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Small have continual plodders ever won save base authority
from others books.

— William Shakespeare, Loves Labours Lost. Act i. Sc. 1.
They define themselves in terms of what they oppose.

— George Will, On conservatives, Newsweek 30 Sep 74.

Abstract

We present a model for web search that captures in a uni-
fied manner three critical components of the problem: how
the link structure of the web is generated, how the content
of a web document is generated, and how a human searcher
generates a query. The key to this unification lies in cap-
turing the correlations between these components in terms
of proximity in a shared latent semantic space. Given such
a combined model, the correct answer to a search query is
well defined, and thus it becomes possible to evaluate web
search algorithms rigorously. We present a new web search
algorithm, based on spectral techniques, and prove that it
is guaranteed to produce an approximately correct answer
in our model. The algorithm assumes no knowledge of the
model, and is well-defined regardless of the model’s accu-
racy.

1. Introduction

Kleinberg’s seminal paper [20] on hubs and authorities
introduced a natural paradigm for classifying and rank-
ing web pages, setting off an avalanche of subsequent
work [7, 8, 10, 15, 22, 9, 3, 12, 19, 2, 5, 27, 1, 13].
Kleinberg’s ideas were implemented in HITS as part of the
CLEVER project [7, 10]. Around the same time, Brin and
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Page [6, 25, 18] developed a highly successful search en-
gine, Google [17], which orders search results according to
PageRank, a measure of authority of the underlying page.
Both approaches use, chiefly, text matching to determine
the set of candidate answers to a query, and then rely on
linkage information to define a ranking of these candidate
web pages. Unfortunately, as every occasionally frustrated
web-searcher can attest, text matching can run into trou-
ble with two ubiquitous phenomena: synonymy (where two
distinct terms, like “terrorist” and “freedom-fighter”, refer
to the same thing) and polysemy (where a single word or
phrase, like “bug”, has multiple distinct meanings). Syn-
onymy may cause important pages to be overlooked, while
polysemy may cause authoritative pages on topics other
than the search topic to be included.

Synonymy and polysemy, as problems in information
retrieval, long precede the advent of the web and have re-
ceived a large amount of attention. Latent Semantic Anal-
ysis (LSA), pioneered by Deerwester et al. [14], is an idea
which has had great practical success addressing these prob-
lems. At a high level, LSA embeds a corpus of docu-
ments into a low-dimensional “semantic” space by comput-
ing a low-rank approximation to the term-document matrix.
Computing document/keyword relationships in this low-
dimensional space, rather than the original term-document
space, appears to address both synonymy and polysemy. By
forcing a low-dimensional representation, only those usage
patterns that correspond to strong (linear) trends are main-
tained. Thus, synonymous terms come close in semantic
space, as they correlate with other terms in a similar man-
ner, while different meanings of the same word are captured
as separate trends since they have nearly orthogonal cor-
relation patterns. Perhaps most importantly, the fact that
LSA helps with information retrieval suggests that much of
term-usage information can be captured by a simple (low-
dimensional) linear model in which each document is ex-
pressed as a linear combination of concepts.

In this paper we borrow heavily from earlier work, both
on the use of linkage information for determining a docu-
ment’s authority, as well as the use of low-dimensional text
representation for addressing synonymy and polysemy. Our
main motivation is to give a rigorous framework for web
search. To that end, we put forward a generative model

1



which captures in a unified manner three critical compo-
nents of the problem:

1. How the link structure of the web is generated.

2. How the content of a web document is generated.

3. How a human searcher generates a query.

As we will see, the key to this unification lies in captur-
ing the correlations between these components in terms of
proximity in a shared latent semantic space. Given such a
combined model, the notion of “the correct answer” to a
search query is well defined, and thus it becomes possible
to evaluate web search algorithms rigorously.

We present a new web search algorithm we call SP1 and
prove rigorous claims about its performance. Specifically,
we prove that the algorithm is guaranteed to produce near-
optimal results in this model. The algorithm assumes no
knowledge of the model, and is well-defined regardless of
the model’s accuracy.

1.1. Overview and Discussion

In this paper, we define a mathematical model for evalu-
ating web search algorithms. We also present a new web
search algorithm, based on spectral techniques, which is
guaranteed to give near-optimal results in this model (Theo-
rem 3.1). Our algorithm is entirely motivated by the model
and, indeed, our algorithm may not seem intuitive unless
one considers the model and its implications.

We feel that casting search as a mathematical problem
yields a beneficial separation of two intertwined concepts:
(a) an abstraction (model) capturing the correlations that
make search possible, (b) an algorithm exploiting those cor-
relations. At the very least, such a separation is beneficial in
the following sense: if an algorithm is proven to be “good”
with respect to a model, yet “no good” in practice, then
we will be motivated to further understand in what way the
model (and hence the algorithm) is lacking.

The basic idea of our model, which is described in de-
tail in Section 2, is that there exist some number of basic,
latent concepts underlying the web (and, thus, most of re-
ality), and that every topic can be represented as a linear
combination of these concepts. In turn, web pages, terms,
and queries are associated with one or more such topics.

We like to think of the task at hand for SP as being:

1. Take the human generated query and determine the
topic to which the query refers. There is an infinite
set of topics on which humans may generate queries.

1Acronym for SmartyPants

2. Synthesize a perfect hub for this topic. The perfect hub
is an imaginary page, as no page resembling this imag-
inary hub need exist. This imaginary hub lists pages in
order of decreasing authority on the topic of the query.

This task breakdown is explicit in HITS and seems de-
sirable for any search algorithm. Unlike other algorithms,
though, in SP link information is used both for the second
and the first subtask. In particular, to find the set of im-
portant, relevant documents for the query, we combine the
latent semantic analysis of term content with an analysis of
link structure. This makes sense in the context of the un-
derlying model in which there is a unified semantic space
of link structure, term content and query generation. Thus,
we obtain a principled mechanism for avoiding some of the
difficulties other search algorithms experience in narrowing
down the search space.

The model we assume is rather powerful and allows great
flexibility. It may be that some of this flexibility is unnec-
essary. Certainly, removing this flexibility and simplifying
the model does not hurt our results. Thus, if one finds the
model too general — say, because the true web does not
reflect the full generality of our model — then one can al-
ways consider a simplification2. Below are some examples
of what our model can accommodate:

1. We allow pages to be hubs on one topic and authorities
on another. For example, Ron Rivest’s home page
is a hub for Cryptography but an authority on many
subjects (including Ron Rivest and Cryptography).

2. We allow very general term distributions for any topic.

3. We allow distinct term distributions for authorities
and hubs on the same topic. For example, hubs on
Microsoft may refer to “The Evil Empire” whereas
few of Microsoft’s own sites use this term.

4. As a page may be a hub on one topic (LINUX) and
an authority on another (Microsoft bashing), the ter-
minology used in the page could be a mixture of the
hub terminology of LINUX and the authority terminol-
ogy of Microsoft bashing. This creates great technical
difficulties because our goal is to isolate the two com-
ponents so as to be able to find (say) the best LINUX
authorities.

1.2. Additional Related Work

There have been previous attempts to fuse term content
and link structure (e.g., [12, 8, 19]). These papers provide

2In some cases, assuming a simplification may lead to a simpler algo-
rithm.
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experimental evidence that such ideas are valuable and can
be implemented. Previous literature makes use of either
spectral techniques or the EM algorithm of Dempster. How-
ever, whether these algorithms perform well or why remains
unclear. The main distinguishing characteristic of our algo-
rithm is that it is provably correct given the model.

Our model is inspired by many previous works, includ-
ing the term-document model used to rigorously analyze
LSI in [26, 2], PLSI [19], the web-link generation model
used to study Kleinberg’s algorithm [2], PHITS [11] and the
combined link structure and term content model of [12]. All
of these models, as well as some of the models described in
[5] can be viewed as specializations of our model.

1.3. Organization of the Paper

The rest of the paper is organized as follows. Section
2 presents our model. Section 3 presents the new search

algorithm. Section 3.4 and the appendix present the proof
that the algorithm produces the correct answer. Section 3.4
also discusses extensions and variants to the main theorem.
Section 4 concludes with a discussion of the limitations of
the model and a number of extensions.

2. The Model

The fundamental assumption in our model is that there
exists a set of k unknown (latent) basic concepts whose
combinations capture every topic considered in the web.
How large k is, and what each of these concepts means is
unknown. In fact, our algorithm will not (and can not) iden-
tify the underlying concepts.

Given such a set of k concepts, a topic is a k-dimensional
vector w, describing the contribution of each of the basic
concepts to this topic; the ratio between the i-th and j-th
coordinates of w reflects the relative contributions of the
underlying i-th and j-th concepts to this subject. In order
to ascribe a probabilistic interpretation to the various quan-
tities in the model, we assume that the coordinates of each
topic vector are non-negative.

Associated with each web page p are two vectors:

• The first vector associated with p is a k-tuple A(p) –
reflecting the topic on which p is an authority. This
topic captures the content on which this page is an au-
thority and, therefore, influences the incoming links to
this page. Two web pages p and q are authorities on the
same topic if A(p) is a scalar multiple of A(q). It is the
magnitude of the web page’s authority vector, |A(p)|1,
which determines how strong an authority it is on that
particular topic.

• The second vector associated with p is a k-tuple H (p)

– reflecting the topic on which p is a hub, i.e., the topic
that defines the set of links from p to other pages. Intu-
itively, the hub topic of a page is (usually) pretty well
described by the anchor text for the links from that
page. As before, two web pages p and q are hubs on
the same topic if H(p) is a scalar multiple of H(q).

Remarks:

1. A page’s topics represent the union (sum) of all “real-
life” topics on the page. Hence, if, for example, page
pc is the concatenation of pages p1, p2 then each of
the two vectors for pc is the sum of the corresponding
vectors for p1, p2.

2. The authority topic and the hub topic of a page may be
identical, orthogonal or anything in between.

2.1. Link Generation

Given two pages p and q, our model assumes that the
number of links from p to q is a random variable Xpq with
expected value equal to 〈H (p), A(q)〉, the inner product of
H(p) with A(q). The intuition is that the more closely
aligned the hub topic of page p is with the authority topic
of page q, the more likely it is that there will be a link
from p to q. In addition, the stronger a hub p is (as mea-
sured by the magnitude of |H (p)|1), and/or the stronger an
authority q is (as measured by the magnitude of |A(q)|1),
the more likely it is that there will be a link from p to q.
Our model allows the distribution of Xpq to be arbitrary as
long as E(Xpq) = 〈H(p), A(p)〉, and the range of Xpq is
bounded by a constant3 independent of the number of web
documents.

Thus, we can describe the link generation model in terms
of an n by n matrix W , where n is the number of documents
on the web. W is the product of two matrices

W = HAT ,

where H and A are both n× k matrices whose rows are in-
dexed by pages. The p-th row of H is (H (p))T and the p-th
row of A is (A(p))T . Each entry in the matrix W repre-
sents the expected number of links between the correspond-
ing web documents.

We denote the actual link structure of the web by Ŵ ,
where Ŵ [i, j] is the number of links between page i and
page j. Ŵ is an instantiation of the random web model
defined by the matrix W = HAT . As discussed above, the
[i, j] entry of Ŵ is obtained by sampling from a distribution
with expectation W [i, j] that is of bounded range.

3In practice, the number of links from one page to another rarely ex-
ceeds one.
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2.2. Term Content

We now introduce the term distributions in web pages.
Associated with each term are two distributions:

• The first distribution describes the use of the term u as
an authoritative term, and is given by a k-tuple S

(u)
A .

The ith entry of this tuple is the expected number of
occurrences of the term u in a pure authoritative docu-
ment on concept i that is a hub on nothing, i.e., a web
page with authority topic ei (1 on the ith coordinate,
and 0 everywhere else) and hub topic that is 0 every-
where.

• The second distribution describes the use of the term as
a hub term (e.g., anchor text) and is given by a k-tuple
S

(u)
H . The ith entry of this tuple is the expected number

of occurrences of the term u in a pure hub document
on concept i that is an authority on nothing.

These distributions can be combined to form two matrices,
SH , the ` × k matrix whose rows are indexed by terms,
where row u is the vector (S

(u)
H )T , and SA, the `×k matrix,

whose rows are indexed by terms, where row u is the vector
(S

(u)
A )T .
Our model assumes that terms on a page p with author-

ity topic A(p) and hub topic H(p) are generated from a dis-
tribution of bounded range where the expected number of
occurrences of term u is

〈A(p), S
(u)
A 〉 + 〈H(p), S

(u)
H 〉 .

Thus, we can describe the term generation model in
terms of an n by ` matrix S, where n is the number of doc-
uments on the web and ` is the total number of terms,

S = HST
H + AST

A .

The [i, j] entry in S represents the expected number of oc-
currences of term j in document i.

Analagously to W and Ŵ , we denote the actual
document-term matrix for the web by Ŝ. The [i, j] entry
of Ŝ is the number of occurrences of term j in page i, and
is assumed by the model to be an instantiation of the the
matrix S; the [i, j] entry of Ŝ is obtained by sampling from
a distribution with expectation S[i, j] of bounded range.

2.3. Human Generated Queries

We assume that the human searcher has in mind some
topic on which he wishes to find the most authoritative
pages. Intuitively, the terms that the searcher presents to
the search engine should be the terms that a perfect hub on
this topic would use. A useful think about this is to imagine

that the searcher presents the search engine with a portion
of the anchor text that a perfect hub would use to describe
the links to authorititative pages on this topic.

This motivates our model for the query generation process.
In order to generate the search terms of a query:

• The searcher chooses the k-tuple v describing the topic
he wishes to search for in terms of the underlying k
concepts.

• The searcher computes the vector q = vT ST
H . Observe

that q[u], the u-th entry of q, is the expected number of
occurrences of the term u in a pure hub page on topic
v.

• The searcher then decides whether or not to include
term u among his search terms by sampling from a
distribution with expectation q[u]. We denote the in-
stantiation of the random process by q̂[u].

The input to the search engine consists of the terms with
nonzero coordinates in the vector q̂.4

By choosing the amplitude of v (|v|1) to be very small,
the searcher can guarantee that only a small number of
search terms will be sampled . In this case, q̂ will be largely
zero and have very few non-zero entries.

2.4. The Correct Answer to a Search Query

Given our model as stated above, the searcher is looking
for the most authoritative pages on topic v. In our model,
the relative authoritativeness of two pages p and q on the
topic v is given by the ratio between 〈v, A(p)〉 and 〈v, A(q)〉.
Thus, the correct answer to the search query is given by
presenting the user with an authority value for each page,
as given by the entries of vT AT . Ideally, web pages should
first be sorted according to their the entries in vT AT , in de-
scending order, and then presented to the user in this order,
the order of decreasing authoritativeness on the topic of in-
terest.

2.5. Our Model versus Google and HITS

To aid our comparison, we begin by arguing that both
HITS and Google work correctly if k is 1, i.e., if there is
a single concept along which pages are to be ranked and
chosen.

Indeed, assume that the first part in the HITS algorithm
succeeds in providing a set of candidate documents that cor-
respond to a single topic5. Then the link generation model

4It should be clear that such a subliminal process goes on deep in every
user’s subconscious...

5In HITS there is always a preliminary stage in which documents rele-
vant to the search query are isolated before the algorithm is applied. In our
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W = HAT is a rank one matrix (k = 1) and, as argued in
[2], HITS operates provably correctly and robustly in this
setting: HITS computes the right singular vector Ŵ , where
Ŵ is the instantiation (real-life version) of W . HITS then
ranks pages according to their value in this singular vector.
The result of the algorithm is, with high probability (over
the instantiation process), very close to the ranking associ-
ated with the right singular vector of W , which is propor-
tional to the authority vector A.

A similar claim can be made for Google. The PageRank
of a page is its stationary probability under a random walk
on Ŵ which also occasionally jumps to a randomly chosen
page. Ignoring this extra randomization (which guarantees
that a stationary probability exists and which also speeds
up mixing), we observe that the primary left eigenvector of
the stochastic matrix associated with W (the Markov chain
obtained by dividing every row of W by the sum of the
entries in that row) is equal to the primary right singular
vector of W if W is rank 1.

What this means is that in our simplified versions of
Google and HITS algorithms, they both give essentially the
same correct answer if the rank of the web model is 1.6 This
will in fact be the same result returned by SP as well (all
terms are equal when the rank of the web is one). In this
sense, SP generalizes both Google and HITS.

2.6. Summary

We present a unified probabilistic model for link gen-
eration and term content in the web and for the process
by which a users generate queries. Given the model, the
correct answer to the user query is well defined. In Sec-
tion 3 we will present an algorithm which is guaranteed
to produce near-optimal results in this model. We empha-
size that the algorithm we describe in Section 3 is well de-
fined regardless of the accuracy of the model, and assumes
no knowledge of the model. In fact, we are far from be-
lieving that this generative model is in any way related to
the unfolding of reality7. Rather, we hope that it is good
enough an approximation to motivate algorithms that will
improve in practice over current search engines. The suc-
cess of [20, 17] gives us hope.

setting, this constitutes an attempt to reduce the document set to a rank 1
set. Thus, here, W refers only to the documents isolated in the first stage
of the algorithm.

6Of course, in practice they don’t give the same answer due to a com-
bination of factors including: (a) Google uses a global rank computation,
whereas HITS uses a restricted portion of the web for his computation, (b)
Google adds jumps to random locations on the web to the Markov chain,
and (c) the web is actually not rank 1.

7Almost as far as the reader...and in Section 4.1, we discuss a number
of the model’s limitations.

3. The Algorithm SP

The algorithm takes as input a search query q̂. Under the
model, this query is generated by a human searcher by in-
stantiating q = vT ST

H for some topic v. The goal of SP is to
compute the authoritativeness implied by vT AT . To do so,
SP makes use of the web graph Ŵ and the web term matrix
Ŝ, both of which are derived by crawling the web. An inter-
esting feature of SP is that it does not compute either v or
A. In fact, one can show that it is not possible to explicitly
derive those matrices given Ŵ and Ŝ only. Nonetheless, as
we will see, SP does extract the relative order of the entries
of vT AT .

3.1. Notation and Linear Algebra Facts

For two matrices A and B with an equal number of rows,
let [A|B] denote the matrix whose rows are the concatena-
tion of the rows of A and B. We use the notation σi(A)
to denote the i-th largest singular value of a matrix A. We
use the notation [0n] to denote a row vector with n zeros,
and the notation [0i×j ] to denote an all zero matrix of di-
mensions i × j. Finally, we use the singular value decom-
position (SVD) of a matrix B ∈ Rn×m, B = UΣV T

where U is a matrix of dimensions n × rank(B) whose
columns are orthonormal, Σ is a diagonal matrix of dimen-
sions rank(B)×rank(B), and V T is a matrix of dimensions
rank(B) × m whose rows are orthonormal. The [i, i] entry
of Σ is σi(B). For an overview of the SVD and its proper-
ties, see [16].

We say that B̂ is an instantiation of B if each entry
B̂[i, j], independently, is chosen at random from a distri-
bution with a bounded range and expectation B[i, j].

Let Ŵ ∈ Zn×n be a matrix such that Ŵ [i, j] is the num-
ber of links between page i to page j. Let Ŝ ∈ Zn×` be
the matrix such that Ŝ[i, j] is the number of occurrences of
term j in page i. Let a query vector q̂ ∈ Z` be the character-
istic vector of the query: q̂[i] is the number of occurrences
of term i in the query.

3.2. An Easy Special Case and Intuition

There is an interesting special case of the model8 where
the search problem is particularly easy to solve: when the
hub text and the authority text can be easily separated, as
they would be, for example, if all of the anchor text on a
web page was hub text and all the rest of the text on that
page was authority text.

8Another equally easy special case is when H = A, however, as dis-
cussed below, there is empirical evidence suggesting that this is unlikely in
practice.
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In this scenario, a simple approach is to throw out author-
ity text on each page, and view the document-term matrix
as the instantiation of HST

H .
To get a feel for why this case is easier (when H , A and

SH are all rank k), imagine that the algorithm has available
to it the model matrices W = HAT and S = HST

H , and the
actual query q = vT ST

H instead of their instantiations9. The
idea is to find a vector u such that uT ST = q(= vT ST

H),
which is easily done by multiplying the query vector q by
the pseudo-inverse of ST . Given such a vector, we have
uT ST = uT HST

H = vT ST
H , which implies that uT H =

vT , since ST
H is rank k. Finally, by computing uT W , we ob-

tain the result we want, since uT W = uT HAT = vT AT .
We can now easily give intuition for the algorithm for

the general case (again supposing that the algorithm has
available to it the model matrices rather than their instan-
tiations). Our goal, once again, is to find a vector u such
that uT H = vT , since from such a vector we can com-
pute the desired result as above. To do this, consider the
matrix M obtained by concatenating W T with S, i.e. M =
(AHT |HST

H +AST
A). A typical linear combination of rows

of this matrix, say uT M , looks like (yT HT |xT ST
H +yT ST

A)
for some pair of vectors x and y. What our algorithm does
is find a linear combination of rows such that yT HT = 0
and xT ST

H + yT ST
A = q = vT ST

H . Together these imply
that y = 0 and x = v, since the matrices H and SH are of
full rank k. Thus, we have found a u such that uT H = vT ,
as needed.

3.3. The Algorithm SP

SP performs the following preprocessing (of the entire web)
independently of the query:

1. Compute the SVD of the matrix

M̂ = [Ŵ T |Ŝ] = UcM
ΣcM

V T
cM

.

Note that M̂ ∈ Rn×(n+`) (n is the number of web
pages and ` is the number of terms).

2. Choose the largest index m such that the difference
|σm(M̂)−σm+1(M̂)| is sufficiently large (we require
ω(

√
n + `)). Let M̂m = UcMm

ΣcMm

V T
cMm

be the rank

m SVD approximation to M̂ .

3. Compute the SVD of the matrix Ŵ = UcW
ΣcW

V T
cW

.

4. Choose the largest index r such that the difference
|σr(Ŵ )−σr+1(Ŵ )| is sufficiently large (ω(

√
n)). Let

9Matrix perturbation theory allows us to prove that by using low rank
approximations to their instantiations, we can essentially recover these
model matrices from their instantiations if the singular values of the matri-
ces involved are sufficiently large.

Ŵr = UcWr

ΣcWr

VcWr

be the rank r SVD approxima-

tion to Ŵ .

Once a query vector q̂ ∈ R` is presented, let q̂′T =
[0n|q̂T ] ∈ Rn+`. SP does the following query-dependent
computation:

• Compute the vector

w = q̂′T M̂−1
m Ŵr ,

where M̂−1
m = VcMm

Σ−1
cMm

UT
cMm

is the pseudo inverse

of M̂m.

• The search result is a value w(p) for each web page p,
where w(p) is the authoritativeness of p on the query
topic10,

3.4. The Main Theorem

For any matrix B, let ri(B) ≥ 1 denote the ratio between
the primary singular value and the i-th singular value of B:
ri(B) = σ1(B)/σi(B). If r(B) = 1 then this means that
the singular values do not drop at all, the larger ri(B) is the
larger the drop in singular values.

Our main goal is now to prove the following theorem:

Theorem 3.1. Given that the web link structure Ŵ , term
content Ŝ, and query q̂, are generated according to our
model (Ŵ is an instantiation of W = HAT , Ŝ is an in-
stantiation of S = AST

A + HST
H , and q̂ is an instantiation

of q = vT ST
H ), and given that

• q̂ has ω(k · rk(W )2r2k(M)2) terms,

• σk(W ) ∈ ω(r2k(M)
√

n) and σ2k(M) ∈
ω(rk(W )r2k(M)

√
n),

• W and HST
A are rank k, M = [W T |S] is rank 2k,

` = O(n),

then SP computes a vector of authoritativeness that is very
close to the correct answer:

‖q̂′T M̂−1
m Ŵr − vT AT ‖2

‖vT AT ‖2
∈ o(1). (1)

The condition that M is of rank 2k seems to be fairly
reasonable. It essentially says that the hub structure and the
authority structure of the web are sufficiently different from
one another. If indeed, as empirical evidence suggests (e.g.,

10Of course, web pages should be presented to the user in the order of
decreasing authoritativeness.
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[21]), much of the hub and authority structure of the web
is defined by dense, directed bipartite subgraphs, then this
assumption is likely to hold. In Section 4.2 we present an
algorithm for the case where the rank of M is less than 2k.

As for the conditions on the singular values of W and
M : if, for example, all the singular values of W and M are
Θ(n), then all the conditions of the theorem are met, and the
query needs to have only a constant number of terms. At the
other extreme, if the singular values of W and M drop off so
that σ1(W ) ∈ O(n), σk(W ) ∈ ω(n5/6), σ1(M) ∈ O(n),
σ2k(M) ∈ ω(n5/6) then the conditions of the theorem are
also met, but in this case, a ridiculously large number of
search terms are required in order to guarantee that the cor-
rect answer is found.

The proof of Theorem 3.1 is given in the appendix. For
lack of space, many details are omitted.

We can also give a stronger version of this theorem (The-
orem 3.2) when we allow the model to be corrupted by an
error. This version is useful to justify our approach on the
real web where we do not expect the correct model to have
rank exactly k, but rather we expect there to be a long tail
of additional singular values.

Theorem 3.2. Under the conditions of Theorem 3.1, as-
sume we were to corrupt the matrix M by adding an error
matrix E, M ′ = M +E, where ‖E‖2 ∈ o(|σ2k(M)−√

n|)
(this also implies an appropriate corruption of W as M =

[W T |S]). If we were then to generate M̂ from M ′, the
claims of the theorem would remain unchanged.

We omit the proof of this theorem in this extended ab-
stract. It follows the same outline as Theorem 3.1, using
Lemma 3.0.3 of [2].

Finally, we note that there is experimental evidence that
suggests that the singular values for the web graph and the
document-term matrix might be Zipf (i.e., σi proportional
to n/i) [24, 21]. If we assume this in our model, we can
show as a corollary to Theorem 3.2 that our algorithm works
correctly using only a constant number of search terms.

4. Discussion and Extensions

4.1. Limitations of the Model

Clearly, the effectiveness of our model as a tool for guid-
ing the design of web search algorithms remains open; an
empirical evaluation is the obvious next step in this re-
search. The following are all potentially serious limitations
of our model:

1. The model assumes that all correlations are linear.

2. The model assumes that entries in the various matri-
ces are instantiated (based on the probabilistic model)
independently.

3. By defining the authoritativeness of a page p on topic
v to be v · A(p), a strong authoritative site on a related
topic (not precisely aligned with v) may be more au-
thoritative on topic v than a weaker authority whose
topic is precisely v.

4. It is essentially impossible to define a page that has
a particular hub topic, uses precisely the terminology
associated with that hub topic, but rather than pointing
to the most authoritative sites on the topic, points to
the least authoritative sites on the topic.

5. More generally, there is no notion of a bad hub or a
bad authority. Every page has a hub topic and an au-
thority topic and what distinguishes two pages on the
same topic is the strength of their authoritativeness or
hubbiness on that topic.

For an interesting comparative discussion of the limita-
tions of a variety of web search algorithms, along with an
experimental evaluation see [5].

4.2. If Hubs and Authorities cannot be linearly sep-
arated

We have assumed that M = [AHT |AST
A + HST

H ] was
rank 2k and W was rank k. Of course, when running the
algorithm we don’t know in advance what k is. What we
really need is that there be a large gap between the 2k-th and
(2k+1)-st singular values of M̂ and simultaneously a large
gap between the k-th and (k + 1)-st singular values of Ŵ .
In other words, we can actually check that the conditions of
the theorem are met.

Suppose, however, that in reality M is not rank 2k, and
we compute the singular values of M̂ and Ŵ and find that
the correct interpretation of these singular values is that M
has some rank k ≤ i < 2k. For example, this would happen
if H = A, i.e., the hub topic and authority topic of each
page is identical.

Consider the following modification to the query-
dependent portion of SP:

1. Find u′ so that u′T M̂m = [yT |q̂T VbSm

V T
bSm

] and ‖y‖2

is minimized, where Ŝm represents the rightmost `

columns of M̂m.

2. Choose w = u′Ŵr and output the order given by the
coordinates of w.

The significance of M being of rank < 2k is that one
may not be able to isolate the pure hub properties of the
topic. In some cases (for some query vectors q = vST

H ),
one can only compute the links of pages that have a mixture
of hub terms SH and some authority terms SA. I.e., we
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would get hT ST
H + aT ST

A = vT ST
H and SP would output

hT A rather than vA.
Our goal in such a case would be to reduce the (possi-

bly misleading) authority element in the synthesized hub as
much as possible. That is exactly what is being done in the
variant above.

4.3. A Recursive Approach

One problem with the approach taken by SP is that the k
fundamental concepts in the overall web will be quite dif-
ferent than the k fundamental concepts when we restrict at-
tention to computer science sites.

What we would like to do is to focus on the relevant sub-
set of documents so that we indeed have sufficient resolu-
tion to identify the topic at hand, and the topic does not
vanish as one of the insignificant singular values.

A natural recursive approach would be to apply SP, sort
the sites by both authority value and hub value, take the top
1/3 of the most authoritative sites along with the top 1/3 of
the hub sites and recur.

Clearly, this process converges. We suspect (but don’t
have any evidence) that this may work well in practice. If
the search term “singular value decomposition” (say) has
any significance in “Engineering” (say) then the first round
will post Engineering authorities and hubs high up in the
list and Theology authorities and hubs low in the list. So
the 2nd round will start with Theology and other unrelated
topics omitted, and a higher resolution set of concepts for
Engineering. In fact, since we don’t know the resolution at
which the user wants to perform the query, it may be useful
to provide answers at various resolutions.
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A. Appendix: Proof of Theorem 3.1

The proof has three parts: first we give two alternate for-
mulations for the term vT AT in Equation (1). Next, we give
a lower bound on ‖vT AT ‖2, and finally an upper bound on
‖q̂′T M̂−1

m Ŵr − vT AT ‖2/‖vT AT ‖2.

A.0.1 Reformulating vT AT

Define the matrix M = [W T |S] ∈ Rn×(n+`), let q′T =
[0n|qT ] ∈ Rn+`.

Claim A.1. q′T is in the row space of M .

Proof. We can rewrite M as follows

M =
[
W T |S

]

=
[
AHT |AST

A + HST
H

]

= [A|H ]

[
HT ST

A

0k×n ST
H

]
. (2)

If rank(M) = 2k then the row space of M is equal to the
row space of the right matrix in equation (2). Recall that v ∈
Rk (chosen by the searcher) is such that qT = vT ST

H . This
implies that q′T = [0n|qT ] = [0n|vT ST

H ] = vT [0k×n|ST
H ]

is in the row space of M .
Therefore, there exists some u ∈ Rn in the column space

of M such that uT M = q′T .

Claim A.2. Let u ∈ Rn be such that uT M = q′T , then
uT W = vT AT .

Proof. We can write M = [AHT |HST
H + AST

A ], we know
that uT M = q′T = [0n|qT ]. From this we learn that
uT AHT = 0. As HT is rank k it follows that uT A = [0k].
Thus, uT M = [0n|uT HST

H ] = q′T which implies that
uT HST

H = q = vT ST
H . As rank(ST

H) = k this implies
that uT H = vT , multiplying by A gives us the required
result uT W = uT HAT = vT AT .

Claim A.3. Let M = [0n×n|HST
H ], then uT M = q′T if

and only if uT M = q′T . Note that the columns of M are
spanned by the columns of H which is rank k, whereas our
assumption on M is that it is rank 2k.

Proof. In the course of arguing the previous claim, we
showed that

uT M = q′T = [0n|qT ] = [0n|uT HST
H ] ,

but uT M = [0n|uT HST
H ] too.

Claim A.4. Let uT M = q′T , let (M)−1 be the pseudo
inverse of M , and M−1 be the pseudo inverse of M , then
uT = q′T (M)−1 = q′T M−1.

Proof. Follows from Claim (A.3) and the fact that q′T is in
the row spaces of both F and F .

Claim A.5. Let qT = vT ST
H , q′T = [0n|qT ], M =

[0k×n|HST
H ], then

vT AT = q′T (M)−1W = q′T M−1W.

Proof. Follows from Claims (A.2) and (A.4).

Claim A.6. Let qT = vT ST
H , q′T = [0n|qT ], then

(q′T M−1)T is in the column space of W .

Proof. Recall that M = [0n×n|HST
H ], the SVD of M =

UMΣMV T
M

. Given that M is of rank k, the columns of UM

span the same space as the columns of H . As W = HAT

and W is rank k the columns of W and the columns of H
span the same space. I.e., the column space of UM is the
same as the column space of W .

From Claim A.3 we know that q′T M−1 = q′T M
−1

=
(q′T VMΣ−1

M
)UT

M
. I.e., q′T M−1 is a linear combination of

the rows of UT
M

, or alternately (q′T M−1)T is in the column
space of UM which is the same as the column space of W .

A.0.2 Lower bound on ‖vT AT ‖2

We know from Claim A.5 that

vT AT = q′T M−1W

= q′T VMΣ−1
M UT

MUW ΣW V T
W . (3)

We derive a lower bound on Equation 3 using the facts
that:

1. q′T is in the row space of M , which means that it’s in
the column space of VM (Claim A.1);

2. for any B ∈ Ri×j , i ≥ j, whose columns have 2-norm
1 and are mutually orthogonal11 and z ∈ Ri, a vector
in the column space of B, ‖zT B‖2 = ‖zT‖2;

3. The smallest singular value of Σ−1
M is 1/σ1(M);

11We use this cumbersome definition because orthogonal matrices are
by definition square.
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4. (q′T M−1)T is in the column space of W (and thus of
UW ) (Claim A.6); and

5. The smallest singular value of ΣW is σk(W ),

yielding the following lemma.

Lemma A.7.

‖vT AT ‖2 ≥ ‖q′T ‖2
σk(W )

σ1(M)
.

A.0.3 Upper bound

We use the equality vT AT = q′T M−1W from Claim A.5.
Also, let e ∈ Rn+` be such that q̂′T = q′T + e, let EM−1 ∈
R(n+`)×n be such that M̂−1

m = M−1+EM−1 and let EW ∈
Rn×n be such that Ŵr = W + EW . Then we can write:

‖ q̂′T M̂−1
m Ŵr − vT AT ‖2

= ‖q̂′T M̂−1
m Ŵr − q′T M−1W‖2

= ‖(q′T + eT )(M−1

+EM−1)(W + EW )

−q′T M−1W‖2

≤ ‖eT M−1W‖2 (4)

+‖q′T M−1EW + eT M−1EW ‖2 (5)

+‖q′T EM−1W + eT EM
−1

W‖2 (6)

+‖q′T EM−1EW + eT EM−1EW ‖2 (7)

By a simple martingale argument omitted here (essen-
tially Lemma 7.0.4 in [2]), we can show that:

Claim A.8. For any fixed matrix B ∈ R(n+`)×j with con-
stant rank i, ‖eT B‖2 ≤ O(1)

√
i · σ1(B) with high proba-

bility.

Claim A.9. If σi(W ) ∈ ω(
√

n) for 1 ≤ i ≤ k, 12 then SP
chooses r = k and ‖EW ‖2 ∈ O(

√
n) with high probability

13. Similarly, if σi(M) ∈ ω(
√

n + `) for 1 ≤ i ≤ 2k then
SP chooses m = 2k and ‖EM‖2 ∈ O(

√
n + `) with high

probability, where EM is the matrix such that M̂r = M +
EM

14.

12By assumption, σi(W ) ∈ ω(nδ) which is much higher and thus this
condition clearly holds, we state the weaker requirement so as to explain
what conditions are required for every step of the way. Likewise, the con-
ditions of the successive claims hold by the assumptions in Theorem 3.1.

13The probability space here is defined by the random choices made
when instantiating W to get cW .

14The probability space is defined by the random choices made when
instantiating W to get cW and the random choices made when instantiating
S to get bS.

Proof. We can write ‖EW ‖2 = ‖W − Ŵr‖2 ≤ ‖W −
Ŵ‖2 + ‖Ŵr − Ŵ‖2. Now, E = W − Ŵ is a matrix of
random variables with mean 0 and constant range, and the
2-norm of such a matrix is almost certainly O(

√
n)[4].

We can also bound ‖Ŵr − Ŵ‖2 ≤ σr+1(Ŵ ). We now
observe that for all i σi(Ŵ ) = σi(W − E) ≤ σi(W ) +
‖E‖2.

We know that σk+1(W ) = 0 and by assumption
σi(W ) ∈ ω(

√
n) for all 1 ≤ i ≤ k, therefore, σk(Ŵ ) ∈

ω(
√

n) and σk+1(Ŵ ) ∈ O(
√

n), which means that SP
chooses r = k. Thus, ‖Ŵr − Ŵ‖2 ≤ σk+1(Ŵ ) ∈ O(

√
n).

Similar arguments can be used to show the other part of
the claim.

Claim A.10. If σi(M) ∈ ω(
√

n + `) for 1 ≤ i ≤ 2k, then,
with high probability

‖EM−1‖2 ≤ O(
√

n + `)

(σ2k(M))2
.

Proof. By Wedin’s theorem (see [28], — Theorem 3.8, p.
143) we get

‖EM−1‖2 = ‖M̂−1 − M−1‖2

≤ O(1) max(‖M−1‖2
2, ‖M̂−1

r ‖2
2)‖EM‖2.

Now, ‖M−1‖2 = 1/σ2k(M), and ‖M̂−1
r ‖2 = 1/σ2k(M̂r).

We also know that that σ2k(M̂r) ≤ σ2k(M) +
O(‖EM‖2) = σ2k(M) + O(

√
n + `), whereas by assump-

tion σ2k(M) ∈ ω(
√

n + `) which implies that σ2k(M̂r) =
Θ(σ2k(M)).

Thus,

‖EM−1‖2 ≤ O(1) · ‖EM‖2/(σ2k(M))2

≤ O(
√

n + `)/σ2k(M)2,

by Claim A.9
Using Claims A.8, A.9, A.10, the facts that ‖M−1‖2 =

1/σ2k(M) and ‖W‖2 = σ1(W ), and some simple algebra,
we easily obtain upper bounds on Equations (4), (5), (6)
and (7). These upper bounds can then be combined with
Lemma A.7, to show that if the length of the search query
‖qT ‖2 ∈ ω(

√
k · rk(W )r2k(M)), then

‖q̂′T M̂−1
m Ŵr − vT AT ‖2

‖vT AT ‖2
= o(1),

which completes the proof of Theorem 3.1.
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