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Abstract

Recently there has been a great deal of interest in

prefetching from parallel disks, as a technique for

enabling serial applications to improve I/O perfor-

mance. [16, 30, 32, 41, 51, 42]. We consider algorithms

for integrated prefetching and caching in a model with a

�xed-size cache and two or more backing storage devices

(which we will call disks). The integration of caching

and prefetching with a single backing storage device was

previously considered by Cao et al. [8]. We show that

the natural extension of their aggressive algorithm to the

parallel disk case is suboptimal by a factor of (nearly)

the number of disks in the worst case. Our main result is

a new algorithm, reverse aggressive, with near-optimal

performance for the case of two disks.

1 Introduction

1.1 Motivation

Recent advances in technology have made magnetic

disks both cheaper and smaller. As a result, paral-

lel disk arrays have become an attractive means for

achieving high performance from storage devices at low

cost. Multiple disks o�er the advantages of both in-

creased bandwidth and reduced contention. However,

many applications do not bene�t from this I/O paral-

lelism as much as they could. Consequently, prefetching

and caching are widely used for improving the perfor-

mance of such systems (e.g., [16, 30, 32, 41, 51, 42]).

The two techniques are not independent, however, and

can interact poorly if their interaction is not considered

carefully [8, 41].

In this paper, we consider a theoretical model that

captures the important characteristics of a system for

prefetching and caching with multiple disks. We study

the o�ine problem of constructing an optimal prefetch-

ing schedule in this model, for a given request stream.

Although the optimal o�ine algorithm can not gener-

ally be implemented, its performance is a useful bench-

mark for evaluating more practical online algorithms.
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Also, more practical limited-lookahead versions of our

algorithms do well in practice [28].

Surprisingly, perhaps, even in the o�ine, single-disk

situation, this problem is challenging: we know of no

polynomial time algorithm for determining the optimal

prefetching schedule. The di�culty comes from the

fact that prefetching too soon can cause cache misses

by replacing blocks that would remain in the cache if

prefetching were done later or not at all: new and pos-

sibly better eviction opportunities arise as a program

proceeds. Nonetheless, Cao et al [8] were able to show

that a simple and natural algorithm called aggressive,

which prefetches as early as possible, has performance

that is provably close to optimal in the single disk case.

Unfortunately, the natural extension of this algorithm

to the multiple disk case has performance that is subop-

timal by a factor of two, even for two disks. The inter-

action between caching and prefetching is substantially

more complicated in a system with multiple disks be-

cause a set of blocks can be prefetched in parallel only

if they reside on di�erent disks: each disk can serve

only one prefetch at a time. The prefetching schedule

and choice of cache evictions impact the potential for

subsequent parallel prefetching in a complex way.

1.2 An Example

An example will serve to introduce our model and illus-

trate the reason that the multi-disk problem is challeng-

ing. In the example, the cache holds four blocks. The

application references one block per time unit. If the ap-

plication wants to reference a block that is not present

in the cache, the application must wait or stall until the

block is present. In this example, it takes two time units

to fetch a block from disk; each disk can perform only

one fetch at a time. Every fetch evicts some block from

1

We can perhaps draw an analogy with the impact of the op-

timal o�ine paging algorithm [1] on the design, implementation

and evaluation of online paging algorithms.
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Figure 1: An example of prefetching and caching with two disks. One disk holds blocks A, C, E, and F, and another

disk holds blocks b and d. Cache size is k = 4 and fetch time is F = 2.

the cache; the evicted block becomes unavailable at the

moment the fetch starts. The goal is to minimize the

total time spent by the application, or equivalently to

minimize the stall time.

The application references blocks in the sequence

(A; b; C; d; E; F ), and the cache initially holds blocks A,

b, d, and F . Blocks A, C, E, and F reside on one disk;

blocks b and d on a di�erent disk. A straightforward

approach is to use the aggressive algorithm [8]: always

fetch the missing block that will be referenced soonest;

evict the block whose next reference is furthest in the

future; but don't fetch if the evicted block will be ref-

erenced before the fetched block. Figure 1(a) shows the

cache block changes. This method requires 7 time units.

Figure 1(b) shows another policy that is faster by one

time unit. On the �rst fetch, d is evicted rather than

F , even though d is referenced earlier. This has the ad-

vantage of o�oading one fetch from the heavily loaded

disk to the otherwise idle disk. This change allows two

fetches to proceed in parallel later, thus saving one time

unit.

The example shows that it is helpful to take disk load

into account when making fetching and eviction deci-

sions. This is the factor that makes the multi-disk prob-

lem more di�cult than the single-disk problem.

1.3 Formal Problem Statement and

Overview of Results

We begin by introducing the parameters and input to

our problem.

� Let B be a set of blocks, and disk : B ! [1::d] a d-

coloring of the blocks in B, i.e., disk(b) is the disk

on which block b resides. (We will refer to disk(b)

as the color of block b).

� There is a cache of size K that contains at most K

blocks in B at any time.

� A reference sequence, or request sequence, is an

ordered sequence of references R = r

1

; r

2

; : : : r

n

,

where each r

i

2 B.

� Fetching a block from a disk into the cache takes

F time units.

The references in R must be served in order. A single

reference can be served in one unit of time. However,

in order for a reference to be served, it must be in the

cache. We imagine that there is a cursor which at any

time points to the next request to be served. If this

request is for a block that is in the cache, the cursor

advances by one during the next time unit. If this re-

quest is for a block that is not in the cache, the cursor

stalls until that block arrives in the cache (i.e., until the

fetch for that block completes). Note that to the extent

that the cursor is advancing, prefetches can overlap the

serving of requests.

There are two constraints on the prefetches per-

formed:

1. If a fetch of block b is initiated at time t and the

cache contains K blocks at that time, some block

b

0

in the cache must be evicted to make room for

the incoming block. Neither the fetched block b nor

the evicted block b

0

are available during the F time

units t to t+ F in which the fetch occurs.

2. The fetches on each disk are sequential: If a fetch

is initiated for a block on disk i at time t, no other

fetch of a block on disk i can be initiated until time

t

0

� t+ F . (Of course prefetches on di�erent disks

can be executed concurrently.)

The goal of a prefetching algorithm is to construct,

on input request sequence R, a prefetching schedule that
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minimizes the the elapsed time required to serve R; this

elapsed time is equal to n plus the total stall time.

The prefetching schedule speci�es for each disk

� which blocks to fetch,

� when to fetch them, and

� which cache blocks to evict.

We consider three algorithms for parallel prefetch-

ing in this paper, conservative, aggressive and reverse-

aggressive. The �rst two are natural extensions of the

two single disk prefetching strategies described in [8].

They lie at opposite ends of the spectrum in terms of

the total number of fetches performed: Conservative

performs the minimum possible number of fetches, at

the expense of a worse elapsed time in the worst case;

Aggressive prefetches as aggressively as possible without

being stupid about it.

We give tight bounds on the performance of both of

these algorithms. Unfortunately, for both of these al-

gorithms, there are reference patterns on which their

performance is suboptimal by a factor of nearly d.

Theorem 1 On any reference string R, the elapsed

time of conservative with d disks on R is at most d+ 1

times the elapsed time of the optimal prefetching strategy

on R.

This bound is nearly tight for d < F : There are arbi-

trarily long strings on which conservative requires time

1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Theorem 2 On any reference string R, the elapsed

time of aggressive with d disks on R is at most d(1 +

F+1

K

) times the elapsed time of the optimal prefetching

strategy on R.

This bound is nearly tight for d = o(

p

F ): There

are arbitrarily long strings on which aggressive requires

time d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within

an additive constant that depends only on F and K).

Our main result is the development and analysis of a

new algorithm, called reverse-aggressive, whose perfor-

mance is provably close to optimal. Its near-optimality

is derived from the fact that it balances the loads on

multiple disks and keeps the disks in pace with each

other.

Theorem 3 Reverse aggressive requires at most 1 +

dF=K times the optimal elapsed time to service any re-

quest sequence.

This bound is nearly tight for small d: There are arbi-

trarily long strings on which reverse aggressive requires

(1 + (F � 1)=K) times the elapsed time of the optimal

prefetching strategy on R.

1.4 Related Work

Our problem can be viewed as a generalization of the

classical paging problem. Indeed, one principle for

prefetching (the optimal eviction rule described in sec-

tion 2.2) is derived from Belady's optimal longest for-

ward distance [1] paging algorithm. As we will see, how-

ever, the application of this rule alone is insu�cient to

guarantee good prefetching performance; the natural al-

gorithm based on it is suboptimal by a factor of nearly

d+ 1. (See theorem 1).

On the theoretical side, we know of no prior work

on the integration of parallel prefetching and caching.

There have been some interesting results on the use of

data compression for the design of optimal prefetching

strategies [29, 49], and work on prefetching strategies

for external merging under a probabilistic model of re-

quest sequences [38]. However, these studies concen-

trated only on the problem of determining which blocks

to fetch, and did not address the problem of determining

which blocks to replace.

Our work builds on recent studies of the sequential

version of this problem (single disk) which showed [8, 7]

that it is important to integrate prefetching, caching and

disk scheduling together and that a properly integrated

strategy can perform much better than a naive strategy,

both theoretically and in practice.

In the systems community, caching and prefetching

have been known techniques to improve the performance

of storage hierarchies for many years [50, 1, 17]. The

breadth of application of these techniques has ranged

from architecture [46] to database systems [47, 11, 39,

13] to �le systems [17, 33, 24, 37, 48, 6, 21, 9, 42]

and beyond. A recent trend in this research is to

use applications' knowledge about their access pat-

terns to perform more e�ective caching and prefetch-

ing [6, 9, 41, 42, 23, 34]. Application hints of this sort

can be used as the inputs to the algorithms described

in this paper.

Our practical motivation for this problem comes from

�le systems. In this domain, the most common prefetch-

ing approach is to perform sequential read-ahead, i.e.

to detect when an application accesses a �le sequen-

tially, and to prefetch the blocks of the �les that are so

used [17, 33, 35]. The limitation of this approach is that

it bene�ts only applications that make sequential refer-

ences to large �les. Another large body of work has been

on predicting future access patterns [16, 48, 39, 13, 21].

Our results complement this work: once future accesses

are known, our algorithms determine a near-optimal

prefetching schedule.

Much research in the past on parallel I/O has con-

centrated on techniques for \striping" and distributing

error-correction codes among redundant disk arrays or
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other devices to achieve high bandwidth and to tolerate

failures [27, 45, 2, 12, 10, 40, 20, 31, 36, 19, 3, 5, 26, 43,

25, 14, 4, 18, 15, 22, 44]. Again, our work complements

previous work: our algorithms achieve near-optimal per-

formance for any given layout. Their performance will

only improve when a near-optimal layout is used.

Recently, caching and prefetching have also been em-

pirically studied for parallel �le systems [16, 30, 32, 41,

51, 42].

Finally, in joint work with P. Cao, E. Felten and K. Li

of Princeton University, we have performed an empirical

study of the performance of the algorithms described

in this paper. A companion paper [28] describes the

framework presented here and reports on this empirical

evaluation. A brief summary of the results is given in

section 4.3 of this paper.

1.5 Organization of the Paper

In section 2, we describe several principles that can be

assumed of optimal prefetching algorithms. These con-

strain the problem and by adhering to them, we can

ensure that an algorithm's performance is not far from

optimal. In section 3 we de�ne the algorithms consid-

ered and give intuition on their performance. In section

4 we present our results and a high level description

of the proofs; detailed proofs are contained in the ap-

pendix. We conclude with open problems for further

research.

2 Characterizing the Optimal

Prefetching Schedule

2.1 Terminology

At any point in processing the sequence (i.e. for any

given cache state and cursor position), a hole is (the

index in the request sequence of the next request to) a

block that is not present in the cache. (We will use the

term \hole" to refer to both the missing block and its

next occurrence in the request sequence; which of these

is meant will be clear from the context.) If the cache is

full, there are K out of jBj blocks in the cache and thus

jBj � K holes. After a block is requested for the last

time, we consider the corresponding hole in the request

sequence to be at index n+1, i.e. greater than the index

of any request.

2.2 Prefetching with a single disk

Before proceeding, we review the results of Cao et al. [8]

for prefetching and caching in the single-disk case. They

described four properties that can be assumed of any

optimal strategy in the single-disk case:

1. optimal fetching: when fetching, always fetch the

missing block that will be referenced soonest;

2. optimal eviction: when fetching, always evict the

block in the cache whose next reference is furthest

in the future;

3. do no harm: never evict block A to fetch block B

when A's next reference is before B's next refer-

ence;

4. �rst opportunity: never evict A to fetch B when

the same thing could have been done one time unit

earlier.

It is easy to show that any schedule for serving re-

quests and performing fetch-and-evict operations that

does not follow these rules can be transformed into one

that does, with performance at least as good. The

�rst two rules specify what to fetch and what to evict,

once a decision to fetch has been made. The last two

rules constrain the times at which a fetch can be initi-

ated. Clearly, these rules do not uniquely determine

the prefetching schedule. In particular, they do not

specify how to choose between an earlier prefetch with

a correspondingly earlier eviction and a later prefetch

with a correspondingly later eviction. The former helps

prevent stalling on earlier holes, whereas the latter

may help prevent the introduction of holes, and hence

stalling at a later time.

Nonetheless, these rules do provide a fair amount of

guidance in the design of a prefetching algorithm. Cao

et al. considered two natural algorithms that follow

these rules, aggressive and conservative, that lie at op-

posite ends of the spectrum of possibilities. Aggressive is

the algorithm that initiates a prefetch whenever its disk

is ready (i.e. is not in the middle of a prefetch) and the

do no harm rule allows it. Conservative is the algorithm

that refuses to fetch until it can evict the same block

that would be evicted by the optimal longest forward

distance [1] algorithm in the classical paging model.

That is, conservative applies the rule optimal eviction

as though the prefetch were to be initiated immediately

before serving the request to the missing block, then ap-

plies the rule �rst opportunity to exchange the chosen

fetch/eviction pair as early as possible. Conservative

makes the minimum number of total fetches, but it of-

ten declines opportunities to prefetch blocks.

Cao et al. showed that in the single-disk case, con-

servative's elapsed time on any sequence is at most

twice the optimal time, and that aggressive's worst-case

elapsed time is at most min(1+F=K; 2) times optimal,

where F is the time required to fetch a block and K is

the cache size measured in blocks. (They also showed

that these bounds are tight.) On real systems, F=K is

typically small, so aggressive is close to optimal.
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2.3 The multi-disk case

There is an obvious and natural extension of each of

these algorithms to the multi-disk case. For aggressive,

it is the following: Whenever a disk is free, prefetch

the �rst missing block of that disk's color, replacing the

block (of any color) whose next reference is furthest in

the future among all cached blocks. However, a fetch

should be started only if the next access to the evicted

block is after that to the block being fetched.

Unfortunately, as we shall see, this algorithm does

not enjoy the same performance guarantee in the multi-

disk case as it achieved in the single disk case. In fact,

the four properties on which it was based in the single

disk case do not hold for optimal strategies in the multi-

disk case. As a result, it su�ers from two problems in

the multi-disk case that did not exist in the single disk

case:

� The eviction decisions it makes are \color-blind":

It chooses evictions to make without consideration

of the load on the disks. These choices can result

in a situation where many of the holes at any time

are of the same color, and therefore can not subse-

quently be prefetched in parallel. (See �gure 1 for

an example of this.)

� Aggressive is too aggressive. The result is that it

can cause some disks to fetch too far ahead with

respect to other disks. These fetches increase the

share of the cache occupied by blocks belonging to

the lightly loaded disk(s), creating even more holes

for the heavily loaded disk(s) to �ll.

Therefore, we are motivated to approach the multi-

disk prefetching problem in a way that will constrain the

space of possibilities for the prefetching schedule in the

same way that the four rules described above constrain

the schedule in the single-disk case.

2.4 Properties of Optimal Parallel

Prefetching

It is not hard to show that out of the four rules for

optimal prefetching with one disk, only the last (�rst

opportunity) holds when there are multiple disks. Find-

ing a rule to replace optimal fetching is not much of a

problem, however. The \colored" version of the rule

can be used, i.e. for each disk c, the next block to fetch

from c is the next missing block in the sequence that is

colored c. Thus, as in the single-disk case, the question

of which block to fetch reduces to the question of when

to initiate a prefetch operation; this question needs to

be answered for each disk, of course.

Optimal eviction is more troublesome. Suppose there

are two disks, colored red and blue. If there are many

red blocks missing in the sequence, say, it may be that

the best choice for eviction is a blue block even though

the block whose next request is furthest in the future

is red. This is because the relatively lightly-loaded blue

disk can better handle the increased burden of another

missing block than the red disk can. Given that a blue

block is to be evicted, say, it is true that the best choice

is the blue block that is not requested for the longest

time. That is, the colored version of this rule holds, but

it doesn't tell us which color block to evict.

Even the seemingly obvious do no harm rule can be

violated by the optimal prefetching strategy. This is

because the loads on the disks can be imbalanced. If

there are many red blocks missing from the sequence,

say, but no blue blocks missing, it may be advantageous

to buy time by evicting a blue block (and completing

a fetch of a red block sooner than it would be possible

otherwise), then bringing the blue block back into the

cache after a request to some red block has been served

(so that a new eviction opportunity has arisen).

2.5 Using the reverse sequence

An interesting twist allows us to convert multiple-disk

prefetching to a more constrained, and hence easier to

solve, problem. In particular, we consider the request

sequence in reverse (in a sense we will describe momen-

tarily). We will be able to show that of the four rules,

all but one (optimal eviction) hold for optimal schedules

serving the reverse sequence. Moreover, we will be able

to replace this rule by a simple \colored" variant (as

we did with the optimal fetching rule for the forward

sequence).

First, we return to the single disk case, and observe

that any prefetching schedule that serves the reverse

sequence S

r

in time T can be used to derive a schedule

to serve S in time T as follows. If the schedule for

serving S

r

serves request r

i

between times t and t+1, the

derived schedule for S serves r

i

between times T � t� 1

and T � t. If the reverse schedule replaces a with b

between times t and t+F , the derived schedule replaces

b with a between times T � t�F and T � t.

2

Applying

this logic twice, we see that the optimal elapsed time for

the reverse sequence is the same as the optimal elapsed

time for the original sequence.

Reversal of the sequence is more complicated when

multiple disks are considered. In the forward direction,

2

We assume that all algorithms start with the cache containing

the �rst K distinct requests in the sequence. Alternatively, all

our results hold within an additive constant that accounts for

di�erences in algorithms' transient cold-cache startup behaviors.

We can assume without loss of generality that all algorithms end

with the last K distinct requests in the cache.
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the prefetching schedule is constrained to fetch at most

one block at a time from each disk; eviction choices may

be blocks of either color. Switching between the forward

sequence and the reverse sequence, fetches become evic-

tions and vice versa. To derive a useful schedule from

a schedule serving the reverse sequence, then, requires

that the schedule for the reverse sequence be constrained

to evict at most one block of each color at a time. This

is illustrated in the following example (see �gure 2):

Consider the request sequence \ABcD", where upper

case letters denote red blocks and lower case letters de-

note blue blocks. Let F = 2 andK = 2. By assumption,

at time 0, blocks A and B reside in the cache (for the

execution of the sequence in the forward direction). At

time 1, a fetch is initiated to bring c into the cache from

the blue disk, evicting A. At time 2, a fetch of D from

the red disk is initiated, evicting B from the cache. The

request to c stalls for one step until time 3 at which the

fetch completes.

In the schedule for the reverse sequence, at time 1, D

is evicted in order to start fetching B. Since c is blue

and D is red, a fetch of A (evicting c) can be started at

time 2, even though A and B are both red. The request

for B stalls until time 3; it is served between times 3

and 4.

As previously mentioned, all of the rules for optimal

prefetching except optimal eviction can be assumed of

prefetching schedules for the reverse sequence. This fact

makes it easier to �nd a schedule for the reverse se-

quence, then transform it into one for the original se-

quence, than to �nd a schedule for the original sequence

directly. The reason for this is that in the forward di-

rection, any time a block is prefetched a decision must

be made as to which color block to evict. In the reverse

direction, this decision is made for us: the block to evict

is the one not needed for the longest time whose color

matches the color of the free disk. (I.e. the \colored"

version of the optimal eviction rule can be used.) One

might expect that fetch decisions are harder, but this

is not the case. In the forward direction, the missing

block to fetch is the one of the right color that is needed

soonest. (This is the colored version of optimal fetching

described earlier.) In the reverse direction, it is the one

needed soonest, regardless of color.

3 The Algorithms

The conservative algorithm

We never

mention

the algo-

rithms'

running

times!

Conservative is the prefetching algorithm that consid-

ers the next missing block and the eviction that would

be performed were the sequence being served by the

optimal o�ine demand paging algorithm. At the �rst

time that particular fetch/eviction pair is possible, con-

servative issues the prefetch. Conservative performs the

minimum possible total number of fetches.

The aggressive algorithm

Aggressive is the prefetching algorithm that performs

aggressive prefetching in the forward direction. When-

ever a disk is free, it prefetches the �rst missing block

of that disk's color, replacing the block whose next ref-

erence is furthest in the future among all cached blocks.

However, it starts a fetch only if the next access to

the block to be evicted is after that to the block to

be fetched.

The reverse aggressive algorithm

Reverse aggressive is the prefetching algorithm that per-

forms aggressive prefetching on the reverse of its input

sequence, then derives a schedule to serve the forward

sequence as described in section 2.5. That is, on the re-

verse sequence, it behaves as follows. Whenever a disk

is not in the middle of a prefetch, it determines which

block in the cache is not needed for the longest time

among those with the same color as the disk. If the

index of the next request to that block is greater than

the index of the �rst hole (of any color), a prefetch is

initiated.

3

3.1 Intuition

An intuitive explanation of reverse aggressive's advan-

tage over (forward) aggressive is the following:

� Whereas aggressive chooses evictions without con-

sidering the relative loads on the disks, reverse ag-

gressive greedily evicts to as many disks as possible

on the reverse sequence. Therefore, it is ensuring

close to the highest degree of parallelism possible

on fetches in the forward sequence.

3

A technical detail must be addressed: if more than one disk

is ready to initiate a prefetch at the same time, reverse aggressive

considers �rst the one with the farthest eviction. If the evicted

block is next requested after the �rst hole, a prefetch is initiated.

Then, if the second hole precedes the best eviction on the next

disk, a prefetch is initiated on that disk as well, and so on. We

use a similar de�nition for (forward) aggressive with more than

one disk: the disk considered �rst is the one with the �rst hole.

If a fetch is possible on that disk, it is initiated. Then, if the �rst

hole of the next disk's color precedes the second best eviction,

a fetch can be started on the second disk, and so on. Of course,

reverse aggressive never initiates a second fetch of a block already

being fetched by another disk; a similar consideration applies to

the evictions made by forward aggressive.
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Figure 2: An example of reversing a schedule of prefetching and caching with two disks: a disk holding blocks A, B,

and D, and another disk holding block c. Cache size K = 2 and fetch time F = 2.

� Whereas aggressive can wastefully prefetch ahead

on some of its disks, reverse aggressive is greedy in

the reverse direction. Consequently, it is fetching

pages in the forward direction just in time (to the

extent possible) for them to be used. This results

in performing close to the best evictions possible

for those fetches and in keeping the disks roughly

in pace with each other.

4 Results

4.1 Bounds on the performance of con-

servative and aggressive

Theorem 1 On any reference string R, the elapsed

time of conservative with d disks on R is at most d+ 1

times the elapsed time of the optimal prefetching strategy

on R.

This bound is nearly tight for d < F : There are arbi-

trarily long strings on which conservative requires time

1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Theorem 2 On any reference string R, the elapsed

time of aggressive with d disks on R is at most d(1 +

F+1

K

) times the elapsed time of the optimal prefetching

strategy on R.

This bound is nearly tight for d = o(

p

F ): There are

arbitrarily long strings on which aggressive requires time

d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within an

additive constant that depends only on F and K).

The proofs of theorems 1 and 2 are not too di�cult

and are presented in the appendix.

The key concept in the proof of theorem 2 is the no-

tion of domination from the work on prefetching in the

single-disk case [8]. We say that aggressive's holes dom-

inate the optimal algorithm opt's holes if for every hole

aggressive has, opt has one at least as early in the re-

quest sequence. If aggressive's cursor is ahead of opt's

cursor, and aggressive's holes dominate opt's holes, then

opt's cursor can't pass aggressive's: if aggressive stalls

on a hole, opt must also stall on its corresponding hole.

We show that aggressive is able to continually regain and

maintain such an advantage (having its cursor ahead

and its holes dominate) over opt at regular intervals,

without losing too much time to opt in the process.

The lower bound of d comes from the fact that an

adversary can construct request sequences which cause

both conservative and aggressive to always fetch blocks

from only one disk. The optimal algorithm opt can serve

these same sequences at essentially d times the rate be-

cause of the parallelism of prefetching on d disks. The

additive term of one for conservative (in both the upper

and lower bounds) comes from opt's ability to overlap

prefetches with the serving of requests. In contrast, con-

servative may not be able to do so.

The factor of d in the upper bounds comes from the

fact that d is also a limit to the parallelism available to

opt. As in the single-disk case, the factor of 1+(F+1)=K

in the upper bound for aggressive comes from the fact

that aggressive's evictions (i.e. newly created holes) are

always at least K steps from the cursor. Essentially,

aggressive prefetches too soon (creating extra holes) at

most once every K requests.

4.2 A bound on the performance of

reverse-aggressive

The following theorem is the main contribution of this

paper.

Theorem 3 Reverse aggressive requires at most 1+

dF=K times the optimal elapsed time to service any re-

quest sequence.

4

4

In fact, this bound can be strengthened to 1+dF=P , where P

is the average phase length in the sequence. A phase is a maximal-

length subsequence of requests to K distinct blocks. Obviously,

P � K, and on realistic sequences P >> K.
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This bound is nearly tight for small d: There are arbi-

trarily long strings on which reverse aggressive requires

(1 + (F � 1)=K) times the elapsed time of the optimal

prefetching strategy on R.

The proof of this theorem required several new ideas.

The notion of domination from the proof of theorem 2

was replaced by a substantially stronger notion that we

call strong domination.

De�nition: Let A and B be sets of holes, possibly

with di�erent numbers of holes of each color. For each

color c, let N

c

(A) (N

c

(B)) be the number of holes of

color c in A (resp. B). Let N

c

= min(N

c

(A); N

c

(B).

If N

c

(A) > N

c

(B), we say that c is an excess color of

A; if N

c

(A) < N

c

(B)), c is an excess color of B; if

N

c

(A) = N

c

(B), c is not an excess color. Let E

c

=

jN

c

(A) �N

c

(B)j. If c is an excess color of A, we refer

to A's �rst (counting from the cursor to the end of the

sequence) E

c

holes of color c as excess holes; excess holes

of B are de�ned similarly. We say the set of holes A

strongly dominates the set of holes B if

� for each c, A's last N

c

holes of color c dominate

B's last N

c

holes of color c (i.e. A's non-excess

holes dominate B's non-excess holes, whether c is

an excess color of A or B or c is not an excess color),

and

� all of B's excess holes precede the �rst hole in A of

any color.

The following crucial lemma is then used to show that

if reverse-aggressive strongly dominates opt, and both

have the opportunity to initiate a fetch replacing blocks

of the same color, then reverse-aggressive strongly dom-

inates opt after the corresponding fetches complete.

5

Lemma 4 Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R. If a's holes at some time t strongly dom-

inate b's holes at some time t

0

, a's cursor position at

time t is at least as great as b's cursor position at time

t

0

, and

1. both algorithms perform a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a performs a prefetch at time t but b does not at

time t

0

, or

5

We are speaking here of the performance of reverse aggres-

sive on the reverse sequence, compared to the optimal reverse

algorithm's performance on the reverse sequence. However, as

described in 2.5, the optimal elapsed time is the same in both

directions, and from reverse aggressive's schedule, we are able to

derive a prefetching schedule for the forward sequence with the

same elapsed time.

3. b performs a prefetch at time t

0

and every block in

a's cache of the same color as b's evicted block is

requested before a's �rst hole at time t,

then a's resulting holes strongly dominate b's resulting

holes.

It is not possible to show that reverse aggres-

sive strongly dominates opt throughout the sequence.

Therefore, we show that by giving reverse aggressive a

little more time to serve every subsequence of K re-

quests, it will strongly dominate opt at these regular

intervals (i.e., it loses about F steps by prefetching too

soon, thereby generating extra holes to �ll, only every

K requests or so).

The di�culty in showing this is that in fact, reverse

aggressive may prefetch prematurely very often, but with

only d� 1 disks. We show that it is able to compensate

by consistently making good (distant from the cursor)

evictions with the other (\good") disk. While reverse

aggressive spends an extra F steps relative to opt �ll-

ing the �rst extra hole created by a \bad" disk, the

good disk �lls one hole. This gives reverse aggressive

a \one hole lead" over opt with respect to the �lling of

holes. (Remember, each disk can fetch blocks of any

color.) This provides a \bu�er" against stalling on the

(further) extra holes created by the bad disk, at least

until an extra hole created by the good disk is reached.

(The strong domination lemma is used to show that this

invariant is maintained.) The good disk creates extra

holes only every K requests.

Formalizing all these arguments is di�cult; the details

are presented in the appendix.

4.3 Empirical Results

As mentioned, in joint work with P. Cao, E. Felten and

K. Li, we have performed an empirical study of the per-

formance of these algorithms: we implemented the ag-

gressive and reverse aggressive algorithms and tested

them on reference streams taken from real �le systems.

These results are reported in a companion paper [28].

We found that in practice, aggressive does substan-

tially better than the worst-case performance we show

here, if the layout of data on the disks is favorable

(roughly, if the loads on the disks are balanced), though

still not as well as reverse aggressive. With unbalanced

loads on the disks (with the number of disks d ranging

from 2 to 20), we found that reverse aggressive outper-

forms aggressive signi�cantly. That paper also presents

empirical results about the performance of \online" ver-

sions of these algorithms. In our simulations, we found

that the online versions performed well even with lim-

ited advance knowledge of future �le accesses. For fur-

ther details, see [28].
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5 Open problems

As mentioned in the introduction, we know of no

polynomial-time algorithm for optimal prefetching even

for one disk. It is a di�cult problem to �nd either such

an algorithm or a proof of hardness. We do have an al-

gorithm to determine whether a sequence can be served

with zero stall time (in the single-disk case).

Another very interesting direction is to extend these

results to the case where only probabilistic information

is available about the request sequence.
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Appendix: Proofs

Terminology

The following de�nitions will be useful. Further de�ni-

tions will be introduced later, which will be speci�c to

the particular proofs in which they are used.

De�nition: We divide the request sequence into

phases, maximal-length subsequences of requests to K

distinct blocks, as follows. The �rst phase begins with

the �rst request. Each phase ends immediately before

the �rst request to the (K+1)

st

distinct block since the

beginning of the phase, and the next phase begins with

that request.

Given two sets A and B of holes with jAj � jBj, A is

said to dominate B if for all i, 1 � i � jAj, the index of

A's i

th

hole (ordered by increasing index) is no greater

than the index of B's i

th

hole. We will say that the i

th

hole in A is matched to the i

th

hole of B. Notice that

domination is transitive.

If algorithm A has fetches in progress at any time

t, we denote A's holes before initiating those fetches

by H

�

A

(t) (i.e. H

�

A

includes the holes being �lled, but

not the ones being created), and A's holes after those

fetches complete (but ignoring any later fetches that

may overlap them) by H

+

A

(t).

Reverse aggressive: upper bound

Notation

� In this section, we assume all algorithms are work-

ing with the reverse sequence, and denote the opti-

mal algorithm for serving the reverse sequence by

opt.

� Notice that unlike aggressive, it is possible that re-

verse aggressive (and opt working on the reverse

sequence, in fact) will create a new hole within a

phase even after its cursor has entered the phase.

Although it's true that for every hole in the phase,

there is a block in the cache that is not requested

until after the end of the phase, it may be that all

those blocks are the same color, and that the best

eviction choice of another color is a block that will

be requested before the end of the phase. How-

ever, if reverse aggressive does create new holes in

the phase containing the cursor, it will create such

holes of at most d� 1 colors. We refer to the other

disk as the busy disk for the phase. As long as there

are holes remaining in the phase, the busy disk will

initiate a fetch to �ll one of them every F steps.

� A fetch using the busy disk (and evicting a block of

the same color as the busy disk; the block fetched

may any any color) is referred to as a busy-disk

fetch; fetches using other disks are referred to as

non-busy-disk fetches.

Lemma 5 Any prefetching schedule that doesn't sat-

isfy the four rules described in section 2.4 can be trans-

formed into one that does, with no increase in elapsed

time.

Proof:

1. optimal fetching (�ll the �rst hole): Suppose that

at time t

1

, a fetch is initiated to �ll some hole h

2

other than the �rst hole h

1

. h

1

must be �lled before

it can be served; say it is �lled by a fetch initiated

at time t

2

> t

1

. Since the (later) reference to h

2

cannot be served until after the reference to h

1

is

served, no further stall time is induced by �lling h

1

at time t

1

and h

2

at time t

2

. Since we are working

with the reverse sequence, this change can be made

regardless of the colors of h

1

and h

2

.

2. colored optimal eviction (evict the block not needed

for the longest time among those colored the same

as the free disk): Suppose that at time t

1

, block b

1

is evicted, and block b

2

of the same color as b

1

is

in the cache and is not referenced before the next

reference to b

1

. If b

2

is subsequently evicted before

the next reference to b

1

is served, the e�ect is the

same if b

2

is evicted �rst, then b

1

. Otherwise, b

1

must be fetched back at some time t

2

> t

1

before

the reference to it can be served. If b

2

is evicted at

time t

1

instead of b

1

, it can be fetched back at time

t

2

. By assumption, there are no intervening refer-

ences of b

2

on which to stall; thus the transformed

schedule stalls no more than the original.

3. do no harm (don't evict b

1

to fetch b

2

if b

1

is needed

sooner): Suppose b

1

is evicted to fetch b

2

. b

1

must

be fetched back before the reference to it can be

served; this fetch evicts some other block b

3

. Since

fetches on any disk can be of any color, the fetch of

b

1

can be replaced by a fetch of b

2

(evicting b

3

). By

assumption, there are no intervening references of

b

2

on which to stall; thus the transformed schedule

stalls no more than the original.

Page 11



4. �rst opportunity (perform each fetch/eviction pair

as soon as possible): Suppose that disk c is left

idle at time t, a fetch of block b

1

is initiated at

t+1 evicting block b

2

of color c, and that the block

served at time t is not b

2

. Then by initiating the

fetch at time t rather than t + 1, the hole (b

1

) is

�lled one step sooner; certainly, no additional stall

is incurred by this change.

2

Lemma 6 Given two sets of holes A = A

1

[A

2

and

B = B

1

[B

2

with jA

1

j � jB

1

j, jA

2

j � jB

2

j, A

1

\A

2

= ;,

and B

1

\B

2

= ;, if A

1

dominates B

1

and A

2

dominates

B

2

, then A dominates B.

Proof: Suppose the contrary. Let i be such that the

i

th

member of A has an index less than the i

th

member

of B. Then A contains i holes with indices less than

or equal to that of A's i

th

hole, and B contains only

i� 1 such holes. But because A

1

dominates B

1

and A

2

dominates B

2

, for each member of A there is a distinct

member of B with lesser or equal index. Thus we have

a contradiction. 2

Note that the lemma extends to pairs of sets com-

posed of more than two disjoint subsets each.

De�nition: Let A and B be sets of holes, possibly

with di�erent numbers of holes of each color. For each

color c, let N

c

(A) (N

c

(B)) be the number of holes of

color c in A (resp. B). Let N

c

= min(N

c

(A); N

c

(B)).

If N

c

(A) > N

c

(B), we say that c is an excess color of

A; if N

c

(A) < N

c

(B)), c is an excess color of B; if

N

c

(A) = N

c

(B), c is not an excess color. Let E

c

=

jN

c

(A) �N

c

(B)j. If c is an excess color of A, we refer

to A's �rst (counting from the cursor to the end of the

sequence) E

c

holes of color c as excess holes; excess holes

of B are de�ned similarly. We say the set of holes A

strongly dominates the set of holes B if

� for each c, A's last N

c

holes of color c dominate

B's last N

c

holes of color c (i.e. A's non-excess

holes dominate B's non-excess holes, whether c is

an excess color of A or B or c is not an excess color),

and

� all of B's excess holes strictly precede the �rst hole

in A of any color.

Notice that by the previous lemma, strong domina-

tion implies domination. We will be concerned most of

the time with equal-sized sets of holes. The exception

to this is merely a convenience that allows us to con-

sider separately the e�ects of changes to sets of holes,

where the changes always occur in pairs that conserve

the sizes of the sets (i.e. one hole is �lled and a new one

created by a prefetch operation).

Lemma 7 Strong domination is transitive.

Proof: Suppose A strongly dominates B and B

strongly dominates C. Fix a color c; for convenience

(so we can use it as an adjective), suppose c is red.

De�ne N

c

(�) as before. For a collection S of sets of

holes, let N

c

(S) = min

s2S

(N

c

(s)). (We will drop

the brackets when listing the members of a set.) Let

N

c

= N

c

(A;B;C). We consider three cases:

1. N

c

= N

c

(A). A has N

c

red holes, and these domi-

nate the last N

c

red holes in B. B's last N

c

(B;C)

red holes dominate C's last N

c

(B;C) red holes, so

B's last N

c

red holes must dominate C's last N

c

red holes. Since domination is transitive, A's N

c

red holes dominate C's last N

c

red holes. Suppose

h is a red hole in C that is excess with respect to

A. If h is matched to a red hole h

0

of B, h

0

is excess

w.r.t. A and thus precedes A's �rst hole, so h must

precede A's �rst hole as well. If h is excess w.r.t.

B, it precedes B's �rst hole, which precedes or is

the same as A's �rst hole.

2. N

c

= N

c

(B). A's last N

c

red holes dominate B's

N

c

red holes, which dominate C's last N

c

red holes.

Suppose h is a red hole in C that is excess w.r.t. B.

h must precede B's �rst hole. Since B's �rst hole

precedes or is the same as A's �rst hole, h precedes

A's �rst hole as well. If h is excess w.r.t. A, we are

done. If h matches some hole h

0

of A, h surely does

not occur after h

0

.

3. N

c

= N

c

(C). A's last N

c

(A;B) red holes dominate

B's last N

c

(A;B) red holes, so A's last N

c

red holes

must dominate B's last N

c

red holes, which dom-

inate C's last N

c

red holes. C has no excess red

holes w.r.t. B or A.

2

Lemma 8 Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R. If a's holes at some time t strongly dom-

inate b's holes at some time t

0

, a's cursor position at

time t is at least as great as b's cursor position at time

t

0

, and

1. both algorithms perform a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a performs a prefetch at time t but b does not at

time t

0

, or

3. b performs a prefetch at time t

0

and every block

in a's cache of the same color as b's evicted block

is requested before a's �rst hole at time t (i.e. a

prefetches aggressively),
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then a's resulting holes strongly dominate b's resulting

holes.

Proof: De�ne N

c

(A), N

c

(B), and N

c

as before (with

respect to the sets of holes before each change to a set

of holes is made), where A denotes a's set of holes and

B denotes b's set of holes.

We consider the individual changes to A and B in

three steps:

1. a's �rst hole is removed from A if one of clauses 1

and 2 holds.

2. b's new hole is added to B if one of clauses 1 and

3 holds and a's new hole is added to A if one of

clauses 1 and 2 holds.

3. b's �rst hole is removed from B if one of clauses 1

and 3 holds.

We will show that after each step, strong domination of

A over B is preserved.

For convenience, we will say that (a hole at) index i

is \left" of (a hole at) index j, and (the hole at) j is

\right" of (the hole at) i, if i < j.

First, assume that clause 1 of the premise holds.

Step 1: a's �rst hole is �lled

Let c be the hole's color. First, since a's new �rst hole

is to the right of its old �rst hole (the one being �lled),

b's excess holes all are still to the left of a's �rst hole.

If c was an excess color of a, we are done. Otherwise,

b's hole that was matched to a's �lled hole becomes an

excess hole, and since it occurred no later than the hole

it matched, it is to the left of a's new �rst hole.

Step 2: eviction

Let a's last N

c

holes of the same color c as the block

evicted occur at indices a

1

< a

2

< : : : < a

N

c

, and let b's

occur at b

1

< b

2

< : : : < b

N

c

. Since a's holes strongly

dominate b's, we know that a

i

� b

i

for each i. Let

a and b both make the best possible eviction of color

c. Let b's new hole be its j

th

non-excess hole of color

c, i.e. the new hole occurs between b

j�1

and b

j

, or at

an index greater than b

N

c

in which case j = N

c

+ 1,

or before b

1

in which case j = 1. (As a special case,

if c is an excess color of b, and the new hole is before

b's last excess hole of color c, the new hole becomes an

excess hole and the last excess hole takes its place in

the following argument.) Let a's new hole be its r

th

hole of color c, with a similar special case to that in the

de�nition of j. Let a

0

1

< a

0

2

< : : : < a

0

N

c

+1

be the indices

of a's last N

c

holes of color c after the eviction, and let

b

0

1

< b

0

2

< : : : < b

0

N

c

+1

be the indices of b's last N

c

holes

of color c after the eviction. Then for i < r, a

0

i

= a

i

and

for i > r, a

0

i

= a

i�1

; for i < j, b

0

i

= b

i

and for i > j,

b

0

i

= b

i�1

. To show that domination is preserved, we

need to show that a

0

i

� b

0

i

for each i, 1 � i � N

c

+ 1.

For i < min(r; j) and i > max(r; j) it is immediate that

a

0

i

� b

0

i

. If r > j, then we have

a

0

r

> a

r�1

� b

r�1

= b

0

r

a

0

r�1

= a

r�1

� b

r�1

> b

0

r�1

: : :

a

0

j

= a

j

� b

j

> b

0

j

and we are done. If r � j, then we must show

a

0

j

= a

j�1

� b

0

j

a

0

j�1

= a

j�2

� b

0

j�1

= b

j�1

: : :

a

0

r+1

= a

r

� b

0

r+1

= b

r+1

a

0

r

� b

0

r

= b

r

:

Suppose that one or more of these inequalities does not

hold, and let i be the largest index for which a

0

i

< b

0

i

.

Then we have

a

0

i

< b

0

i

< b

0

i+1

� a

0

i+1

where a's new hole at a

0

r

satis�es a

0

r

� a

0

i

. But this

means that a had a block that is not requested until

index b

0

i

in its cache, and elected to evict the block re-

quested earlier at index a

0

r

instead. This contradicts

the assumption that a made the best possible eviction

choice, i.e. that it evicted the block whose next occur-

rence was at the greatest index among all blocks in the

cache.

Since the holes of color other than c are una�ected

by this change, and domination of holes of color c is

preserved, strong domination is preserved.

Step 3: b's �rst hole is �lled

Let c be the hole's color. If c is an excess color of

b, then b will have one fewer excess hole of color c; the

remaining ones are unchanged, and thus are still to the

left of a's �rst hole. Otherwise, the hole was matched

to some hole of a, which becomes an excess hole.

We are done with clause 1 of the premise. For clause

2 (a fetches but b does not), step 1 is the same as in

the proof for clause 1. For step 2, �rst note that a's

new hole is to the right of the (old) �rst hole (by the

do no harm rule), so that b's excess holes still precede

all of a's holes. Let c be the color of a's new hole. If c

is an excess color of b, an argument similar to the one

above for clause 1 shows that a's holes of color c will

dominate b's non-excess holes of the same color. If c is

not an excess color of b, the new hole or some previous

hole of a will become an excess hole. In the former case,

a's last N

c

holes are unchanged. In the latter case, the
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index of a's i

th

non-excess hole of color c is the same or

greater than before, for each i � N

c

. No changes are

made in step 3.

For clause 3 (b fetches but a does not), nothing hap-

pens in step 1. Let c be the color of b's new hole. Again,

for step 2, an argument similar to that for clause 1 shows

that a's non-excess holes of color c dominate b's non-

excess holes of color c; if not, a would perform a prefetch

operation since it prefetches aggressively. If c is not an

excess color of b, we are done with step 2. Otherwise,

we need to show that all of b's excess holes of color c

precede a's �rst hole. Suppose that b has N

c

+ 1 holes

of color c at or to the right of a's �rst hole. a has only

N

c

holes of color c, so b has some hole of color c to the

right of a's �rst hole. Again, we have a contradiction to

the hypothesis that a prefetches aggressively. Step 3 is

the same as for clause 1. 2

We will also need another notion of domination,

called phase domination. Phase domination is similar

to strong domination, but is concerned only with holes

in the phase containing the cursor.

De�nition: Let A (B) be algorithm a's (resp. b's)

set of holes at time t (resp. t

0

) such that a's cursor at

time t is in the same phase of the request sequence as

b's cursor at time t

0

. For each color c, de�ne N

c

(A),

N

c

(B), N

c

, E

c

, and excess holes as before. Then A

phase-dominates B if

1. All of b's excess holes strictly precede a's �rst hole

of any color.

2. For each color c that is excess for a, if b's i

th

hole of

color c is within the phase for any i > 0, it occurs

no earlier than a's (i+E

c

)

th

blue hole.

3. For each color c that is not an excess color or is an

excess color for b, if b's i

th

hole of color c is within

the phase for any i > E

c

, it occurs no earlier than

a's (i�E

c

)

th

hole of color c.

Lemma 9 Phase domination is transitive.

Proof: Similar to lemma 7. 2

The proof of the following is the same as that of of

lemma 8, except we consider all holes beyond the end of

the phase boundary to be equivalent (i.e. as though they

were beyond the end of the entire request sequence).

Lemma 10 Phase Domination Lemma

Let a and b be two prefetching schedules for a request

sequence R. If a's holes at some time t phase dominate

b's holes at some time t

0

,

1. both algorithms perform a prefetch using the same

disk (i.e. a and b evict blocks of the same color, a

at time t and b at time t

0

), or

2. a performs a prefetch at time t but b does not at

time t

0

, or

3. b performs a prefetch at time t

0

and every block in

a's cache of the same color as b's evicted block is

requested before a's �rst hole at time t,

and a's cursor position at time t is at least as great as

b's cursor position at time t

0

or the blocks evicted are

the same color as a's busy disk in the current phase

(and thus the new holes are beyond the end of the cur-

rent phase), then a's resulting holes phase dominate b's

resulting holes.

Theorem 11 Reverse aggressiverequires at most 1+ This is o�

by a little

bit. The

problem is

when

there's a

partial

�nal

phase. I

don't

know how

to adjust

it without

making it

ugly. {tjk

dF=K times the optimal elapsed time to service any re-

quest sequence.

Proof: We show that for each i, there are times T

i

and T

0

i

, such that

� reverse aggressive's cursor at time T

i

is not more

than F � 1 steps behind opt's cursor at time T

0

i

;

� reverse aggressive's cursor is within the i

th

phase,

� H

+

agg:

(T

i

) dominates H

�

opt

(T

0

i

).

� Neither reverse aggressive nor opt is in the middle

of a fetch on reverse aggressive's busy disk for phase

i.

� T

0

i

+ i(dF � 1) � T

i

.

The theorem will follow from the last condition, since

each phase is of length at least K, so that opt's elapsed

time is at least K for each phase.

We prove this by induction. For the base case (i = 0),

we take T

0

= T

0

0

= 0. The fact that the claims hold at

this time is trivial. For the inductive step, assume the

claims hold at the beginning of the i

th

phase. We show

that they hold for the (i + 1)-st phase via a two step

process.

� We �rst show that in phase i, reverse aggressive

loses at most (d� 1)F steps to opt (lemma 12).

� We then use this fact to show that at the end of the

phase, by giving reverse aggressive an extra dF � 1

steps relative to opt (from the start of the phase),

the invariants are restored.

We begin with a formal statement of the �rst of these

steps.

Lemma 12 Suppose that at time T

i

, reverse aggres-

sive's cursor is at position p

i

in the sequence. Let

T

0

i

+ t

O

(j) (resp. T

i

+ t

A

(j) ) denote the time at which

opt (resp. reverse aggressive) serves the request at cur-

sor position j � p

i

, for any j such that j is in phase i.

Then for all j in the phase, t

A

(j) � t

O

(j) + (d� 1)F .
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Proof: Suppose the contrary. Then consider the least

index ` such that t

A

(`) > t

O

(`) + (d� 1)F .

Then t

A

(` � 1) � t

O

(` � 1) + (d � 1)F , and reverse

aggressive stalls at least one step more than opt on re-

quest `. In particular, reverse aggressive stalls at time

T

i

+ t

A

(`)� 1, and opt does not stall at time T

0

i

+ t

O

(`).

We know that reverse aggressive will perform busy-

disk fetches continuously (completing a fetch at time

T

i

+ bF for each b � 1) at least until such a time as

there are no holes left in the phase (after which reverse

aggressive won't stall at least until the end of the phase

is reached). Now, let b and � be such that t

A

(`) � 1 =

bF + � and � < F . Then reverse aggressive has �lled b

holes by busy-disk fetches by time T

i

+ t

A

(`) � 1, and

opt has �lled at most b�d+1 holes by busy-disk fetches

by time T

0

i

+ t

O

(`), since

t

O

(`) < t

A

(`)� (d� 1)F

= bF + � + 1� (d� 1)F

� (b� d+ 2)F:

Let r be the number of non-busy-disk fetches completed

by opt by time T

0

i

+ t

O

(`). Consider the sequence

S = ((c

1

; color

1

); : : : ; (c

r+b�1

; color

r+b�1

)) of fetches

opt initiates after time T

0

i

that complete at or before

time T

0

i

+ t

O

(`), where the pair (c; color) denotes that a

fetch evicting a block of color color is initiated at cursor

position c. For each fetch (c

0

; color

0

) of opt, we de�ne

a matching fetch opportunity of reverse aggressive. A

matching fetch opportunity is a pair (c; color) such that

reverse aggressive has the opportunity to initiate a fetch

of color color at a cursor position at least as great as c.

Each matching fetch opportunity to a fetch in S allows

reverse aggressive to complete a fetch (if necessary) by

time T

i

+ t

A

(`)� 1. They are de�ned as follows:

� opt's j

th

busy-disk fetch is matched to the j

th

busy-

disk fetch reverse aggressive performs in the phase.

(Since reverse aggressive prefetches continuously

using its busy disk, we know that each of these fetch

opportunities corresponds to an actual fetch.)

� Let opt's j

th

non-busy-disk fetch be initiated at

time T

0

i

+ t

0

j

. This fetch is matched to the fetch

on the same disk that reverse aggressive initiates

(if any) in the time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1]:

Note that by hypothesis, at time T

i

+ t

0

j

+(d� 1)F

reverse aggressive is already at or beyond the cur-

sor position at which opt initiates its j

th

non-busy-

disk fetch, and its disk of the same color becomes

free (�nishes any fetch already in progress) within

another F �1 steps. Therefore, such a fetch oppor-

tunity exists.

If opt completes a total of r non-busy-disk fetches

by time T

0

i

+ t

O

(`), then each fetch except (possi-

bly) the last one on each non-busy-disk (i.e. at least

r � (d � 1) of the r non-busy-disk fetches) is initi-

ated at a time less than or equal to T

0

i

+ t

O

(`)�2F .

Therefore, reverse aggressive can initiate a match-

ing fetch if needed at a time strictly less than

T

i

+ t

O

(`) + (d � 2)F and will complete the fetch

at a time strictly less than

T

i

+ t

O

(`) + (d� 1)F < T

i

+ t

A

(`):

� Finally, the last non-busy-disk fetch of each color

performed by opt is matched to one of the last d�1

busy-disk fetches performed by reverse aggressive.

We claim that reverse aggressive's holes after these

r + b� d + 1 matching fetch opportunities phase dom-

inate opt's holes after completing its sequence S of r

non-busy-disk fetches and at most b � d + 1 busy-disk

fetches. Let A

0

be reverse aggressive's set of holes at

time T

i

. Let O

0

be opt's set of holes at time T

0

i

. Let

New(H; (c; color)) denote the new set of holes (uniquely

determined by the optimal prefetching principles opti-

mal fetching and colored optimal eviction described in

section 2.5) should a prefetch be initiated, if possible

(i.e. if allowed by the do no harm principle), evicting a

block of color color at cursor position c when the cur-

rent set of holes is H . De�ne O

j

, j � 1, inductively

as the set of holes resulting from executing opt's j

th

fetch (c

j

; color

j

) with the set of holes O

j�1

; i.e. O

j

=

New(O

j�1

; (c

j

; color

j

)). Similarly, de�ne A

j

, j � 1, in-

ductively by A

j

= New(A

j�1

; (c

j

; color

j

)). Then by a

sequence of applications of the phase-domination lemma

(Lemma 10), we have that A

r+b�d+1

phase-dominates

O

r+b�d+1

.

We have left to show that reverse aggressive's holes

after exercising its matching fetch opportunities phase

dominate A

r+b�d+1

. Because phase domination is tran-

sitive, we will obtain that reverse aggressive's holes

phase dominate opt's. Since opt and reverse aggressive

may perform fetches on di�erent disks at di�erent times

and in di�erent orders, we need to show how to permute

opt's schedule of fetches into reverse aggressive's. To-

ward this end, we de�ne the following:

De�nition: Consider a fetch sequence, de�ned by

a sequence of triples of the form (t

j

; c

j

; color

j

), where

for each j, t

j

� t

j+1

and c

j

� c

j+1

. (t

j

; c

j

; color

j

)

denotes a fetch, or an attempt at a fetch (since no

fetch may be possible under the optimal prefetching

rules), beginning at time t

j

with the cursor at a po-

sition at least c

j

, where the color of the disk performing

the fetch (and the color of the evicted block) is color

j

.

A fetch sequence S is obtained from a fetch sequence

S

0

by a busy-early swap if S

0

and S are the same ex-

cept that a pair (t

0

j

; c

0

j

; color

j

), (t

0

j+1

; c

0

j+1

; color

j+1

) in
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S

0

is replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

)

in S, where c

j

� p

i

, c

j+1

� c

0

j

, and color

j+1

is the

color of reverse aggressive's busy disk for the phase.

(c

j

� p

i

will be enough to ensure that reverse aggres-

sive is able to complete a fetch with the busy disk and

that the new hole is beyond the end of phase i, which

is what is needed to maintain phase domination.) A

fetch sequence S is obtained from a fetch sequence S

0

by an overlapping swap if S and S

0

are the same ex-

cept that a pair (t

0

j

; c

0

j

; color

j

), (t

0

j+1

; c

0

j+1

; color

j+1

) in

S

0

is replaced by (t

j

; c

j

; color

j+1

), (t

j+1

; c

j+1

; color

j

) in

S, where t

0

j+1

< t

0

j

+ F , t

j+1

< t

j

+ F , c

j

� c

0

j+1

,

and c

j+1

� c

0

j

. (Note that for actual fetch sequences,

c

j+1

� c

0

j

is implied by c

j

� c

0

j+1

, since cursor positions

increase with time.)

Lemma 13 reverse aggressive's sequence of fetch op-

portunities can be obtained from the sequence leading to

A

r+b�d+1

(i.e. opt's sequence of fetches) via a sequence

of busy-early swaps, overlapping swaps that don't involve

fetches performed by the busy disk, and insertions of ex-

tra fetches not matched to any fetch of opt.

Proof: First we show that for each disk other than

the busy disk, any inversion of fetches on that disk and

the busy disk is in the \right direction." Let blue denote

the color of the busy disk, and let red denote the color of

another disk. We refer to fetches using the blue disk as

blue fetches, and those using the red disk as red fetches.

For j � b, let t

B

j

c

B

j

be the time at which reverse

aggressive's j

th

blue fetch is initiated, and for j � b �

d + 1, let t

0

B

j

be the time at which opt's j

th

blue fetch

is initiated. Simillarly de�ne t

R

j

, for 1 � j � R � 1,

and t

0

R

j

for 1 � j � R for the red fetches, where R is

the number of red fetches completed by opt at or before

T

0

i

+ T

O

(`). First, consider all of reverse aggressive's

blue and red fetches except its last d � 1 blue fetches,

and all of opt's blue and red fetches except its last red

fetch (which is matched to one of reverse aggressive's

last d�1 blue fetches). We have that for all j � b�d+1,

t

B

j

� t

0

B

j

(i.e. reverse aggressive's j

th

blue fetch is

no later than opt's) and for all j � R � 1, t

R

j

� t

0

R

j

(i.e. reverse aggressive's j

th

red fetch is no earlier than

opt's). Suppose that there is an inversion in the \wrong

direction," i.e. that for some j and some k, t

0

B

j

< t

0

R

k

and t

R

k

< t

B

j

. Then

t

0

B

j

< t

0

R

k

� t

R

k

< t

B

k

� t

0

B

j

which is a contradiction, since t

0

B

j

< t

0

B

j

. Finally, con-

sider one of reverse aggressive's last d � 1 blue fetches

and opt's last (R

th

) red fetch that it matches. For this

blue fetch to be involved in an inversion in the wrong di-

rection means that for some k, t

0

R

r

< t

0

R

k

and t

R

k

< t

B

b

.

Since opt's R

th

red fetch is its last, the �rst inequality

is false for all k � R.

For fetches other than blue fetches, let t

0

1

and t

0

2

be

the times of two fetches of opt, and let t

1

and t

2

be the

times of reverse aggressive's matching fetch opportuni-

ties, where t

0

1

� t

0

2

. If opt's fetches don't overlap, then

t

0

1

� t

0

2

� F . By the de�nition of matching fetch op-

portunites, we have t

1

� (T

i

� T

0

i

) + t

0

1

+ dF � 1 and

t

2

� (T

i

� T

0

i

) + t

0

2

+ (d � 1)F . Putting these together,

we have t

1

< t

2

, i.e. reverse aggressive's matching fetch

opportunities occur in the same order as opt's fetches.

The fact that the cursor positions of swapped pairs

(for both busy-early swaps and overlapping swaps) sat-

isfy the needed inequalities can be seen from the de�ni-

tion of matching fetch opportunities. 2

Lemma 14 Suppose that fetch sequence S within

phase i is obtained from fetch sequence S

0

by a busy-

early swap. Then the set of holes reached by performing

S phase dominates that reached under S

0

.

Proof: Let blue denote the color of the busy disk,

and let red denote the color of the second disk to fetch

(under S

0

) in the swapped pair. The sets of holes of

the two sequences immediately before completing the

swapped pair of fetches are the same. In both cases, a

blue fetch can be performed (since by hypothesis there

are still holes in the phase), and will not create a new

hole within the phase.

Unless the �rst hole is a red block, the set of red blocks

in the cache at the time of the red fetch is the same

under S

0

and S. If the �rst hole is red, then under S

0

,

this red block is brought into the cache by the red fetch

(but it doesn't represent a better eviction choice for the

red fetch under S). Thus, the best eviction opportunity

at the time of the red fetch is at least as good as that

under S

0

, since under S the red fetch occurs later than

under S

0

and thus at a cursor position at least as great.

Let the �rst hole occur at index h

1

and the second at

h

2

; let the new hole created by the red fetch under S

0

occur at index h

r

. There are two possibilities:

� h

2

< h

r

. Under S

0

, the red fetch �lls h

1

and the

blue fetch �lls h

2

; under S, the blue fetch �lls h

1

and the red fetch �lls h

2

. The red hole created

under S is at a position in the request sequence

at least as great as h

r

, since the cursor position of

the red fetch is at least as great as under S

0

. Under

neither sequence does the blue eviction create a new

hole in phase i. Thus, the sets of holes remaining in

phase i after completing S

0

and S are the same, or

after S one red hole has a greater index than after

S

0

.

� h

1

< h

r

< h

2

. Under S

0

, the red fetch �lls h

1

and

creates a hole at h

r

. This new hole is the �rst hole

at the time of the blue fetch, and thus the blue fetch

�lls it (leaving h

2

un�lled). Under S, however, the
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red fetch may be unable to proceed. The blue fetch

�lls the hole at h

1

; after this, the �rst hole is at h

2

.

The red eviction of h

r

would violate the rule do no

harm. But the end result is the same as it is under

S

0

(up to the end of the phase): the next hole is at

h

2

, and a new blue hole has been created beyond

the end of the phase. The red block requested at

h

r

does not need to be evicted and then fetched

back. (Again, under S it may be possible to create

a red hole with greater index; in this case, h

2

gets

�lled, and the holes phase dominate those after S

0

by clause 2 of the phase domination lemma.)

2

Lemma 15 Suppose that fetch sequence S within

phase i is obtained from fetch sequence S

0

by an overlap-

ping swap. Then the set of holes reached by performing

S strongly dominates (and thus phase dominates) the

set of holes reached under S

0

.

Proof: Neither fetch a�ects the eviction opportuni-

ties of the other, since they overlap and evict to di�er-

ent disks. For each of two fetches under S

0

, the fetch of

the same color under S is initiated at a cursor position

at least as great. An argument similar to the proof of

lemma 14 �nishes the proof. 2

Lemmas 13, 14, and 15, along with the phase domi-

nation lemma and transitivity of phase domination, to-

gether imply that aggressive's holes remaining in phase

i at time T

i

+ t

A

(`) � 1 phase dominate opt's holes re-

maining in phase i at time T

0

i

+ t

O

(`). Thus we have

Corollary 16 reverse aggressive's �rst hole at time

T

i

+ t

A

(`)� 1 is at a cursor position at least as great as

opt's �rst hole at time T

0

i

+ t

O

(`).

This contradicts the hypothesis that reverse aggressive

stalls at time T

i

+ t

A

(l) � 1 and opt does not stall at

time T

0

i

+ t

O

(l), and completes the proof of lemma 12.

2

We now use lemma 12 in order to prove the outer

inductive step.

Let f

0

j

be the j

th

fetch opt performs that completes

after time T

0

i

and at or before time T

0

i+1

, and suppose

it begins at time T

0

i

+ t

0

j

. We know that H

+

agg:

(T

i

)

strongly dominates H

�

opt

(T

0

i

). Therefore, we have that

at the time that opt initiates f

0

1

, reverse aggressive's

holes strongly dominate opt's.

De�ne the j

th

matching fetch to be the fetch (if any)

that reverse aggressive performs on the same disk as f

0

j

that is initiated in the time interval

[T

i

+ t

0

j

+ (d� 1)F; T

i

+ t

0

j

+ dF � 1];

say at time T

i

+ t

j

. (Notice this is a di�erent matching

than that used in lemma 12. In this matching, fetches

of all colors are matched in the same way fetches other

than busy-disk fetches were matched in the previous

matching.) By lemma 12, we know that reverse aggres-

sive's cursor position at time T

i

+ t

j

is at least as great

as opt's cursor position at time T

0

i

+ t

0

j

.

By the same argument as in the last part of the

proof of lemma 13, reverse aggressive's sequence of fetch

opportunities can be obtained from opt's sequence of

fetches by a sequence of overlapping swaps and inser-

tions. Applying the domination lemma, lemma 15,

and transitivity of strong domination as needed, we ob-

tain that reverse aggressive's holes after completing its

matching fetch opporunities dominate opt's holes after

completing its sequence of fetches.

Let c be the color of reverse aggressive's busy disk

in phase i + 1. Consider the fetch f

0

r that opt has

in progress, if any, on its disk c at the time its cursor

position �rst reaches phase i+1. De�ne T

0

i+1

to be time

at which this fetch completes, T

0

i

+t

0

r

+F . T

i+1

is de�ned

as the time at which reverse aggressive's matching fetch

f

r

completes; note T

i+1

� T

i

+ t

0

r

+ (d + 1)F � 1. If

reverse aggressive has no matching fetch f

r

, then we

take T

i

to be T

i

+t

0

r

+dF . If opt has no fetch in progress

when its cursor reaches phase i + 1, let T

0

i+1

be the

time at which opt's cursor reaches phase i+ 1. Reverse

aggressive reaches phase i+ 1 after losing at most (d�

1)F steps to opt since the start of phase i, and any fetch

in progress on disk c completes within another F � 1

steps; de�ne the completion time of that fetch (if any)

as T

i+1

; if there is no such fetch, let T

i+1

= T

i

+(d�1)F .

By the preceding argument, the invariants of the outer

induction are true for phase i+ 1. 2

Conservative: Lower Bound

The following example shows that for d < F , there are

arbitrarily long strings on which conservative requires

time 1 + d

K�F

K

F

F+d

times the optimal elapsed time.

Example: Suppose that F dividesK, and also that d

dividesK, and consider a repeated cycle onK+(

K

F

�1)d

blocks. Conservative always evicts the page just refer-

enced whenever it �lls a hole, since that is the page that

won't be needed again for the longest time. Thus con-

servative will never be able to overlap prefetches with

each other or with references. Since there are at least

(

K

F

� 1)d holes on each pass through the cycle, conser-

vative will spend at least K + (

K

F

� 1)d + (

K

F

� 1)dF

steps on each pass through the cycle. Suppose that the

blocks are colored such that each contiguous sequence

of d blocks in the cycle contains one block from each of

the d disks. It is not hard to see that opt is able to main-

tain its holes in groups of d, one of each color, spaced

F steps apart. Thus opt can service the entire sequence

without stalling, and requires only K + (

K

F

� 1)d steps
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on each pass through the cycle. The ratio of these two

expressions (after a little manipulation) turns out to be

at least as great as the stated bound.

Conservative: Upper Bound

Theorem 17 On any reference string R, the elapsed

time of conservative with d disks on R is at most d+ 1

times the elapsed time of the optimal prefetching strategy

on R.

Proof: Let m be the minimum number of fetches

(which is exactly how many fetches conservative per-

forms) on request sequence R. Conservative's running

time is at most jRj + mF , even if it never overlaps

prefetches with each other or with the servicing of re-

quests. Since the optimal algorithm opt must perform

at least as many fetches as conservative, and also must

service the request sequence R, opt's running time is at

least max(jRj;mF=d). The ratio of these is maximized

with jRj = mF=d, and has the value d+ 1. 2

Aggressive: Lower Bound

The following example shows that for two disks, there

are arbitrarily long strings on which aggressive requires

time 2�

4

F+2

times the optimal elapsed time (within an

additive constant that depends only on F and K). In

general, our bound is a little weaker: for d disks, there

are arbitrarily long strings on which aggressive requires

time d�

3d(d�1)

F+3(d�1)

times the optimal elapsed time (within

an additive constant that depends only on F and K).

Consider the sequence

b

1

b

2

r

1

� � � r

F

b

3

b

4

r

F

� � � r

1

b

2

b

1

r

1

� � � r

F

b

4

b

3

: : :

where all r

i

are red and all b

i

are blue. Let K = F +

2. The initial cache contents are b

1

, b

2

, and r

1

� � � r

F

;

there are holes at the �rst references to b

3

and b

4

. Both

algorithms service the initial request of b

1

during the

�rst unit of time. Aggressive then evicts the block in its

cache not referenced for the longest time, b

1

, in order

to fetch b

3

; the optimal algorithm opt does the same.

At the completion of this fetch, the next hole for both

algorithms is at b

4

, and the cursor is at the �rst request

of r

F

. Aggressive immediately evicts the block among

those in the cache not used for the longest time, which

is now b

2

; opt evicts r

1

instead. Both algorithms stall

for F � 2 steps on the hole at b

4

. However, opt is able

to initiate a fetch of its next hole, r

1

, evicting b

3

, since

the hole is red and the fetch in progress is fetching a

blue block; aggressive is unable to perform a second

fetch in parallel because its next hole (b

2

) is also blue.

Notice that aggressive still has no red holes, and thus

can complete only one fetch every F steps. From this

point on, opt is able to create one red and one blue hole

in each subsequence of F + 2 requests, and can always

�ll them without stalling, whereas aggressive will always

create a pair of blue holes, and will require time 2F to

serve each subsequence of F + 2 requests, since it takes

this long to complete two fetches. Thus from this point

on, the ratio of aggressive's running time to that of opt

is

2F

F+2

= 2�

4

F+2

.

We have illustrated the case K = F + 2, d = 2 for

simplicity. It is easily generalized for arbitrarily large

values of

K

F

(which are the cases of interest in practice)

as follows: let K = iF + 2, and interleave i distinct

subsequences of F distinct red blocks each with i + 1

distinct pairs of blue blocks in round-robin fashion, re-

versing each subsequence of red blocks and each pair

of blue blocks on alternate occurrences. It is not hard

to see that aggressive will behave similarly to the illus-

trated case, and that opt is able to service the sequence

without stalling (after an initial startup period).

The generalization to d > 2 is also straightforward.

Aggressive: Upper Bound

First we state a very simple lemma, leaving the proof

to the reader.

Lemma 18 If a set A of holes dominates a set B of

holes, and some hole in A is �lled and some hole at a

larger index added to A, the resulting holes A

0

dominate

B.

Theorem 19 On any reference string R, the elapsed

time of aggressive with d disks on R is at most d(1 +

F+1

K

) times the elapsed time of the optimal prefetching

strategy on R.

Proof:

In the analysis of aggressive prefetching with one disk,

it was shown that if A's holes dominate B's holes, and

A's cursor position is at least as great as B's, and each

algorithm initiates a fetch, A's holes will continue to

dominate B's when the fetch is completed. This result

was referred to as the domination lemma [8]. The proof

of this is similar to but simpler than that of lemma 8

for algorithms working with the reverse sequence.

In order to apply this lemma to more than one disk,

we must be sure that when we are comparing a fetch A

initiates to a fetch B initiates that the hole being �lled

by A is the �rst missing hole. If not, the domination

lemma does not hold.

In general, we can not ensure that d parallel

prefetches aggressive initiates will �ll the �rst d holes,

since some of these holes may be of the same color. How-

ever, we do know that by the time aggressive completes
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d prefetches on the same disk, the �rst d holes that were

present (and perhaps others) have been �lled.

Therefore, our proof strategy is to run opt at 1=d

times the speed of aggressive, so that during each sub-

sequence of time in which aggressive �lls at least its �rst

d holes, opt can �ll at most its �rst d holes. We will

show inductively that at the end of each of these sub-

sequences, aggressive's holes dominate opt's holes. This

will imply that aggressive can can take only d times as

long as opt to complete a phase.

Notice that as long as there are holes in the phase con-

taining the cursor, there are blocks in the cache which

are not requested before the end of the phase (since

the cache holds K blocks and there are only K distinct

requests in a phase). Since aggressive always evicts a

block that is not requested until after the block that re-

places it, once its cursor enters a phase, aggressive will

not create any new holes within the phase. Also, once

Aggressive enters a phase, each disk will initiate a fetch

every F steps as long as there are holes of that disk's

color remaining in the phase.

We prove the following claim:

For each i up to the number of phases in R, there are

times T

i

and T

0

i

such that

� T

i

� dT

0

i

+ id(F + 1)

� H

�

agg:

(T

i

) dominates H

+

opt

(T

0

i

)

� aggressive's cursor is in the i

th

phase of the request

sequence at time T

i

� aggressive's cursor position at time T

i

is at least as

great as opt's cursor position at time T

0

i

� each of aggressive's disks is either ready to initiate

a prefetch or is already �lling a hole in phase i, for

which opt has not yet started �lling its matching

hole.

The theorem follows from the �rst part of the claim,

since each phase has length at least K, so that opt's

running time on each phase is at least K (except for

a possibly incomplete �nal phase, which is served by

aggressive in at most d times as much time as opt).

This claim is proven by induction on i. The basis

(i = 1) is trivial, since both algorithms start at the

beginning of the �rst phase in the same state, with both

disks idle.

For the induction, assume that the claim is true for i.

We �rst show that for each index j in phase i, ag-

gressive's cursor passes j after at most d times as many

steps as opt's cursor takes to pass j. Let T

i

+ t

A

(j) be

the time aggressive serves request j, and let T

0

i

+ t

O

(j)

be the time opt serves j. Assume by way of contradic-

tion that aggressive's cursor falls behind opt's (relative

to the start of the phase) by more than a factor of d,

and let j be the least index for which this happens, i.e.,

t

A

(j) > dt

O

(j). It must be true that aggressive has a

hole at j (or equivalently stalls on the j

th

request in the

phase) at time T

i

+t

A

(j)�1, and that the j

th

request in

the phase is in opt's cache before time T

0

i

+ t

O

(j), since

T

i

+t

A

(j) is the �rst time aggressive's cursor falls behind

opt's by more than a factor of d. As noted previously,

each disk of aggressive's �lls a hole every F steps as long

as there are holes of that disk's color in the phase. Let

h be the number of aggressive's holes at time T

i

that

are the same color as the one at j, up to and includ-

ing the one at j. Then t

A

(j) <= hF , since the hole

at j is �lled at a time no later than T

i

+ hF . At time

T

0

i

, Opt has at least h holes at or before j, since ag-

gressive's holes at T

i

dominate opt's holes at T

0

i

. Thus

the earliest time opt could �nish �lling all its holes up

to index j is T

0

i

+ dh=deF , even if it �lls a hole every

F steps on each disk. Thus we have a contradiction:

hF � t

A

(j) > dt

O

(j) � d(dh=deF ) � hF .

To show that aggressive's holes after �nishing phase i

dominate opt's holes, we need another induction. Let

I

0

j

= [T

0

i

+ jF; T

0

i

+ (j + 1)F ), j � 0, and let c

j

be opt's cursor position at time T

0

i

+ jF . Also, let

I

j

= [T

i

+t

A

(c

j

); T

i

+t

A

(c

j

)+dF ). Consider the set of at

most d fetches that opt completes during I

0

j

. We match

these to the set of fetches aggressive initiates during I

j

.

We prove by induction on j that opt 's set of holes, after

completing all its fetches that complete in I

0

j

, is domi-

nated by aggressive's set of holes, after completing all

its fetches that are initiated in I

j

. The base case fol-

lows from the fact that H

�

agg:

(T

i

) dominates H

+

opt

(T

0

i

)

from the inductive hypothesis of the outer induction.

For the inductive step, note that each fetch opt com-

pletes during I

0

j

is initiated cursor position at most c

j

,

and that aggressive's cursor is in position at least c

j

during the time period I

j

. Thus aggressive's fetches can

be matched to opt's and the domination lemma implies

that aggressive's resulting holes dominate opt's resulting

holes. Any extra fetches of aggressive (there may actu-

ally be as many as d

2

by aggressive and as few as 0 by opt

during their respective time intervals) don't a�ect this,

by lemma 18. As a special case, if aggressive should

stop fetching altogether at some time (and thus have

fewer than d fetches to match to opt's), we know that

aggressive has reached the optimal cache con�guration:

its cache contains the next K distinct requests, and its

holes are as far from the cursor as possible. These holes

certainly dominate opt's holes at any earlier cursor po-

sition.

Consider the value j such that opt's cursor reaches

phase i+1 during I

0

j

, and let C be this cursor position.

Then by our inductive hypothesis, aggressive's holes af-
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ter completing all fetches in the corresponding interval

dominate opt's holes after completing all fetches in this

interval. Note that the last matching fetch in this set

completes by time T

i

+t

A

(c

j

)+(d+1)F . Let T

i+1

be the

maximum of the times at which fetches initiated in I

j

complete and the time that aggressive's cursor reaches

phase i+1. Then T

i+1

� max(T

i

+t

A

(c

j

)+(d+1)F; T

i

+

t

A

(C)) � max(T

i

+ d(t

O

(c

j

) + F ) +F; T

i

+ dt

O

(C)). If

we let T

0

i+1

= t

O

(C) be the time at which opt's cursor

reaches phase i+1, then since T

i

� dT

0

i

+(F +1)di, we

have that T

i+1

� dT

0

i

+(F +1)di+d(t

O

(c

j

)+F )+F �

dT

0

i+1

+ (F + 1)d(i+ 1), as needed. 2
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