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Abstract

Prefetching and caching are e�ective techniques for improv-
ing the performance of �le systems, but they have not been
studied in an integrated fashion. This paper proposes four
properties that optimal integrated strategies for prefetch-
ing and caching must satisfy, and then presents and studies
two such integrated strategies, called aggressive and conser-
vative. We prove that the performance of the conservative
approach is within a factor of two of optimal and that the
performance of the aggressive strategy is a factor signi�-
cantly less than twice that of the optimal case. We have
evaluated these two approaches by trace-driven simulation
with a collection of �le access traces. Our results show that
the two integrated prefetching and caching strategies are in-
deed close to optimal and that these strategies can reduce
the running time of applications by up to 50%.

1 Introduction

Prefetching and caching are two known approaches for im-
proving the performance of �le systems. Although they have
been studied extensively, most studies on prefetching have
been conducted in the absence of caching or for a �xed
caching strategy. The interaction between prefetching and
caching is not well understood.

The main complication is that prefetching �le blocks into
a cache can be harmful even if the blocks will be accessed
in the near future. This is because a cache block needs to
be reserved for the block being prefetched at the time the
prefetch is initiated. The reservation of a cache block re-
quires performing a cache block replacement earlier than it
would otherwise have been done. Making the decision ear-
lier may hurt peformance because new and possibly better
replacement opportunities open up as the program proceeds.

1.1 An Example

Consider a program that references blocks according to the
pattern \ABCA". Assume that the �le cache holds two blocks,
that fetching a block takes four time units, and that A and
B are initially in the cache.

As shown in Figure 1, a no-prefetch policy (using the
optimal o�ine algorithm) would hit on the �rst two refer-
ences, then miss on the reference to C, discarding B, and
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�nally hit on A. The execution time of the no-prefetch pol-
icy would therefore be eight time units (one for each of the
four references, plus four units for the miss.)

By contrast, as Figure 2 shows, a policy that prefetches
whenever possible (while making optimal replacement choices)
takes ten time units to execute this sequence. After the �rst
successful access to A, a prefetch of C is initiated, discarding
A. This prefetch hides one unit of the fetch latency, so the
access to C stalls for only three cycles. Once C arrives in
memory, the algorithm initiates another prefetch, bringing
in A and discarding B, while accessing C. The next reference,
to A, stalls for three time units, waiting for the prefetch of
A to complete. This algorithm uses ten time units, one for
each of the four references, plus two stalls of three time units
each.

This example illustrates that aggressive prefetching is
not always bene�cial. The no-prefetch policy fetched one
block, while the aggressive prefetching algorithm fetched
two. The price of performing an extra fetch outweighs the
latency-hiding bene�t of prefetching in this case. On the
other hand, prefetching might have been bene�cial under
slightly di�erent circumstances. If the reference stream had
been \ABCB" instead of \ABCA", then aggressive prefetch-
ing would have outperformed the no-prefetch policy. Thus
we see that aggressive prefetching is a double-edged sword:
it hides fetch latency, but it may increase the number of
fetches.

This paper takes a �rst step towards an understanding
of the answer to a basic question: given detailed information
about �le accesses, what is the optimal combined prefetch-
ing and caching strategy? We begin by describing four fun-
damental properties that any optimal strategy must satisfy.
We then present two simple strategies with these properties:
aggressive and conservative. We show that for any sequence
of �le-block accesses, the elapsed time of the conservative
strategy is within a factor of two of the elapsed time of the
optimal prefetching schedule, and that this bound is tight.
For aggressive, we are able to show a stronger performance
bound, which depends on parameters of the speci�c sys-
tem, such as the relative cost of fetching a block, and size
of the cache. For typical values of these parameters, we
show that the elapsed time of aggressive is within a factor
signi�cantly less than twice that of the optimal prefetching
schedule. This bound is also tight.

We have evaluated these two strategies by trace-driven
simulations with a collection of �le access traces. We have
compared these strategies with existing approaches. Our
simulation results show that the performance of these two
approaches is better than any existing approach, and is in-
deed close to optimal. Our two policies reduce running time
by up to 50% compared to conventional �le systems.

2 Basics of Prefetching and Caching

In this section, we explain our model on an intuitive level,
and describe four rules that an optimal policy must follow.
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Figure 1: Example under no-prefetch policy. Eight time units are required. The �rst two references, to A and B hit; the next
reference, to C, stalls for four time units while C is fetched and B is discarded. The �nal reference, to A, hits.

2.1 Model De�nition

We consider the execution of a program that makes a known
sequence (r1; r2; : : : ; rn) of references to data blocks. The
program executes one reference per time unit. The cache
can hold k blocks, where k < n. If a reference hits in the
cache, it can be satis�ed immediately; otherwise, the missed
block has to be fetched from the backing store.

The system can either fetch a block in response to a
cache miss (on-demand fetch), or it can fetch a block before
it is referenced in anticipation of a miss (prefetch). It takes F
time units to fetch a block from backing store into cache. At
most one fetch can be in progress at any given time. When
a fetch is initiated, some block must be discarded from the
cache to make room for the incoming block; while the fetch
is in progress, neither the incoming block nor the discarded
block is available for access.

When the program tries to access a block that is not
available in the cache, it stalls until the block arrives in the
cache. The stall time is either F if the block is fetched on-
demand, or F � i if the fetch was started i time units ago.
The total elapsed time for a reference string is the total
reference time (or the number of references) plus the sum of
stall times.

The goal of a prefetching and caching policy is to make
the decisions

� when to fetch a block from disk;

� which block to fetch;

� which block to replace when the fetch is initiated;

so that the total elapsed time is minimized.
Clearly, this models a system with one disk or �le server,

and it considers only read references. The time unit mod-
els the fact that there is generally CPU time spent between
two consecutive �le references | the CPU time includes the
time to copy the accessed �le data from kernel address space
to user address space bu�er, and the time for the applica-
tion to consume the �le data. The model simpli�es the real
situation by assuming that the CPU time between every two
�le references (called \reference time") is the same, and is
called one time-unit. As we show later in our simulations,
this simpli�cation still approximates real systems reasonably
well.

We should emphasize: our goal is to �nd a simple near-
optimal o�-line policy for prefetching and caching that min-
imizes the total elapsed time of a known sequence of refer-
ences.

2.2 Four Rules for Optimal Prefetching and Caching

This subsection presents four rules that an optimal prefetch-
ing and caching strategy must follow. These rules are manda-
tory, in the sense that any algorithm can easily be trans-
formed into another algorithm, with performance at least as
good, that follows the rules. Thus, the search for optimal
policies can be restricted to policies that follow these rules1.

Correctness of these rules is easily proved; we omit the
proofs to simplify the discussion.
Rule 1: Optimal Prefetching Every prefetch should bring
into the cache the next block in the reference stream that is
not in the cache.
Rule 2: Optimal Replacement Every prefetch should
discard the block whose next reference is furthest in the fu-
ture.

The �rst two rules uniquely determine what to do, once
the decision to prefetch has been made. However, they say
nothing about when to fetch | the next two rules speak on
that question.
Rule 3: Do No Harm Never discard block A to prefetch
block B when A will be referenced before B.

A prefetch that disobeys this rule does more harm than
good | it can only increase the program's running time.
Unfortunately, existing prefetching algorithms do not always
satisfy this requirement, because they separate caching from
prefetching, and separate cache replacement decisions from
prefetching decisions.
Rule 4: First Opportunity Never perform a prefetch-
and-replace operation when the same operations (fetching
the same block and replacing the same block) could have been
performed previously.

The algorithm must perform each operation at the �rst
opportunity. A new opportunity may arise when either
(a) a fetch completes, or
(b) the block that would be discarded (according to Rule 2)
was just referenced in the previous time unit.

Note that condition (b) is the only circumstance under
which Rule 2 can change its recommendation about which
block to discard.

1These rules hold for the situation we are modeling | �lesystem
caching on a system with one disk. They may not apply to all situ-
ations where prefetching is done; in particular, they do not apply to
hardware prefetching, where the cache has limited associativity. We
believe, however, that variations of these rules can be formulated for
other situations.
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Figure 2: Example under always-prefetch policy. Ten time units are required. The �rst reference, to A, hits. Concurrently
with the next reference (to B), a prefetch of C is initiated, discarding A. The reference to C stalls for three time units, waiting
for the prefetch to �nish. While C is being referenced, another prefetch, for A, is initiated; B is discarded. The last reference,
to A, stalls for three time units waiting for the second prefetch to �nish.

2.3 Policy Alternatives

Taken together, the four rules provide some guidance about
when to prefetch; once a decision to prefetch has been made,
they uniquely specify what should be prefetched and what
should be discarded.

Thus, we can imagine a prefetching policy as answering
a series of yes/no questions, with each question of the form
\Should I prefetch now?" As the program executes, a series
of opportunities to prefetch arise, and the policy is asked
whether to take each opportunity or to let it pass. We now
present two policies, conservative and aggressive. Both sat-
isfy the four properties described in section 2.2.

2.4 The Conservative Strategy

The conservative prefetching strategy tries to minimize the
elapsed time while performing the minimum number of fetches.
The conservative prefetching strategy performs exactly the
same replacements as the optimal o�ine demand paging
strategy MIN, except that each fetch is performed at the
earliest opportunity consistent with the four rules in section
2.2.

2.5 The Aggressive Strategy

The aggressive prefetching strategy is the strategy that al-
ways prefetches the next missing block at the earliest oppor-
tunity consistent with the four rules of section 2.2. In order
to bring in this next missing block, aggressive replaces the
block whose next reference is furthest in the future. Notice
that aggressive is not mindlessly greedy | it at least waits
until there is a block to replace whose next reference is after
the request to the missing block.

Aggressive is the algorithm that always prefetches the
next block not in cache at the earliest possible moment,
replacing the block whose next request is furthest in the
future. Of course, aggressive is not mindlessly greedy | it
at least waits until prefetching would be pro�table, that is,
until there is a block in cache whose next reference is after
the �rst reference to the block that will be fetched.

3 Theoretical Analysis

3.1 Problem De�nition

We review our model, slightly more formally. The input to
a prefetching algorithm is a reference string (r1; r2; : : : ; rn)
representing the ordered sequence of �le-block accesses to
be performed. Recall that the cache holds k blocks, that
each access takes unit time, and that fetching a block from
backing store takes F time units.

We imagine that there is a cursor, which advances at a
�xed rate along the reference string until it hits an access,
say rj , to a �le block that is not present in the cache. The
cursor then stays at reference rj until the block arrives in
cache. If the processor must wait for block rj to arrive, we
say that the cursor stalls at reference rj . The total amount
of time the cursor spends stalled is called the stall time.

If the prefetch for rj is initiated when the cursor is at
reference ri, and i + F � j, then the cursor does not stall
at rj because the block will have already arrived in memory
by the time it is referenced. Otherwise, the cursor stalls for
i + F � j time units.

We assume that prefetches are serialized; if a prefetch is
initiated at time t, then the next prefetch can be initiated
no earlier than time t+ F .

We also assume that if block q is replaced in order to
bring block p into the cache, then block q becomes unavail-
able for access at the moment the prefetch is initiated, and
block p becomes available only when the prefetch terminates
(F time units later).
Goal of Prefetching Strategy: To minimize the elapsed
time of executing the reference string, where the elapsed
time is the time to access the n blocks in the reference string
(n time units) plus the stall time.

3.2 Summary of Results

We have already described two prefetching algorithms: ag-
gressive and conservative. Both of these algorithms satisfy
the four properties of an optimal prefetching/caching strat-
egy. However, as implied by their names, they lie on op-
posite points along the spectrum between aggressive and
conservative prefetching.

Before studying these algorithms in more detail, it is
worth pointing out that the optimal prefetching schedule for
a given reference string, i.e. that which minimizes elapsed



time, is computable in a straightforward manner via dy-
namic programming. Unfortunately, for large k and n, the
obvious dynamic program is computationally infeasible. Hence,
we focus our attention on bounding and measuring the per-
formance of simple algorithms, such as aggressive and con-
servative.

Our main results are the following:
1. On any reference string R, conservative performs exactly
the same number of fetches as the optimal o�-line demand
paging algorithm does on R.
2. On any reference string R, aggressive performs at most
the number of fetches performed by LRU demand paging on
R.
3. On any reference string R, and for F � k, the elapsed
time of aggressive is at most (1 + F=k) times the elapsed
time of the optimal prefetching schedule on R. If F > k,
the elapsed time of aggressive is at most twice that of the
optimal prefetching schedule.
4. The previous bound is nearly tight: There is a reference
string R0 on which the elapsed time of aggressive is 1+(F �
2)=(k+1) times that of the optimal prefetching schedule on
R0.
5. On any reference string R, the elapsed time of conserva-
tive is at most twice that of the optimal prefetching schedule
on R.
6. The previous bound is nearly tight: There is a reference
string R0 on which the elapsed time of conservative is 2(1�
1=F ) times that of the optimal prefetching schedule on R0.

All of these results are straightforward with the exception
of the third. In the next section, we present some details
about these results.

3.3 Bounds on Number of Fetches

We can make the following observations about the two al-
gorithms:

By de�nition, conservative performs exactly the same
number of fetches as the optimal demand paging algorithm
MIN does. However, its elapsed time can be much smaller,
since it may be possible to overlap these fetches signi�cantly
with the request sequence, as was the case for the second
fetch in the example above. Indeed, it is only in very special
circumstances (such as, for example, cyclic reference pat-
terns) that conservative will not be able to overlap fetches
with references.

It is possible to show that aggressive performs at most the
number of fetches that LRU paging does. The proof of this is
the same as Belady's theorem mutatis mutandis, so we omit
the details. This suggests that on reference patterns with
a great deal of locality, aggressive may have near-optimal
performance, since it will not perform an excessive number
of fetches, and it will be able to overlap those fetches with
references to a great extent.

3.4 Bounds on Elapsed Time

3.4.1 Aggressive: Lower Bound

The following example shows that aggressive can have an
elapsed time which is nearly 1+F=k times that of the opti-
mal prefetching strategy.
Example : Suppose that F = k � 2. Suppose that the
algorithms start with blocks b1; : : : bk in the cache. The ref-
erence string begins with b1; b2; : : : bk ; b

0; b1: Aggressive will
begin prefetching b0 immediately after the request to b1, re-
placing b1. This prefetch will terminate immediately be-

fore the request to b0, at which point aggressive will begin
prefetching b1.

The optimal decision will have been to prefetch b0 after
the request to b2, since in the remainder of the sequence b2
will never be requested again. Consequently, on the initial
part of the sequence aggressive incurs F � 2 units of stall
time on the subsequent prefetch of b1, whereas the optimal
algorithm incurs no stall time by waiting to prefetch b0 until
b2 can be replaced. (aggressive of course can replace b2 on
the subsequent prefetch of b1.) Consequently, the optimal
algorithm and aggressivewill both have the same cache state
again immediately before each of them references b1 for the
second time.

We can repeat such a subsequence again and again, where
each time, by waiting 1 extra time unit, the optimal algo-
rithm needs do one fewer prefetch per k + 1 accesses than
aggressive has to do.

Since the optimal algorithm incurs k + 1 time units for
every k + F � 1 time units incurred by aggressive, we get
the stated claim. Note that the speci�c choice of F = k �
2 here is not important. For any value of F , it is quite
easy to construct reference strings on which aggressive has
an elapsed time close to min(2; 1 + F=k) times that of the
optimal algorithm.

We now show that this is essentially the worst case for
aggressive.

3.4.2 Aggressive: Upper Bound

In what follows, we will need to divide the reference string
into phases. The �rst phase starts with the �rst reference,
and ends immediately before the reference to the (k + 1)st
distinct block. In general, the ith phase ends immediately
before the reference to the (k + 1)st distinct block in the
phase. Note that phases are a property of the reference
string and hence the choice of prefetching strategy is irrele-
vant to their de�nition.

Theorem 1 On any reference string R, the elapsed time of
aggressive on R is at most the elapsed time of the optimal
prefetching strategy on R plus F times the number of phases
in the reference string.

A rigorous proof of the theorem is presented in Appendix
1. The idea of the proof, however, is not di�cult. Let opt be
the optimal prefetching strategy. We show inductively that
aggressive can fall behind opt by at most an additional F
time units each phase. Consider the �rst phase. At time 0,
both algorithms are missing the same subset of blocks, say
i of them, from the �rst phase. Therefore, both algorithms
have in their cache i blocks that will not be referenced in the
�rst phase. Since both algorithms always replace the block
whose �rst reference is farthest in the future, during the �rst
phase neither will ever replace a block that will be referenced
in the �rst phase. Consequently, since aggressive prefetches
those i blocks at the earliest opportunity, aggressive will
stay ahead of opt at least until the cursor reaches the �rst
reference of the second phase. Here, aggressive may stall
and opt's cursor may pass it by, since aggressive may have
prefetched some blocks in the �rst phase earlier than opt and
therefore generated missing blocks in the second phase that
are earlier than those generated by opt. Imagine now that
we \stop" opt at the phase boundary for F time units. This
gives aggressive enough time to complete the extra fetch.
More importantly, it is possible to show that now once again
aggressive has its missing blocks in positions that are at least
as good as those of opt (where \at least as good" means that



aggressive's ith missing block occurs later in the sequence
than opt's ith missing block). This is all we need to complete
the induction.

The following corollary is then straightforward.

Corollary 2 On any reference string R, the elapsed time of
aggressive on R is at most min(1+F=k; 2) times the elapsed
time of the optimal prefetching strategy.

Proof: Suppose that F � k. Since each phase lasts for at
least k references, the number of phases is at most the time
spent by opt referencing blocks divided by k. For the other
case, F > k, observe that it follows from the de�nition of
phases that opt has to perform at least one fetch per phase.
This fetch takes F time units. Since aggressive incurs at
most one extra fetch per phase, its elapsed time is at most
twice opt's.

3.4.3 Conservative

We have already observed that conservative places the min-
imum possible load on the disk. However, its elapsed time
is not generally as good as that of aggressive. The follow-
ing example shows that conservative's elapsed time can be
nearly twice optimal.
Example : Suppose that F divides k, that the algorithms
start with blocks b1; : : : bk in the cache and that the reference
string is a cyclic pattern, b1; : : : bk ; bk+1; bk+2; : : : ; bk+k=F re-
peated many times. It is easy to see that conservative will
never be able to overlap fetches with references. Since k=F
fetches will be done per pass through the cycle, and conser-
vativewill stall for F time units on each, its elapsed time will
be at least 2k per pass through the cycle. On the other hand,
it is not di�cult to see that by keeping the missing blocks
at least F references apart, this sequence can be prefetched
so that all fetches overlap references, i.e. so that the elapsed
time is k(1 + 1=F ) per pass through the cycle.

It is also straightforward to see that conservative's elapsed
time is at most twice optimal.

Lemma 3 On any reference string R, the elapsed time of
conservative on R is at most twice the elapsed time of the
optimal prefetching strategy.

Proof: Any prefetching strategy, and in particular opt, per-
forms at least as many fetches as conservative. Since opt
performs the same number of references as conservative and
at best entirely overlaps its fetches with references, opt's
elapsed time is at least half of that of conservative.

4 Simulations

We have measured the performance of aggressive and con-
servative, along with several existing algorithms, by trace-
driven simulation. We �rst discuss various existing approaches,
then introduce our traces and simulation models, and �nally
present simulation results.

4.1 Existing Approaches

We have compared the aggressive and conservative algo-
rithms with six existing algorithms for caching and prefetch-
ing. We will call them LRU-demand, OPT-demand, LRU-
OBL, OPT-OBL, LRU-sensible, and LRU-throttled.

LRU-demand and OPT-demand are demand-paging al-
gorithms. They only fetch a block from disk when it is ac-
cessed; in other words, there is no prefetching. LRU-demand
speci�es that the block that is least recently used should
be replaced when necessary; OPT-demand speci�es that the
block that will be referenced furthest in the future should be
replaced. Traditional �le systems use LRU as replacement
algorithm, although recent research [4] has shown that with
application knowledge it is possible to make replacement
decisions that are close to optimal.

LRU-OBL and OPT-OBL model the above replacement
algorithms with the addition of sequential one-block looka-
head (OBL) prefetching. Traditional �le systems use OBL
to take advantage of the fact that �les are often accessed
sequentially [1]. OBL prefetches block K+2 of a �le when-
ever the last two references to the �le were to block K and
block K+1. Existing �le systems mostly use the combina-
tion of OBL with LRU replacement2; we call the resultant
algorithm LRU-OBL. Combining OBL with optimal replace-
ment yields the OPT-OBL algorithm.

The last two algorithms are intended to model approaches
taken in recent research projects on prefetching in �le sys-
tems. Some of these let users or applications provide in-
formation about future accesses and use this information to
guide prefetching[18], while others try to predict future ac-
cesses based on patterns observed in previous accesses[6, 10].
LRU is typically used as the cache replacement algorithm,
even when information about the future reference string is
available.

One problem with such approaches is \thrashing". Thrash-
ing happens when prefetching decisions are not integrated
with caching decisions: more precious blocks are replaced
in order to prefetch less precious blocks, or prefetched �le
blocks are replaced before they are accessed. Both types
of mistakes violate the \Do No Harm" rule, and thus hurt
performance.

Some approaches use \throttling" | putting an upper
limit on the number of blocks that have been prefetched but
not yet accessed | to limit the occurrence of \thrashing".
Unfortunately, throttling is an ad hoc approach that doesn't
always work well. The right approach, when the necessary
information is available, is to follow the rules discussed in
section 2.2.

We simulate two algorithms based on these approaches:
LRU-sensible and LRU-throttled. LRU-sensible looks into
the future reference string and fetches the next missing block
at the earliest possible moment, subject to the \Do No
Harm" rule. Among all the blocks that can be replaced
for this fetch, it chooses the least-recently-used one. LRU-
sensible performs the best among all prefetching algorithms
that use LRU as replacement principle (the proof is trivial
from the \First Opportunity" rule in section 2.2), and we
use it to approximate existing prefetching approaches that
follow the \Do No Harm" rule.

LRU-throttled models prefetching approaches that do not
follow the \Do No Harm" rule but rather use \throttling"
or similar measures. Given the sequence of future accesses
(e.g. from application hints), the prefetcher of LRU-throttled
walks down this sequence, allocates a bu�er and issues a
prefetch for every missing block. It stops when one-third
of the cache contains blocks that have been prefetched but
haven't been referenced yet3.

2The prefetched block is typically inserted in the most-recently-
used end of the LRU list when the fetch �nishes.

3In [19] 150 blocks is the throttling limit, out of a cache of 400
blocks. Hence in our simulation we set the throttling limit to be



4.2 File Access Traces

We used two sets of traces. We collected one set by tracing
several applications running on a DEC 5000/200 worksta-
tion under Ultrix 4.3. The other set is from the Sprite �le
system traces from the University of California at Berke-
ley [1].

We instrumented our Ultrix 4.3 kernel to collect �le ac-
cess traces from a set of read-dominated applications on
which existing �le systems perform poorly. We chose the
following representative applications:
cscope[1-3]: an interactive C-source examination tool writ-
ten by Joe Ste�en, searching for eight symbols (cscope1)
in a 18MB software package, searching for four text strings
(cscope2) in the same 18MB software package, and searching
for four text strings (cscope3) on a 10MB software package;
dinero: a cache simulator written by Mark Hill, running on
the cc trace;
glimpse: a text information retrieval system [13], searching
for four keywords in a 40MB snapshot of news articles;
postgres-join: the Postgres relational database system (ver-
sion 4.0.1) developed at the University of California at Berke-
ley, performing a join between an indexed 32MB relation and
a non-indexed 3.2MB relation (the relations are those used
in the Wisconsin Benchmark [9]). Since the result relation
is small, most of the �le accesses are reads.

The Sprite traces consist of �ve sets, recording about 40
clients' �le activities over a period of 48 hours (traces 1,
2 and 3) or 24 hours (traces 4 and 5). We evaluated the
performance of client caching because it is important in a
system with a slow network like ethernet. For each client
we extracted its �le activities to Sprite's main �le server.

We eliminated traces that are dominated by cold-start
misses, keeping only those for which cold-start misses ac-
count for fewer than half of the misses of the LRU algo-
rithm on a 7MB cache4. This resulted in 13 client traces5.
We denote these traces as Sprite[1-13].

The Sprite traces are not read-dominated: about 10% to
30% of the accesses are writes. In our simulations, however,
we treated all write accesses as if they are read accesses.
Although this is not accurate, we can still get some insights
on how the algorithms might perform in practice.

4.3 Simulation Models

Our simulations used two models of �le accesses: simpli�ed
and realistic. The simpli�ed model corresponds to the theo-
retical model discussed in previous sections: it assumes that
the \reference time" (i.e. the amount of CPU time spent by
the program between two consecutive �le accesses) is uni-
form and de�ned as one time unit, and fetching data from
disk takes F time units. The realistic model uses the actual
time interval between references from the trace, and uses
the average (measured) disk access time for the trace as the
fetch time. We can simulate only the Ultrix traces under the
realistic model due to lack of necessary timing data in the
Sprite traces. The average reference time and disk access
time for each Ultrix trace is shown in Table 1.

one-third of the cache.
Also, LRU-throttled attempts to simulate the algorithm described

in [19], which is intended for applications that do not reuse their
data. LRU-throttled also implements a further improvement on this
algorithm: moving soon-to-be-used blocks to the most-recently-used
end of the LRU list.

47MB is the average �le cache size for the Sprite clients.
5client 29, 33, 53, and 81 of trace 1, client 60, 62, 75, 82 of trace

2, client 9, 77, 56, 18 of trace 4, and client 18 of trace 5

dinero cscope1 cscope3
Reference Average 11.8 3.13 2.89
Time Stddev 0.12 1.07 1.54
Fetch Average 8.7 8.0 11.8
Time Stddev 0.38 0.40 0.69

cscope2 glimpse pjoin
Reference Average 4.13 1.17 10.4
Time Stddev 1.56 3.83 1.27
Fetch Average 14.3 7.6 17.9
Time Stddev 0.53 0.95 0.26

Table 1: Average and standard deviation of the reference
times and disk fetch times in each Ultrix trace. Times are
in milliseconds.

There are still a number of di�erences between the re-
alistic model and the actual �le systems: disk access times
are not uniform; our simulation ignored meta-data (directo-
ries, inodes, etc.) accesses; we assume that disk blocks are
allocated in 8KB blocks, whereas real �le systems allocate
smaller blocks (e.g. 1KB blocks) for small �les, hence our
simulation tends to inate �le data set size for applications
that use lots of small �les.

We calibrated our simulator under the realistic model
against real systems, by comparing the simulated elapsed
time and number of disk fetches of LRU-OBL, which is the
algorithm used in Ultrix 4.3, to the measured elapsed time
and number of disk fetches for the Ultrix traces. The re-
sults are shown in Table 2. Despite the above di�erences,
the simulated results are usually within 10-15% of the mea-
sured ones. Hence, we believe our simulation predicts real
performance reasonably well.

We also compared the simulation results under the sim-
pli�ed and the realistic models for Ultrix traces. We took
the average reference time of each trace as one time unit,
and set F to be the ratio of the average disk access time
to the average reference time. The simulation results under
this simpli�ed model match those of corresponding simula-
tions under the realistic model very well6 | the di�erences
are within 2%. We believe the simpli�edmodel predicts real
system performance reasonably, and hence that our theoret-
ical studies (which are under the simpli�ed model) apply to
real systems.

4.4 Simulation Results

We simulated all eight algorithms for both Ultrix traces and
Sprite traces. We used the realistic model when simulat-
ing Ultrix traces, and the simpli�ed model when simulating
Sprite traces. The simulations were run varying the relative
cost of disk fetch time versus the reference time. For the
Ultrix traces, we simulated these algorithms with the CPU
time reduced by factors of 1, 2, 4, and 8, and reported the
elapsed time in seconds.

For the Sprite traces, we simulated setting F to 3, 5, 10
and 20. We use the minimum total fetch time M , i.e. the
theoretically minimal number of disk fetches times the fetch
time, as a baseline for comparison. For each F, we report the
normalized elapsed time (i.e. the ratio between the elapsed
time and M).

We report only averages over each set of traces (Ultrix
and Sprite) here. The results from individual traces di�er

6For the simulations under the realistic model, we scaled the disk
fetch time to be an integer multiple of the average reference time,
corresponding to the constraint that F be an integer.



dinero cscope1 cscope2 cscope3 glimpse pjoin
6.4MB Elapsed Simulated 105 70 92 194 101 207
6.4MB Time Measured 117 62 96 191 126 225
6.4MB Disk Simulated 8807 8518 6353 10769 9480 6624
6.4MB Fetches Measured 8888 8634 6576 11785 10435 6706
12MB Elapsed Simulated 105 31 92 194 101 183
12MB Time Measured 99 28 57 188 113 202
12MB Disk Simulated 988 1071 6353 10765 9466 5305
12MB Fetches Measured 997 1141 2815 11717 9720 5437

Table 2: Comparision of simulated and measured elapsed time and number of disk fetches for the Ultrix traces with two cache
sizes: 6.4MB and 12MB. The di�erences are within 10-15% except for cscope2 with 12MB cache. (We believe this di�erence
is due to the fact that cscope2 accesses lots of small �les, so our assumption that �le blocks are allocated in 8KB blocks
arti�cially inates the �le data set size.)
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Figure 3: Elapsed time and number of disk fetches: at the top, averaged over the Sprite traces, with cache size 7MB; at the
bottom, averaged over the Ultrix traces, with cache size 6.4MB. The elapsed time graphs show the performance of the eight
algorithms, as well as the lower bound on the elapsed time given by the minimum fetch time (i.e. the theoretically minimal
number of disk fetches times the disk fetch time). In the graphs for numbers of disk fetches, the top group of lines contains
LRU-demand, LRU-OBL, LRU-throttled, and LRU-sensible, and the bottom group of lines contains aggressive OPT-OBL,
OPT-demand, and conservative.



little from the averages.
The averaged predicted running time is shown in Fig-

ure 3. These results show that aggressive performs the best
among all these algorithms, con�rming our theoretical re-
sults. In general conservative does slightly worse. LRU-
sensible performs the best among all LRU-based algorithms,
as expected.

An important observation from these results is that as
the relative cost of disk accesses increases, replacement poli-
cies make a bigger di�erence than prefetching policies. This
is because the systems become more disk fetch-bound as the
relative fetch cost goes up, and the bene�t from prefetching
(overlapping computation time with fetch time), diminishes
as the relative computation time gets smaller.

Therefore, when the fetch cost is large, given any infor-
mation on future �le accesses, the �rst priority is to make
replacement decisions as close to optimal as possible; mak-
ing good prefetching decisions comes second. The conserva-
tive algorithm performs well in these cases since it does the
minimum number of disk fetches possible.

Of course, this result should not be extrapolated too far.
Introducing parallel disks, or increasing the block size, would
probably increase the bene�t of prefetching. Our results do
imply, though, that prefetching alone is of limited value.

Figure 3 also shows the number of disk fetches made by
the eight algorithms. As the theory predicts, LRU-sensible
and LRU-demand always do the same number of disk fetches,
and conservative and OPT-demand always do the same num-
ber of disk fetches. In addition, aggressive does a number of
disk fetches between OPT-demand and LRU-demand.

The number of disk fetches made by aggressive decreases
as the fetch cost increases. This is due to the self-adjusting
property of aggressive: as the fetch cost gets larger, aggres-
sive cannot prefetch fast enough, so it �nds itself prefetching
only a few references ahead. Under these conditions aggres-
sive makes replacement choices close to those of the optimal
replacement algorithm.

The results also show the weakness of the approaches
that do not follow the \Do No Harm" rule. For the Sprite
traces, LRU-throttled makes noticeably more disk fetches
than LRU demand paging. This is because LRU-throttled
ignores the \Do No Harm" rule, and \throttling" does not
always eliminate the \thrashing" problem. LRU-sensible, on
the other hand, always performs better than LRU-throttled
and does fewer disk fetches. All LRU-based algorithms do
about the same number of disk fetches on Ultrix traces be-
cause these traces have such poor temporal locality that
LRU replacement misses most of the time.

Finally, Theorem 1 says that the running time of aggres-
sive is at most 1+F=p times that of optimal on any reference
stream, where p is the average phase length. Measuring the
phase length of the traces, we �nd that in our traces aggres-
sive's elapsed time is at most 1.024 times that of optimal for
the Ultrix traces (as F varies) and at most 1.02 times that
of optimal for the Sprite traces.

5 Related Work

Caching has been studied extensively in the past and there is
a large body of literature on caching ranging from theory [2,
8], to architecture [21] to �le systems [11, 16, 4], etc.

Prefetching has also been studied extensively in various
domains, ranging from, uni-processor and multi-processor
architectures [20, 5, 3, 22, 24], to �le systems [19, 10, 23]
to databases[6, 17] and beyond. Sequential one-block looka-

head was �rst proposed in [22]. Few of these studies consid-
ered the interaction between prefetching and caching.

In �le systems, perhaps the most straightforward ap-
proach to prefetching is using large I/O units (i.e. blocks),
as in extent-based or similar �le systems [14]. However, this
approach and one-block-lookahead are often too limited and
only bene�t applications that make sequential references to
large �les [10].

Recently there have been a number of research projects
on prefetching in �le systems. Patterson's Transparent-
Informed Prefetching [19] showed that prefetching using hints
from applications is an e�ective way of exploiting I/O con-
currency in disk arrays. Gri�oen and Appleton's work [10]
tries to predict future �le accesses based on past accesses
using \probability graphs", and prefetch accordingly. These
papers demonstrated the bene�ts of prefetching. However
they did not address the interaction between caching and
prefetching and did not investigate the combined cache man-
agement problem.

There have also been many studies focusing on how to
predict future accesses from past accesses. Tait and Duchamp's
work [23] tries to detect user's �le access patterns and ex-
ploit the patterns to prefetch �les from servers. Palmer and
Zdonik's work on Fido [17] tries to train an associative mem-
ory to recognize access patterns in order to prefetch. Vitter
and Krishnan's work [6] tries to use compression techniques
to predict future �le accesses from past access history. All
these studies had promising results with respect to predic-
tion. However, the models used assumed that many block
I/Os can be done in a time step (i.e. at each reference),
which unfortunately is not realistic for �le systems. With
such a model, cache management becomes substantially less
important.

There are a number of papers on prefetching in paral-
lel I/O systems [7, 25]. Although our work focuses on
prefetching with a single disk or server, the \Do No Harm"
and \First Opportunity" principles apply to prefetching al-
gorithms in the parallel context as well. We believe these
principles are important to avoid the thrashing problem [25].

Prefetching in uni-processor and multi-processor com-
puter architectures is similar to prefetching in �le systems.
However, in these systems there is little exibility in cache
management, as the cache is usually direct-mapped or has
very limited associativity. In addition, it is not possible to
spend more than a few machine cycles on each prefetch. File
systems, on the other hand, can change their cache manage-
ment algorithms freely and can spare more cycles for calcu-
lating a good replacement or prefetching decision, as the po-
tential savings are substantial. On the other hand, Tullsen
and Eggers [24] showed that thrashing is a problem when
prefetching in bus-based multiprocessor caches, suggesting
that the \Do No Harm" rule applies in those systems as well.

Recent work on update policies [15] (i.e. policies on
write-backs of dirty blocks) is directly related to our work
on prefetching. Although we did not address the write-back
problem in this paper, we are working on algorithms for it.
Finally, we note that the stashing approach in mobile com-
puting environment [12] is similar to prefetching, although
the purpose is quite di�erent: stashing is concerned with
the availability of �les, while prefetching is more concerned
with latency hiding.

6 Conclusions and Future Work

This paper presents a theoretical study and performance
evaluation via simulation of two prefetching strategies that



address the interaction between caching and prefetching:
the aggressive and conservative strategies. We have shown
that the performance of aggressive is always within a factor
min(1+F=k; 2) of optimal, and that the performance of con-
servative is always within a factor of two of optimal. Our
simulations with several �le access traces from real appli-
cations show that these two approaches are indeed close to
optimal. In fact, their performance on real traces is signif-
icantly better than the worst-case performance ratios given
by the theoretical results. Compared with the prefetching
and caching methods implemented in most existing �le sys-
tems, these two strategies can reduce the elapsed times of
the applications by up to 50%.

Several questions deserve further study. First, our results
are based on full knowledge of �le accesses. Although this
is unrealistic, we feel that understanding the o�-line case
is a necessary step towards a full understanding of the on-
line case. We can draw an analogy with Belady's famous
result [2] showing that MIN is the optimal o�-line demand
paging strategy. In fact, we have not solved the o�-line
problem: one direction for future research is to either �nd a
polynomial time algorithm for computing the optimal o�ine
prefetching and caching strategy or to show that the problem
is NP-complete.

Having information about the reference patterns may
not be entirely unrealistic. Implementations of such strate-
gies can help determined users who are willing to provide
the operating system with detailed �le access information.
Nonetheless, an obvious next step is to investigate the im-
pact of these strategies on applications without perfect knowl-
edge of �le accesses.

Our theoretical model does not distinguish write accesses
from read accesses. In reality, writes are di�erent from reads
in that full-block writes may not need to bring the block into
the cache. Treating write accesses di�erently from reads un-
der a more complicated model may produce more accurate
results.

Finally, our models and simulations should be validated
by doing a real implementation.
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Appendix 1 : The Proof of Theorem 1

Preliminaries:

Let cA(t) be the index of the next reference at time t when run-
ning prefetching algorithm A. Let HA(i) be the set of blocks not
present in the cache when the next reference is ri and we are run-
ning prefetching algorithm A. Let hA(i; j) be the block in HA(i)
whose �rst occurence after ri is jth. We will subsequently refer
to hA(i; j) as A's jth hole, when the context is clear. Note that
j varies between 1 and n� k.

Given two prefetching algorithms A and B, we say that A's
cursor at time t dominates B's cursor at time t0 if cA(t) � cB(t

0).
We also say that A's holes at time t dominate B's holes at time
t0 if hB(cB(t0); j) � hA(cA(t); j) for each j. Finally, we say that
A's state at time t dominates B's state at time t0 if A's cursor
at time t dominates B's cursor at time t0 and A's holes at time t
dominate B's holes at time t0.

The following lemma will be useful.

Domination Lemma: Suppose that A (resp. B) initiates a
prefetch at time t (resp. t0), and that both algorithms prefetch
the next missing block and replace the block whose next reference
is furthest in the future. Suppose further that A's state at time
t dominates B's state at time t0. Then A's state at time t + F
dominates B's state at time t0 + F .

Proof: Suppose that A's holes (the �rst occurences of each of
the blocks not in the cache) at time t are at cursor positions
a1 < a2 < : : : < an�k , and that B's holes at time t0 are at
cursor positions b1 < b2 < : : : < bn�k . Since A's state dominates
B's, we have that ai � bi for each i. Suppose that in order to
prefetch b1, B replaces a block b whose �rst occurence between
bj and bj+1, and that in order to prefetch a1, A replaces a block
a whose �rst occurence is between ar and ar+1. If a

0
i (resp. b

0
i)

is the position of A's (resp. B's) ith hole after the prefetch, then
for i � r, a0i = ai+1, a

0
r = a, and a0i = ai, for i � r+1. Similarly,

for i � j, b0i = bi+1, b
0
j = b, and b0i = bi, for i � j + 1. In order

to show that domination is preserved, we must show that a0i � b0i
for all i at time t+ F (resp. t0 + F ) for A (resp. B).

Trivially, for 2 � i � min(r; j) and i � max(j + 1; r + 1),
ai � bi.

If r � j, we have a > ar � br , ar > ar�1 � br�1,..., aj+2 >
aj+1 � bj+1, and aj+1 � bj+1 > b, which are the remaining
inequalities needed.

If r < j, we must show that aj � b, aj�1 � bj, ... ar+1 �
br+2, a � br+1. Suppose that one of these inequalities is violated.
Consider the largest index that violates the condition. Then we
have a0i�1 < b0i�1 < b0i � a0i for some r + 1 � i � j + 1, where

a, the replaced block satis�es a � a0i�1. But this means that

the block at cursor position b0i�1 was in A's cache at the time it
issued the prefetch, and it's �rst occurence was later than that of
a, the block it chose to replace, which is a contradiction to the
assumption that A always replaces the block whose �rst reference
is furthest in the future. Therefore, none of these inequalities is
violated, and hole domination is preserved.

As for the cursor, if A's cursor stalls, then it does so at A's
�rst hole. But in that case, either B's cursor also stalls at B's
�rst hole or it doesn't reach B's �rst hole. In either case, B's
cursor remains behind A's.

Recall that we divided the reference string into phases as fol-
lows. The �rst phase starts with the �rst reference and ends
immediately before the reference to the (k + 1)st distinct block.
In general, the ith phase ends immediately before the reference
to the (k+ 1)st distinct block in the phase. We are now ready to
present the proof of Theorem 1.

Theorem 1 On any reference string R, the aggressive prefetch-
ing strategy has an elapsed time which is larger than optimal by
an additive constant which is at most F times the number of
phases in the reference string.

Proof: Let opt be the optimal prefetching strategy. We prove
the theorem using the following invariant by induction on the
number of phases.
Invariant: During phase i, there is a time t such that aggressive's
holes dominate opt's holes at time t0 � t � iF and aggressive's
cursor dominates opt's cursor and neither aggressive nor opt are
in the middle of a prefetch at those times.

The proof is by induction on the number of phases. The base
case is trivial, since at time 0, both algorithms are in exactly the
same state.

Suppose that the invariant is true in phase i, i.e. there is a
time t in phase i such that aggressive's holes dominate opt's holes
at time t0 � t� iF .

The �rst observation is that from time t until the �rst time
in phase i+1 during which aggressive is not initiating a prefetch,
aggressive never evicts any block that will still be referenced in
phase i. Indeed, if aggressive is prefetching a block that will
still be requested in phase i, then there is some block in the cache
which is not requested in phase i. On the other hand, if aggressive
is prefetching a block p that will not be requested until phase
i+ 1, then since it always replaces a block whose �rst occurence
is later than that of the block being prefetched, no new hole can
be created within phase i.

This observation implies that at all times T > 0, such that
aggressive is still in phase i at time t+T , ca(t+T )� copt(t0+T ),
where ca(t) is the cursor position of aggressive at time t. The ar-
gument is that the set of holes aggressive has within phase i at
time t dominates the set of holes opt has within phase i at time
t0, and no new holes are added within the phase. Since aggres-
sive prefetches as aggressively as possible, aggressive eliminates
those holes at the earliest possible time, and therefore, aggres-
sive's cursor can not fall behind opt's cursor within the rest of
the phase.

Let t + t0; t + t1 : : : ; t + tj be the cursor positions at which
aggressive initiates prefetches, after time t but within phase i. If
opt is in the middle of a prefetch at time t0 + tl, then let t0 + t0l
be the time at which that prefetch was initiated, otherwise let
t0l = tl. We prove by induction on l that aggressive's state at
time t + tl dominates opt's state at time t0 + t0l. The base case
is easy. Aggressive's state at time t dominates opt's state at time
t0. If t0 > 0, then aggressive has nothing that it can prefetch
between time t and time t+ t0, and hence is in the best possible
state during this time. Consequently, its state at time t + t0
dominates opt's state at time t0 + t00. Suppose by the inductive
hypothesis that the claim is true for l. Then by the Domination
Lemma, aggressive's state at t+ tl + F dominates opt's state at
t0 + t0l + F . We consider two cases:

1. t + tl+1 = t + tl + F : Since t0l+1 � tl+1, ca(t + tl+1) �
copt(t0+tl+1) � copt(t0+t0l+1). Furthermore, sinceHopt(t

0+
t0
l+1) = Hopt(t0+ t0

l
+F ), aggressive's state at t+ tl+1 dom-

inates opt's state at t0 + t0l+1.

2. t+tl+1 > t+tl+F : In this case aggressive stops prefetching
for a while, which means that its holes are in an optimal
state (i.e. there are k distinct requests to the k blocks in
the cache prior to any request to a hole). Furthermore, its
cursor cannot stall during such a period. Therefore, at best
during the period between t+ tl + F and t+ tl+1, opt can
get into the same state as aggressive.

By the same argument, aggressive's state at time t+ tj + F
dominates opt's state at time t0 + t0j + F . Since aggressive is in

phase i+ 1 at time t+ tj + F , and t0 + t0j + F � t0 + tj, we have

that at time T = t + tj + F in phase i + 1, aggressive's state
dominates opt's state at time t0+ tj � t� iF + tj � T � (i+1)F .

Finally, from the invariant it follows that if aggressive �n-
ishes processing the sequence at time T , opt cannot �nish before
time T � (number of phases)F , which completes the proof of the
theorem.


