability if e is equivalent to a formula of the form ∃∗∀∗ e0, where e0 is some quantifier-free

formula. Taking the negation, we also obtain effectively propositional formulas for validity,

which have the form ∀∗∃∗ e0. The fragment of first-order logic consisting of only effectively

propositional formulas is known as “effectively propositional reasoning” or EPR. When it is

clear from context whether we are talking about satisfiability or validity, we allow ourselves

to use the abbreviation “e is in EPR” to mean one of the two notions above.

The reasons for defining these classes of formulas is that there are decision procedures

for satisfiability and validity.

Lemma 4.4.3 (Small model property). Let σ be function free, and let e : bool over σ be

effectively propositional for satisfiability. Then there exists a natural number n (depending

on σ and e) such that e is satisfiable if and only if it has a model of size at most n.

115

Intuitively, since e is EPR, after removing existential quantifiers, we are left with a

universal formula. So given a model of e we can construct a substructure consisting of only

the interpretations of the existential variables and the constants of σ. Since the remainder of

the formula is universal, it also holds in this substructure. Finally, the size of the substructure

is bounded by the number of constant symbols in σ plus the number of existential variables

of e.

Proof. Since e is in EPR, we can write e = ∃x1, . . . , xm.∀y1, . . . , yk. e0, where one or both of

m and k might be zero, and e0 is quantifier free. Let l be the number of constant symbols

in σ, say c1, . . . , cl, and set n = m+ l. We need to show e is satisfiable iff it has a model of

size at most n. The backwards direction follows directly.

In the forwards direction, suppose A |= e for some (possibly infinite) first-order structure

A. Then peeling apart the interpretation of e in A, we find that there must exist elements

a1, . . . , am of A such that interpreting the xi as ai causes e to come out true, i.e.,

J∀y1, . . . , yk. e0K[x1 7→a1,...,xm 7→am]
A

must hold.

Now let B be the restriction of A to the set X = {a1, . . . , am, Ac1 , . . . , Acl}. We claim

B is a model of e. First, we must show B is closed under all function symbols. Since σ is

function free, we need only consider relations and constants. If r ∈ dom(σ) is a relation,

then there is nothing to show, since we never restrict the interpretation of the boolean sort.

If c ∈ dom(σ) is a constant, then Bc() = Ac ∈ X, since X contains the interpretation of

every constant symbol.

By Lemma 4.4.2,

J∀y1, . . . , yk. e0K[x1 7→a1,...,xm 7→am]
B

holds, and the result follows.

Decidability of EPR follows as a corollary, after the following lemma.

116

Lemma 4.4.4. Given a fixed (finite!) vocabulary σ (not necessarily function free), there

are only finitely many first-order structures of any particular universe size.

Proof. Fix a particular universe size n. Then for each constant symbol c in σ, there are at

most n choices of how to interpret c in the universe. For each relation symbol R, there are

at most 2nk choices for how to interpret R, where k is the arity of R. And for each function

symbol f , there are at most nnk, where k is there arity of f . Taking the product of all

these choices across all symbols in σ gives us an upper bound on the number of first order

structures over σ with universe size n.

Theorem 4.4.5. Let σ be function free, and let e : bool over σ be effectively propositional

for satisfiability. Then it is decidable whether e is satisfiable.

Proof. By Lemma 4.4.3, it suffices to check for a model of up to size n, where n is the

number of constants in σ plus the number of existentially quantified variables of e. Then by

Lemma 4.4.4, there are finitely many structures of size at most n. We can enumerate them

and check for each one whether it is a model of e. If we find a model, e is satisfiable. If we

exhaust all structures of size at most n, then we know no model of e exists of any size (even

infinite!).

4.5 Expressing Transition Systems in mypyvy

mypyvy consists of a language for expressing transition systems (this section) and a tool for

answering queries about such systems (Section 4.6). The mypyvy language closely corre-

sponds to the theoretical development of first-order logic from Section 4.4.

A mypyvy file consists of a sequence of declarations, which together define a transition

system. Recall that a transition system consists of a state space, a set of initial states, and

a transition relation. There are declarations for all of these things. In addition, there are

declarations to record other properties of interest, such as inductive invariants and safety

properties. While not officially part of the definition of the transition system, it makes sense

to record these properties in the same file, so that queries about the system can make easy

117

use of them. For example, there is a query to check that all the invariants in a file actually

are invariants.

A transition system consists of a state space, a set of initial states, and a transition

relation. mypyvy has one or more declarations corresponding to each of these components.

To define the state space, mypyvy supports declaring uninterpreted sorts, constants, re-

lations, and functions. The sort keyword declares the name of an uninterpreted sort. Unin-

terpreted sorts can be used in the types of other declarations in the file. The state consists

of constants, relations, and functions, which we refer to as “state variables”. Each state vari-

able can by immutable or mutable. An immutable state variable cannot be changed by the

transition relation throughout an execution of the system, while a mutable state variable can

evolve over time. There are keywords constant, relation, and function for each category of

state variable. Here are some examples of sort declarations and state variable declarations.

sort A

immutable constant source: A

mutable relation r(A)

immutable function f(A): A

Each state variable declaration starts with its mutability, then its category, followed by its

name. After the name, the sorts of the arguments (if any) are given, followed by a return

type (if any; relations always return bool).

To define the initial conditions, mypyvy provides the init keyword. An init declaration

consists of this keyword followed by a 1-state expression of type bool. For example, the

following declaration says that initially the relation r contains only the element source.

init forall X:A. r(X) <-> X = source

If a file contains more than one init declaration, they are all conjoined together to form the

initial condition for the transition system.

To define the transition relation, mypyvy provides the transition keyword. A transition

declaration consists of this keyword followed by a name and some number of comma-

118

separated parameters in parentheses, then a modifies clause, and then a 2-state expression

of type bool. For example, the following transition says that for any element currently in

the r relation, you can add its image under the function f to r as well.

transition step(x: A)

modifies r

& r(x)

& (forall X. new(r(X)) <-> r(X) | X = f(x))

The transition is named step and takes one parameter called x of type A. Parameters are im-

plicitly existentially quantified in the global transition relation. The modifies clause declares

which mutable state components are changed by the transition. For any mutable state com-

ponent not in the modifies clause, mypyvy implicitly adds a conjunct to the transition saying

that that component does not change. If there is more than one transition declaration in

the file, then their disjunction forms the transition relation of the transition system.

The invariant declaration takes a 1-state expression and conjoins it to the inductive

invariant for the transition system. mypyvy can check that the resulting conjunction is

actually an inductive invariant. Some invariants can be marked with the The safety keyword

instead, which indicates that these conjuncts are the “specification” of the transition system,

and that the non-safety conjuncts are only there to make the invariant inductive. For

example, consider the following two safety declarations.

oops! not true initially

safety forall X. r(X) -> exists Y. X = f(Y)

true and inductive

safety forall X. r(X) -> X = source | exists Y. X = f(Y)

In the transition system example of this section, the first declaration says that every member

of the relation r is in the image of the function f. This is not true in the initial state, though,

since source might not be in the image of f. The second declaration fixes this problem by

119

saying that every member of the relation r is either equal to source or is in the image of the

function f.

The immutable symbols of a transition system form a sort of “background theory” for

the system. mypyvy provides the axiom declaration, which takes a 0-state formula and adds

it as an axiom of the background theory. For example, we can use axioms to model the

existence of a total order on a sort.

sort A

immutable relation le(A, A)

axiom le(X, X)

axiom le(X, Y) & le(Y, X) -> X = Y

axiom le(X, Y) & le(Y, Z) -> le(X, Z)

axiom le(X, Y) | le(Y, X)

Since the immutable relations are never updated by the transition relation, these axioms are

true in every state.

The theorem declaration takes a k-state formula and ensures its validity given the back-

ground theory. This can be used to prove that two alternate formulations of an invariant

are equivalent, for example, or that one invariant or safety property implies another. For

example, given the background theory about le above, we could state a simple corollary that

le is “3-transitive”.

zerostate theorem

le(X, Y) & le(Y, Z) & le(Z, W) -> le(X, W)

mypyvy can check the validity of these theorems. See the next section.

4.5.1 k-state expressions

The expressions of mypyvy closely follow those of first-order logic. When reasoning about

a transition system, one often has two copies of the state components in scope, those from

the pre-state of a transition, and those from the post-state. These two copies of the state

120

components share a single copy of the immutable components; only the mutable components

are duplicated. An expression can refer to the post-state copy of a mutable symbol using the

new operator, as in new(r(X)). We call such expressions 2-state expressions. For example,

the body of each transition is a 2-state expression. In contrast, many other expressions are

more accurately referred to as 1-state expressions, meaning they only have one copy of the

mutable symbols in scope. For example, safety properties, invariants, and initial conditions

all contain 1-state expressions. Additionally, some expressions have no copies of the mutable

symbols in scope. We call these 0-state expressions. Axioms are the primary example of

0-state expressions; they can only refer to the immutable symbols.

In fact, further generalizations are possible to k-state expressions for any natural number

k. For example, one could write a 3-state expression, which describes a sequence of 3 states,

where the first state’s components are referred to directly, the second state’s components use

new, and the third state’s component use two applications of new. Internally, mypyvy fully

supports k-state expressions, but their only user-facing appearance is in trace queries, which

allow a customized form of bounded model checking.

A k-state formula can be thought of as a first-order formula over an extended vocabulary

with k copies of the mutable symbols. A model for a k-state formula is a model for this

first-order formula, i.e., a first-order structure that assigns interpretations to k copies of

the mutable symbols. Models of k-state formulas often arise in the answers to queries over

transition systems, described in the next section.

4.6 Queries on Transition Systems

mypyvy supports several solver-aided queries over transition systems.

Inductiveness checking. The most common query is to check that the invariant specified

in the file is an inductive invariant of the transition system. mypyvy performs this query on

a file when run with the mypyvy verify subcommand. As described at a high level in

121

Section 4.2.3, checking inductiveness consists of proving validity of the two formulas:

Init ⇒ Inv ,

and

Inv ∧ Tr ⇒ Inv ′.

In the context of mypyvy, Init is the conjunction of all init declarations, Inv is the conjunc-

tion of all invariant declarations, and Tr is the disjunction of all transition declarations.

Also, the prime symbol (′) is written new(...) in mypyvy. These two high-level queries can

easily be directly expressed to the underlying solver. As usual, to prove validity using a

satisfiability solver, we negate the formula and hope for an unsat result. In fact, mypyvy

performs one small optimization, which is to expand all top-level disjunctions outside the

solver. Instead of issuing a single query for the entire transition relation, mypyvy issues sepa-

rate queries for each transition. Similarly, though perhaps less obviously, since the right-hand

side of each query’s implication is a conjunction, after the validity-to-satisfiability negation,

this also becomes a disjunction at the solver level, and mypyvy issues separate queries for

each conjunct in the invariant. So in total, if there are n invariants and m transitions, mypyvy

issues n 1-state queries to check that the initial states satisfy the invariant, plus mn 2-state

queries to check that all invariants are preserved by all transitions. In our anecdotal expe-

rience, splitting these disjunctions outside the solver improves performance and reliability,

and, best of all, when something is taking a long time (usually because something is not

inductive), the user can see what transition and invariant conjunct the solver is stuck on,

improving transparency of the tool.

Bounded model checking. Given a transition system and a safety property, bounded

model checking (BMC) asks, “Is there a counterexample to safety in up to k transitions?”

mypyvy expresses this query to the underlying solver by successively “unrolling” up to k

copies of the transition relation and asking whether there is a violation in exactly that many

122

steps. More precisely, to check whether there is a counterexample in exactly i transitions,

mypyvy sets up i + 1 copies of the mutable state variables such that: (1) the first copy

satisfies the initial conditions; (2) the last copy violates safety; (3) all adjacent pairs of states

are related by the transition relation. If the solver finds a model for this query, it can be

interpreted as an execution trace that starts in an initial states, and takes some sequence of

transitions until it reaches a state that violates safety. Such an example indicates a problem

with either the transition system or the safety property. To check for counterexamples up to

k transitions, mypyvy separately checks for counterexamples with exactly i steps for each i

from 1 to k.

The naïve approach to bounded model checking described here does not scale as k grows

and as the transition relation becomes more and more disjunctive (i.e., more transitions).

Partially to workaround these scalability problems, mypyvy also supports “trace queries.”

Trace queries. A trace query is “just” a k-state formula, whose satisfiability encodes some

kind of restricted reachability property that the user is interested in. For example, in a model

of a distributed system with many actions, naïve BMC will only scale to a small depth, say

5 actions, in a reasonable amount of time, but many interesting behaviors of the system may

not occur until a much greater depth, say 10 or 15 actions. Of course, to gain confidence

about all reachable states, no matter how deep, the user should prove an inductive invariant

that implies safety. But during testing, it can be convenient to explore deeper into the state

space without needing to come up with an invariant. The user can write a trace query which

pares down the set of transitions to explore at each step. For example, if the distributed

system starts by electing a leader before accepting further requests, the user can create a

trace query, which lists a sequence of transitions that result in a leader being elected, followed

by a sequence of transitions to accept a request. At the end of this sequence, the user can

include an assertion, such as “the final state reached on this trace violates safety.” The

resulting k-state expression can be checked for satisfiability. If it is unsatisfiable, then there

is no execution violating safety. Trace queries can be solved at a much higher depth than

123

BMC because each step of the execution is constrained to execute a single kind of transition

(or just a handful of transitions), rather than the disjunction of all possible transitions. This

helps the solver not get confused enumerating many different possible combinations.

In addition to trace queries that are expected to be unsatisfiable, it is also useful to make

trace queries that are expected to be satisfiable, to check, e.g., that there is at least one

execution where a leader gets elected successfully. This latter kind of query is especially useful

for detecting vacuity bugs, where a typo in the formal model causes one or more transitions to

be equivalent to false. Vacuity bugs are impossible to detect by proving inductive invariants,

because every invariant is preserved by false! So trace queries become a crucial tool to ensure

a transition system accurately reflects its author’s understanding and intentions.

Theorems. mypyvy’s theorem declaration checks the validity of a k-state formula in the

background theory of the transition system, as discussed in Section 4.5. Although the syntax

is quite different from trace queries, the implementation is very similar. A trace query is a

k-state formula that the user declares to be “expected satisfiable” or “expected unsatisfiable”.

On the other hand, a theorem is k-state formula that the user declares is “expected valid”,

i.e., its negation is expected to be unsatisfiable.

Together, trace queries and the theorem declaration cover three out of the four possi-

bilities of the satisfiable/unsatisfiable and negated/not-negated dimensions. The remaining

possibility would be a formula whose negation is expected to be satisfiable. A reasonable

name for this idea would be “nonvacuous,” and it seems in principle that it could be as use-

ful as satisfiable trace queries are. A future version of mypyvy may unify trace queries and

theorems into one syntactic declaration form, and allow for “nonvacuous” queries as well.

Universal Property-Directed Reachability (PDR∀). mypyvy includes an implemen-

tation of PDR∀, which can infer universally quantified inductive invariants in pure first-order

logic (i.e., without arithmetic) [48]. PDR∀ takes a transition system and a desired safety

property and tries to construct an inductive invariant which implies safety. If it succeeds, it

124

returns the inductive invariant. If it does not succeed, PDR∀ can either loop forever or return

a “relaxed counterexample”. A relaxed counterexample proves that there is no universally

quantified inductive invariant that implies safety. A relaxed counterexample consists of a

sequence of interleaved transitions from the transition system and “relaxation steps”, which

are steps where some elements of some sorts get deleted.

The space of possible invariants inferred by PDR∀ are conjunctions of universally quan-

tified clauses of pure literals. By pure literal, we mean either a pure atom or its negation,

and by pure atom we mean either a relational fact over variables, an equation between a

constant and a variable, or an equation between a function applied to variables and a vari-

able. The reason for this seemingly obscure search space is due to the way PDR∀ constructs

candidate invariants, which is by finding backwards reachable states and then “blocking”

them by computing a “forbidden sub-state” that rules out all states with a certain pattern

of relation/constant/function facts. By default, when asked to perform PDR∀, mypyvy uses

the invariants in the file marked safety as the target property. mypyvy’s implementation of

PDR∀ has been a useful baseline for other invariant inference research to compare against,

see, e.g., Phase-PDR∀ [25].

Answers to queries, or, how to read counterexamples. While each of the above

queries is quite different, they all occasionally return answers that involve models of k-state

formulas. For example, when inductiveness checking fails, it returns either a 1-state model

demonstrating a violation of safety in an initial state, or a 2-state model demonstrating a

counterexample to induction. As another example, when bounded model checking finds an

execution that violates safety, it returns a k-state model witnessing the executions trace.

Queries often have other possible outputs besides k-state models, e.g., “verified” or “no trace

found” or, for PDR∀, a formula that is an inductive invariant proving safety. But these other

outputs are either simple or have well understood existing output formats.

We have already seen one example of mypyvy’s output format for displaying k-state

models: the bottom half of Figure 4.13 shows a CTI (i.e., a 2-state model) for the robot

125

system. In that example, the 2-state model is printed by showing the values of all the

variables in state 0 and in state 1. More generally, for a model with k states, mypyvy first

displays the values of all the immutable symbols, and then, for each state, the values of the

mutable symbols in that state. For relational symbols, by default mypyvy only prints positive

literals, i.e., the tuples that are in the relation.

Annotations, plugins, and custom printers for states. mypyvy answers queries by

calling Z3, and mypyvy prints whatever model Z3 returns, translated into mypyvy syntax.

Often, solver models are strange and hard to read. For example, if a transition system uses a

total order relation on one of its sorts, it would make sense to always print that with names

that are ordered by the total order, but Z3 is unlikely to do this by chance. To improve the

readability of the model format, mypyvy supports custom formatting via printer plugins.

Every declaration in mypyvy can be tagged with annotations, which have no inherent

meaning, but can be detected by plugins to cause things to be printed differently. Annota-

tions come after the declaration they are attached to, are written with an at-sign (@), and

can take arguments in parentheses, as in the following example.

sort node @printed_by(ordered_by_printer , le)

This annotation tells mypyvy that the sort node should be printed in the order given by the

total order le. The annotation name printed_by is detected by mypyvy’s model printing

logic, and when such an annotation is found, it calls a plugin named by the first argument

in the annotation, in this case ordered_by_printer. That plugin uses the second expression

as a relation name to look up the total order in the model, which is then used to order the

elements of sort node before printing them.

mypyvy supports several other custom printers, including one for printing sorts that

represent sets of elements coming from another sort. Users can also define their own printers

by defining a printing plugin. mypyvy’s proof of the Raft protocol comes with a custom

printer for displaying Raft’s logs in a readable way.

mypyvy also supports a handful of other annotations. @no_print instructs mypyvy not

126

to print a sort, relation, constant, or function at all, which can be useful either because a

custom printer for another symbol also handles printing this symbol, or temporarily because

the model is large and the symbol is irrelevant to the current debugging session. @no_minimize

is used to instruct mypyvy’s model minimizer not to minimize elements of a certain sort or

relation.

The annotation framework is extensible, and we expect other uses of annotations will

come up in the future. We would like to thank Daniel Ricketts for his contributions to this

aspect of mypyvy.

4.7 Using mypyvy

We have used mypyvy as a platform to support several research projects in the general area

of automated verification and invariant inference.

Another proof of Raft. In Section 2.7, we discussed a Coq proof of the safety of Raft

consensus protocol. That effort involved over 50000 lines of proof for about 500 lines of code.

Using the automation of mypyvy, and based on ideas from our collaborators on how to encode

the proofs of Paxos and MultiPaxos/Raft in first-order logic (in fact, in EPR) [88, 108], we

were able to produce another proof of Raft’s safety in mypyvy. The mypyvy proof is under

500 lines total, including both the model of the protocol and its invariants.5 The primary

difficulty that remains in the proof is just to state the inductive invariant that implies safety.

We hope to continue to improve the state of the art here through work on invariant inference,

which would allow the proof to get even shorter and easier.

There are some important differences and tradeoffs between the Coq proof of Raft from

Chapter 2 and the mypyvy proof presented here. First, the Coq proof yielded an executable

implementation of the protocol via extraction to OCaml, which we were able to run and

benchmark. In contrast, the mypyvy proof is merely about a logical model of the system.

5https://github.com/wilcoxjay/mypyvy/blob/5b5cb9f3be8a990ed14837638d541f5eebdfe88f/
examples/raft.pyv

https://github.com/wilcoxjay/mypyvy/blob/5b5cb9f3be8a990ed14837638d541f5eebdfe88f/examples/raft.pyv
https://github.com/wilcoxjay/mypyvy/blob/5b5cb9f3be8a990ed14837638d541f5eebdfe88f/examples/raft.pyv

127

Neither is clearly a better approach in all circumstances, given the massive effort-guarantee

tradeoff present. Second, the Coq proof is more foundational, meaning that any needed

theory is developed from first principles. For example, we developed a theory of lineariz-

ability and used it to prove Raft linearizable. In contrast, the mypyvy proof bakes in many

assumptions about linearizability, induction, and safety proofs. Finally, the specifications

are somewhat different. The Coq proof proves linearizability, which is a property of the

set of traces that make up the behaviors of the system. In contrast, mypyvy “only” proves

what the Raft paper calls “State Machine Safety”. This safety property is still a deep result

about the protocol, but it is somewhat simpler than the trace reasoning required to prove

linearizability. Overall, the proofs make different tradeoffs in the effort-results space, and

we believe both are valuable. Speaking anecdotally, we learned much from both efforts. The

fact that the Coq proof yielded an implementation meant that we were forced to consider

practical concerns of efficiency, ensuring we didn’t cut too many corners. On the other hand,

the mypyvy proof gave us higher-level insight into “why” the protocol works, because the

edit-verify-debug cycle was so much tighter, we were able to optimize our proof and really

understand its guts.

Discussion of the small-model property. We encoded our proof of Raft in the EPR

fragment of first-order logic (see Section 4.4). Since EPR satisfies the small model property

(Lemma 4.4.3), whenever there is a counterexample to safety, there must be a counterexample

of some bounded size, where the bound is a function of the syntax of the safety formula.

In the concrete case of Raft, where we have uninterpreted sorts for nodes, terms, values,

logs, etc., this means that all counterexamples are guaranteed to have a bounded number of

nodes, although the naïve bound is quite bad (roughly doubly exponential in the size of the

safety formula). Thus, the small model property of EPR hints at two interesting benefits for

verification in practice. First, it is the crucial step in proving decidability, and often for SMT

solvers, decidability is a decent proxy for tractability. Having tractable automated solving of

verification queries makes the user experience much nicer, since users have a clear job: encode

128

their queries in EPR. If they do this, they can typically expect reasonable performance from

the solvers. The second benefit of the small model property is that it is a sort of formalization

of the “small world hypothesis,” which is a heuristic often discussed in the context of bounded

model checking. The idea is that if a protocol is wrong, then we expect there to be a relatively

small example demonstrating the bug. The small world hypothesis is an empirical pattern

of the kinds of systems that humans design—they aren’t pathological. On the other hand,

the small model property says that the small world hypothesis is just true for EPR formulas.

In other words, it lifts the small world hypothesis from an empirical pattern to a theorem.

Returning to the proof of Raft, the amazing thing about the small model property is that

it guarantees safety for any number of nodes, by showing that it suffices to check up to a

bounded number of nodes.

Phase Invariants. Several projects have used mypyvy’s implementation of PDR∀ as a

baseline which can be extended and compared against in the hopes of improving invariant

inference. In one such project, we extended PDR∀ with the idea of a phase automaton, a finite

state machine whose states are labeled with invariants and whose edges are synchronized

with transitions of the underlying transition system [25]. Such an automaton captures the

“phase structure” of the protocol, e.g., first elect a leader, then commit some log entries.

A labeled phase automaton is inductive if, roughly speaking, the transitions on all edges in

the automaton preserve the invariants on their incident nodes. An unlabeled or partially

(noninductively) phase automaton poses a generalization of the invariant inference problem,

where the goal is to infer a strengthening of the labels to make the automaton inductive.

This label inference problem can be solved by a generalization of PDR∀ that simultaneously

solves for the invariants of each node, passing proof obligations between them. By providing

a partial phase automaton, the user can help make the invariant inference problem easier,

thus improving performance.

129

First-order Quantified Separators. Another project which uses mypyvy as a platform

to build improved invariant inference techniques, but which the author was not directly

involved in, is Koenig et al.’s FOL-IC3 algorithm [53]. PDR∀ extends the propositional

IC3/PDR algorithms to work on universal formulas. Similarly, FOL-IC3 extends the same

propositional algorithms to work on arbitrary quantified formulas. The key insight of this

work is to reduce the invariant inference problem to a separation problem, which asks for a

(quantified) first-order formula that can distinguish two given sets of example structures.

In addition to the three projects mentioned above, we have several ongoing pieces of work

that use mypyvy as a platform. So far, it seems to be working out well!

4.8 Related Work

mypyvy is directly inspired by IVy [89].6 The IVy tool supports specification, implementa-

tion, and verification of systems, including distributed and concurrent systems. Systems are

expressed as a set of actions, each written in a simple imperative programming language

over state variables from a first-order vocabulary. The verification queries IVy asks of the

underlying solver are carefully designed to land in a decidable fragment of logic, increasing

the efficiency, reliability, and predictability of the verification. When verification fails, con-

crete counterexample traces are shown to the user demonstrating the violation. IVy also has

a powerful module system that supports so-called “circular” assume-guarantee reasoning,

where all modules get to assume all other modules’ invariants, but are under the obligation

to show that they do not violate their own invariants. (This reasoning is not actually cir-

cular, but sound, because “nobody violates their invariants first” implies “nobody violates

their invariants”.)

One can view mypyvy as similar to a hypothetical intermediate language in IVy’s pipeline

to the solver. IVy compiles the modular imperative program into a set of purely logical

transition systems, each of which must be verified. One could imagine making this connection

6IVy’s code is available on Github at https://github.com/kenmcmil/ivy. See also the IVy website at
http://microsoft.github.io/ivy/.

https://github.com/kenmcmil/ivy
http://microsoft.github.io/ivy/

130

explicit, by using mypyvy as a “backend” for IVy, translating the transition systems into

mypyvy syntax. This would have the advantage of making mypyvy’s invariant inference

algorithms available to IVy programs. Indeed, many of the examples and benchmarks used

by mypyvy were manually translated from IVy. We have begun work on such a translator,

and hope to continue to work more closely with IVy in the future.

Dafny is a programming language designed from the ground up for verification [62].

Dafny is built on top of the Boogie intermediate verification language [63], which itself uses

the Z3 SMT solver [19]. Dafny has an imperative object-oriented programming language

with objects, statements, loops, arrays, and heap-allocated data structures, and has a rich

Hoare logic for reasoning about these programs. It also has a purely functional expression-

oriented programming language with first-class and higher-order functions, recursion, lists

and logical quantifiers. These logical features can be used express the specification of the

imperative code, or they can be used by themselves, turning Dafny into more of a proof

assistant than a programming language. Dafny enjoys a high degree of proof automation,

since all obligations are eventually sent to Z3. However, these queries can have complex

quantifier structure to them, meaning that they typically do not fall into any decidable

fragment of first-order logic. Dafny instructs Z3 to use syntactic heuristics based on E-

matching to manage quantifier instantiation process [21, 76]. This approach achieves good

performance in practice, but it means that the solver cannot return counterexamples, and

that the user must have a basic understanding of E-matching in order to be an expert user

of quantifiers in Dafny.

Previous chapters of this thesis used the Coq proof assistant [17]. Coq is an interac-

tive theorem prover and purely functional programming language based on dependent type

theory. Its design gives it essentially limitless expressiveness, but this comes at the cost of

manual proof effort. Coq is the perfect tool for the job of building a new logic, like we did in

Chapter 3 with Disel. Also, Coq has support for building domain-specific proof automation,

as promoted by Chlipala [12], so with careful design, one can greatly reduce manual proof

effort. mypyvy places itself at a very different point in the design space, constraining what

131

the programmer can write to a first-order transition system, and in return, giving essentially

full automation. My own journey as a researcher has taken me through many points on this

spectrum. I have seen the benefits of being able to transliterate your mathematical theorem

statements directly into a Coq proposition, but I have also seen the beauty of not having to

write any proofs. In any particular domain, it often makes sense for the community to begin

by building tools in very expressive frameworks, because we don’t yet know what we will

need. After this initial step, researchers can start the process of figuring out exactly what

needs to be expressed, and what can be traded away in exchange for better automation.

TLA+ is a specification language for modeling systems developed by Lamport [56, 59].

It comes with a suite of tools to analyze models, including tools for model checking and

deductive theorem proving. Lamport advocates for a style of using TLA+ where most of

the benefit of the process is gained just from formally expressing the model of the system,

because the user is forced to carefully think through the details. Users can derive additional

benefit by model checking their systems, using the TLC bounded model checker [122]. TLC

is an explicit-state model checker that exhaustively explores a finite version of the system

(e.g., all Raft executions where there at most 5 nodes, at most 2 commands, and at most

3 terms, etc.). Users can go even further by using the TLA+ proof system (TLAPS) to

prove their systems correct [11]. TLAPS uses a hierarchical (treelike) proof structure, where

the leaves of the tree can be dispatched by automated solvers. The most interesting point

of comparison for mypyvy is TLA+’s language for specifying systems. TLA+ is much more

expressive than mypyvy, allowing users to write arbitrary temporal logic formulas to describe

their system. While sometimes needed, this expressiveness makes analysis and proof more

challenging, and users often stay within an idiomatic subset that constructs a transition

relation as the finite disjunction of parameterized actions. One way to view mypyvy is as a

codification of this idiom into a language. By restricting the way users write their system

specifications, mypyvy is able to completely automatically analyze the safety problem for

these systems. On the other hand, mypyvy does not currently support liveness reasoning, so

users of TLA+ would miss having access to that kind of reasoning. We plan to investigate

132

liveness in future work, encoding the queries in first-order logic following the approach of

Padon et al. [87].

nuSMV and nuXmv are symbolic model checkers, originally based on BDDs and SAT

solvers, and later adopted to infinite-domain systems by using SMT solvers [9, 14, 15].

These tools are “workbenches” that implement many different techniques to attack the model

checking problem. This is similar in spirit to mypyvy’s goal of providing a framework to

implement several approaches. One key difference between nuXmv and mypyvy is that

nuXmv’s support for infinite-state systems is based on integer and real number types, while

mypyvy’s primary way to reason about such systems is based on pure first-order uninterpreted

sorts. In our experience, most distributed systems do not need specific interpreted operations

over numbers, and instead are naturally expressed over uninterpreted sorts using axioms for,

e.g. a total order.

Historically, many model checkers intended for hardware have worked on the bit level,

i.e., treating each bit as a separate boolean variable. This encoding allows the use of off-the-

shelf SAT solvers, but loses mujch of the high-level structure present in the original problem.

Recently, the community has developed several word-level techniques, that maintain this

high-level information during solving. AVR is one such word-level symbolic model checker

that has shown promise in the hardware model checking community [32]. At its core, AVR

uses syntax-guided abstraction to compute a word-level model of the system in first-order

logic, which can then be analyzed with an implementation of IC3 on top of several SMT

backend solvers to infer an inductive invariant [7]. Most closely related to mypyvy is the

subsequent tool I4 [74], which builds on top of AVR’s ability to efficiently verify finite-

domain systems to analyze infinite-state systems such as distributed protocols. I4 works by

constructing finite instances of the protocol, analyzing them with AVR to get an inductive

invariant for the finite protocol, and then generalizing this invariant to get a candidate

invariant for the original protocol. This candidate must then be verified using unbounded

techniques, such as IVy [89], and if a counterexample is obtained, a larger finite instance of

the protocol must be analyzed. I4 reads protocols written in the IVy input language.

133

Verification modulo theories (VMT) [83, 113] is an extension of the SMT-LIB stan-

dard [103] to support reasoning about symbolic transition systems. Transition systems are

defined by annotating a standard SMT-LIB function definition with a special keyword mark-

ing it as the definition of the initial conditions or transition relation. Since transition relations

are 2-state formulas, as discussed in Section 4.5, VMT again uses special keywords to de-

clare that a SMT-LIB variable is the “next” variable corresponding to another variable. Both

safety properties (of the form 2ϕ) and liveness properties (of the form 32ϕ) can also be

specified in the VMT description of the transition system, but other queries (such as bounded

reachability queries or mypyvy-style “trace” queries) cannot be specified.

mypyvy’s k-state semantics for formulas is related to interpretations of Linear Temporal

Logic (LTL) over finite traces [31]. A key difference in the mypyvy setting is that each state is

a first-order structure, rather than a propositional truth assignment. It would be interesting

to extend mypyvy with explicit temporal operators that are “unrolled” when translating to

the solver.

Btor2 is a language for specifying word-level hardware model checking problems over

bitvectors and arrays [82]. It is an extension of the well-known bit-level format AIGER [5],

which is used in the hardware model checking competition [37]. Both AIGER and Btor2

are tailored to the case of reasoning about finite-state systems, especially those derived from

hardware designs. Thus, neither supports infinite or unbounded sorts, which is the focus of

mypyvy.

4.9 Conclusion

In this chapter, we described mypyvy, a language and tool for analyzing symbolic transition

systems expressed in first-order logic. mypyvy has already outgrown its original purpose and

has had a surprisingly successful beginning to its life. There are several directions for future

work, both internally facing and external.

134

Future Work. On the internals side, there are conceptual design choices that should be

revisited in the interests of cleanliness. For example, mypyvy currently separately represents

constants, relations, and functions as distinct kinds of objects, but it would be cleaner

to represent everything as a function. A similar kind of conceptual simplification seems

possible with queries, since essentially every query (except for invariant inference queries)

can be phrased as asking a satisfiability question about a k-state formula. It would be nice to

capture this insight into a more general query language that unifies inductiveness checking,

background theory theorem proving, bounded model checking, and trace queries. Another

minor internal nit is that mypyvy currently assumes that there is one global transition system

under analysis. This assumption makes sense in the context of a command line tool that is

asked a simple query about a single file. But in more sophisticated cases, the assumption

breaks down. For example, any kind of program transformation of the transition system

itself causes there to be two transition systems in scope, which is currently difficult to work

with, and we end up hacking around it. It would be nice to remove this limitation.

Another aspect of mypyvy’s design worth revisiting is its interface to the underlying

SMT solver. mypyvy was originally designed to use Z3’s Python API, which was initially

convenient and allowed rapid prototyping, but this has the downside that we cannot easily

use other SMT solvers. We have actually hacked in support for CVC4, but the mechanism

for doing so it very unsavory: we use the Z3 API to build the query and then ask Z3 to print

it in SMT-LIB format, which we then ship to CVC4. A better solution would be to introduce

some kind of mid-level solver interface, probably based on SMT-LIB, which would allow us

to use multiple solvers easily. An important design constraint here is that we don’t want

to give up the performance benefits of using the API for expensive queries such as PDR∀,

which builds many ASTs with sharing efficiently using the API.

On the external side, there are endless possibilities for tools to build using mypyvy.

For example, we have several ongoing projects related to invariant inference and improving

PDR∀. More generally, we are interested in building an “IDE for transition systems,” which

is able to give real-time feedback on the model as the user develops it. Relatedly, we’d like

135

to make invariant inference more interactive. Currently, the execution model of PDR∀ is

a batch processing job, and a rather expensive one at that. When PDR∀ fails to find an

invariant, it often seems to loop forever, giving no intermediate results or feedback to the

user. Instead, it would be nice to have an approach that could be stopped midway through

inference and have its state inspected by the user, who could then guide the search.

Besides our own interests, there are also many other possible tools to build on top of

mypyvy. We encourage readers to join us in the quest for user-friendly symbolic reasoning

about transitions that is fast and works on interesting and practical examples. These are

hard problems, and there is much work to do. We need your help!

136

Chapter 5

CONCLUSION

Chapter 2 and Chapter 3 presented techniques for decomposing proofs of distributed

systems, both along the “vertical axis” of fault models and fault tolerance mechanisms, and

along the “horizontal axis” of separating cooperating protocols. Once suitably decomposed,

the verification of the high-level logic of each protocol, executing in a relatively benign fault

model, can be automated (or at least partially automated) using a tool such as mypyvy,

presented in Chapter 4. We have demonstrated that this decompose-and-automate workflow

can be applied to distributed systems of roughly the complexity that we would ask an

undergraduate to implement (but not verify!) in a senior level course.

Almost two decades ago, Lamport [55] propounded the thesis Composition: a way to

make proofs harder, favoring mathematical models over implementations for real system

verification, while eschewing composition: “in 1997, the unfortunate reality is that engineers

rarely specify and reason formally about the systems they build. [...] It seems unlikely that

reasoning about the composition of open-system specifications will be a practical concern

within the next 15 years”. Lamport was certainly right in the sense that in the intervening 20+

years, it has not become common for engineers to reason about compositional specifications.

That said, the results of this dissertation indicate that a compositional approach is key to

reasoning about systems of any realistic complexity, especially when faced with verifying

implementations, not just models. With the compositional, implementation-producing tools

and techniques presented here, it is now possible to begin to prove Lamport wrong about

the next 15 years.

We are optimistic about the role of formal methods in supporting sophisticated system

building, but for the time being, these methods appear inaccessible to those without graduate

137

education in verification.

One of our primary goals for future work is to make these methods more accessible. For

the compositional aspects of our work, we believe programmers are already well equipped

to understand mechanisms for modularity, as these are familiar from similar mechanisms

in mainstream languages. For the automated aspects, we believe there is a much more

significant gap in creating accessible tools, which boils down to a philosophical difficulty.

Many automated tools attempt to be complexity-hiding, in the sense that they try to solve

the entire problem automatically in all cases, but lack good support for the failure case

where the problem can’t be solved. When these tools do fail, they typically do so completely

opaquely, with debugging output only useful to those who implemented the tool. Instead, we

believe that the correct approach to building automated tools is to embrace complexity, to

use a phrase coined by Jean Yang.1 Such tools start by acknowledging that not all instances

of the problem will be solved automatically, and they are designed to give the programmer

sufficient information to understand the failure and recourse to address it. This requires

programmers to have a basic mental model for how the tool works, what kinds of problems

it can solve, and how to respond to its failures by adjusting the input verification query.

For example, our implementation of PDR∀ in mypyvy is currently best described as hiding

complexity. Either it finds an inductive invariant, or it doesn’t. And when it doesn’t, the

debugging information produced is difficult to understand and turn into a concrete remedy,

and there is no indication if a partial inductive invariant was found. But in fact, the PDR∀

algorithm is well positioned for building a complexity embracing tool. Any inductive facts

discovered could be reported to the user, even though they don’t fully verify the safety

property. And there is especially nice theory about PDR∀ that tells us that its failures can

often be explained in terms of an abstract trace of the system that demonstrates the failure

explicitly. We are excited to build such a complexity-embracing version of PDR∀, and to

explore other invariant inference techniques from this point of view as well.

1See https://twitter.com/jeanqasaur/status/1389645922183696384.

https://twitter.com/jeanqasaur/status/1389645922183696384

138

BIBLIOGRAPHY

[1] Martn Abadi and Leslie Lamport. The Existence of Refinement Mappings. In: LICS.

IEEE Computer Society, 1988, pp. 165–175.

[2] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.

Causal Memory: Definitions, Implementation, and Programming. In: Distributed Com-

puting 9.1 (1995), pp. 37–49.

[3] Andrew W. Appel. Foundational Proof-Carrying Code. In: LICS. IEEE Computer

Society, 2001, pp. 247–256.

[4] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds,

Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Com-

pilers. Cambridge University Press, 2014. isbn: 9781107256552.

[5] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 And Beyond. Tech.

rep. 11/2. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal Models and

Verification, Johannes Kepler University, 2011.

[6] Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,

and Keith Wansbrough. Engineering with Logic: HOL Specification and Symbolic-

Evaluation Testing for TCP Implementations. In: Proceedings of the 33rd ACM Sym-

posium on Principles of Programming Languages (POPL). Charleston, SC, Jan. 2006,

pp. 55–66.

[7] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In: Proceedings

of the 12th International Conference on Verification, Model Checking, and Abstract

Interpretation (VMCAI). Vol. 6538. Lecture Notes in Computer Science. Springer,

2011, pp. 70–87.

139

[8] Stephen Brookes. A semantics for concurrent separation logic. In: Th. Comp. Sci.

375.1-3 (2007).

[9] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro

Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The

nuXmv symbolic model checker. In: International Conference on Computer Aided

Verification. Springer. 2014, pp. 334–342.

[10] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos Made Live: An

Engineering Perspective. In: Proceedings of the 26th ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing (PODC). Portland, OR, Aug. 2007,

pp. 398–407.

[11] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. The TLA+

Proof System: Building a Heterogeneous Verification Platform. In: Proceedings of the

7th International Colloquium on Theoretical Aspects of Computing (ICTAC). Ed. by

Ana Cavalcanti, David Déharbe, Marie-Claude Gaudel, and Jim Woodcock. Vol. 6255.

Lecture Notes in Computer Science. Springer, 2010, p. 44.

[12] Adam Chlipala. Certified Programming with Dependent Types. MIT Press, Dec. 2013.

[13] Adam Chlipala. Mostly-Automated Verification of Low-Level Programs in Compu-

tational Separation Logic. In: Proceedings of the 2011 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). San Jose, CA, June

2011, pp. 234–245.

[14] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NUSMV 2: An

opensource tool for symbolic model checking. In: International Conference on Com-

puter Aided Verification. Springer. 2002, pp. 359–364.

140

[15] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NUSMV: A New Symbolic Model Checker. In: Int. J. Softw. Tools Technol. Transf.

2.4 (2000), pp. 410–425.

[16] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F Cremer, R. W.

Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T Sasaki, and

S. F. Smith. Implementing Mathematics with The Nuprl Proof Development System.

Prentice Hall, 1986.

[17] Coq development team. Coq Reference Manual. http://coq.inria.fr/distrib/

current/refman/. INRIA. 2020.

[18] etcd: A highly-available key value store for shared configuration and service discovery.

https://github.com/coreos/etcd. 2014.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In: TACAS.

2008, pp. 337–340.

[20] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In:

POPL. ACM, 2011, pp. 435–446.

[21] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for pro-

gram checking. In: J. ACM 52.3 (2005), pp. 365–473.

[22] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and

Viktor Vafeiadis. Concurrent Abstract Predicates. In: Proceedings of the 24th Eu-

ropean Conference on Object-Oriented Programming (ECOOP). Maribor, Slovenia,

2010, pp. 504–528.

[23] Cezara Drgoi, Thomas A. Henzinger, and Damien Zufferey. PSync: a partially syn-

chronous language for fault-tolerant distributed algorithms. In: Proceedings of the 43rd

ACM Symposium on Principles of Programming Languages (POPL). St. Petersburg,

FL, Jan. 2016, pp. 400–415.

http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/
https://github.com/coreos/etcd

141

[24] Tzilla Elrad and Nissim Francez. Decomposition of Distributed Programs into Communication-

Closed Layers. In: Sci. Comput. Program. 2.3 (1982), pp. 155–173.

[25] Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv. Inferring

Inductive Invariants from Phase Structures. In: Proceedings of the 31st International

Conference on Computer Aided Verification (CAV). Vol. 11562. Lecture Notes in

Computer Science. Springer, 2019, pp. 405–425.

[26] Xinyu Feng. Local Rely-Guarantee Reasoning. In: Proceedings of the 36th ACM Sym-

posium on Principles of Programming Languages (POPL). Savannah, GA, Jan. 2009,

pp. 315–327.

[27] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the Relationship Between Concur-

rent Separation Logic and Assume-Guarantee Reasoning. In: Proceedings of the 16th

European Symposium on Programming (ESOP). Braga, Portugal, 2007, pp. 173–188.

[28] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of Distributed

Consensus with One Faulty Process. In: J. ACM 32.2 (1985).

[29] Stephen J. Garland and Nancy Lynch. Using I/O Automata for Developing Dis-

tributed Systems. In: Foundations of Component-based Systems. Ed. by Gary T.

Leavens and Murali Sitaraman. Cambridge University Press, 2000.

[30] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.

Friday: Global Comprehension for Distributed Replay. In: Proceedings of the 4th Sym-

posium on Networked Systems Design and Implementation (NSDI). Cambridge, MA,

Apr. 2007, pp. 285–298.

[31] Giuseppe De Giacomo and Moshe Y. Vardi. Linear Temporal Logic and Linear Dy-

namic Logic on Finite Traces. In: IJCAI 2013, Proceedings of the 23rd International

Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. Ed. by

Francesca Rossi. IJCAI/AAAI, 2013, pp. 854–860.

142

[32] Aman Goel and Karem A. Sakallah. AVR: Abstractly Verifying Reachability. In:

Proceedings of the 26th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS). Ed. by Armin Biere and David

Parker. Vol. 12078. Lecture Notes in Computer Science. Springer, 2020, pp. 413–422.

[33] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Ex-

tension for the Coq system. Tech. rep. 6455. Microsoft Research – Inria Joint Centre,

2009.

[34] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan Wu,

Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep Specifications and Certified

Abstraction Layers. In: POPL. ACM, 2015, pp. 595–608.

[35] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm

Sjöberg, and David Costanzo. CertiKOS: An Extensible Architecture for Building

Certified Concurrent OS Kernels. In: OSDI. USENIX Association, 2016, pp. 653–669.

[36] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-Verified Network Controllers.

In: Proceedings of the 2013 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI). Seattle, WA, June 2013, pp. 483–494.

[37] Hardware Model Checking Competition. http://fmv.jku.at/hwmcc20/. 2020.

[38] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael

L. Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet: proving practical distributed

systems correct. In: Proceedings of the 25th ACM Symposium on Operating Systems

Principles (SOSP). Monterey, CA, Oct. 2015, pp. 1–17.

[39] Mark Hayden. The Ensemble System. PhD thesis. Cornell University, 1998.

[40] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condi-

tion for Concurrent Objects. In: ACM Transactions on Programming Languages and

Systems 12.3 (1990), pp. 463–492.

http://fmv.jku.at/hwmcc20/

143

[41] Jason J. Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and Proofs

for Ensemble Layers. In: Proceedings of the 15th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS). York, UK,

Mar. 2009, pp. 119–133.

[42] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language Primitives

and Type Discipline for Structured Communication-Based Programming. In: ESOP.

Vol. 1381. LNCS. Springer, 1998, pp. 122–138.

[43] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session

types. In: POPL. ACM, 2008, pp. 273–284.

[44] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

Feb. 2012.

[45] Cliff B. Jones. Tentative Steps Toward a Development Method for Interfering Pro-

grams. In: ACM Trans. Program. Lang. Syst. 5.4 (1983), pp. 596–619.

[46] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost

state. In: ICFP. ACM, 2016, pp. 256–269.

[47] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars

Birkedal, and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for

Concurrent Reasoning. In: Proceedings of the 42nd ACM Symposium on Principles of

Programming Languages (POPL). Mumbai, India, Jan. 2015, pp. 637–650.

[48] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon

Shoham. Property-Directed Inference of Universal Invariants or Proving Their Ab-

sence. In: J. ACM 64.1 (2017), 7:1–7:33.

[49] Charles Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin Vahdat.

Mace: Language Support for Building Distributed Systems. In: Proceedings of the

2007 ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). San Diego, CA, June 2007, pp. 179–188.

144

[50] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death,

and the Critical Transition: Finding Liveness Bugs in Systems Code. In: Proceedings

of the 4th Symposium on Networked Systems Design and Implementation (NSDI).

Cambridge, MA, Apr. 2007, pp. 243–256.

[51] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas

Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an operating-

system kernel. In: Commun. ACM 53.6 (2010), pp. 107–115.

[52] Thomas Kleymann. Hoare Logic and Auxiliary Variables. In: Formal Asp. Comput.

11.5 (1999), pp. 541–566.

[53] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. First-order quantified

separators. In: Proceedings of the 2020 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). London, UK, June 2020.

[54] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a

verified implementation of ML. In: POPL. ACM, 2014, pp. 179–192.

[55] Leslie Lamport. Composition: A Way to Make Proofs Harder. In: Compositionality:

The Significant Difference (COMPOS). Bad Malente, Germany, 1997, pp. 402–423.

[56] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Professional, July 2002.

[57] Leslie Lamport. The Implementation of Reliable Distributed Multiprocess Systems.

In: Computer Networks 2 (1978), pp. 95–114.

[58] Leslie Lamport. The Part-Time Parliament. In: ACM Trans. Comput. Syst. 16.2

(1998), pp. 133–169.

[59] Leslie Lamport. The Temporal Logic of Actions. In: ACM Trans. Program. Lang.

Syst. 16.3 (1994), pp. 872–923.

145

[60] Leslie Lamport. Thinking for Programmers. http://channel9.msdn.com/Events/Build/

2014/3-642. Apr. 2014.

[61] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler Validation via Equivalence

Modulo Inputs. In: Proceedings of the 2014 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). Edinburgh, UK, June 2014,

pp. 216–226.

[62] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correct-

ness. In: LPAR. Vol. 6355. LNCS. Springer, 2010, pp. 348–370.

[63] K. Rustan M. Leino. This is Boogie 2. 2008.

[64] Xavier Leroy. Formal verification of a realistic compiler. In: Communications of the

ACM 52.7 (July 2009), pp. 107–115.

[65] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally con-

sistent distributed key-value stores. In: Proceedings of the 43rd ACM Symposium

on Principles of Programming Languages (POPL). St. Petersburg, FL, Jan. 2016,

pp. 357–370.

[66] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained

concurrency. In: Proceedings of the 40th ACM Symposium on Principles of Program-

ming Languages (POPL). Rome, Italy, Jan. 2013, pp. 561–574.

[67] Leonid Libkin. Elements of finite model theory. Springer, 2013.

[68] Richard J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.

In: Commun. ACM 18.12 (1975), pp. 717–721.

[69] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hay-

den, Kenneth Birman, and Robert L. Constable. Building Reliable, High-Performance

Communication Systems from Components. In: Proceedings of the 17th ACM Sympo-

sium on Operating Systems Principles (SOSP). Kiawah Island, SC, Dec. 1999, pp. 80–

92.

http://channel9.msdn.com/Events/Build/2014/3-642
http://channel9.msdn.com/Events/Build/2014/3-642

146

[70] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming

Wu, M. Frans Kaashoek, and Zheng Zhang. D3S: Debugging Deployed Distributed

Systems. In: Proceedings of the 5th Symposium on Networked Systems Design and

Implementation (NSDI). San Francisco, CA, Apr. 2008, pp. 423–437.

[71] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From Clarity

to Efficiency for Distributed Algorithms. In: OOPSLA. New York, NY, USA: ACM,

2012, pp. 395–410.

[72] Nancy A. Lynch. Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1996. isbn: 1558603484.

[73] Nancy A. Lynch and Frits W. Vaandrager. Forward and Backward Simulations: I.

Untimed Systems. In: Inf. Comput. 121.2 (1995), pp. 214–233.

[74] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and

Karem A. Sakallah. I4: incremental inference of inductive invariants for verification

of distributed protocols. In: Proceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. ACM,

2019, pp. 370–384.

[75] Assia Mahboubi and Enrico Tassi. Mathematical Components. Available at https:

//math-comp.github.io/mcb, 2017.

[76] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT

Solvers. In: Proceedings of the 21st International Conference on Automated Deduc-

tion (CADE). Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–

198.

[77] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco.

Communicating State Transition Systems for Fine-Grained Concurrent Resources.

In: Proceedings of the 23rd European Symposium on Programming (ESOP). Grenoble,

France, 2014, pp. 290–310.

https://math-comp.github.io/mcb
https://math-comp.github.io/mcb

147

[78] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separa-

tion in Hoare Type Theory. In: Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming (ICFP). Portland, OR, Sept. 2006, pp. 62–

73.

[79] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal.

Ynot: Dependent Types for Imperative Programs. In: Proceedings of the 13th ACM

SIGPLAN International Conference on Functional Programming (ICFP). Victoria,

British Columbia, Canada, Sept. 2008.

[80] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the verifica-

tion of heap-manipulating programs. In: Proceedings of the 37th ACM Symposium on

Principles of Programming Languages (POPL). Madrid, Spain, Jan. 2011, pp. 261–

274.

[81] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. How Amazon web services uses formal methods. In: Commun.

ACM 58.4 (2015), pp. 66–73.

[82] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2, BtorMC and

Boolector 3.0. In: Proceedings of the 30th International Conference on Computer Aided

Verification (CAV). Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10981.

Lecture Notes in Computer Science. Springer, 2018, pp. 587–595.

[83] nuXmv User Manual. https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-

manual.pdf. 2014.

[84] Peter W. O’Hearn. Resources, concurrency, and local reasoning. In: Th. Comp. Sci.

375.1-3 (2007), pp. 271–307.

[85] Diego Ongaro. Consensus: Bridging Theory and Practice. PhD thesis. Stanford Uni-

versity, Aug. 2014.

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

148

[86] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Al-

gorithm. In: Proceedings of the 2014 USENIX Annual Technical Conference. Philadel-

phia, PA, June 2014, pp. 305–319.

[87] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and

Sharon Shoham. Reducing liveness to safety in first-order logic. In: Proc. ACM Pro-

gram. Lang. 2.POPL (2018), 26:1–26:33.

[88] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR:

decidable reasoning about distributed protocols. In: PACMPL 1.OOPSLA (2017),

108:1–108:31.

[89] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham.

Ivy: safety verification by interactive generalization. In: Proceedings of the 2016 ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Santa Barbara, CA, June 2016, pp. 614–630.

[90] James L. Peterson. Petri Nets. In: ACM Computing Surveys (Sept. 1977), pp. 223–

252.

[91] Azalea Raad, Jules Villard, and Philippa Gardner. CoLoSL: Concurrent Local Subjec-

tive Logic. In: Proceedings of the 24th European Symposium on Programming (ESOP).

London, UK, 2015.

[92] Vincent Rahli. Interfacing with Proof Assistants for Domain Specific Programming

Using EventML. In: Proceedings of the 10th International Workshop On User Inter-

faces for Theorem Provers. Bremen, Germany, July 2012.

[93] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Formal

Specification, Verification, and Implementation of Fault-Tolerant Systems using EventML.

In: Proceedings of the 15th International Workshop on Automated Verification of Crit-

ical Systems (AVoCS). Edinburgh, UK, Sept. 2015.

149

[94] Robbert van Renesse and Deniz Altinbuken. Paxos Made Moderately Complex. In:

ACM Comput. Surv. 47.3 (2015), 42:1–42:36.

[95] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.

In: Proceedings of the 17th Symposium on Logic in Computer Science (LICS). Copen-

hagen, Denmark, July 2002, pp. 55–74.

[96] Daniel Ricketts, Valentin Robert, Dongseok Jang, Zachary Tatlock, and Sorin Lerner.

Automating Formal Proofs for Reactive Systems. In: Proceedings of the 2014 ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Edinburgh, UK, June 2014, pp. 452–462.

[97] Thomas Ridge. Verifying Distributed Systems: The Operational Approach. In: Pro-

ceedings of the 36th ACM Symposium on Principles of Programming Languages (POPL).

Savannah, GA, Jan. 2009, pp. 429–440.

[98] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes. New

York, NY, USA: Cambridge University Press, 2001. isbn: 0521781779.

[99] Nicolas Schiper, Vincent Rahli, Robbert van Renesse, Mark Bickford, and Robert

L. Constable. Developing Correctly Replicated Databases Using Formal Tools. In:

Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN). Atlanta, GA, June 2014, pp. 395–406.

[100] Ilya Sergey. Programs and Proofs: Mechanizing Mathematics with Dependent Types.

Lecture notes with exercises. Available at http://ilyasergey.net/pnp, 2014.

[101] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized Verification

of Fine-grained Concurrent Programs. In: Proceedings of the 2015 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). Portland,

OR, June 2015, pp. 77–87.

[102] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with

distributed protocols. In: Proc. ACM Program. Lang. 2.POPL (2018), 28:1–28:30.

http://ilyasergey.net/pnp

150

[103] SMT-LIB standard. http://smtlib.cs.uiowa.edu/language.shtml. 2016.

[104] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Com-

positional CompCert. In: Proceedings of the 42nd ACM Symposium on Principles of

Programming Languages (POPL). Mumbai, India, Jan. 2015, pp. 275–287.

[105] Alexander J. Summers and Peter Müller. Actor Services - Modular Verification of

Message Passing Programs. In: ESOP. Vol. 9632. LNCS. Springer, 2016, pp. 699–726.

[106] Kasper Svendsen and Lars Birkedal. Impredicative Concurrent Abstract Predicates.

In: Proceedings of the 23rd European Symposium on Programming (ESOP). Grenoble,

France, 2014, pp. 149–168.

[107] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bharga-

van, and Jean Yang. Secure distributed programming with value-dependent types. In:

ICFP. ACM, 2011, pp. 266–278.

[108] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv,

Sharon Shoham, James R. Wilcox, and Doug Woos. Modularity for decidability of

deductive verification with applications to distributed systems. In: Proceedings of the

2018 ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). Philadelphia, PA, June 2018.

[109] Bernardo Toninho, Lus Caires, and Frank Pfenning. Dependent session types via

intuitionistic linear type theory. In: PPDP. ACM, 2011, pp. 161–172.

[110] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory

with ghosts, protocols, and separation. In: Proceedings of the 2014 Annual ACM

Conference on Object-Oriented Programming, Systems, Languages, and Applications.

Portland, OR, Oct. 2014, pp. 691–707.

[111] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek

Dreyer. Logical relations for fine-grained concurrency. In: Proceedings of the 40th

http://smtlib.cs.uiowa.edu/language.shtml

151

ACM Symposium on Principles of Programming Languages (POPL). Rome, Italy,

Jan. 2013, pp. 343–356.

[112] Viktor Vafeiadis and Matthew J. Parkinson. A Marriage of Rely/Guarantee and Sep-

aration Logic. In: Proceedings of the 18th International Conference on Concurrency

Theory (CONCUR). Lisbon, Portugal, 2007, pp. 256–271.

[113] Verification Modulo Theories. http://www.vmt-lib.org/. 2014.

[114] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Message Pass-

ing. In: APLAS. Vol. 5904. LNCS. Springer, 2009, pp. 194–209.

[115] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kauf-

mann, 2002.

[116] James R. Wilcox, Ilya Sergey, and Zachary Tatlock. Programming Language Abstrac-

tions for Modularly Verified Distributed Systems. In: Proceedings of the 2nd Summit

on Advances in Programming Languages (SNAPL). Asilomar, CA, 2017, 19:1–19:12.

[117] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael

D. Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally

verifying distributed systems. In: Proceedings of the 2015 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). Portland, OR, June

2015, pp. 357–368.

[118] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,

and Thomas E. Anderson. Planning for change in a formal verification of the Raft

Consensus Protocol. In: Proceedings of the 2016 International Conference on Certified

Programs and Proofs (CPP). Saint Petersburg, FL, Jan. 2016, pp. 154–165.

[119] Maysam Yabandeh, Nikola Kneevi, Dejan Kosti, and Viktor Kuncak. CrystalBall: Pre-

dicting and Preventing Inconsistencies in Deployed Distributed Systems. In: Proceed-

http://www.vmt-lib.org/

152

ings of the 5th Symposium on Networked Systems Design and Implementation (NSDI).

San Francisco, CA, Apr. 2008, pp. 229–244.

[120] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,

Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MoDist: Transparent Model

Checking of Unmodified Distributed Systems. In: Proceedings of the 6th Symposium

on Networked Systems Design and Implementation (NSDI). Boston, MA, Apr. 2009,

pp. 213–228.

[121] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding

Bugs in C Compilers. In: Proceedings of the 2011 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). San Jose, CA, June 2011,

pp. 283–294.

[122] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA+ Specifi-

cations. In: Correct Hardware Design and Verification Methods, 10th IFIP WG 10.5

Advanced Research Working Conference, CHARME ’99, Bad Herrenalb, Germany,

September 27-29, 1999, Proceedings. Ed. by Laurence Pierre and Thomas Kropf.

Vol. 1703. Lecture Notes in Computer Science. Springer, 1999, pp. 54–66.

[123] Pamela Zave. Using Lightweight Modeling To Understand Chord. In: ACM SIG-

COMM Computer Communication Review 42.2 (Apr. 2012), pp. 49–57.

	Introduction
	Vertical Composition: Fault-Tolerance and Application Logic
	Introduction
	Overview
	Network Semantics
	Verified System Transformers
	Case Study: Key-Value Store
	Case Study: Primary-Backup Transformer
	Case Study: Raft Replication Transformer
	Evaluation
	Related Work
	Conclusion

	Horizontal Composition: Systems Built from Many Protocols
	Introduction
	Overview
	Distributed Separation Logic
	Case Study: Two-Phase Commit and Its Client Application
	Implementation and Experience
	Related and Future Work
	Conclusion

	Automatic Verification with Transition Systems
	Introduction
	Background on Transition Systems
	The Robot in mypyvy
	Background on first-order logic
	Expressing Transition Systems in mypyvy
	Queries on Transition Systems
	Using mypyvy
	Related Work
	Conclusion

	Conclusion

