
BALANCED ALLOCATIONS∗

YOSSI AZAR† , ANDREI Z. BRODER‡ , ANNA R. KARLIN§ , AND ELI UPFAL¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 180–200

Abstract. Suppose that we sequentially place n balls into n boxes by putting each ball into
a randomly chosen box. It is well known that when we are done, the fullest box has with high
probability (1 + o(1)) lnn/ ln lnn balls in it. Suppose instead that for each ball we choose two boxes
at random and place the ball into the one which is less full at the time of placement. We show that
with high probability, the fullest box contains only ln lnn/ ln 2 +O(1) balls—exponentially less than
before. Furthermore, we show that a similar gap exists in the infinite process, where at each step one
ball, chosen uniformly at random, is deleted, and one ball is added in the manner above. We discuss
consequences of this and related theorems for dynamic resource allocation, hashing, and on-line load
balancing.
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1. Introduction. Suppose that we sequentially place n balls into n boxes by
putting each ball into a randomly chosen box. Properties of this random allocation
process have been extensively studied in the probability and statistics literature. (See,
e.g., [20, 17].) One of the classical results in this area is that, asymptotically, when
the process has terminated, with high probability (that is, with probability 1− o(1))
the fullest box contains (1 + o(1)) lnn/ ln lnn balls. (G. Gonnet [16] has proven a
more accurate result, Γ−1(n)− 3/2 + o(1).)

Consider a variant of the process above whereby each ball comes with d possible
destinations, chosen independently and uniformly at random. (Hence the d destina-
tions are not necessarily distinct.) The ball is placed in the least full box among the
d possible locations. Surprisingly, even for d = 2, when the process terminates the
fullest box has only ln lnn/ ln 2+O(1) balls in it. Thus, this apparently minor change
in the random allocation process results in an exponential decrease in the maximum
occupancy per location. The analysis of this process is summarized as follows

Theorem 1.1. Suppose that m balls are sequentially placed into n boxes. Each
ball is placed in the least full box, at the time of the placement, among d boxes, d ≥ 2,
chosen independently and uniformly at random. Then after all the balls are placed,

• with high probability, as n→∞ and m ≥ n, the number of balls in the fullest
box is (1 + o(1)) ln lnn/ ln d+ Θ(m/n);
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• in particular, with high probability, as n→∞ and m = n, the number of balls
in the fullest box is ln lnn/ ln d+ Θ(1);

• any other on-line strategy that places each ball into one of d randomly chosen
boxes results in stochastically more balls1 in the fullest box.

It is also interesting to study the infinite version of the random allocation process.
There, at each step a ball is chosen uniformly at random and removed from the
system, and a new ball appears. The new ball comes with d possible destinations,
chosen independently at random, and it is placed into the least full box among these
d possible destinations.

The analysis of the case d = 1 in this infinite stochastic process is simple since
the location of any ball does not depend on the locations of other balls in the system.
Thus, for d = 1, in the stationary distribution, with high probability the fullest box
has Θ(logn/ log logn) balls. The analysis of the case d ≥ 2 is significantly harder,
since the locations of the current n balls might depend on the locations of balls that
are no longer in the system. We prove that when d ≥ 2, in the stationary distribution,
the fullest box has ln lnn/ ln d + O(1) balls, with high probability. Thus, the same
exponential gap holds in the infinite process. Theorem 1.2 is proven in section 4.

Theorem 1.2. Consider the infinite process with d ≥ 2, starting at time 0 in an
arbitrary state. There is a constant c such that for any fixed T > cn2 log logn, the
fullest box at time T contains, with high probability, less than ln lnn/ ln d+O(1) balls.
Thus, in the stationary distribution, with high probability, no box contains more than
ln lnn/ ln d+O(1) balls.

Karp, Luby, and Meyer auf der Heide [18] were the first to notice a dramatic
improvement when switching from one hash function to two in the context of PRAM
simulations. In fact, it is possible to use a result from [18] to derive a weaker form of
our static upper bound. (For details see [7].)

A preliminary version of this paper has appeared in [7]. Subsequently, Adler et
al. [1] analyzed parallel implementation of the balanced allocation mechanism and
obtained interesting communication vs. load tradeoffs.

A related question was considered by Broder et al. [10]. In their model the set of
choices is such that there is a placement that results in maximum load equal to one.
The question they analyze is, what is the expected maximum load under a random
order of insertion under the greedy strategy?

More recent results, based on the balanced allocation paradigm, have appeared
in [23, 24, 25, 12].

1.1. Applications. Our results have a number of interesting applications to
computing problems. We elaborate here on three of them.

1.1.1. Dynamic resource allocation. Consider a scenario in which a user or
a process has to choose between a number of identical resources on-line (choosing a
server to use among the servers in a network, choosing a disk to store a directory, etc.).
To find the least loaded resource, users may check the load on all resources before
placing their requests. This process is expensive, since it requires sending an interrupt
to each of the resources. A second approach is to send the task to a random resource.
This approach has minimum overhead, but if all users follow it, the difference in load
between different servers will vary by up to a logarithmic factor. Our analysis suggests

1By this we mean that for any other strategy and any k the probability that the number of balls
in the fullest box is greater than k is at least the probability that the number of balls in the fullest
box is greater than k under the greedy strategy. See Corollary 3.6.
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a more efficient solution. If each user samples the load of two resources and sends
his request to the least loaded, the total overhead is small, and the load on the n
resources varies by only a O(log logn) factor.

1.1.2. Hashing. The efficiency of a hashing technique is measured by two pa-
rameters: the expected and the maximum access time. Our approach suggests a
simple hashing technique, similar to hashing with chaining. We call it 2-way chain-
ing. It has O(1) expected and O(log logn) maximum access time. We use two random
hash functions. The two hash functions define two possible entries in the table for each
key. The key is inserted to the least full location, at the time of the insertion. Keys in
each entry of the table are stored in a linked list. Assume that n keys are sequentially
inserted by this process into a table of size n. As shown in section 5, the expected
insertion and look-up time is O(1), and our analysis summarized above immediately
implies that with high probability the maximum access time is ln lnn/ ln 2+O(1), vs.
the Θ(logn/ log logn) time when only one random hash function is used.

An advantage of our scheme over some other known techniques for reducing worst-
case behavior of hashing (e.g., [14, 13, 11]) is, that it uses only two hash functions,
it is easy to parallelize, and it does not involve rehashing of data. Other commonly
used schemes partition the available memory into multiple tables, and use a different
hash function in each table. For example, the Fredman, Komlos, Szemeredi scheme
for perfect hashing [14] uses up to n different hash functions to get O(1) worst-case
access time (not on-line however), and the algorithm of Broder and Karlin [11] uses
O(log logn) hash functions to achieve O(log logn) maximum access time on-line but
using rehashings.

Karp, Luby, and Meyer auf der Heide [18] studied the use of two hash functions
in the context of PRAM simulations. Other PRAM simulations using multiple hash
functions were developed and analyzed in [21].

1.1.3. Competitive on-line load balancing. Consider the following on-line
load balancing problem: We are given a set of n servers and a sequence of arrivals
and departures of tasks. Each task comes with a list of servers on which it can be ex-
ecuted. The load balancing algorithm has to assign each task to a server on-line, with
no information on future arrivals and departures of tasks. The goal of the algorithm
is to minimize the maximum load on any server. The quality of an on-line algo-
rithm is measured by the competitive ratio: the ratio between the maximum load it
achieves and the maximum load achieved by the optimal off-line algorithm that knows
the whole sequence in advance. This load balancing problem models, for example,
communication in heterogeneous networks containing workstations, I/O devices, etc.
Servers correspond to communication channels and tasks correspond to requests for
communication links between devices. A network controller must coordinate the chan-
nels so that no channel is too heavily loaded.

On-line load balancing has been studied extensively against worst-case adversaries
[9, 6, 5, 3, 8, 4]. For permanent tasks (tasks that arrive but never depart), Azar, Naor
and Rom [9] showed that the competitive ratio of the greedy algorithm is logn and
that no algorithm can do better. For temporary tasks (tasks that depart at unpre-
dictable times), the works of Azar, Broder, and Karlin [6] and Azar et al. [8] show
that there is an algorithm with competitive ratio Θ(

√
n) and that no algorithm can

do better.
It is interesting to compare these high competitive ratios, obtained from inputs

generated by an adversary, to the competitive ratio against randomly generated in-
puts. Our results show that under reasonable probabilistic assumptions the compet-
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itive ratios for both permanent and temporary tasks are significantly better. In the
case of permanent tasks, if the set of servers on which a task can be executed is a small
set (that is, constant size ≥ 2) chosen at random, the competitive ratio decreases from
Θ(logn) to Θ(log logn). In the case of temporary tasks, if we further assume that
at each time step a randomly chosen existent task is replaced by a new task, then at
any fixed time the ratio between the maximum on-line load and the maximum off-line
load is Θ(log logn) with high probability. Further details are presented in section 6.

2. Definitions and notation. We consider two stochastic processes: the finite
process and the infinite process.

The finite process. There are n boxes, initially empty, and m balls. Each ball
is allowed to go into d ≥ 1 boxes chosen independently and uniformly at random.
The balls arrive one by one, and a placement algorithm must decide on-line (that is,
without knowing what choices are available to future balls) in which box to put each
ball as it comes. Decisions are irrevocable. We will subsequently refer to this setup
as a (m,n, d)-problem.

The infinite process. There are n boxes, initially containing n balls in an ar-
bitrary state. (For example, all the balls could be in one box.) At each step, one
random ball is removed, and one new ball is added; the new ball is allowed to go into
d ≥ 1 boxes chosen independently and uniformly at random. Once again, a placement
algorithm must decide on-line (that is, without knowing what choices are available to
future balls and without knowing which ball will be removed at any future time) in
which box to put each arriving ball. Decisions are irrevocable.

We use the following notations for the random variables associated with a place-
ment algorithm A. Note that the state at time t refers to the state immediately after
the placement of the tth ball.

λAj (t) called the load of box j, is the number of balls in box j at time t, resulting
from algorithm A.

νAk (t) is the number of boxes that have load k at time t.
νA≥k(t) is the number of boxes that have load ≥ k at time t, that is, νA≥k(t) =∑

i≥k ν
A
i (t).

hAt called the height of ball t (= the ball that arrives at time t), is the number
of balls at time t in the box where ball t is placed. In other words, the first
ball to be placed in a particular box has height 1, the second ball has height
2, etc.

µAk (t) is the number of balls that have height k at time t.
µA≥k(t) is the number of balls that have height ≥ k at time t, that is, µA≥k(t) =∑

i≥k µ
A
i (t).

We omit the superscript A when it is clear which algorithm we are considering.
Constants were chosen for convenience, and we made no attempts to optimize them.

Algorithm greedy assigns ball j to the box that has the lowest load among the
d random choices that j has. We use the superscript G for greedy.

The basic intuition behind the proofs that follow is simple: Let pi = µ≥i/n.
Since the available choices for each ball are independent and ν≥i ≤ µ≥i, we roughly
have (“on average” and disregarding conditioning) pi+1 ≤ pdi , which implies a doubly
exponential decrease in pi, once µ≥i < n/2. Of course the truth is that µ≥i+1 is
strongly dependent on µ≥i and a rather complex machinery is required to construct
a correct proof.
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3. The finite process. We use the notation B(n, p) to denote a binomially
distributed random variable with parameters n and p, and start with the following
standard lemma, whose proof is omitted.

Lemma 3.1. Let X1, X2, . . . , Xn be a sequence of random variables with values in
an arbitrary domain, and let Y1, Y2, . . . , Yn be a sequence of binary random variables,
with the property that Yi = Yi(X1, . . . , Xi). If

Pr(Yi = 1 | X1, . . . , Xi−1) ≤ p,
then

Pr
(∑

Yi ≥ k
)
≤ Pr(B(n, p) ≥ k),

and similarly if

Pr(Yi = 1 | X1, . . . , Xi−1) ≥ p,
then

Pr
(∑

Yi ≤ k
)
≤ Pr(B(n, p) ≤ k).

We now turn to the analysis of the finite process. In what follows, we omit the
argument t when t = m, that is, when the process terminates. In the interest of a
clearer exposition, we start with the case m = n, although the general case (Theorem
3.7) subsumes it.

Theorem 3.2. The maximum load achieved by the greedy algorithm on a
random (n, n, d)-problem is less than ln lnn/ ln d+O(1) with high probability.

Proof. Since the d choices for a ball are independent, we have

Pr(ht ≥ i+ 1 | ν≥i(t− 1)) =

(
ν≥i(t− 1)

)d
nd

.

Let Ei be the event that ν≥i(n) ≤ βi where βi will be exposed later. (Clearly, Ei
implies that ν≥i(t) ≤ βi for t = 1, . . . , n.) Now fix i ≥ 1 and consider a series of
binary random variables Yt for t = 2, . . . , n, where

Yt = 1 iff ht ≥ i+ 1 and ν≥i(t− 1) ≤ βi.
(Yt is 1 if the height of the ball t is ≥ i+ 1 despite the fact that the number of boxes
that have load ≥ i is less than βi.)

Let ωj represent the choices available to the jth ball. Clearly,

Pr(Yt = 1 | ω1, . . . , ωt−1) ≤ βdi
nd

def
= pi.

Thus we can apply Lemma 3.1 to conclude that

Pr
(∑

Yt ≥ k
)
≤ Pr(B(n, pi) ≥ k).(3.1)

Observe that conditioned on Ei, we have µ≥i+1 =
∑
Yt. Therefore

Pr(µ≥i+1 ≥ k | Ei) = Pr
(∑

Yt ≥ k | Ei
)
≤ Pr (

∑
Yt ≥ k)

Pr(Ei) .(3.2)
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Combining (3.1) and (3.2) we obtain that

Pr(ν≥i+1 ≥ k | Ei) ≤ Pr(µ≥i+1 ≥ k | Ei) ≤ Pr(B(n, pi) ≥ k)

Pr(Ei) .(3.3)

We can bound large deviations in the binomial distribution with the formula (see,
for instance, [2, Appendix A])

Pr(B(n, pi) ≥ epin) ≤ e−pin,(3.4)

which inspires us to set

βi =



n, i = 1, 2, . . . , 5;

n

2e
, i = 6;

eβdi−1

nd−1
, i > 6.

With these choices E≥6 = {ν6 ≤ n/(2e)} holds with certainty, and from (3.3) and
(3.4), for i ≥ 6

Pr(¬Ei+1 | Ei) ≤ 1

n2Pr(Ei) ,

provided that pin ≥ 2 lnn. Since

Pr(¬Ei+1) ≤ Pr(¬Ei+1 | Ei)Pr(Ei) + Pr(¬Ei),
it follows that for pin ≥ 2 lnn

Pr(¬Ei+1) ≤ 1

n2
+ Pr(¬Ei).(3.5)

To finish the proof let i∗ be the smallest i such that βdi∗/n
d ≤ 2 lnn/n. Notice

that i∗ ≤ ln lnn/ ln d+O(1) since

βi+6 =
ne(di−1)/(d−1)

(2e)di
≤ n

2di
.

As before,

Pr(ν≥i∗+1 ≥ 6 lnn | Ei∗) ≤ Pr(B(n, 2 lnn/n) ≥ 6 lnn)

Pr(Ei∗) ≤ 1

n2Pr(Ei∗) ,

and thus

Pr(ν≥i∗+1 ≥ 6 lnn) ≤ 1

n2
+ Pr(¬Ei∗).(3.6)

Finally,

Pr(µ≥i∗+2 ≥ 1 | ν≥i∗+1 ≤ 6 lnn) ≤ Pr(B(n, (6 lnn/n)d) ≥ 1)

Pr(ν≥i∗+1 ≤ 6 lnn)

≤ n(6 lnn/n)d

Pr(ν≥i∗+1 ≤ 6 lnn)
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by the Markov inequality, and thus

Pr(µ≥i∗+2 ≥ 1) ≤ (6 lnn)d

nd−1
+ Pr(ν≥i∗+1 ≥ 6 lnn).(3.7)

Combining (3.7), (3.6), and (3.5), we obtain that

Pr(ν≥i∗+2 ≥ 1) ≤ (6 lnn)d

nd−1
+
i∗ + 1

n2
= o(1),

which implies that with high probability the maximum load achieved by greedy is
less than i∗ + 2 = ln lnn/ ln d+O(1).

We now prove a matching lower bound.
Theorem 3.3. The maximum load achieved by the greedy algorithm on a

random (n, n, d)-problem is at least ln lnn/ ln d−O(1) with high probability.
Proof. Let Fi be the event that ν≥i(n(1 − 1/2i)) ≥ γi where γi will be exposed

later. For the time being, it suffices to say that γi+1 < γi/2. We want to compute
Pr(¬Fi+1 | Fi). To this aim, for t in the range R = {n(1−1/2i)+1, . . . , n(1−1/2i+1)},
let Zt be defined by

Zt = 1 iff ht = i+ 1 or ν≥i+1(t− 1) ≥ γi+1,

and observe that while ν≥i+1(t− 1) < γi+1, if Zt = 1, then the box where the tth ball
is placed had load exactly i at time t− 1. This means that all the d choices that ball
t had pointed to boxes with load ≥ i and at least one choice pointed to a box with
load exactly i.

Now let ωj represent the choices available to the jth ball. Using

Pr(A ∨B | C) = Pr(A ∧ B̄ | C) + Pr(B | C)

= Pr(A | B̄ ∧ C)Pr(B̄ | C) + Pr(B | C) ≥ Pr(A | B̄ ∧ C),

and in view of the observation above, we derive that

Pr(Zt = 1 | ω1, . . . , ωt−1,Fi) ≥
(γi
n

)d
−
(γi+1

n

)d
≥ 1

2

(γi
n

)d def
= pi.(3.8)

Applying Lemma 3.1 we get

Pr

(∑
t∈R

Zt ≤ k
∣∣∣ Fi) ≤ Pr(B(n/2i+1, pi) ≤ k).

We now choose

γ0 = n;

γi+1 =
γdi

2i+3nd−1
=

n

2i+3

(γi
n

)d
=

1

2

n

2i+1
pi.

Since Pr(B(N, p) < Np/2) < e−Np/8 (see, for instance, [2, Appendix A]), it follows
that

Pr(B(n/2i+1, pi) ≤ γi+1) = o(1/n2),(3.9)

provided that pin/2
i+1 ≥ 17 lnn. Let i∗ be the largest integer for which this holds.

Clearly i∗ = ln lnn/ ln d−O(1).
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Now observe that by the definition of F and Zt, the event {∑t∈R Zt ≥ γi+1}
implies Fi+1. Thus in view of (3.8) and (3.9)

Pr(¬Fi+1 | Fi) ≤ Pr

(∑
t∈R

Zt ≤ γi+1

∣∣∣ Fi) = o(1/n2),

and therefore

Pr(Fi∗) ≥ Pr(Fi∗ | Fi∗−1)×Pr(Fi∗−1 | Fi∗−2)× · · · ×Pr(F1 | F0)×Pr(F0)

≥ (1− 1/n2)i
∗

= 1− o(1/n),

which completes the proof.
We now turn to showing that the greedy algorithm is stochastically optimal

under our model, that is, we assume that each ball has d destinations chosen uniformly
at random and that all balls have equal weight. (The optimality is not preserved if
either condition is violated.) It suffices to consider only deterministic algorithms
since randomized algorithms can be considered as a distribution over deterministic
algorithms.

We say that a vector v̄ = (v1, v2, . . . , vn) majorizes a vector ū, written v̄ � ū, if
for 1 ≤ i ≤ n, we have

∑
1≤j≤i vπ(j) ≥

∑
1≤j≤i uσ(j), where π and σ are permutations

of 1, . . . , n such that vπ(1) ≥ vπ(2) ≥ · · · ≥ vπ(n) and uσ(1) ≥ uσ(2) ≥ · · · ≥ uσ(n).
Lemma 3.4. Let v̄ and ū be two positive integer vectors such that v1 ≥ v2 ≥ · · · ≥

vn and u1 ≥ u2 ≥ · · · ≥ un. If v̄ � ū then also v̄+ ēi � ū+ ēi, where ēi is the ith unit
vector, that is ēi,j = δi,j.

Proof. Let Sj(x̄) be the sum of the j largest components of the vector x̄. Notice
first that for all j

Sj(x̄) ≤ Sj(x̄+ ēi) ≤ Sj(x̄) + 1.(3.10)

By hypothesis, for all j, we have Sj(v̄) ≥ Sj(ū). To prove the lemma we show that
for all j, we also have Sj(v̄ + ēi) ≥ Sj(ū + ēi). Fix j. By (3.10) if Sj(v̄) > Sj(ū),
then Sj(v̄ + ēi) ≥ Sj(ū + ēi). Now assume Sj(v̄) = Sj(ū). There are three cases to
consider:

Case 1. i ≤ j. Then

Sj(v̄ + ēi) = Sj(v̄) + 1 = Sj(ū) + 1 = Sj(ū+ ēi).

Case 2. i > j and uj > ui. Since uj ≥ ui + 1, it follows that Sj(ū) = Sj(ū + ēi)
and therefore

Sj(v̄ + ēi) ≥ Sj(v̄) = Sj(ū) = Sj(ū+ ēi).

Case 3. i > j and uj = uj+1 = · · · = ui. Observe first that since Sj−1(v̄) ≥
Sj−1(ū), Sj(v̄) = Sj(ū), and Sj+1(v̄) ≥ Sj+1(ū), we have

vj ≤ uj and vj+1 ≥ uj+1.

Hence

vj ≥ vj+1 ≥ uj+1 = uj ≥ vj .



188 Y. AZAR, A. Z. BRODER, A. R. KARLIN, AND E. UPFAL

We conclude that vj = uj = vj+1 = uj+1, and thus Sj+1(v̄) = Sj+1(ū). Repeating
the argument, we obtain that

vj = uj = vj+1 = uj+1 = · · · = vi = ui,

and therefore

Sj(v̄ + ēi) = Sj(v̄) + 1 = Sj(ū) + 1 = Sj(ū+ ēi).

Let Ω be the set of all possible nd choices for each ball and Ωt be the set of
sequences of choices for the first t balls.

Theorem 3.5. For any on-line deterministic algorithm A, and t ≥ 0, there is
1-1 correspondence f : Ωt → Ωt such that for any ωt ∈ Ωt the vector of box loads
associated with greedy acting on ωt, written

λ̄G(ωt) = (λG1 (ωt), λ
G
2 (ωt), . . . , λ

G
n (ωt)),

is majorized by the vector of box loads associated with A acting on f(ωt), that is

λ̄G(ωt) � λ̄A(f(ωt)).

Proof. To simplify notation we assume d = 2. The proof for larger d is analogous.
The proof proceeds by induction on t, the length of the sequence. The base case
(t = 0) is obvious. Assume the theorem valid for t and let ft be the mapping on
Ωt. Fix a sequence ωt ∈ Ωt. It suffices to show that we can refine ft to obtain a
1-1 correspondence for all possible 1-step extensions of ωt. Without loss of generality,
renumber the boxes such that

λG1 (ωt) ≥ λG2 (ωt) ≥ · · · ≥ λGn (ωt),

and let π be a permutation of 1, . . . , n such that

λAπ(1)(ft(ωt)) ≥ λAπ(2)(ft(ωt)) ≥ · · · ≥ λAπ(n)(ft(ωt)).

Let (i, j) be two choices for the t+ 1 ball. For every i, j we define

ft+1(ωt � (i, j)) = ft(ωt) � (π(i), π(j)),

where “�” represents extension of sequences.
Clearly ft+1 is 1-1. We need to show that

λ̄G(ωt � (i, j)) � λ̄A(ft(ωt) � (π(i), π(j))
)
.

Notice that when the sequence ωt is extended by the step (i, j) for any algorithm,
exactly one component of the vector λ̄(ωt) changes, namely either λi(ωt) or λj(ωt)
increases by one. Assume that i ≥ j; then

λ̄G(ωt � (i, j)) = λ̄G(ωt) + ēi � λ̄A(ft(ωt)) + ēπ(i) � λ̄A
(
ft(ωt) � (π(i), π(j))

)
,

where the first inequality follows from Lemma 3.4 and the second is due to the fact
that

λ̄A(ft(ωt)) + ēπ(i) � λ̄A(ft(ωt)) + ēπ(j).
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Corollary 3.6. For any fixed k and any t

Pr(max
i
λAi (t) > k) ≥ Pr(max

i
λGi (t) > k).

We are now ready to discuss the general case of the finite process.
Theorem 3.7. The maximum load achieved by the greedy algorithm on a

random (m,n, d)-problem, with d ≥ 2 and m ≥ n, is, with high probability, less than
(1 + o(1)) ln lnn/ ln d+O(m/n).

Proof. We start by replaying the proof of Theorem 3.2, taking into account the
fact that there are now m balls. So let Ei be the event that ν≥i(m) ≤ βi, and define
pi = βdi /n

d. Following the proof of Theorem 3.2 we derive that

Pr(ν≥i+1 ≥ k | Ei) ≤ Pr(B(m, pi) ≥ k)

Pr(Ei) .

Suppose that for some value x we set βx = n2/(2em) and show that Ex holds with
high probability, that is,

Pr

(
νx ≥ n2

2em

)
= o(1).(3.11)

Then

βi+x =
n

2di

(me
n

)(di−1)/(d−1)−di
≤ n

2di
,

and continuing as before, we obtain that

Pr(µ ≥ x+ ln lnn/ ln d+ 2) = o(1).

It remains to be shown that x can be taken to be O(m/n) + o(ln lnn/ ln d). First
assume that m/n ≥ w(n) where w(n) is an increasing function of n, but w(n) =
o(ln lnn/ ln d). Then we claim that we can take x = dem/ne.

Consider a placement algorithm, denoted R, that always puts a ball in the box
corresponding to the first choice offered. This is entirely equivalent with the case
d = 1, the classical occupancy problem. The load within a box under this process is
a binomial random variable B(m, 1/n), and therefore (via (3.4)), the probability that
the load within a box exceeds em/n is bounded by e−m/n. Now consider the height
of the tth ball, denoted hRt . The probability that the box into which the tth ball is
placed has load greater than em/n is less than e−m/n, and therefore the expected
number of balls of height ≥ em/n satisfies

E(µR≥em/n) ≤ me−m/n.
Hence by Markov’s inequality

Pr

(
µR≥em/n ≥

n2

2em

)
≤ 2em2

n2
e−m/n = o(1),

since m/n→∞.
We claim that Theorem 3.5 implies

Pr
(
µG≥k ≥ r

)≤ Pr
(
µR≥k ≥ r

)
.(3.12)
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Indeed, suppose that there is an outcome ωt for which greedy has exactly i boxes
with load greater than or equal to k. As in the proof of Theorem 3.5, renumber the
boxes such that

λG1 (ωt) ≥ λG2 (ωt) ≥ · · · ≥ λGn (ωt).

Let ft(ωt) be the corresponding outcome for algorithm R and let π be a permutation
of 1, . . . , n such that

λRπ(1)(ft(ωt)) ≥ λRπ(2)(ft(ωt)) ≥ · · · ≥ λRπ(n)(ft(ωt)).

Then

µG≥k(ωt) =
∑

1≤j≤i
(λGj (ωt)− (k − 1))

and

µR≥k(ft(ωt)) ≥
∑

1≤j≤i
(λRπ(j)(ft(ωt))− (k − 1)).

But Theorem 3.5 implies that∑
1≤j≤i

λRj (f(ωt)) ≥
∑

1≤j≤i
λGj (ωt),

and by considering all outcomes we obtain (3.12). Therefore,

Pr

(
µG≥em/n ≥

n2

2em

)
≤ Pr

(
µR≥em/n ≥

n2

2em

)
,

and since

Pr

(
νG≥em/n ≥

n2

2em

)
≤ Pr

(
µG≥em/n ≥

n2

2em

)
,

we have that for x = dem/ne (3.11) is satisfied.
To remove the assumption m/n ≥ w(n), we can simply imagine that the number

of balls is increased to max(m,nw(n)). Then the corresponding value of x becomes
O(max(m,nw(n))/n) = O(m/n) + o(ln lnn/ ln d).

4. The infinite process. In this section we consider the infinite process. Anal-
ogously to Theorem 3.5 it is possible to show that the greedy algorithm minimizes
the expected maximum load on any box. We analyze its performance below. The
main theorem of this section is the following.

Theorem 4.1. Assume that the infinite process starts in an arbitrary state. Un-
der greedy, with d ≥ 2, there is a constant c such that for any fixed T ≥ cn2 log logn,

Pr(∃j, λj(T ) ≥ ln lnn/ ln d+O(1)) = o(1).

Thus in the stationary distribution the maximum load is ln lnn/ ln d+O(1) with high
probability.

Proof. For simplicity of presentation we state and prove the results only for d = 2.
The proof assumes that at time T − cn2 log logn the process is in an arbitrary state
and therefore we can let T = cn2 log logn with no loss of generality.
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By the definition of the process, the number of balls of height at least i cannot
change by more than 1 in a time step, that is |µ≥i(t+ 1)− µ≥i(t)| ≤ 1. The random
variable µ≥i(t) can be viewed as a random walk on the integers l, 0 ≤ l ≤ n. The
proof is based on bounding the maximum values taken by the variables µ≥i(t) by
studying the underlying process.

We define an integer i∗ and a decreasing sequence αi, for 200 ≤ i ≤ i∗ + 1 as
follows:

α200 =
n

200
,

αi =
100α2

i−1

n
for i > 200 and αi−1 ≥

√
n log2 n,

αi∗ = 100 log2 n, i∗ = the smallest i for which

αi−1 <
√
n log2 n,

αi∗+1 = 100.

Clearly i∗ ≤ ln lnn/ ln 2 +O(1). For future reference, observe also that for 200 < i ≤
i∗ + 1

αi ≥
100α2

i−1

n
.(4.1)

We also define an increasing sequence of times: t200 = 0 and ti = ti−1 + n2 for
i > 200. Thus ti∗+1 = O(n2 log logn) = O(T ).

Let {µ≥i[t−, t+] ≤ α} denote the event that µ≥i(t) ≤ α for all t, such that
t− < t ≤ t+, and similarly, let {µ≥i[t−, t+] > α} denote the event that µ≥i(t) > α for
all t, such that t− < t ≤ t+. We define the events Ci as follows:

C200 = {ν≥200[t200, T ] ≤ 2α200} ≡ {ν≥200[0, T ] ≤ n/100};
Ci = {µ≥i[ti, T ] ≤ 2αi} for i > 200.

Note that C200 always holds, and for i > 200, the event C− i implies that ν≥i[ti, T ] ≤
2αi.

We shall prove inductively that for all i = 200, . . . , i∗ + 1

Pr(¬Ci) ≤ 2i

n2
.(4.2)

This implies that the event {µ≥i∗+1[ti∗+1, T ] ≤ 200} occurs with probability 1− o(1),
and therefore with high probability, for every j, λj(T ) ≤ i∗+201 = ln lnn/ ln 2+O(1),
which completes the proof of the main part of the theorem.

Finally, we show that in the stationary distribution

Pr(∀j, λj ≤ log logn+O(1)) = 1− o(1).

Indeed, let S be the set of states such that for all j, λj(t) ≤ log logn+O(1). Let s(t)
be the state of the chain at time t. Then the previous observation implies that

Pr(s(t+ T ) /∈ S | s(t)) = o(1).

Let π be the stationary distribution; then∑
i/∈S

πi =
∑
j

Pr(s(t+ T ) /∈ S | s(t) = j) · πj =
∑
j

πjo(1) = o(1),
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which completes the proof of the theorem assuming (4.2). To prove it, we show that
conditioned on Ci−1:

a. With high probability µ≥i(t) becomes less than αi before time ti. (This is
shown in Lemma 4.2.)

b. If µ≥i(t) becomes less than αi at any time before T , from then until T , with
high probability, it does not become larger than 2αi. (This is shown in Lemma
4.3.)

The two facts above imply that if Ci−1 holds, then with high probability µ≥i[ti, T ] ≤
2αi, that is, Ci holds as well.

Base case. The base case is straightforward since Pr(¬C200) = Pr(¬{ν≥200[0, T ] ≤
n/100}) = 0.

Induction. Suppose that

Pr(¬Ci−1) ≤ 2(i− 1)

n2
,(4.3)

where 200 < i ≤ i∗ + 1.
Let s(t) be the state at time t. It is easy to verify the following bounds on the

underlying transition probabilities. For any t,

Pr(µ≥i(t+ 1) > µ≥i(t) | s(t)) ≤
(
ν≥(i−1)(t)

n

)2

≤
(
µ≥(i−1)(t)

n

)2

(4.4)

and

Pr(µ≥i(t+ 1) < µ≥i(t) | s(t)) ≥ µ≥i(t)
n

(
1−

(
ν≥(i−1)(t)

n

)2
)
≥ µ≥i(t)

2n
.(4.5)

From (4.4) and (4.5) we obtain that the transition probabilities satisfy

Pr(µ≥i(t+ 1) > µ≥i(t) | µ≥i−1(t) ≤ 2αi−1)≤
(

2αi−1

n

)2
def
= q+

i

and

Pr(µ≥i(t+ 1) < µ≥i(t) | µ≥i(t) ≥ αi) ≥ αi
2n

def
= q−i .

Thus in view of (4.1)

q+
i ≤

αi
25n

.

We define two new binary random variables for 0 < t ≤ T as follows:

Xt = 1 iff µ≥i(t) > µ≥i(t− 1) and µ≥i−1(t− 1) ≤ 2αi−1,

and

Yt = 1 iff µ≥i(t) < µ≥i(t− 1) or µ≥i(t− 1) ≤ αi.
Clearly

Pr(Xt = 1) ≤ q+
i and Pr(Yt = 1) ≥ q−i .(4.6)
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We also define Fi to be the event

Fi
def
= {∃t∗ ∈ [ti−1, ti] s.t. µ≥i(t∗) ≤ αi};

thus ¬Fi is the event

¬Fi = {µ≥i[ti−1, ti] > αi}.

Two lemmas are necessary in order to conclude that Pr(¬Ci) ≤ 2i/n2.
Lemma 4.2. Under the inductive hypothesis

Pr(¬Fi | Ci−1) ≤ 1

n2
.

Proof. Notice that conditioned on Ci−1, the sum
∑
t∈[ti−1,ti]

Xt is the number of

times µ≥i(t) increased in the interval [ti−1, ti]; similarly, if within this interval µ≥i
did not become less than αi, then

∑
t∈[ti−1,ti]

Yt equals the number of times µ≥i(t)
decreased in this interval. We conclude that

Pr(¬Fi | Ci−1) ≤ Pr

( ∑
t∈[ti−1,ti]

Yt −
∑

t∈[ti−1,ti]

Xt ≤ n
∣∣∣ Ci−1

)

≤ 1

Pr(Ci−1)
Pr

( ∑
t∈[ti−1,ti]

Yt −
∑

t∈[ti−1,ti]

Xt ≤ n
)
.

In view of (4.6) and Lemma 3.1, Chernoff-type bounds imply that for every i ≤
i∗ + 1

Pr

( ∑
t∈[ti−1,ti]

Xt > 2n2q+
i

)
≤ Pr

(
B(n2, q+

i ) ≥ 2n2q+
i

) ≤ e−Ω(n2q+
i

) = o(1/nc)

and

Pr

( ∑
t∈[ti−1,ti]

Yt <
1
2n

2q−i

)
≤ Pr

(
B(n2, q−i ) ≤ 1

2n
2q−i

) ≤ e−Ω(n2q−
i

) = o(1/nc)

for any constant c. On the other hand, in view of (4.1),

1

2
n2q−i − 2n2q+

i ≥
1

4
nαi − 2

25
nαi ≥ nαi

10
≥ n,

and therefore we conclude that

Pr(¬Fi | Ci−1) ≤ 1

ncPr(Ci−1)

for any constant c. Taking c = 3 and using the inductive hypothesis on Ci−1 (4.3)
completes the proof.

Lemma 4.3. Under the inductive hypothesis

Pr(¬Ci | Ci−1, Fi) ≤ 1

n2
.
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Proof. Since Pr(A | B ∧ C) ≤ Pr(A ∧B|C) we get that

Pr(¬Ci | Ci−1, Fi)

≤ Pr(¬Ci ∧ Fi | Ci−1)

≤ Pr(∃t1, t2 ∈ [ti−1, T ]

s.t. µ≥i(t1) = αi, µ≥i(t2) = 2αi, µ≥i[t1, t2] ≥ αi | Ci−1)

≤
∑

ti−1≤t1<t2≤T
Pr(µ≥i(t1) = αi, µ≥i(t2) = 2αi, µ≥i[t1, t2] ≥ αi | Ci−1)

≤
∑

ti−1≤t1<t2≤T
Pr

( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi | Ci−1

)

≤ 1

Pr(Ci−1)

∑
ti−1≤t1<t2≤T

Pr(
∑

t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi).

Fix t1 and t2 and let ∆ = t2 − t1. We now consider four cases.
A. ∆ ≤ n and i ≤ i∗:

Pr
( ∑
t∈[t1,t2]

Xt ≥ αi
)
≤
(

∆

αi

)
(q+)αi ≤

(
e∆

αi
· αi

25n

)αi
≤ n−100.

B. ∆ ≤ n logn and i = i∗ + 1:

Pr
( ∑
t∈[t1,t2]

Xt ≥ αi∗+1

)
≤
(

∆

αi∗+1

)
(q+)αi∗+1 ≤

(
e∆

αi∗+1
· 4α2

i∗

n2

)αi∗+1

≤
(
en logn

100
· 4 · 1002 log2 n

n2

)100

≤ n−100.

C. ∆ ≥ n and i ≤ i∗: Again using large deviation bounds and the fact that
αi∆ ≥ 100 logn we obtain that

Pr

( ∑
t∈[t1,t2]

Yt ≤ 1

2
q−∆

)
≤ e−q−∆/8 = e−αi∆/(16n) ≤ n−6.1

and that

Pr

( ∑
t∈[t1,t2]

Xt ≥ 1

2
q−∆

)
≤
(

2eq+∆

q−∆

)q−∆/2

≤
(

4e

25

)αi∆/(4n)

≤ n−25.

D. ∆ ≥ n logn and i = i∗ + 1: We use the same proof as case C using the fact
that αi∗+1∆ ≥ 100 logn.
Thus in all four cases,

Pr

( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi
)
≤ 1

n6.1
,



BALANCED ALLOCATIONS 195

therefore, under the induction hypothesis,

1

Pr(Ci−1)

∑
ti−1≤t1<t2≤T

Pr
( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi
)
≤ 2T 2

n6.1
≤ 1

n2
.

Returning to the proof of (4.2), by using the induction hypothesis, Lemmas 4.2
and 4.3, and the law of total probability, we can complete the induction as follows:

Pr(¬Ci) = Pr(¬Ci | Ci−1) ·Pr(Ci−1)

+ Pr(¬Ci | ¬Ci−1) ·Pr(¬Ci−1) Now apply IH

≤ Pr(¬Ci | Ci−1) + 2(i− 1)/n2

= Pr(¬Ci | Ci−1, Fi) ·Pr(Fi | Ci−1) Now apply Lemma 4.3

+ Pr(¬Ci | Ci−1,¬Fi) ·Pr(¬Fi | Ci−1) Now apply Lemma 4.2

+ 2(i− 1)/n2

≤ 1/n2 + 1/n2 + 2(i− 1)/n2 = 2i/n2.

5. Hashing. We define a simple hashing algorithm, called 2-way chaining, by
analogy with the popular direct chaining method. We use two random hash functions.
For each key, the two hash functions define two indices in a table. Each table location
contains a pointer to a linked list. When a new key arrives, we compare the current
length of the two lists associated to the key, and the key is inserted at the end of the
shortest list. (The direct chaining method corresponds to having only one associated
random index.)

For searching, the two hash values are computed, and two linked lists are searched
in alternate order. (That is, after checking the ith element of the first list, we check
the ith element of the second list, then element i+1 of the first list, and so on.) When
the shorter list is exhausted, we continue searching the longer list until it is exhausted
as well. (In fact, if no deletions are allowed, we can stop after checking only one more
element in the longer list. For the analysis below, this is immaterial.)

Assume that n keys are sequentially inserted by this process to a table of size n.
Theorem 1.1 analysis implies that with high probability the maximum access time,
which is bounded by twice the length of the longest list, is 2 lnn lnn/ ln 2 + O(1),
versus the Θ(logn/ log logn) time when one random hash function is used. More
generally, if m keys are stored in the table with d hash functions, then the maximum
access time under this scheme is 2(1 + o(1)) ln lnn/ ln d+ Θ(m/n).

Next we show that the average access time of 2-way chaining is no more than
twice the average access time of the standard direct chaining method. As customary,
we discuss the average access time separately for successful searches and unsuccessful
searches. The latter, denoted C′G, is bounded by twice the expected cost of checking
a list chosen uniformly at random. Therefore

C ′G(m,n) ≤ 2 +
2m

n
.

For successful searches, the cost CG, is given by

CG(m,n) ≤ 2

m

∑
1≤i≤m

hi =
2

m

∑
1≤j≤n

(
λj + 1

2

)
,
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where all the notations are as in section 2. Since we know that νk eventually decreases
doubly exponentially, we can bound CG via the inequality

CG(m,n) ≤ 2

m

∑
k>0

kν≥k.

However, we can achieve better bounds, using the majorization Theorem 3.5. We
start from the following.

Lemma 5.1. Let v̄ = (v1, v2, . . . , vn) and ū = (u1, v2, . . . , un) be two positive
integer vectors. If v̄ � ū, then ∑

1≤i≤n
v2
i ≥

∑
1≤i≤n

u2
i .

This lemma is a special case of a well-known theorem from majorization (see, e.g.,
[22]), but for completeness we present a proof.

Proof. Let x̄ be a n-vector and let (x̄, ū) denote the inner product of x̄ and ū.
Consider the linear program

Maximize (x̄, ū) subject to x̄ � v̄ and x̄ ≥ 0.

It is easy to check that x̄ = ū is a feasible point and that the optimal solution is x̄ = v̄.
Hence (ū, ū) ≤ (v̄, ū). Now consider the same program with the objective function
(x̄, v̄). Then again x̄ = ū is a feasible point and the optimal solution is x̄ = v̄. Hence
(ū, ū) ≤ (ū, v̄) ≤ (v̄, v̄).

Consider now the standard direct chaining method. In our terminology it corre-
sponds to the random placement algorithm R and it therefore majorizes G. It is well
known that the cost for successful search for direct chaining is [19, Ex. 6.4.34]

CR(m,n) =
1

m

∑
1≤j≤n

(
λRj + 1

2

)
= 1 +

m− 1

2n
.

Applying the lemma above we obtain that the cost of successful search in 2-way
chaining satisfies

CG(m,n) ≤ 2 +
m− 1

n
.

6. Competitive on-line load balancing.

6.1. Preliminaries. The on-line load balancing problem is defined as follows.
Let M be a set of servers (or machines) that is supposed to run a set of tasks that
arrive and depart in time. Each task j has associated with it a weight, or load,
w(j) ≥ 0, an arrival time τ(j), and a set M(j) ⊂ M of servers capable of running
it. We distinguish among two variants of this problem: the case of permanent tasks,
tasks that arrive but never depart, and the case of temporary tasks, tasks that depart
the system at a time unknown in advance.

As soon as each task arrives, it must be assigned to exactly one of the servers
capable of running it, and once assigned, it can not be transferred to a different server.
The assigned server starts to run the task immediately, and continues to run it until
the task departs.
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When task j arrives, an assignment algorithm must select a server i ∈M(j), and
assign task j to it.

The load on server i at time t, denoted LAi (t), is the sum of the weights of all the
tasks running on server i at time t under assignment algorithm A.

Let σ be a sequence of task arrivals and departures, and let |σ| be the time of the
last arrival. Then the cost, CA(σ), of an assignment algorithm A on the sequence σ
is defined as

CA(σ) = max
0≤t≤|σ|;i∈M

LAi (t).

An on-line assignment algorithm must assign an arriving task j at time τ(j)
to a server in M(j) knowing only w(j), M(j), and the past and current state of
the servers—the decision is made without any knowledge about future arrivals or
departures. The optimal off-line assignment algorithm, denoted opt, assigns arriving
tasks knowing the entire sequence of task arrivals and departures and does so in a
way that minimizes cost.

The worst-case behavior of an on-line algorithm A is characterized by the compet-
itive ratio, defined as the supremum over all sequences σ of the ratio CA(σ)/Copt(σ).

To characterize the average behavior of A, let CA(P) (resp., Copt(P)) be the
expected cost of algorithm A (resp., opt) on sequences σ generated by the distribution
P. The competitive ratio of an on-line algorithm, A against distribution P, is defined
as the ratio CA(P)/Copt(P).

Finally, the greedy algorithm is formally defined as follows.

Algorithm greedy. Upon arrival of a task j, assign it to the server in M(j)
with the current minimum load (ties are broken arbitrarily).

6.1.1. Permanent tasks. For permanent tasks, Azar, Naor, and Rom [9] have
shown that the competitive ratio of the greedy algorithm is Θ(logn) and that no
algorithm can do better.

To bring this problem into our framework, we present our results for the case
where for each task j the set of servers that can run it, M(j), consists of d ≥ 2 servers
chosen uniformly at random (with replacement), the number of requests |σ| equals n,
and all weights are equal. Let Pd be the associated probability distribution on request
sequences.

Lemma 6.1. With probability 1−O(1/n), Copt(Pd) = O(1).

Proof. We show that with high probability there is an assignment with cost 10
for the case d = 2. A fortiori the result is true for d > 2.

The problem can be reduced to showing that in a random n-by-n bipartite graph
(U, V,E) where each node in U has two random edges to V , there is an assignment
of value 10. Arbitrarily break U into 10 pieces of size n/10 each. We show that each
of these pieces contains a perfect matching. By Hall’s theorem, the probability that
there is no such assignment is bounded by the probability that there is a set of size
k in one of the pieces of U whose neighborhood has size less than k. Ipso facto, this
probability is at most

10
∑

k≤n/10

(
n

k − 1

)(
n/10

k

)((
k − 1

n

)2
)k

.
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Using standard approximations to the binomial coefficients, this is at most

10
∑

k≤n/10

(
en

k − 1

)k−1 ( en
10k

)k((k − 1

n

)2
)k

.

Finally, rewriting and simplifying yield

10

n

∑
k≤n/10

k − 1

e

(
e2n2(k − 1)2

10k(k − 1)n2

)k
=

10

n

∑
k≤n/10

k − 1

e

(
e2

10

)k
= O

(
1

n

)
.

(A more delicate analysis [15] shows that the maximum load achieved by the
off-line case is 2 with high probability, for d ≥ 2 and m ≤ 1.6n.)

Lemma 6.2. With high probability, Cgreedy(Pd) = O(log logn/ log d)
Proof. The proof follows immediately from Theorem 3.2.
Thus, we obtain the following theorem.
Theorem 6.3. The competitive ratio of the greedy algorithm against the dis-

tribution Pd is O(log logn/ log d), and no algorithm can do better.
Proof. The proof follows from Lemmas 6.1 and 6.2 and Corollary 3.6.

6.1.2. Temporary tasks. For temporary tasks, the results of Azar, Broder,
and Karlin [6] and Azar et al. [8] showed that there is an algorithm with competitive
ratio Θ(

√
n) and that no algorithm can do better.

It is difficult to construct a natural distribution of task arrivals and departures.
As an approximation, we consider the following stochastic process S: First, n tasks
arrive; for each task, the set of servers that can run it consists of d ≥ 2 servers
chosen uniformly at random (with replacement). Then the following repeats forever:
a random task among those present departs and a random task arrives, which again
may be served by any one of d random servers. Clearly, in such an infinite sequence,
eventually there will be n tasks which can only be served by one server, and so for
trivial reasons the competitive ratio for long enough sequences is 1. However, we can
state a competitiveness result in the following way:

Theorem 6.4. Let LA[t] be the maximum load on any server at time t, for tasks
arriving according to the stochastic process S, and assigned using algorithm A, that
is, LA[t] = maxi∈M LAi (t). Then for any fixed t > 0, with high probability,

Lgreedy[t]

Lopt[t]
= O(log logn).

Proof. The proof follows from Lemma 6.1 and Theorem 4.1.

7. Experimental results. The bound proven in Theorem 3.2 for the O(1) term
in the formula for the upper bound on the maximum load is rather weak (≈ 8), so
it might be the case that for practical values of n, the constant term dominates the
ln lnn/ ln d term. However, experiments seem to indicate that this is not the case,
and in fact even for small values of n, the maximum load achieved with d = 2 is
substantially smaller than the maximum load achieved with d = 1. For the values
we considered, 256 ≤ n ≤ 16777216, increasing d beyond 2 has only limited further
effect. For each value of n and d we ran 100 experiments. The results are summarized
in Table 7.1.
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Table 7.1
Experimental maximum load (m = n).

n d = 1 d = 2 d = 3 d = 4

28

3 . . . . . . 1%
4 . . . . . . 40%
5 . . . . . . 41%
6 . . . . . . 15%
7 . . . . . . 3%

2 . . . . . . 10%
3 . . . . . . 90%

2 . . . . . . 84%
3 . . . . . . 16%

2 . . . . . . 99%
3 . . . . . . 1%

212

5 . . . . . . 12%
6 . . . . . . 66%
7 . . . . . . 17%
8 . . . . . . 4%
9 . . . . . . 1%

3 . . . . . . 99%
4 . . . . . . 1%

2 . . . . . . 12%
3 . . . . . . 88%

2 . . . . . . 91%
3 . . . . . . 9%

216
7 . . . . . . 48%
8 . . . . . . 43%
9 . . . . . . 9%

3 . . . . . . 64%
4 . . . . . . 36%

3 . . . . . . 100%
2 . . . . . . 23%
3 . . . . . . 77%

220

8 . . . . . . 28%
9 . . . . . . 61%

10 . . . . . . 10%
13 . . . . . . 1%

4 . . . . . . 100% 3 . . . . . . 100% 3 . . . . . . 100%

224

9 . . . . . . 12%
10 . . . . . . 73%
11 . . . . . . 13%
12 . . . . . . 2%

4 . . . . . . 100% 3 . . . . . . 100% 3 . . . . . . 100%
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